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I study arithmetic geometry. My current work and future projects aim to develop ramification
theory for arbitrary valuation fields, that is compatible with the classical theory of complete discrete
valuation fields with perfect residue fields.

We consider arbitrary valuation rings with possibly imperfect residue fields and possibly non-
discrete valuations of rank ≥ 1, since many interesting complications arise for such rings. In par-
ticular, defect may occur (i.e. we can have a non-trivial extension, such that there is no extension
of the residue field or the value group). In this talk, we will focus on degree p Galois extensions of
such fields.

In section 1, we review the classical theory involving Swan conductor and Kato’s definition of
refined Swan conductor, we use Artin-Schreier extensions of valued fields in positive characteristic
as examples. Section 2 presents the general results obtained in [Thatte16] and [Thatte18], for the
equal characteristic case and mixed characteristic case, respectively. The last section contains some
basic examples and computations. Please note that many of the technical details will be skipped
during the talk, for convenience, and concepts will be explained mostly via examples.

1 Complete Discrete Valuation Rings

1.1 Classical Case: Perfect Residue Fields
Let K be a complete discrete valued field of residue characteristic p > 0 with normalized (additive)
valuation v, valuation ring A and perfect residue field k. Consider L|K, a finite Galois extension of
K with G = Gal(L|K). Let w be the unique valuation on L that extends v, B the integral closure
of A in L and l the residue field of L. Let N denote the norm map NL|K . We have the following
invariants of ramification theory:

The ramification index eL|K := (w(L×) : v(K×)) and the inertia degree fL|K := [l : k]. The
Lefschetz number i(σ) and the logarithmic Lefschetz number j(σ) for σ ∈ G\{1} are non-negative
integers defined as

i(σ) = min{w(σ(a)− a) | a ∈ B} (1.1)

j(σ) = min

{
w

(
σ(a)

a
− 1

)
| a ∈ L×

}
(1.2)
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For a finite dimensional representation ρ of G over a field of characteristic zero, the Artin conductor
Art(ρ) and the Swan conductor Sw(ρ) of ρ are defined by the equations below.

Art(ρ) =
1

eL|K

∑
σ∈G\{1}

i(σ)(dim(ρ)− Tr(ρ(σ))) (1.3)

Sw(ρ) =
1

eL|K

∑
σ∈G\{1}

j(σ)(dim(ρ)− Tr(ρ(σ))) (1.4)

As a consequence of the Hasse-Arf Theorem ([Serre]), Art(ρ) and Sw(ρ) are non-negative integers.
Let us consider cyclic extensions L|K of order p and the wild invariants j(σ) and Sw(ρ).

Definition 1.1 (Classical Swan Conductor: Degree p). In this case, the Swan conductor Sw of
L|K is defined by considering the one-dimensional representation ρ : G → C×; ρ(σ) = ζp =: ζ ,
where σ ∈ G\{1} is a fixed generator of G. The definition is independent of the choice of such a
generator.

Sw =
j(σ)

eL|K

(
p− 1−

p−1∑
i=1

ζ i

)
=
j(σ)p

eL|K
(1.5)

1.2 Kato’s Swan Conductor and Refined Swan Conductor
Let K be as in 1.1, except possibly with imperfect residue field k. Consider the following two types
of non-trivial extensions L|K of degree p. We present Kato’s generalization of Swan conductor and
his definition of the refined Swan conductor in each case.

1.2.1 Equal Characteristic Case: Artin-Schreier Extensions

In this case, charK = p and L|K is given by the Artin-Schreier polynomial αp − α = f for some
f ∈ K×. The Galois group G is cyclic of order p, generated by σ : α 7→ α + 1.

Definition 1.2 (Best f ). Let P : K → K denote the additive homomorphism x 7→ xp − x. The
extension L does not change if f is replaced by any g ∈ K such that g ≡ f mod P(K). The Swan
conductor Sw is defined to be min{−v(g) | g ≡ f mod P(K)}. This definition is consistent with
the classical definition above.

An element f of K which attains this minimum is called best f . It is well-defined modulo
P(K). A concrete description of the Swan conductor is given by the following lemma:

Lemma 1.3 (Kato). By replacing f with an element of {g ∈ K | g ≡ f mod P(K)}, we have best
f which satisfies exactly one of the following properties (i)-(iii). In the case (i), L|K is unramified
and the Swan conductor is 0. In the cases (ii) and (iii), the Swan conductor is n.

