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ZERMELO AND SET THEORY

AKIHIRO KANAMORT'

Dedicated to the memory of Frau Gertrud Zermelo

Ernst Friedrich Ferdinand Zermelo (1871-1953) transformed the set the-
ory of Cantor and Dedekind in the first decade of the 20th century by
incorporating the Axiom of Choice and providing a simple and workable ax-
iomatization setting out generative set-existence principles. Zermelo thereby
tempered the ontological thrust of early set theory. initiated the delineation
of what is to be regarded as set-theoretic, drawing out the combinatorial
aspects from the logical, and established the basic conceptual framework for
the development of modern set theory. Two decades later Zermelo promoted
a distinctive cumulative hierarchy view of models of set theory and champi-
oned the use of infinitary logic, anticipating broad modern developments. In
this paper Zermelo’s published mathematical work in set theory is described
and analyzed in its historical context, with the hindsight afforded by the
awareness of what has endured in the subsequent development of set theory.
Elaborating formulations and results are provided, and special emphasis is
placed on the to and fro surrounding the Schroder-Bernstein Theorem and
the correspondence and comparative approaches of Zermelo and Godel.
Much can be and has been written about philosophical and biographical
issues and about the reception of the Axiom of Choice, and we will refer
and defer to others, staying the course through the decidedly mathematical
themes and details.

§1. Beginnings. Zermelo, born at the time Cantor was making his first
incursions into the transfinite, would make the first large moves in set theory
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488 AKIHIRO KANAMORI

after him. But those moves. conceptual and foundational, came at the crest
of considerable youthful experience as a concrete mathematician working
in applied mathematics and mathematical physics. Zermelo completed his
Dissertation [1894] on the Weierstrassian calculus of variations at the Uni-
versity of Berlin. Turning to mathematical physics. Zermelo then became
Max Planck’s assistant at the Institute for Theoretical Physics at Berlin from
1894 to 1897. During this period Zermelo [1896] applied the Poincaré recur-
rence theorem for dynamical systems, giving its first really elegant proof. to
raise a substantial objection to the elder and eminent Ludwig Boltzmann’s
longstanding contention that the kinetic theory of gases can explain irre-
versibility of macroscopic physical processes. Zermelo [1896a] thereupon
engaged in a penetrating exchange with Boltzmann on the explanation of
these processes.” Moving to Géttingen to work on his Habilitation on hydro-
dynamics, he completed it (Zermelo [1902]) in 1899 and thereupon began
lecturing as a Privatdozent for Mathematics.

Zermelo would stay at Gottingen through the first decade of the new cen-
tury. in what would become the most productive and influential period of
his mathematical career.® He continued to publish and maintain an active
interest in the calculus of variations and mathematical physics. writing with
Hans Hahn an encyclopedia article Zermelo-Hahn [1904] on the first topic
and translating into German J. Willard Gibbs’s 1902 treatise The Elemen-
tary Principles of Statistical Mechanics.* But newly stimulated. Zermelo also
turned to the main engagement of his mathematical career, set theory and
its foundations. In the winter semester of 1900-1 he gave his first course of
lectures on set theory, following Cantor’s Beitrdge [1895, 1897]. A byproduct
was Zermelo’s first set-theoretic paper, a note [1901] on cardinal arithmetic.
In May 1903. he spoke on the work of Frege at the Gottingen Mathemat-
ical Society, comparing the concept of number in Cantor. Dedekind. and
Frege.

In Zermelo’s turn to set theory and its foundations the influence of David
Hilbert was pivotal.® Hilbert at Gottingen was at the height of his powers.

?See Hollinger-Zenzen [1985] for a study of the dynamics and physical origins of irre-
versibility. Zermelo's result figured prominently in a debate between Boltzmann and Planck,
tilting it in the latter’s favor and establishing for Zermelo a reputation among the physicists.

*Peckhaus [1990: chap. 4] provides a biographical sketch and detailed account of Zermelo’s
years 1897-1910 at Gottingen.

4See Gibbs [1905]. Notably, the title of the treatise continues “developed with especial
reference to the rational foundation of thermodynamics™. Gibbs did not succeed in pro-
viding a rational foundation. but one can surmise that Zermelo was already predisposed to
foundational studies.

