Holomorphic Continuation of Adjoint L-functions via Trace Formula

Liyang Yang

Caltech

BU-KEIO 2019, Boston University

Basic zeta/L-functions over \mathbb{Q}

• Riemann ζ -function (Euler, 1740):

$$\zeta(s) = \prod_{p} (1 - p^{-s})^{-1} = \sum_{n=1}^{\infty} \frac{1}{n^s}, \ \Re(s) > 1.$$

• $f = \sum_{n \ge 0} a_n q^n \in S_k(SL_2(\mathbb{Z}))$ holomorphic cusp form, gives an automorphic *L*-function

$$L(s,f)=\sum_{n=1}^{\infty}\frac{a_n}{n^s}, \quad \Re(s)\gg 1.$$

• Rankin-Selberg convolution:

$$L(s, f \times \overline{f}) = \sum_{n=1}^{\infty} \frac{|a_n|^2}{n^s} = \langle E(s, \cdot), |f|^2 \rangle, \quad \Re(s) \gg 1.$$

• Dedekind ζ -function (Dedekind, 1863): K a number field,

$$\zeta_{\mathcal{K}}(s) = \prod_{\mathfrak{P}} (1 - \mathcal{N}(\mathfrak{P})^{-s})^{-1} = \sum_{0
eq \mathfrak{a} \subseteq \mathcal{O}_{\mathcal{K}}} rac{1}{\mathcal{N}(\mathfrak{a})^{s}}, \; \Re(s) > 1$$

f → π_f a cuspidal representation of GL(2, A_Q) : L(s, π_f) = L(s, f)
Consider π : cuspidal representation of GL(2, A_K).

$$L(s,\pi) = \int_{\operatorname{GL}_2(\mathbb{A}_K)} \Phi(g) \langle g.f, ar{f}
angle | \det g|^s dg, \quad ext{(Godement-Jacquet)}$$

• Rankin-Selberg convolution: $L(s, \pi \times \widetilde{\pi}) = \langle E(s, \cdot), |f|^2 \rangle, f \in \pi.$

Algebraic v.s. Analytical

	Algebraic	Analytic
1	${\mathbb Q}$, $deg_{{\mathbb Q}/{\mathbb Q}}=1$	$\operatorname{GL}(1), \ rk = 1$
zeta-function	$\zeta(s)$	$\zeta(s) = L(s, 1)$
2	K quadratic, i.e. $\deg_{K/\mathbb{Q}} = 2$	$\operatorname{GL}(2), \ rk = 2$
L-function	$\zeta_{\kappa}(s)$	$L(s, f imes ar{f})$
Ratio	$\zeta_{\kappa}(s)/\zeta(s)$	$L(s,f imesar{f})/\zeta(s)$
Analytic Properties	?	?

Question.

What do we know about these ratios? Why are we interested in them?

	Algebraic	Analytic
1	\mathbb{Q} , $deg_{\mathbb{Q}/\mathbb{Q}} = 1$	${ m GL}(1),{\sf rk}=1$
zeta-function	$\zeta(s)=\zeta_\mathbb{Q}(s)$	$\zeta(s) = L(s, 1)$
2	K quadratic, i.e. $\deg_{K/\mathbb{Q}} = 2$	${ m GL}(2),{\sf rk}=2$
L-function	$\zeta_{\kappa}(s)$	$L(s,f imesar{f})$
Ratio	$\zeta_{\kappa}(s)/\zeta(s)$	$L(s,f imesar{f})/\zeta(s)$
Upshot	Class Field Theory: $\zeta_{\kappa}(s)/\zeta(s) = L(s,\eta_{\kappa})$ holomorphic	Shimura & Zagier ('70s): $L(s, f \times \overline{f})/\zeta(s)$ holomorphic

Conjecture. (Dedekind, pprox 1873)

K : number field. Then $\zeta_{K}(s)/\zeta(s)$ admits an analytic continuation to \mathbb{C} .

•
$$\mathcal{K} = Q(\sqrt{-D}). \zeta_{\mathcal{K}}(s)/\zeta(s) = L(s,\chi_D).$$

- Dedekind (1900): Holds for *K* pure cubic field.
- Holds for K/\mathbb{Q} Galois.
- Uchida & van der Waall (1975): K is contained in a solvable extension of Q. (Holds also for general extension K/F.)
- Murty (2000): Twist case, i.e. $L(s, \chi \circ N_{K/F})/L(s, \chi)$.

