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Introduction

The Kawashima functions provide a type of generalizations (‘multiplification’) of the
digamma function (and polygamma functions), in the same way as the multiple zeta
values do of the Riemann zeta values.

Riemann zeta values Multiple zeta values

Digamma function Kawashima functions

multiplify

related (classical) related?

multiplify

There are classically known relationships between the digamma function and the
Riemann zeta values at positive and non-positive integers (see §1 below). In these
notes, we consider multiplifications of these relationships, and applications to the study
of multiple zeta values. For more detail (except for the content of §5), we refer the
reader to [12].

1. Reviews on the digamma function and MZVs

First we define the digamma function ψ(z) as the logarithmic derivative of the gamma
function:

ψ(z) :=
Γ′(z)

Γ(z)
.

Many formulas are known for this classical function. Let us note four of them:

ψ(N + 1) = −γ +

N∑
n=1

1

n
,(1.1)

ψ(z + 1) = −γ +
∞∑
n=1

(−1)n−1

n

(
z

n

)
(1.2)

= −γ +

∞∑
m=1

(−1)m−1ζ(1 +m)zm(1.3)

∼ log z +
∞∑

m=1

(−1)mζ(1−m)z−m as z → +∞.(1.4)

Here γ = limN→∞
(∑N

n=1
1
n − logN

)
denotes the Euler constant, and N in (1.1) is any

non-negative integer. We want to obtain multiple versions of these formulas.

Next, we introduce the multiple zeta(-star) values.
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Definition 1.1. A tuple k = (k1, . . . , kr) of positive integers is called an index. In
particular, the index of length 0 (the empty index) is denoted by ∅. An index k is
called admissible if it is empty or its last entry kr is greater than 1.

For an index k = (k1, . . . , kr) and a non-negative integer N , we define

s(k;N) :=
∑

0<n1<···<nr=N

1

nk11 · · ·nkrr
, S(k;N) :=

∑
0<n1<···<nr≤N

1

nk11 · · ·nkrr
,

s⋆(k;N) :=
∑

0<n1≤···≤nr=N

1

nk11 · · ·nkrr
, S⋆(k;N) :=

∑
0<n1≤···≤nr≤N

1

nk11 · · ·nkrr
.

For k = ∅, we set

s(∅;N) = s⋆(∅;N) := δN0, S(∅;N) = S⋆(∅;N) := 1.

If k is admissible, the limits

ζ(k) := lim
N→∞

S(k;N), ζ⋆(k) := lim
N→∞

S⋆(k;N)

exist. We call them the multiple zeta and zeta-star values respectively.

In these decades, the multiple zeta(-star) values have been investigated from various
points of view. Here we only mention that there are many relations among these values,
linear or algebraic over Q, e.g.

ζ(3) = ζ(1, 2), ζ(4) = 4ζ(1, 3) = ζ(1, 1, 2), ζ(2)ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5).

We are interested in how to generate such relations systematically, and the theory of
Kawashima functions provide a large class of relations.

To describe some relations, it is convenient to consider a Q-linear map constructed
from MZVs. Let R be the Q-vector space of formal linear combinations of indices, and
R0 its subspace generated by admissible ones:

R :=
⊕

k index

Q · k ⊃ R0 :=
⊕

k adm. index

Q · k.

Then we define Q-linear maps S(−;N) and S⋆(−;N) from R to Q by sending indices k
to S(k;N) and S⋆(k;N), respectively. The Q-linear maps ζ, ζ⋆ : R0 → R are similarly
defined. Thus the study of linear relations among MZVs is the study of Ker ζ.

2. Definition of Kawashima functions

By combining (1.1) and (1.2), we see that

N∑
n=1

1

N
=

N∑
n=1

(−1)n−1

n

(
N

n

)
for any integer N ≥ 0.

This identity is generalized to multi-index as follows:

Theorem 2.1 (Hoffman [6],Kawashima [7]).

S⋆(k;N) =
N∑

n=1

(−1)n−1s⋆(k∨;n)

(
N

n

)
.

