The arithmetic fundamental lemma for the diagonal cycles

Wei Zhang

Massachusetts Institute of Technology

BU-Keio Workshop, 06/27/2019

Part I

Arithmetic GGP conjecture

"Local-to-Global principle"

Let E be elliptic curve over \mathbb{Q}. B-SD conjecture:

$$
\prod_{p<x} \frac{\# E\left(\mathbb{F}_{p}\right)}{p} \rightarrow \infty \Longrightarrow \# E(\mathbb{Q})=\infty
$$

[comp.

implies the Sato-Tate conjecture on the distribution of Frob eigenvalues.]

"Local-to-Global principle"

Let E be elliptic curve over \mathbb{Q}. B-SD conjecture:

$$
\prod_{p<x} \frac{\# E\left(\mathbb{F}_{p}\right)}{p} \rightarrow \infty \Longrightarrow \# E(\mathbb{Q})=\infty
$$

[comp.

$$
\sum_{p<x} \frac{\# " \operatorname{Sym}^{n} E^{"}\left(\mathbb{F}_{p}\right)}{p^{n / 2}} \sim \begin{cases}x / \log x, & n=0 \\ o(x / \log x), & n \geq 1\end{cases}
$$

implies the Sato-Tate conjecture on the distribution of Frob eigenvalues.]

Higher dim case: Hasse-Weil L-functions and Chow groups

Let X / \mathbb{Q} be a smooth projective variety of odd dimension $2 m-1$. For good primes p,

$$
\zeta_{X, p}(s)=\exp \left(\sum_{k \geq 1} \frac{\# X\left(\mathbb{F}_{p^{k}}\right)}{k p^{k s}}\right)
$$

Hasse-Weil zeta \& L-functions

$$
\begin{aligned}
\zeta_{X}(s) & =\prod_{p, \text { good }} \zeta_{X, p}(s) \\
& =\prod_{i=0}^{2 \operatorname{dim} X} L\left(s, H^{i}(X)\right)^{(-1)^{i}} .
\end{aligned}
$$

Higher dim case: Hasse-Weil L-functions and Chow groups

Let

$$
\operatorname{Ch}^{*}(X)_{0} \subset \mathrm{Ch}^{*}(X)_{\mathbb{Q}}
$$

be the Chow group of homological trivial cycles and Chow group, resp..

Conjecture (B-SD, Beilinson, Bloch)

This is may be viewed as a "Local-to-Global principle" for $\operatorname{Ch}(X)_{0}$.

Higher dim case: Hasse-Weil L-functions and Chow groups

Let

$$
\mathrm{Ch}^{*}(X)_{0} \subset \mathrm{Ch}^{*}(X)_{\mathbb{Q}}
$$

be the Chow group of homological trivial cycles and Chow group, resp..
Conjecture (B-SD, Beilinson, Bloch)

$$
\operatorname{ord}_{s=\text { center }} L\left(s, H^{2 m-1}(X)\right)=\operatorname{dim} \mathrm{Ch}^{m}(X)_{0}
$$

This is may be viewed as a "Local-to-Global principle" for $\mathrm{Ch}(X)_{0}$.

Higher dim case: Hasse-Weil L-functions and Chow groups

Let

$$
\mathrm{Ch}^{*}(X)_{0} \subset \mathrm{Ch}^{*}(X)_{\mathbb{Q}}
$$

be the Chow group of homological trivial cycles and Chow group, resp..
Conjecture (B-SD, Beilinson, Bloch)

$$
\operatorname{ord}_{s=\text { center }} L\left(s, H^{2 m-1}(X)\right)=\operatorname{dim} \mathrm{Ch}^{m}(X)_{0}
$$

This is may be viewed as a "Local-to-Global principle" for $\mathrm{Ch}(X)_{0}$.

A modest goal motivated by the Gross-Zagier formula

For X whose L-functions are known to be analytic, we hope to show

$$
\operatorname{"ord}_{s=\text { center }} L\left(s, H^{\text {mid }}(X)\right)=1 \Longrightarrow \operatorname{dim} \mathrm{Ch}^{m}(X)_{0} \neq 0 . "
$$

For a Shimura datum $\left(\mathrm{G}, \mathcal{D}_{\mathrm{G}}\right)$, the cohomology of the Shimura variety $X=\operatorname{Sh}_{K}\left(G, \mathcal{D}_{G}\right)$ is expected to be

The modest goal is to show a result of the following type

A modest goal motivated by the Gross-Zagier formula

For X whose L-functions are known to be analytic, we hope to show

$$
" \operatorname{ord}_{s=\text { center }} L\left(s, H^{\text {mid }}(X)\right)=1 \Longrightarrow \operatorname{dim}^{m}(X)_{0} \neq 0 . "
$$

For a Shimura datum $\left(\mathrm{G}, \mathcal{D}_{\mathrm{G}}\right)$, the cohomology of the Shimura variety $X=\operatorname{Sh}_{K}\left(G, \mathcal{D}_{G}\right)$ is expected to be

$$
\mathrm{H}^{*}(X)=\bigoplus_{\substack{\pi \\ \text { generic }}} \pi^{K} \otimes \rho_{\pi} \bigoplus\{\text { others }\}
$$