(i) f ∈ A×.

(ii) v(f) = −n, where n is a positive integer relatively prime to p.

(iii) f = ut−n, where n > 0, p|n, t is a prime element of K and u ∈ A× such that the residue class
of u in k does not belong to kp = {xp | x ∈ k}.
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Remark 1.4. Let us compare this with the classical definition in (1.5). Let f be best, consider the
corresponding Artin-Schreier generator α given by αp − α = f . Then we have j(σ) = −w(α) and
hence, by (1.5),

Sw =
j(σ)p

eL|K
= −w(α)

p

eL|K
= −v(f) = −v(N(α))

Thus, the “L-side” definition of Sw involving j(σ) is connected to the “K-side” definition in-
volving f via the norm map. We generalize this connection later (theorem 2.5).

Notation 1.5 (Kähler Differentials). Let A be a henselian valuation ring with field of fractions K.
Let L|K be an extension of henselian valued fields, B the integral closure of A in L and hence, a
valuation ring. We consider theA-module Ω1

A of differential 1-forms overA and theB-module Ω1
B|A

of relative differential 1-forms over A. The A-module of logarithmic differential 1-forms over A is
denoted by ω1

A. We also consider the B-module ω1
B|A of logarithmic relative differential 1-forms

over A, defined as the cokernel of the map B ⊗A ω1
A → ω1

B.

In his papers [Kato87], [Kato89] defines the notion of the refined Swan conductor for complete
discrete valued fields with arbitrary residue fields. We rephrase this definition in [Thatte16] as
follows.

Definition 1.6 (Refined Swan Conductor). Let K be as described in 1.2.1 and L = K(α) the
Artin-Schreier extension given by best f . The refined Swan conductor (rsw) of this extension is

defined to be the A-homomorphism df :

(
1

f

)
→ ω1

A/Iω1
A given by h 7→ (hf) dlog f ; the ideal I

of A is described by I := {x ∈ K | v(x) ≥
(
p−1
p

)
v
(

1
f

)
}. For h ∈

(
1

f

)
, hf ∈ A and hence,

(hf) dlog f is indeed an element of ω1
A.

We show some explicit computations of rsw in example 3.1.

1.2.2 Mixed Characteristic Case: Kummer Extensions

Let K be as in 1.1, except possibly with imperfect residue field k. We assume that charK = 0 and
that K contains a primitive pth root ζ of 1. Let L = K(α) be the (non-trivial) Kummer extension
defined by αp = h for some h ∈ K×. For any a ∈ K×, h and hap give rise to the same extension
L. Let A = {h ∈ K | the solutions of the equation αp = h generate L over K}. The Galois group
Gal(L|K) = G is cyclic of order p, generated by σ : α 7→ ζα. Let z := ζ − 1.

Definition 1.7 (Best h). We define the Swan conductor of this extension by

Sw(L|K) := min
h∈A

v

(
zp

h− 1

)
(1.6)

This definition coincides with the classical definition of Sw(L|K) when k is perfect. Any element
h of A that achieves this minimum value is called best h. It is well-defined upto multiplication by
ap; a ∈ K×. Refined Swan conductor for such extensions is defined in a similar fashion as in the
Artin-schreier case (see [Thatte18]).
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2 Generalization to Arbitrary Valuations
Notation 2.1. Let K be an arbitrarily valued field with henselian valuation ring A, valuation v and
residue field k of characteristic p. Let L|K be a non-trivial extension of degree p with Galois group
G, Let σ generate G. Let B be the integral closure of A in L, w the unique valuation on L that
extends v and let l denote the residue field of L. The value group Γ := v(K×) of K need not be
isomorphic to Z. The residue field k is possibly imperfect.

Definition 2.2 (Defect). Let L|K be as above. The ramification index and the inertia degree of L|K
are denoted by eL|K and fL|K , respectively. Then there is a positive integer dL|K , called the defect
of the extension, such that [L : K] = dL|KeL|KfL|K . The extension L|K is defectless if dL|K = 1.
For a more general discussion on defect, see [Kuhlmann].