Here k∨ denotes the Hoffman dual index of k. For example, if k = (2, 3, 1) =
(1 + 1, 1 + 1 + 1, 1), its Hoffman dual is k∨ = (1, 1 + 1, 1, 1 + 1) = (1, 2, 1, 2), obtained
by interchanging plus and comma.
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Definition 2.2. For k ∈ Zr
>0, we define the Kawashima function F (k; z) of index k by

F (k; z) :=
∞∑
n=1

(−1)n−1s⋆(k∨;n)

(
z

n

)
.

This series converges (at least) if ℜ(z) > −1.

This definition itself is a generalization of (1.2), while the interpolation property

F (k;N) = S⋆(k;N) for any integer N ≥ 0,

which generalizes (1.1), is a direct consequence of Theorem 2.1.

3. Stuffle relation

We begin with an example. For integers k, l ≥ 1, we have

S(k;N)S(l;N) =
∑

0<m,n≤N

1

mknl

=

( ∑
0<m<n≤N

+
∑

0<n<m≤N

+
∑

0<m=n≤N

)
1

mknl

= S(k, l;N) + S(l, k;N) + S(k + l;N).

If we define an element (k) ∗ (l) of R by

(k) ∗ (l) := (k, l) + (l, k) + (k + l),

we can write the above identity as

S(k;N)S(l;N) = S
(
(k) ∗ (l);N

)
.

By generalizing the above computation, for any indices k and l, we can find an element
k ∗ l ∈ R for which the identity (the stuffle relation)

S(k;N)S(l;N) = S(k ∗ l;N)

holds. The operation ∗, called the stuffle (or harmonic, quasi-shuffle) product, is ex-
tended to a bilinear, associative and commutative product on R. Thus S(−;N) : R → Q
is a Q-algebra homomorphism with respect to the stuffle product. The same is true for
ζ : R0 → R.

In fact, we need the variant of the above story for S⋆. The first example is modified
as

S⋆(k;N)S⋆(l;N) =
∑

0<m,n≤N

1

mknl

=

( ∑
0<m≤n≤N

+
∑

0<n≤m≤N

−
∑

0<m=n≤N

)
1

mknl

= S⋆(k, l;N) + S⋆(l, k;N)− S⋆(k + l;N).

Hence we have to set
(k) ∗̄ (l) := (k, l) + (l, k)− (k + l)

to obtain
S⋆(k;N)S⋆(l;N) = S⋆

(
(k) ∗̄ (l);N

)
.

In general, we have a bilinear, associative and commutative product ∗̄ on R with respect
to which S⋆(−;N) : R → Q and ζ⋆ : R0 → R are Q-algebra homomorphisms.
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The following result by Kawashima gives the interpolation of the stuffle relation for
S⋆.

Theorem 3.1 (Kawashima [7]). For any indices k, l, we have

(3.1) F (k; z)F (l; z) = F (k ∗̄ l; z).

Here F (−; z) is defined on R by linearity.

4. Taylor expansion

By expanding the binomial coefficients
(
z
n

)
as polynomials of z, Kawashima proved

the following:

Theorem 4.1 (Kawashima [7]).

(4.1) F (k; z) =

∞∑
m=1

(−1)m−1A(k;m)zm,

where

A(k;m) :=
∞∑
n=1

s(

m︷ ︸︸ ︷
1, . . . , 1;n)s⋆(k∨;n).

Note that, for each index k and integer m > 0, the number A(k;m) can be written
as a finite sum of MZVs. For example,

A(1, 1, 2; 2)

=
∞∑
n=1

s(1, 1;n)s⋆(3, 1;n) =
∑

0 < a1 < a2
||

0 < b1 ≤ b2

1

a1a2

1

b31b2

=

( ∑
0<a1<b1<a2=b2

+
∑

0<a1=b1<a2=b2

+
∑

0<b1<a1<a2=b2

+
∑

0<a1<b1=a2=b2

)
1

a1a2

1

b31b2

= ζ(1, 3, 2) + ζ(4, 2) + ζ(3, 1, 2) + ζ(1, 5).