The modest goal is to show a result of the following type

$$
" \operatorname{ord}_{s=\text { center }} L(s, \pi)=1 \Longrightarrow \operatorname{dim} \mathrm{Ch}^{m}(X)_{0}[\pi] \neq 0 "
$$

Special subvarieties

A special pair of Shimura data is a homomorphism

$$
\left(\mathrm{H}, \mathcal{D}_{\mathrm{H}}\right) \longrightarrow\left(\mathrm{G}, \mathcal{D}_{\mathrm{G}}\right)
$$

such that
(1) the pair (H, G) is spherical, and
(2) the dimensions (as complex manifolds) satisfy

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{D}_{\mathrm{H}}=\frac{\operatorname{dim}_{\mathbb{C}} \mathcal{D}_{\mathrm{G}}-1}{2}
$$

Example (Gross-Zagier pair)

Let $K=\mathbb{Q}[\sqrt{-D}]$ be an imaginary quadratic field. Let

$$
\mathrm{H}=\mathrm{R}_{K / \mathbb{Q}} \mathbb{G}_{m} \subset \mathrm{G}=\mathrm{GL}_{2, \mathbb{Q}}
$$

Then $\operatorname{dim} \mathcal{D}_{\mathrm{G}}=1, \operatorname{dim} \mathcal{D}_{\mathrm{H}}=0$.

Some more examples (over \mathbb{R})

(1) Gan-Gross-Prasad pairs

	$\mathrm{G}_{\mathbb{R}}$	$\mathrm{H}_{\mathbb{R}}$
unitary groups	$\mathrm{U}(1, n-2) \times \mathrm{U}(1, n-1)$	$\mathrm{U}(1, n-2)$
orthogonal groups	$\mathrm{SO}(2, n-2) \times \mathrm{SO}(2, n-1)$	$\mathrm{SO}(2, n-2)$

(2) Symmetric pairs

Some more examples (over \mathbb{R})

(1) Gan-Gross-Prasad pairs

	$\mathrm{G}_{\mathbb{R}}$	$\mathrm{H}_{\mathbb{R}}$
unitary groups	$\mathrm{U}(1, n-2) \times \mathrm{U}(1, n-1)$	$\mathrm{U}(1, n-2)$
orthogonal groups	$\mathrm{SO}(2, n-2) \times \mathrm{SO}(2, n-1)$	$\mathrm{SO}(2, n-2)$

(2) Symmetric pairs

	$\mathrm{G}_{\mathbb{R}}$	$\mathrm{H}_{\mathbb{R}}$
unitary groups	$\mathrm{U}(1,2 n-1)$	$\mathrm{U}(1, n-1) \times \mathrm{U}(0, n)$
orthogonal groups	$\mathrm{SO}(2,2 n-1)$	$\mathrm{SO}(2, n-1) \times \mathrm{SO}(0, n)$

Arithmetic diagonal cycles

- For the unitary GGP pair (H, G), we obtain the arithmetic diagonal cycle

$$
\mathrm{Sh}_{\mathrm{H}} \longrightarrow \mathrm{Sh}_{\mathrm{G}}
$$

(for certain level sugroups $K_{\mathrm{H}}, K_{\mathrm{G}}$).

- Arithmetic GGP conjecture: for generic π,
$\operatorname{ord}_{s=1 / 2} L(\pi, s)=1 \Longrightarrow\left[\operatorname{Sh}_{H}\right]_{\pi} \neq 0 \in \operatorname{Ch}(X)_{0}$.
- $n=2, \operatorname{dim}^{\operatorname{Sh}}{ }_{G}=1$: Gross-Zagier, S. Zhang, Yuan-Zhang-Zhang.
- Exceptional example: Liu's special cycles (for GGP $\mathrm{U}(n) \times \mathrm{U}(n)$).

Arithmetic diagonal cycles

- For the unitary GGP pair (H, G), we obtain the arithmetic diagonal cycle

$$
\mathrm{Sh}_{\mathrm{H}} \longrightarrow \mathrm{Sh}_{\mathrm{G}}
$$

(for certain level sugroups $K_{\mathrm{H}}, K_{\mathrm{G}}$).

- Arithmetic GGP conjecture: for generic π,

$$
\operatorname{ord}_{s=1 / 2} L(\pi, s)=1 \Longrightarrow\left[\mathrm{Sh}_{H}\right]_{\pi} \neq 0 \in \mathrm{Ch}(X)_{0}
$$

- $n=2, \operatorname{dim}^{\operatorname{Sh}}{ }_{G}=1$: Gross-Zagier, S. Zhang, Yuan-Zhang-Zhang.
- Exceptional example: Liu's special cycles (for GGP $\mathrm{U}(n) \times \mathrm{U}(n)$).