SMany years later, Zermelo wrote in a report to the Emergency Society of German Sci-
ence [Wissenschaft] (See Moore [1980]: the society supported poor scientists and had given
Zermelo a fellowship, and the report was sent to the society with a letter dated December 3,
1930.): “Thirty years ago, when I was a Privatdozent at Gottingen, I came under the influence
of D. Hilbert. to whom I am surely the most indebted for my mathematical development, and
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ZERMELO AND SET THEORY 489

Having completed his axiomatization of geometry Grundlagen der Geometrie
[1899]. Hilbert [1900a] extended his axiomatic method to the real numbers.
In his famous list [1900] of problems for the 20th century the second problem
was to establish the consistency of his axiomatization. The first problem
was to establish the Continuum Hypothesis, and in connection with this he
expressed [1900: 263] the desirability of “actually describing” a well-ordering
of the real numbers.®

Zermelo’s first substantial result in set theory was his independent dis-
covery of Russell’s Paradox. He then established [1904] the Well-Ordering
Theorem, that every set can be well-ordered. provoking an open controversy
about this initial explicit use of the Axiom of Choice. After providing a sec-
ond proof [1908] of the Well-Ordering Theorem in response. Zermelo also
provided the first full-fledged axiomatization [1908a] of set theory. In the
process. he ushered in an abstract, generative view of sets that would come
to dominate in the years to come.

Zermelo’s independent discovery of the argument for Russell’s Paradox
is substantiated in a note dated 16 April 1902 found in the philosopher
Edmund Husserl’s Nachlass.” According to the note. Zermelo pointed out
that any set M containing all of its subsets as members, i.e., P(M) C M,
is “inconsistent” by considering the subset My, = {x € M | x ¢ x}: If
My € M, then of course My € My iff My ¢ M,. Schroder [1890: 245] had
argued that Boole’s “class I” regarded as consisting of everything conceivable
is inconsistent, and Husserl in a review [1891] had criticized Schroder’s
argument for not distinguishing between inclusion and membership. That
inclusion may imply membership is the same concern that Bertrand Russell
had to confront: For the Russell of the The Principles of Mathematics [1903]
mathematics was to be articulated in an all-encompassing logic. a complex
philosophical system based on universal categories. For his universal class
U. it would have to be that P(U) C U. leading to contradiction. Zermelo
on the other hand did not push the argument in the direction of paradox
as Russell had done, but was merely to regard it as an indication that the
notion of set would have to be restricted.® Of course. much more significant
than P(M) ¢ M is that P(M) has higher cardinality than M. However.
Cantor [1891] had actually introduced his diagonal argument to show that

I began to occupy myself with the foundational questions of mathematics. especially with the
fundamental problems of Cantorian set theory. whose full significance I learned to appreciate
only then. through the extremely fruitful collaboration of the Gdttingen mathematicians.”

See Ewald [1996: 1096fT] for an updated translation of the introductory material and the
first two problems from Hilbert’s 1900 address. See Dreben—Kanamori [1997] for more on
Hilbert and set theory.

"See Rang-Thomas [1981].

¥In the carliest notes about axiomatization found in his Nachlass. probably written around
1905, Zermelo took the assertion M ¢ M to be an axiom. as well as the assertion that any
“well-defined™ set M has a subset not a member of M (see Moore [1982: 155]).
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490 AKIHIRO KANAMORI

for any set X the collection of functions from X into a two-element set is of
a strictly higher cardinality than that of X'. The connection between subsets
and characteristic functions was not generally appreciated then, and Zermelo
was just making the first moves in his abstract approach to sets.

A letter from Hilbert bears on issues of context. paradox and priority.
Hilbert wrote to Frege on 7 November 1903 (Frege [1976: 79ff][1980: 51ff]):

Many thanks for the second volume of your Grundgesetze. which I
find very interesting. Your example at the end of the book (p. 253)
[i.e.. Russell’s Paradox] was known to us here:* I found other even more
convincing contradictions as long as 4-5 years ago: they led me to the
conviction that traditional logic is inadequate and that the theory of
concept-formation [Begriffsbildung] needs to be sharpened and refined.
As I see it. the most important gap in the traditional structure of logic
is the assumption made by all logicians and mathematicians up to now
that a concept is already there if one can state of any object whether or
not it falls under it. This does not seem adequate to me. What is decisive
is the recognition that the axioms that define the concept are free from
contradiction.

*I believe Dr. Zermelo discovered it 3—4 years ago after I had com-
municated my examples to him.

In early 1897 Cantor had concluded with a reductio argument that the collec-
tion of all the alephs precluded the viability of sets as extensions of concepts,
as otherwise there would be an aleph bigger than all alephs.’ and this would
lead by 1899 to a new engagement with “absolutely infinite or inconsis-
tent multiplicities” of which more below. Cantor began corresponding with
Hilbert on these matters.!” and Hilbert devised his “even more convincing
contradictions™ around this time as mentioned in the above passage and
Zermelo too became aware that “the theory of concept-formation [Begriffs-
bildung] needs to be sharpened or refined.”