Remark 4.2. The formula (1.3) in §1 says that

F (1; z) =
∞∑

m=1

(−1)m−1ζ(m+ 1)zm,

while Theorem 4.1 implies that

F (1; z) =
∞∑

m=1

(−1)m−1ζ(

m−1︷ ︸︸ ︷
1, . . . , 1, 2)zm.

The identity ζ(m + 1) = ζ(

m−1︷ ︸︸ ︷
1, . . . , 1, 2) is a common example of two famous classes of

linear relations of MZVs, the duality and the sum formula.

By combining the stuffle relation (3.1) and the Taylor expansion (4.1) of Kawashima
functions, we obtain the following:
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Corollary 4.3 (Kawashima [7]). For any indices k, l and an integer m > 0, we have∑
p,q≥1
p+q=m

A(k; p)A(l; q) = −A(k ∗̄ l;m).

In the right hand side, we consider the linearly extended map A(−;m) on R.

Since each A(k;m) is a linear combination of MZVs, the above equation gives an al-
gebraic relation among them, called Kawashima’s relation. In fact, it is conjectured that
these relations together with the “shuffle relations” (which we don’t recall here) imply
all Q-linear relations among MZVs. As supporting evidences, there are several works
that deduce some other classes of relations from Kawashima’s relations (see Kawashima
[?], Tanaka [10] and Tanaka–Wakabayashi [11]).

5. Asymptotic expansion

Recall the asymptotic expansion (1.4) for the digamma function. In terms of the
Kawashima function F (1; z) = ψ(z + 1) + γ, it is written as

F (1; z) ∼ log z + γ +
∞∑

m=1

(−1)mζ(1−m)z−m as z → +∞.

This suggests that the asymptotic expansion for general Kawashima functions F (k; z)
can be described in terms of the values of the multiple zeta functions

ζ(s1, . . . , sr) :=
∑

0<m1<···<mr

1

ms1
1 · · ·msr

r

at possibly non-positive integer points. On the analytic continuation of these functions,
the following result is known (see also Zhao [13] and Matsumoto [9]):

Theorem 5.1 (Akiyama–Egami–Tanigawa [1]). The function ζ(s1, . . . , sr) continues
meromorphically to Cr, and has singularities on

sr = 1, sr−1 + sr = 2, 1, 0,−2,−4,−6, . . .

and
j∑

i=1

sk−i+1 ∈ Z≤j (j = 3, . . . , r).

Therefore, a non-positive integer point often lies on the singular locus of the multiple
zeta function. This makes it difficult to define the ‘values’ at these points. Nevertheless,
there are some attempts to define such values properly, e.g. Akiyama–Tanigawa [2],
Guo–Zhang [5], Ebrahimi-Fard–Manchon–Singer [3] and Furusho–Komori–Matsumoto–
Tsumura [4].

On the other hand, the computation of the asymptotic expansion for Kawashima
functions is a problem independent to the difficulty in interpretation of multiple zeta
values of non-positive indices. As for this problem, we present a partial result:

For an index k = (k1, . . . , kr) ∈ Zr
>0 and an integer l ≥ 0, set

B(k; l) :=
∑

l1+···+lr=l
lj≥kj−1

r∏
j=1

[
Blj−kj+1

(lj − kj + 1)!

(lj + lj+1 + · · ·+ lr − 1)!

(kj + lj+1 + · · ·+ lr − 1)!

]
,
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where Bm denotes the Bernoulli number defined by tet

et−1 =
∑∞

m=0
Bm
m! t

m (hence we have

ζ(1−m) = −Bm
m ).

Theorem 5.2 (Y.). If k = (k1, . . . , kr) ∈ Zr
≥2 (all entries are greater than 1), we have

F (k; z) ∼
∞∑
l=0

(−1)l

[
r∑

i=0

(−1)ki+1+···+krζ⋆(k1, . . . , ki)B(kr, . . . , ki+1; l)

]
z−l

as z → +∞.
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