Arithmetic diagonal cycles

- For the unitary GGP pair (H, G), we obtain the arithmetic diagonal cycle

$$
\mathrm{Sh}_{\mathrm{H}} \longrightarrow \mathrm{Sh}_{\mathrm{G}}
$$

(for certain level sugroups $K_{\mathrm{H}}, K_{\mathrm{G}}$).

- Arithmetic GGP conjecture: for generic π,

$$
\operatorname{ord}_{s=1 / 2} L(\pi, s)=1 \Longrightarrow\left[\mathrm{Sh}_{H}\right]_{\pi} \neq 0 \in \mathrm{Ch}(X)_{0}
$$

- $n=2, \operatorname{dim} \operatorname{Sh}_{G}=1$: Gross-Zagier, S. Zhang, Yuan-Zhang-Zhang.
- Exceptional example: Liu's special cycles (for GGP U(n) $\times \mathrm{U}(n)$).

Arithmetic diagonal cycles

- For the unitary GGP pair (H, G), we obtain the arithmetic diagonal cycle

$$
\mathrm{Sh}_{\mathrm{H}} \longrightarrow \mathrm{Sh}_{\mathrm{G}}
$$

(for certain level sugroups $K_{\mathrm{H}}, K_{\mathrm{G}}$).

- Arithmetic GGP conjecture: for generic π,

$$
\operatorname{ord}_{s=1 / 2} L(\pi, s)=1 \Longrightarrow\left[\mathrm{Sh}_{H}\right]_{\pi} \neq 0 \in \mathrm{Ch}(X)_{0}
$$

- $n=2, \operatorname{dim} \operatorname{Sh}_{G}=1$: Gross-Zagier, S. Zhang, Yuan-Zhang-Zhang.
- Exceptional example: Liu's special cycles (for GGP $\mathrm{U}(n) \times \mathrm{U}(n)$).

Part II

Main theorem

Global intersection numbers

- \exists a PEL-type variant of the GGP Shimura varieties, with nice integral models defined by moduli space [Rapoport-Smithling-Z. '17], to be recalled later.
- Define through the arithmetic intersection theory

where the action is through the Hecke correspondence.
- For reqular Hecke f, the global intersection localizes:

Global intersection numbers

- \exists a PEL-type variant of the GGP Shimura varieties, with nice integral models defined by moduli space [Rapoport-Smithling-Z. '17], to be recalled later.
- Define through the arithmetic intersection theory

$$
\operatorname{Int}(f)=\left(f *\left[\mathrm{Sh}_{\mathrm{H}}\right],\left[\mathrm{Sh}_{\mathrm{H}}\right]\right)_{\mathrm{Sh}_{\mathrm{G}}}, \quad f \in \mathscr{H}\left(\mathrm{G}, K_{\mathrm{G}}\right)
$$

where the action is through the Hecke correspondence.

- For regular Hecke f, the global intersection localizes:

Global intersection numbers

- \exists a PEL-type variant of the GGP Shimura varieties, with nice integral models defined by moduli space [Rapoport-Smithling-Z. '17], to be recalled later.
- Define through the arithmetic intersection theory

$$
\operatorname{Int}(f)=\left(f *\left[\mathrm{Sh}_{\mathrm{H}}\right],\left[\mathrm{Sh}_{\mathrm{H}}\right]\right)_{\mathrm{Sh}_{\mathrm{G}}}, \quad f \in \mathscr{H}\left(\mathrm{G}, K_{\mathrm{G}}\right)
$$

where the action is through the Hecke correspondence.

- For regular Hecke f, the global intersection localizes:

$$
\operatorname{Int}(f)=\sum_{p \leq \infty} \operatorname{Int}_{p}(f)
$$

L-functions (via Jacquet-Rallis Relative trace formula)

- Consider the Hasse-Weil L-functions, counted with suitable weights

$$
\mathbb{J}(f, s)=\sum_{\pi} L(\pi, s+1 / 2) \mathbb{J}_{\pi}(f, s) .
$$

- Its derivative also localizes (for regular f)

$$
\begin{aligned}
\partial \mathbb{J}(f): & =\left.\frac{d}{d s}\right|_{s=0} \mathbb{J}(f, s) \\
& =\sum_{p, \text { non-split }} \partial \mathbb{J}_{p}(f) .
\end{aligned}
$$

- The p-th term takes the following form

$$
\partial \mathbb{J}_{p}(f)=\sum_{\gamma} \operatorname{Orb}\left(\gamma, f^{p}\right) \partial \operatorname{Orb}\left(\gamma, f_{p}\right)
$$

Main theorem

Theorem (Z. '19)

If the prime p is unramified, then

$$
\operatorname{Int}_{p}(f)=\partial \mathbb{J}_{p}(f)
$$

Remark

(1) This was conjectured by [Z. '12, Rapoport-Smithling-Z. 17'], based on the relative trace formula approach to the arithmetic GGP conjecture, and is a corollary to the "AFL conjecture" (to be recalled later).
(2) To fulfill the modest goal, we still have to prove similar statements for every ramified p (including archimedean places).