2.1 Equal Characteristic
2.1.1 Main Results

Let L|K be a non-trivial Artin-Schreier extension, where char K = p.

Notation 2.3. Let A = {f ∈ K× | the solutions of the equation αp − α = f generate L over K}.
Consider the ideals Jσ , Iσ of B and the idealsH, Nσ of A, defined as below:

Jσ =

({
σ(b)

b
− 1 | b ∈ L×

})
, Iσ = ({σ(b)− b | b ∈ B}) ⊂ B (2.1)

H =

({
1

f
| f ∈ A

})
, Nσ = (N(Jσ)) ⊂ A (2.2)

Remark 2.4. The ideals Jσ, Iσ,H are analogs of the numbers j(σ), i(σ), Sw. In particular, in the
classical case, the ideal Jσ is a principal ideal generated by an element of valuation j(σ) and a
similar relation is true for Iσ andH.

It is not apparent from the definition that H is indeed a subset of A, it is proved by using that K
is henselian. The invariants do not depend on the choice of σ, we fix a particular σ purely for
convenience. We prove the following results in [Thatte16]. Note that in this paper, we assume that
the valuation is of rank 1, but this condition is not necessary and the results are true for valuations
of arbitrary rank (see [Thatte18]).

Theorem 2.5 (Thatte). We have the following equality of ideals of A:

H = Nσ (2.3)

Remark 2.6. Theorem 2.5 generalizes the relation between the classical Swan conductor and the
invariant j(σ), described in (1.5). The idealH is the analog of the Swan conductor.

Theorem 2.7 (Thatte). We consider the A-module ω1
A of logarithmic differential 1-forms and the

B-module ω1
B|A of relative logarithmic differential 1-forms. Then

(i) There exists a unique homomorphism of A-modules rsw : H/H2 → ω1
A/(Iσ ∩A)ω1

A such that
1

f
7→ dlog f ; for all f ∈ A.
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(ii) There is a B- module isomorphism ϕσ : ω1
B|A/Jσω1

B|A
∼=→ Jσ/J 2

σ such that for all

x ∈ L×, dlog x 7→ σ(x)

x
− 1.

(iii) Furthermore, these maps induce the following commutative diagram:

ω1
B|A/Jσω1

B|A Jσ/J 2
σ

ω1
A/(Iσ ∩ A)ω1

A H/H2

ϕσ
∼=

∆N N

rsw

The mapN is induced by the norm mapN and the map ∆N is given by b dlog x 7→ N(b) dlogN(x),
for all b ∈ B, x ∈ L×.

Remark 2.8. The map rsw in (i) is a further refinement and generalization of Kato’s refined Swan
conductor. Naı̈vely speaking, the differential df is replaced by a map that is “multiplication by df”.

2.1.2 Key Ideas in the Proofs

In the classical case, there exists x ∈ B which generates B as an A-algebra. This x can be used to
describe the main invariants described in 1.1. However, such element does not exist in the general
case.
First we prove Theorem 2.5. Then we prove the following result, which allows us to describe various
ideals and modules using a single element, in the absence of defect.

Lemma 2.9. The following statements are equivalent:

(a) Jσ is principal.

(b) L|K is defectless.

(c) Best f exists.

(d) H is principal.

Consequently, in the defectless case, L|K is generated by αp − α = f , where f is best. Then
Jσ =

(
1
α

)
,H =

(
1
f

)
are principal ideals ofB andA, respectively. TheB-module ω1

B|A is generated
by the single element dlogα.

The case with defect is more difficult to deal with, since the objects involved are not singly
generated. However, we are able to writeB as a “filtered union” ofA[xα] overA, where the elements
xα are chosen very carefully for each α that generates L|K as an Artin-Schreier extension. Now it
is enough to consider the commutative diagram for each such α and take appropriate limits. Precise
statements of these results are available in [Thatte16] and [Thatte18]

2.2 Mixed Characteristic Case
Let L|K be as in 2.1, charK = 0. First we consider Kummer extensions L|K, where K contains a
primitive pth root ζ of unity. The general case is then reduced to this case, by using tame extensions
and Galois invariance. These results are discussed in [Thatte18].
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2.2.1 Kummer Extensions

We assume that K contains a primitive pth root ζ of 1, let z := ζ − 1. Consider a (non-trivial)
Kummer extension L = K(α) defined by αp = h for some h ∈ K×. Let A = {h ∈ K | the
solutions of the equation αp = h generate L over K}. We define the idealH by

H =

({
zp

h− 1
| h ∈ A

})
⊂ A (2.4)

Analogs of Theorem 2.5, Theorem 2.7, Lemma 2.9 in this case are true. The refined Swan conductor
rsw is the uniqueA-module homomorphism rsw : H/H2 → ω1

A/(Iσ∩A)ω1
A such that for all h ∈ A,

zp

h− 1
7→ 1

h− 1
dlog h.