Peckhaus-Kahle [2002] describes “Hilbert’s Paradox™ taken from 1905
course notes at Gottingen, a paradox which can be cast in simple terms
as follows: There is no set S satisfying (a) if X € S. then its power set
P(X) € S. and (b) if 7 C S. then its union |J7 € S. Suppose that
there were such an S. Then P(|JS) € S by (b) and then (a). But then,
P(US) € |JS. which is a contradiction! This is an elegant way to show
that a conceptualization does not have an extension, more set-theoretic than
Cantor’s, with his alephs replaced by sets corresponding to beths, successive
power-set cardinalities, and no well-orderings ostensibly involved. Hilbert
actually started with the collection of natural numbers in his S and instead of
(a) closed S off under the process of going from an X to X ¥, the collection

%See Ferreiros [1999: 290ff] or Grattan-Guinness [2000: 117fT].
19See Ewald [1996: 923fT]. especially for what seems to be the first letter from Cantor to
Hilbert on these matters, dated 26 September 1897.
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ZERMELO AND SET THEORY 491

of functions: X' — X. Be that as it may, he emphasized that his paradox is
“of purely mathematical nature”.!!

The logicians were later in arriving: Russell only absorbed Cantor’s work
in 1900; Russell’s analysis of Cantor’s diagonal proofled in the spring of 1901
to Russell’s Paradox: and he famously communicated his paradox to Frege
in June 1902, with devastating effect for the latter’s Grundgesetze. Hilbert’s
letter was pointing out how they at Gottingen had assimilated such conun-
drums. and this may explain to some extent why Zermelo would publish
a minor note [1901] on cardinal arithmetic, but not bother to publish the
paradox argument. On the other hand. with increasing interest in the devel-
opment of formal logic and the Frege-Russell logicist program Gottingen
mathematicians and philosophers took renewed interest in the paradoxes.'”

Who first devised Russell’s Paradox. Zermelo or Russell? In his letter
of 7 November 1903 to Frege. Hilbert wrote (as quoted above): “I be-
lieve Dr. Zermelo discovered [the paradox] 3-4 years ago”. Husserl’s note
substantiating the discovery is dated 16 April 1902. Zermelo himself only
wrote in a footnote to his [1908: 118]:'3 “I had. however. discovered this
antinomy myself, independently of Russell, and had communicated it prior
to 1903 [i.e.. the year of publication of Russell’s The Principles of Mathe-
matics] to Professor Hilbert among others.” In a letter of 10 April 1936 to
Heinrich Scholz. Zermelo wrote:'* “The set-theoretic antinomies were often
discussed in the Hilbert circle around 1900 [um 1900 herum]. and at that time
I myself gave a precise formulation of the antinomy of the greatest cardinal
which was later named after Russell (on the ‘set of all sets not containing
themselves’).” With nothing more authoritative it remains unclear whether
Zermelo actually found Russell’s Paradox before Russell himself did in the
spring of 1901.

The 1904 International Congress of Mathematicians, held in August at
Heidelberg, was to be a generational turning point for the development
of set theory. Hilbert [1905] spoke critically of the earlier work on the
foundations of mathematics and stressed the importance of overcoming the
paradoxes. Julius Konig delivered a lecture in which he provided a detailed
argument to establish that 2% is not an aleph. i.e.. that the continuum is
not well-orderable. The argument combined the now familiar inequality

A thin thread of connection runs from the operations in (the presented version of)
Hilbert’s Paradox through Zermelo’s [1908a] generative axioms like Power Set and Union
(cf. §3 below) and on to Zermelo’s [1930] conditions (I) and (IT) for normal domains (see §6
below). (a) and (b) for sets T are in fact the closure conditions for the cumulative hierarchy
picture of the universe of sets with the Axiom of Foundation (cf. §§5. 6): it is just that one
cannot take the union of S itself as then it would be the entire universe.

12See Peckhaus [2004].

BThis is footnote 9 in van Heijenoort [1967: 191].

See Peckhaus-Kahle [2002]. quoting from the Scholz Nachlass at the University of
Muenster.
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492 AKIHIRO KANAMORI

R, < R for o of cofinality w with a result from Felix Bernstein’s Gottingen
dissertation [1901:49] that alas does not universally hold.'> Cantor was
understandably upset with the prospect that the continuum would simply
escape the number context that he had constructed for its analysis. Much of
his life had been devoted to the Continuum Problem. but in his preoccupation
with the second number class he had never entertained the basic distinction
between regular and singular alephs.