Part III

Some geometric ingredients

An overview

- Integral models of Shimura varieties (RSZ).
- Two types of algebraic cycles
(a) Kudla-Rapoport divisors.
(b) (Fat Big) CM cycles (aka. Derived CM cycles).
- Two types of associated invariants.

The Hermitian symmetric domain for $\mathrm{U}(n-1,1)$

- Hermitian symmetric domain for $\mathrm{U}(n-1,1)$,

$$
\mathbb{D}_{n-1}:=\left\{z \in \mathbb{C}^{n-1}:|z|<1\right\} \cong \frac{\mathrm{U}(n-1,1)}{\mathrm{U}(n-1) \times \mathrm{U}(1)}
$$

- We have an action

$$
\mathrm{U}(n-1,1) \curvearrowright \mathbb{D}_{n-1}
$$

- Notice \mathbb{D}_{1} is isomorphic to the upper half plane \mathbb{H}.

The Shimura variety M_{n} for $\mathrm{U}(n-1,1)$

- $K=\mathbb{Q}(\sqrt{-d})$, an imaginary quadratic field.
- V a hermitian space over K of signature $(n-1,1)$.
- $\mathrm{U}(V)$ the associated unitary group.
- $O_{K} \subseteq K$ ring of integers.
- $\Lambda \subseteq V$ a self-dual hermitian lattice over O_{K}.
- $\mathrm{U}(\Lambda) \subseteq \mathrm{U}(V)(\mathbb{R})=\mathrm{U}(n-1,1)$ a discrete subgroup.
- Shimura variety

$$
M_{n}:=\mathrm{U}(\Lambda) \backslash \mathbb{D}_{n-1}
$$

- It has dimension $n-1$ over \mathbb{C}.

The Shimura variety \mathcal{M}_{n} over O_{K}

- Let \mathcal{M}_{n} be the moduli stack of tuples $\left(A, \iota, \lambda, A_{0}, \iota_{0}, \lambda_{0}\right)$:
- A is an abelian scheme of dimension n.
- $\iota: O_{K} \hookrightarrow \operatorname{End}(A)$ is an action of O_{K} on A satisfying the Kottwitz condition of signature $(n-1,1)$,

$$
\operatorname{det}(T-\iota(a) \mid \operatorname{Lie} A)=(T-a)^{n-1}(T-\bar{a}), \quad a \in O_{K} .
$$

- $\lambda: A \xrightarrow{\sim} A^{\vee}$ is a principal polarization of A whose Rosati involution induces $a \mapsto \bar{a}$ on $\iota\left(O_{K}\right)$.
- $\left(A_{0}, \iota_{0}, \lambda_{0}\right)$ is a triple analogous to (A, ι, λ), but of dimension 1 and signature (1,0).
- Then \mathcal{M}_{n} is a Deligne-Mumford stack over O_{K}, smooth away from ramified characteristics of relative dimension $n-1$.
- $\mathcal{M}_{n}(\mathbb{C})$ is (a finite disjoint union of various) $M_{n}(\mathbb{C})$.

Global intersection revisited

Define the integral model of the arithmetic diagonal cycle:

$$
\Delta: \mathcal{M}_{n-1} \longrightarrow \mathcal{M}_{n-1, n}=\mathcal{M}_{n-1} \times_{\operatorname{Spec} O_{K}} \mathcal{M}_{n}
$$

and

$$
\operatorname{Int}(f)=\left(f * \widehat{\Delta}_{\mathcal{M}_{n-1}}, \widehat{\Delta}_{\mathcal{M}_{n-1}}\right)_{\mathcal{M}_{n-1, n}}
$$

The Kudla-Rapoport divisor $\mathcal{Z}(m)$

- (KR hermitian lattice) For a geometric point
$\left(A, \iota, \lambda, A_{0}, \iota_{0}, \lambda_{0}\right) \in \mathcal{M}_{n}$, the space of homomorphisms

$$
V\left(A_{0}, A\right):=\operatorname{Hom}_{O_{K}}\left(A_{0}, A\right)
$$

is a hermitian lattice over O_{K}. For $x, y \in V\left(A_{0}, A\right)$, the pairing $(x, y) \in O_{K}$ is given by

$$
\left(A_{0} \xrightarrow{x} A \xrightarrow{\lambda} A^{\vee} \xrightarrow{y^{\vee}} A_{0}^{\vee} \xrightarrow{\lambda_{0}^{-1}} A_{0}\right) \in \operatorname{End}_{O_{K}}\left(A_{0}\right)=O_{K}
$$

- Given $m \in \mathbb{Z}_{+}$, define the Kudla-Rapoport divisor

$$
i_{m}: \mathcal{Z}_{m} \longrightarrow \mathcal{M}_{n}
$$

to be the moduli stack of tuples $\left(A, \iota, \lambda, A_{0}, \iota_{0}, \lambda_{0}, x\right)$, where

$$
x \in V\left(A_{0}, A\right) \text { such that }(x, x)=m
$$

Modularity of generating series of special divisors

Theorem

The generating series

$$
c_{0}+\sum_{m \geq 1} \mathcal{Z}_{m} q^{m} \in \mathrm{Ch}^{1}\left(M_{n}\right) \mathbb{Q} \llbracket q \rrbracket,
$$

where c_{0} is a suitable multiple of the first Chern class of the Hodge bundle ω, is a modular form (of weight n and known level).