2.2.2 Non-Kummer Case

Notation 2.10. LetK ′ be a valued field of characteristic 0 with henselian valuation ringA′, valuation
v′ and residue field k′ of characteristic p > 0. Consider a non-trivial Galois extension L′|K ′ of
degree p, with Galois group G′ := Gal(L′|K ′). Let w′, B′, l′ denote the valuation, valuation ring
and the residue field of L′. We consider the fields K := K ′(ζ), L := L′(ζ) and the Kummer
extension L|K described by αp = h for some h ∈ K. We will use the notation of 2.2.1 for
the extension L|K. The Galois group G is cyclic of order p, generated by σ : α 7→ ζα. Let
Λ := Gal(K|K ′) ∼= Gal(L|L′), the order of Λ is coprime to p.

2.3 Invariants for L′|K ′

First we define the corresponding invariants for the extension L′|K ′ as follows.

I ′ := ({σ(b)− b | b ∈ B′}) ⊂ B′ (2.5)

J ′ :=
({

σ(b)

b
− 1 | b ∈ L′×

})
⊂ B′ (2.6)

N ′ :=
(
NL′|K′(J ′)

)
⊂ A′ (2.7)

H′ := (H)Λ ⊂ A′ (2.8)

Proposition 2.11. The invariants for L|K and the invariants for L′|K ′ are related as follows.

1. Jσ = J ′B, (Jσ)Λ = J ′.

2. Nσ = N ′A, (Nσ)Λ = N ′.

3. (Iσ)Λ = I ′

Observe that L′|K ′ and L|K have the same defect. We have the analogs of the main results
using Proposition 2.11 and Λ-invariance. The map rsw′ is the restriction of the map rsw to H′/H2.
It is worth noting that the statement Iσ = I ′A is not always true.
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3 Some Examples of Artin-Schreier Extensions
Example 3.1. CDVR Example (Type (iii) in Lemma 1.3)

Consider K = k((X)) and L|K given by αp − α = u/Xmp; where m ∈ N and u is a unit
whose residue class is not a pth power in k. Then u/Xmp is our best f . Since Xmα generates B as
an A-algebra, we have the following:

eL|K = 1, fL|K = p

j(σ) = w(σ(Xmα)/Xmα− 1) = w(σ(α)/α− 1) = w(1/α) = m

Sw = v(1/f) = v(Xmp/u) = mp = mp/eL|K

Jσ = (1/α)B andH = (1/f)A = (N(1/α))A

The refined Swan conductor is given by

df = du/Xmp

We can see that rsw captures Sw = mp here, along with information about u.

Example 3.2. Higher Rank Valuation

K = k((X))((Y )) can be given the lexicographic ordering where v(X) = (1, 0) and v(Y ) =
(0, 1). In this case, the valuation has rank 2.

Example 3.3. Defect and Best f

K = ∪r∈Z≥0
Fp((X))(X1/pr)

Let L|K be the (non-trivial) extension given by

αp − α = 1/X

Observe (details below) that there is no best f and the extension has non-trivial defect in this case.
We can replace f1 = 1/X with f2 = 1/X + (−1/X1/p)p − (−1/X1/p) = 1/X1/p. This does not
change the extension, but we obtain a “better” f . We can continue this process to get infi{−v(fi)} =
infi{1/pi} = 0. But there is no f that achieves this inf.

This example is a rather simple one in that our results are “trivially true” in this case, since this
extension is almost unramified. In particular, all the objects in the commutative diagram are 0. A
non-trivial example is available in the last section (Appendix) of [Thatte16]. We constructed this ex-
ample using successive blow-ups. The inf in this case is non-zero, and we can see the complications
caused by the presence of defect rather clearly.
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