Who else got interested in that conjecture?

Who else got interested in that conjecture?

E. Artin: Me! Should consider the ratio in terms of Galois representation:

$$\mathsf{Artin-Takagi}: \quad \zeta_{\mathcal{K}}(s)/\zeta_{\mathcal{F}}(s) = \prod_{1 \neq \chi \in \widehat{\mathsf{Gal}(\mathcal{K}/\mathcal{F})}} L(s,\chi,\mathcal{K}/\mathcal{F})^{\chi(1)}.$$

E. Artin: Me! Should consider the ratio in terms of Galois representation:

$$\mathsf{Artin-Takagi}: \quad \zeta_{\mathcal{K}}(s)/\zeta_{\mathcal{F}}(s) = \prod_{1 \neq \chi \in \mathsf{Gal}(\mathcal{K}/\mathcal{F})} L(s,\chi,\mathcal{K}/\mathcal{F})^{\chi(1)}.$$

Conjecture. (Artin, 1923)

Let $\rho \neq \mathbf{1}$ be a finite-dimensional complex representation of Gal(K/F). Then the Artin L-function $L(s, \rho) = L(s, \chi_{\rho}, K/F)$ is entire.

- Known for monomial Gal(*K*/*F*), and some 2-dimensional case, e.g. tetrahedral, octahedral.
- Wide open.

Is there any strategy for Artin conjecture?

• Yes! We have Langlands philosophy.

Langlands. (1970)

Artin conjecture follows from strong enough results of the Langlands philosophy. In particular, $L(s, \rho)$ should be an automorphic L-function, which is "typically" analytic.

• Will see:

Langlands philosophy also indicates entireness of $L(s, f \times \tilde{f})/\zeta(s)!$

• Langlands implies everything!

Langlands Correspondence

- G : reductive group, e.g., $G = GL_2$
- LG : the L-group, e.g. ${}^L\operatorname{GL}_2=\operatorname{GL}_2(\mathbb{C})$
- A(G): set of automorphic representations on G(A_F), can be thought as a subspace of L²(G(F)\G(A_F))
- $\pi \in \mathcal{A}(G)$, standard *L*-function $L(s, \pi)$
- W'_F : conjectural "Weil-Deligne" group over global field F

Conjecture. (Langlands)

There is a map such that

$$\mathcal{A}(G) \longrightarrow \left\{ \rho : W'_F \longrightarrow^L G \right\}$$

Some remarks:

• Makes sense locally; for $G = GL_n$, the correspondence is 1-to-1.

•
$$L(s,\rho) = L(s,\pi).$$

Langlands Functoriality

Definition

 $L(s, \pi, r) := L(s, r \circ \phi)$ via Local Langlands Correspondence.

• $L(s, \pi, r) = L(s, \Pi)$.

• $G = \operatorname{GL}_n$. Then G acts on $\mathfrak{sl}_n(\mathbb{C})$ by conjugation, inducing

$$r = \operatorname{Ad} : \operatorname{GL}_n(\mathbb{C}) \longrightarrow \operatorname{GL}_{n^2-1}(\mathbb{C}).$$

• Can see another expression of the *L*-function

$$L(s,\pi,r) = L(s,\pi,\mathsf{Ad}) = \frac{L(s,\pi\times\widetilde{\pi})}{\zeta_F(s)}$$

According to Langlands functoriality, one should expect

Conjecture. (Selberg, 1992)

Let π be a cuspidal representation on GL(n). Then $L(s, \pi, Ad)$ is holomorphic.

Conjecture. (Selberg, 1992)

Let π be a cuspidal representation on GL(n). Then $L(s, \pi \times \tilde{\pi})/\zeta_F(s)$ is holomorphic.

- Should be basic results of Langlands philosophy.
- It was not known (since 1975) when n > 2 for general π .
- Recall Artin conjecture:

$$\zeta_{\mathcal{K}}(s)/\zeta_{\mathcal{F}}(s) = \prod_{\chi \neq 1} L(s,\chi,\mathcal{K}/\mathcal{F})^{\chi(1)}.$$

• According to Langlands, expecting

$$L(s, \pi imes \widetilde{\pi})/\zeta_F(s) = \prod_{\pi \text{ cusp}} L(s, \pi)^{m(\pi)}.$$

• Shimura (1975) & Zagier (1977):

$$L(s, f, \operatorname{Ad}) = L(s, f \times \tilde{f}) / \zeta(s)$$
 is holomorphic.