Remark

(1) Replace $\mathrm{Ch}^{1}\left(M_{n}\right)$ by $H^{2}\left(M_{n}\right)$: Kudla-Millson.
(2) Gross-Kohnen-Zagier $(n=2)$, Borcherds in general (+Liu's thesis).
(3) Later proofs by Yuan-Zhang-Zhang, Bruinier.
(4) Replace $\mathrm{Ch}^{1}\left(M_{n}\right)_{\mathbb{Q}}$ by $\widehat{\mathrm{Ch}}^{1}\left(\mathcal{M}_{n}\right)_{\mathbb{Q}}$: a theorem of Bruinier, Howard, Kudla, Rapoport, and Yang.

An analog

- Replace the signature $(n-1,1)$ by $(n, 0)$:

$$
\text { Lat }_{\mathrm{n}}=\left\{\begin{array}{c}
\text { hermitian lattices } \wedge \\
\text { pos. def, self-dual, } \\
\text { rank }=n
\end{array}\right\}
$$

- Replace M_{n} by the lattice model Lat ${ }_{n}$ and we obtain theta. functions as the generating series

where

An analog

- Replace the signature $(n-1,1)$ by $(n, 0)$:

$$
\text { Lat }_{\mathrm{n}}=\left\{\begin{array}{c}
\text { hermitian lattices } \wedge \\
\text { pos. def, self-dual, } \\
\text { rank }=n
\end{array}\right\}
$$

- Replace M_{n} by the lattice model Lat ${ }_{n}$ and we obtain theta functions as the generating series

$$
\sum_{\Lambda \in \operatorname{Lat}_{\mathrm{n}}} \frac{1}{\# \operatorname{Aut}(\Lambda)} \theta_{\Lambda},
$$

where

$$
\theta_{\Lambda}=\sum_{m \geq 0} \#\{x \in \Lambda \mid(x, x)=m\} q^{m}
$$

A digression: Siegel-Weil, and arithmetic S-W

- Siegel-Weil: the generalized theta function

$$
\sum_{\Lambda \in \operatorname{Lat}_{\mathrm{n}}} \frac{1}{\# \operatorname{Aut}(\Lambda)} \sum_{T \in \operatorname{Herm}_{n}} \#\left\{\mathbf{x} \in \Lambda^{n} \mid\left(x_{i}, x_{j}\right)=T_{i, j}\right\} q^{T}
$$

is equal to the central value of Siegel-Eisenstein series on $\mathrm{U}(n, n)$.
-
number of KR divisors=Fourier coefficients of the central derivative of Siegel-Eisenstein series"), also recently proved by Li-Z. (for good places).

A digression: Siegel-Weil, and arithmetic S-W

- Siegel-Weil: the generalized theta function

$$
\sum_{\Lambda \in \operatorname{Lat}_{n}} \frac{1}{\# \operatorname{Aut}(\Lambda)} \sum_{T \in \operatorname{Herm}_{n}} \#\left\{\mathbf{x} \in \Lambda^{n} \mid\left(x_{i}, x_{j}\right)=T_{i, j}\right\} q^{T}
$$

is equal to the central value of Siegel-Eisenstein series on $\mathrm{U}(n, n)$.

- A parallel question is Kudla-Rapoport conjecture ("Intersection number of KR divisors=Fourier coefficients of the central derivative of Siegel-Eisenstein series"), also recently proved by Li-Z. (for good places).

(Fat Big) CM cycles on \mathcal{A}_{n}

- We consider the "fixed point of the Hecke correspondence Hecke $_{\mathcal{A}_{n}}$ ":

- To a geometric point $\left(A, \varphi \in \operatorname{End}^{\circ}(A)\right) \in$ CM $_{n}^{d}$ one can associate a "characteristic polynomial"

$$
\text { char: } \mathcal{C} \mathcal{M}_{n}^{d} \longrightarrow \mathbb{Q}[T]_{\operatorname{deg}}=2 n
$$

and the map induces a disjoint union (of open and closed substacks)

(Fat Big) CM cycles on \mathcal{A}_{n}

- We consider the "fixed point of the Hecke correspondence Hecke $_{\mathcal{A}_{n}}$ ":

- To a geometric point $\left(A, \varphi \in \operatorname{End}^{\circ}(A)\right) \in \mathcal{C M}{ }_{n}^{d}$ one can associate a "characteristic polynomial"

$$
\text { char: } \mathcal{C M} M_{n}^{d} \longrightarrow \mathbb{Q}[T]_{\operatorname{deg}=2 n},
$$

and the map induces a disjoint union (of open and closed substacks)

$$
\mathcal{C M} \mathcal{M}_{n}=\coprod_{a \in \operatorname{Im}(\mathrm{char})} \mathcal{C M}_{n}(a)
$$