Accounts differ on how the issue was resolved. According to Kowalewski
[1950: 202]. Zermelo found the gap in Konig’s argument within a day of his
lecture. However, the weight of evidence is for Felix Hausdorff having found
the error.'® Whatever the resolution. the torch had passed from Cantor to the
next generation. Zermelo would be spurred to formulate his Well-Ordering
Theorem and axiomatize set theory, and Hausdorff, to develop the higher
transfinite in his study of ordertypes and cofinalities. And as with many
incorrect proofs, there would be positive residues: Konig’s inequality as soon
generalized by Zermelo would become well-known as a basic restriction on
cardinal exponentiation, and Hausdorff [1904: 571] published his recursion
formula N;:’l] =Ng, - N}j in form like Bernstein’s result.

82. The first proof of the Well-Ordering Theorem. On 24 September 1904,
amonth and a half after the Heidelberg Congress. Zermelo sent to Hilbert his
first proof of the Well-Ordering Theorem in a letter intended for publication
in Mathematische Annalen. a letter so and promptly published (Zermelo
[1904]). Zermelo. in his 33rd year and already estimable as a mathematical
physicist. thereby effected a conceptual shift in mathematics.

Reversing Russell’s progress from Cantor’s correspondences to the identity
map inclusion P(U) C U. Zermelo considered functions y: P(M) — M,
specifically choice functions. those y satisfying y(Y) € Y for non-empty Y.
This of course was the basic ingredient in Zermelo’s [1904] formulation
of what he soon called the Axiom of Choice. Russell the metaphysician
had drawn elaborate philosophical distinctions and was forced by Cantor’s
diagonal argument into a dialectical confrontation with them. Zermelo
the mathematician never quibbled over such distinctions and proceeded to
resolve the problem of well-ordering sets mathematically.

In his mature presentation [1895] of his theory of cardinality Cantor had
defined cardinal exponentiation in terms of the set of al/l functions from
a set N into a set M. An arbitrary such function he termed a “covering
[Belegung]” given by a “law”, thus continuing his frequent use of “law” when

15K 6nig applied Bernstein’s equality R = R,, - 2%0 as follows: If 2" were an aleph. say X,
then by Bernstein’s equality Nzﬂw =Ny, - 2" = Ry,,,. contradicting Konig's inequality.
However. Bernstein’s equality fails when a has cofinality @ and 2™ < X,. Konig's published
account [1904] acknowledged the gap.

'°See Grattan-Guinness [2000: 334] and Purkert [2002).
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ZERMELO AND SET THEORY 493

referring to functions. Arbitrary functions on arbitrary domains are now of
course commonplace in mathematics, but several authors at the time referred
specifically to the concept of covering: Philip Jourdain in his introduction to
his English translation of Cantor’s [1895, 1897] wrote (Cantor [1915: 82]):
“The introduction of the concept of ‘covering’ is the most striking advance
in the principles of the theory of transfinite numbers from 1885 to 1895....”
Zermelo [1904: 514] used the term “covering”. but with his choice functions
any residual sense of “law” was abandoned by him: ... we take an arbitrary
covering y and derive from it a definite well-ordering of the elements of M.”

That part of Zermelo’s proof which does not depend on the Axiom of
Choice can be isolated in the following result. which establishes a basic
correlation between functions y: P(M) — M and canonically defined well-
orderings. The presentation is in Zermelo’s terminology. but makes explicit
the well-orderings involved as strict. i.e.. irreflexive, relations. Significantly,
Zermelo [1904] still had one foot in the Cantorian world where sets are
structured. e.g.. presented together with an implicit well-ordering.

THEOREM 1. Suppose that y: P(M) — M. Then there is a unique (W, <)
such that W C M and < is a well-ordering of W satisfying:

(a) Foreveryx € W.y({y € W |y <x}) =x.and

(b) y(W) e W.

The picture here is that y generates a well-ordering which according to (a)
starts with

ap = y(0).
a; =y({ao}) = y({»(D)}).
ay = y({ag. a1}) = y({y(0). y({»(@)})}).
and so continues as long as y applied to the initial segment constructed thus

far produces a new element. W is the result when according to (b) an old
element is again named.!”
ProOOF OF THEOREM 1. Call Y C M a y-set iff there is a well-ordering R

of Y such that foreach x € Y. y({y € Y | y R x}) = x. The following are
thus y-sets (some of which may be the same):

0: {y@} {@.y{y@D}: {r@).y{r@)}).y{»@).y{y@®) ]}
We shall establish:

(x) If Y is a y-set with a witnessing well-ordering R and Z is an y-set with
a witnessing well-ordering S, then (¥, R) is an initial segment of (Z. S).
or vice versa.