- Gelbart-Jacquet (1978): Generalized Shimura's method to # field.
- Jacquet-Zagier (1987): Generalized Zagier's method to # field, using a **trace formula identity**.
- Flicker (1992): Partial results on GL(n) by simple trace formula.

Brief Summary

	Algebraic	Analytic
п	$[K:\mathbb{Q}]=n$	GL(<i>n</i>)
Ratio	$\zeta_{\kappa}(s)/\zeta(s)$	$L(s,\pi imes\widetilde{\pi})/\zeta(s)$
Conjectures	Dedekind Conjecture: $\zeta_\kappa(s)/\zeta(s)$ holomorphic	Selberg Conjecture: $L(s,\pi,Ad)=L(s,\pi imes\widetilde{\pi})/\zeta(s)$ holomorphic
<i>n</i> = 2	Class Field Theory	Shimura & Zagier ($pprox$ 1975)
<i>n</i> = 3, 4	Uchida & van der Waall (1975)	not known
$n \ge 5$	NO IDEA	Wide Open
DREAM	Artin Conjecture	Langlands Conjecture

What We Did

	Algebraic	Analytic
п	$[K:\mathbb{Q}]=n$	GL(<i>n</i>)
Ratio	$\zeta_{\kappa}(s)/\zeta(s)$	$L(s,\pi imes\widetilde{\pi})/\zeta(s)$
Conjectures	Dedekind Conjecture: $\zeta_\kappa(s)/\zeta(s)$ holomorphic	Selberg Conjecture: $L(s,\pi,Ad)=L(s,\pi imes\widetilde{\pi})/\zeta(s)$ holomorphic
<i>n</i> = 2	Class Field Theory	Shimura & Zagier ($pprox$ 1975)
<i>n</i> = 3, 4	Uchida & van der Waall (1975)	was not known
<i>n</i> ≥ 5	NO IDEA	Wide Open
DREAM	Artin Conjecture	Langlands Conjecture

- F : global field
- χ : idele class character on \mathbb{A}_F^{\times}
- π : a cuspidal representation on $GL(n, \mathbb{A}_F)$
- $L(s, \pi, \operatorname{Ad} \otimes \chi) := L(s, \pi \times \widetilde{\pi} \otimes \chi)/L(s, \chi)$

Theorem (Y.)

Let $n \leq 4$. Then the complete L-function $L(s, \pi, Ad \otimes \chi)$ is entire, unless $\chi \neq 1$ and $\pi \otimes \chi \simeq \pi$, in which case $L(s, \pi, Ad \otimes \chi)$ is meromorphic with only simple poles at s = 0, 1.

In particular, Selberg's Conjecture holds for any cuspidal representation π when $n \leq 4$.

Jacquet-Zagier's Work for GL(2)

Recall a trace formula of Jacquet-Zagier type for $\operatorname{GL}(2)$:

Spectral Side =
$$\int_{[GL(2)]} K(x,x)E(x,s)dx$$
 = Geometric Side

Explicitly,

$$\underbrace{\sum_{\pi} c_{\pi} L(s, \pi, \mathsf{Ad})}_{\mathsf{Cusp}} + \underbrace{\sum_{1}}_{\mathsf{Cont}} + \underbrace{\sum_{Res}}_{\mathsf{Res}} = \underbrace{\sum_{[E:F]=2} c_{E} L(s, \eta_{E/F})}_{\mathsf{elliptic regular}} + \underbrace{\underbrace{\mathsf{finite sum involving}}_{\mathsf{Hecke L-functions}}}_{\mathsf{other orbital integrals}}$$

Compute residues :) Convergence issue: they thought the sum over Cont is finite : (

Jacquet-Zagier Trace Formula for GL(n)

Theorem (Y.)

• Convergence issue :)

• All possible poles in
$$\Re(s) \ge \frac{1}{2}$$
: $\underbrace{\frac{1}{2}, \frac{2}{3}, \cdots, \frac{n-1}{n}}_{\text{at most simple}}, \underbrace{\frac{1}{n}}_{\text{might be multiple}}$

Thank You!