(Fat Big) CM cycles on \mathcal{M}_{n}

- We consider the "fixed point of the Hecke correspondence Hecke $_{\mathcal{M}_{n}}{ }^{\prime \prime}$:

- To a geometric point $\left(A, \varphi \in \operatorname{End}^{\circ}(A)\right) \in \operatorname{CM}_{n}^{d}$ one can associate a "char. poly."

$$
\operatorname{char}_{K}: \mathcal{C M}_{n}^{d} \longrightarrow K[T]_{\operatorname{deg}=n}
$$

and the map induces a disjoint union

(Fat Big) CM cycles on \mathcal{M}_{n}

- We consider the "fixed point of the Hecke correspondence Hecke $_{\mathcal{M}_{n}}$ ":

- To a geometric point $\left(A, \varphi \in \operatorname{End}^{\circ}(A)\right) \in \mathcal{C M}{ }_{n}^{d}$ one can associate a "char. poly."

$$
\operatorname{char}_{K}: \mathcal{C M} M_{n}^{d} \longrightarrow K[T]_{\operatorname{deg}=n}
$$

and the map induces a disjoint union

$$
\mathcal{C} \mathcal{M}_{n}^{d}=\coprod_{a \in \operatorname{Im}\left(\text { char }_{K}\right)} \mathcal{C} \mathcal{M}_{n}^{d}(a)
$$

Example: $n=3$, a non-flat CM cycle

Intersection theory (I)

$$
\begin{aligned}
& \amalg \mathcal{C M}_{n}^{d}(a) \sim \mathcal{C M}_{n}^{d} \longrightarrow \operatorname{Hecke}_{\mathcal{M}_{n}}^{d} \\
& \stackrel{\downarrow}{\mathcal{M}_{n} \xrightarrow{\downarrow}} \mathcal{M}_{n} \times \mathcal{M}_{n} .
\end{aligned}
$$

Consider the "derived intersection product"

$$
{ }^{\mathbb{L}} \mathcal{C} \mathcal{M}_{n}^{d}=\sum_{a \in \operatorname{Im}\left(\text { char }_{K}\right)}{ }^{\mathbb{L}} \mathcal{C} \mathcal{M}_{n}^{d},
$$

as classes in

$$
\mathrm{Ch}_{1}\left(\mathcal{C M}_{n}^{d}\right)_{\mathbb{Q}}=\bigoplus_{a \in \operatorname{Im}\left(\operatorname{char}_{K}\right)} \operatorname{Ch}_{1}\left(\mathcal{C M}{ }_{n}^{d}(a)\right)_{\mathbb{Q}}
$$

Arithmetic intersection theory

- Arakelov/Gillet-Soulé intersection pairing

$$
(\cdot, \cdot): \quad \widehat{\mathrm{Ch}}^{1}\left(\mathcal{M}_{n}\right) \times Z_{1, c}\left(\mathcal{M}_{n}\right) \longrightarrow \mathbb{R}_{D}
$$

where

$$
\mathbb{R}_{D}:=\mathbb{R} /\left\{\mathbb{Q} \text { span of } \log p, p \mid D_{K}\right\}
$$

- From the modularity, it follows that the generating function

is a modular form.

Arithmetic intersection theory

- Arakelov/Gillet-Soulé intersection pairing

$$
(\cdot, \cdot): \quad \widehat{\mathrm{Ch}}^{1}\left(\mathcal{M}_{n}\right) \times Z_{1, c}\left(\mathcal{M}_{n}\right) \longrightarrow \mathbb{R}_{D}
$$

where

$$
\mathbb{R}_{D}:=\mathbb{R} /\left\{\mathbb{Q} \text { span of } \log p, p \mid D_{K}\right\} .
$$

- From the modularity, it follows that the generating function

$$
c_{0}+\sum_{m \geq 1}\left(\widehat{\mathcal{Z}}_{m},{ }^{\mathbb{L}} \mathcal{C M}^{d}(a)\right) q^{m} \in \mathbb{R}_{D} \llbracket q \rrbracket,
$$

is a modular form.

The analog revisited

- The "CM cycle" $\mathrm{CM}^{d}(a)$ on the lattice model Lat $_{n}$ is

$$
\mathcal{C M}^{d}(a)=\left\{\begin{array}{c}
(\Lambda, \varphi), \text { s.t. } \\
\Lambda \in \operatorname{Lat}_{\mathrm{n}}, \varphi \in \frac{1}{\operatorname{LEnd}_{O_{K}}}(\Lambda), \\
\operatorname{char}_{K}(\varphi)=a .
\end{array}\right\}
$$

- The generating series, for a fixed (irred.) $a \in K[T]_{\operatorname{deg}=n}$
is a modular form.

The analog revisited

- The "CM cycle" $\mathrm{CM}^{d}(a)$ on the lattice model $\mathrm{Lat}_{\mathrm{n}}$ is

$$
\mathcal{C M}^{d}(a)=\left\{\begin{array}{c}
(\Lambda, \varphi), \text { s.t. } \\
\Lambda \in \operatorname{Lat}_{\mathrm{n}}, \varphi \in \frac{1}{d} \operatorname{End}_{O_{K}}(\Lambda), \\
\operatorname{char}_{K}(\varphi)=a .
\end{array}\right\}
$$

- The generating series, for a fixed (irred.) $a \in K[T]_{\operatorname{deg}=n}$

$$
\sum_{m \geq 0} \sum_{(\Lambda, \varphi) \in \mathcal{C M}^{d}(a)} \frac{1}{\# \operatorname{Aut}(\Lambda, \varphi)} \#\{(\Lambda, \varphi, x \in \Lambda) \mid(x, x)=m\} q^{m} .
$$

is a modular form.

The induction process (above $p \nmid d D$)

$$
\begin{aligned}
& \left(\mathcal{Z}_{m=1},{ }^{\mathbb{L}} \mathcal{C M}^{d}\right)_{\mathcal{M}_{n+1}}-? \ldots \ldots \\
& 1 \\
& \left(\mathcal{Z}_{m=1},{ }^{\mathbb{L}} \mathcal{C M}^{d}\right)_{\mathcal{M}_{n}}-{ }^{?}->\left(\mathcal{Z}_{m},{ }^{\mathbb{L}} \mathcal{C M}^{d}\right)_{\mathcal{M}_{n}} \\
& \uparrow \cdots \\
& \text { a pred. } \\
& \left(\mathcal{Z}_{m},{ }^{{ }^{[} \mathcal{C M}}{ }^{d}(a)\right)_{\mathcal{M}_{n}}
\end{aligned}
$$

Intersection theory (II)

$$
\amalg \Delta_{\mathcal{Z}_{m}}^{d}(a, b) \sim \Delta_{\mathcal{Z}_{m}}^{d} \longrightarrow \mathcal{C M}_{n}^{d}
$$

A point in $\Delta_{\mathcal{Z}_{m}}^{d}$ is

$$
\left(A, A_{0}, \varphi \in \operatorname{End}^{\circ}(A), x: A_{0} \rightarrow A\right)
$$

- K-R hermitian form and char. poly. together define a map

sending $\left(A, A_{0}, x, \varphi\right)$ to $a=\operatorname{char}_{K}(\varphi), b=\left(b_{i}\right)_{0 \leq i \leq n-1}$ where

$$
b_{i}=\left(\varphi^{i} x, x\right)
$$

Intersection theory (II)

$$
\amalg \Delta_{\mathcal{Z}_{m}}^{d}(a, b) \sim \Delta_{\mathcal{Z}_{m}}^{d} \longrightarrow \mathcal{C M}_{n}^{d}
$$

A point in $\Delta_{\mathcal{Z}_{m}}^{d}$ is

$$
\left(A, A_{0}, \varphi \in \operatorname{End}^{\circ}(A), x: A_{0} \rightarrow A\right)
$$

- K-R hermitian form and char. poly. together define a map

$$
\text { inv : } \Delta_{\mathcal{Z}_{m}}^{d} \longrightarrow K[T]_{\operatorname{deg}=n} \times K^{n}
$$

sending $\left(A, A_{0}, x, \varphi\right)$ to $a=\operatorname{char}_{K}(\varphi), b=\left(b_{i}\right)_{0 \leq i \leq n-1}$ where

$$
b_{i}=\left(\varphi^{i} x, x\right)
$$

Theorem

Let $a \in K[T]_{\operatorname{deg}=n}$ be irreducible, and $b \in K^{n}$ such that $b_{0} \neq 0$.

- $\Delta_{\mathcal{Z}_{m}}^{d}(a, b)$ has support in the supersingular locus above a unique (necessarily inert) place p of \mathbb{Q}, and is a proper scheme.
- Assume that $p \nmid d D$. Then

$$
\operatorname{deg}{ }^{\mathbb{L}} \Delta_{\mathcal{Z}_{m}}^{d}(a, b)=\operatorname{Orb}\left((a, b), f_{d}^{(p)}\right) \cdot \operatorname{Int}_{p}((a, b))
$$

where $\operatorname{Int}_{p}((a, b))$ is the intersection number on "local Shimura variety" appearing in AFL (to be recalled below).

Part IV

The Arithmetic Fundamental Lemma conjecture

Relative orbital integrals

Define a family of (weighted) orbital integrals:
$\operatorname{Orb}\left(\gamma, \mathbf{1}_{\mathfrak{g l}_{n}\left(O_{F}\right)}, s\right)=\int_{\operatorname{GL}_{n-1}(F)} \mathbf{1}_{\mathfrak{g l}_{n}\left(O_{F}\right)}\left(h^{-1} \gamma h\right)|\operatorname{det}(h)|^{s}(-1)^{\operatorname{val}(\operatorname{det}(h))} d h$.
This can be viewed as a generating series of lattice counting of O_{F}-lattices Λ^{b} :

$$
\left\{\Lambda^{b} \subset F^{n-1} \mid \Lambda=\Lambda^{b} \oplus O_{F} \cdot e_{n} \text { is stable under } \gamma \cdot\right\}
$$

The condition can be restated as ("local CM condition")

$$
O_{F}[\gamma] \subset \operatorname{End}(\Lambda)
$$

Jacquet-Rallis FL

Theorem (Yun-Gordan (large p), Beuzart-Plessis (all odd p))
Let $\gamma \in \mathfrak{g l}_{n}(F)$ match an element $g \in \mathrm{G}(F)$, regular semisimple. Then

$$
\pm \operatorname{Orb}\left(\gamma, \mathbf{1}_{\mathfrak{g l}_{n}\left(O_{F}\right)}, s=0\right)=\operatorname{Orb}\left(g, \mathbf{1}_{\operatorname{Aut}(\Lambda)}\right)
$$

Remark

(1) (Xiao) J-R FL \Longrightarrow Langlands-Shelstad FL for unitary groups (Theorem of Laumon-Ngo).
(2) (Xiao, in progress) J-R FL \Longrightarrow weighted FL for unitary groups.

Unitary Rapoport-Zink space

- F^{\prime} / F : an unramified quadratic extension of p-adic fields.
- \mathbb{X}_{n} : n-dim'I Hermitian supersingular formal $O_{F^{\prime}}$-modules of signature ($1, n-1$) (unique up to isogeny).
- \mathcal{N}_{n} : the unitary Rapoport-Zink formal moduli space over $\operatorname{Spf}\left(O_{\breve{F}}\right)$ (parameterizing "deformations" of \mathbb{X}_{n}).
- The group $\operatorname{Aut}^{0}\left(\mathbb{X}_{n}\right)$ is a unitary group in n-variable and acts on \mathcal{N}_{n}.
- The \mathcal{N}_{n} 's are non-archimedean analogs of Hermitian symmetric domains. They have a "skeleton" given by a union of Deligne-Lusztig varieties for unitary groups over finite fields.

Local intersection numbers

- A natural closed embedding $\delta: \mathcal{N}_{n-1} \rightarrow \mathcal{N}_{n}$, and its graph

$$
\Delta: \mathcal{N}_{n-1} \longrightarrow \mathcal{N}_{n-1, n}=\mathcal{N}_{n-1} \times{ }_{\operatorname{Spf}_{\breve{F}}} \mathcal{N}_{n}
$$

Denote by $\Delta_{\mathcal{N}_{n-1}}$ the image of Δ.

- The group $G(F):=\operatorname{Aut}^{0}\left(\mathbb{X}_{n-1}\right) \times \operatorname{Aut}^{0}\left(\mathbb{X}_{n}\right)$ acts on $\mathcal{N}_{n-1, n}$. For (nice) $g \in \mathrm{G}(F)$, we define the intersection number

$$
\begin{aligned}
\operatorname{Int}(g) & =\left(\Delta_{\mathcal{N}_{n-1}}, g \cdot \Delta_{\mathcal{N}_{n-1}}\right)_{\mathcal{N}_{n-1, n}} \\
: & =\chi\left(\mathcal{N}_{n-1, n}, \mathcal{O}_{\Delta_{\mathcal{N}_{n-1}}} \otimes^{\mathbb{L}} \mathcal{O}_{g \cdot \Delta_{\mathcal{N}_{n-1}}}\right)
\end{aligned}
$$

The arithmetic fundamental lemma (AFL) conjecture

Then the local version of the global "arithmetic intersection conjecture" is

Conjecture (Z. '12)

Let $\gamma \in \mathfrak{g l}_{n}(F)$ match an element $g \in \mathrm{G}(F)$, strongly regular semisimple. Then

$$
\pm\left.\frac{d}{d s}\right|_{s=0} \operatorname{Orb}\left(\gamma, \mathbf{1}_{\mathfrak{g l}_{n}\left(O_{F}\right)}, s\right)=-\operatorname{Int}(g) \cdot \log q
$$

The status

Theorem (Z. '19)

The AFL conjecture holds when $F=\mathbb{Q}_{p}$ and $p>n$.

Remark

(1) The case $n=3, Z$ ' 12 (A simplified proof when $p \geq 5$ is given by Mihatsch.)
(2) Rapoport-Terstiege-Z. '13: $p \geq \frac{n}{2}+1$, and minuscule elements $g \in \mathrm{G}(F)$. (A simplified proof is given by Li-Zhu.)
(3) He-Li-Zhu, 2018: minuscule case but no restriction on p.

Thank you!

The arithmetic fundamental lemma for the diagonal cycles

Wei Zhang

Massachusetts Institute of Technology

BU-Keio Workshop, 06/27/2019