"Note that if M is transitive.i.e.. M C P(M). and y is the identity on at least the elements
in the above display. then we are generating the first several von Neumann ordinals (cf. §5
below). But of course, y cannot be the identity on all of P(M ).
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494 AKIHIRO KANAMORI

Taking Y = Z it will follow that any y-set has a unique witnessing well-
ordering.

For establishing (*). we continue to follow Zermelo: By the comparability
of well-orderings we can assume without loss of generality that there is an
order-preserving injection ¢: Y — Z with range an S-initial segment of
Z. It then suffices to show that e is in fact the identity map on Y: If
not. let 7 be the R-least member of Y such that e(r) # r. It follows that
{reY|yRt}={z€Z|:zSe(t)} Butthen,

e(t)=y({zeZ|zSelt)}) =y{yreY|yRt}) =1t

a contradiction.

To conclude the proof. let W be the union of all the y-sets. Then W
is itself a y-set by (x) and so. with < its witnessing well-ordering, satisfies
(a). For (b). note that if y(W) ¢ W, then W U {y(W)} would be a y-set,
contradicting the definition of W. Finally. that (a) and (b) uniquely specify
(W. <) also follows from (x). .

Zermelo of course focused on choice functions as given by the Axiom of
Choice to well-order the entire set:

COROLLARY 2 (The Well-Ordering Theorem) (Zermelo [1904]). If P(M)
has a choice function. then M can be well-ordered.

PrOOE. Suppose that p: P(M) — M is a choice function. i.e.. p(X) € X
whenever X is non-empty. and define a function y: P(M) — M to “choose
from complements™ by: y(Y) = ¢(M — Y). The resulting W of the theorem
must then be M itself. =

It is noteworthy that Theorem 1 leads to a new proof of Cantor’s basic
result that there is no bijection between P(M ) and M, a proof that eschews
diagonalization and provides a definable counterexample:

COROLLARY 3. Foranyy: P(M) — M. there are two distinct sets W and Y
both definable from y such that y(W) = y(Y).

PrOOF. Let (W, <) beasin Theorem I, andletY = {x € W | x < y(W)}.
Then by (a) of Theorem 1. p(Y) = y(W).yety(W) e W - Y. -

In the y: P(M) — M version of Cantor’s diagonal argument, one would
consider the definable set

A={(2)|y(2) ¢z} C M.

If y(4) ¢ A. then we have the contradiction y(4) € A. If on the other
hand y(A4) € A. then y(4) = y(B) for some B such that y(B) ¢ B. But
then. B # A. However. no such B is provided with a definition.'® Although
the corollary is thus more informative, it should be pointed out that it

"This is also the main thrust of Boolos [1997]. in which the argument for Theorem 1 is
given ab initio and not connected with Zermelo [1904].
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ZERMELO AND SET THEORY 495

relies on significantly more set-theoretic apparatus than Cantor’s diagonal
argument. '’

Theorem 1 has another notable consequence expressible in a setting where
sets are not inherently well-ordered: Since the y there need only operate on
the well-orderable subsets of M, the P(M ) in Corollary 3 can be replaced by
the following set:

{Z C M | Z is well-orderable}.

That this set, like P(M). is not bijective with M was first pointed out by
Alfred Tarski [1939] through a less direct proof.

Zermelo himself did not make Theorem 1 explicit.?’ but that it has larger
consequences is a testament to Zermelo’s new approach. His main con-
tribution with his Well-Ordering Theorem was the introduction of choice
functions, leading to the postulation of the Axiom of Choice. But be-
sides this Theorem 1 brings out Zermelo’s delineation of the power set as
a sufficient domain of definition for generating well-orderings. In fact. the
Well-Ordering Theorem marks the beginning of the historical emergence of
the power set as a distinctly set-theoretic, rather than presumptively logical,
concept. With hindsight one can view the proof of Theorem 1 as a transfinite
version of that of the Finite Recursion Theorem, the theorem for justifying
definitions by recursion on the natural numbers. The Finite Recursion The-
orem was established by Dedekind in his celebrated essay Was sind und
was sollen die Zahlen? [1888:(126)] and also by Frege in his Grundgesetze
[1893: thm. 263].2! Whereas just the existence of infinite sets furnished the
setting for their proofs, Zermelo used the power set, and his venture into
the transfinite was avowedly impredicative: After specifying the collection
of y-sets its union is taken to specify a member of the collection. Poincaré
[1906a: XIV] rejected Zermelo’s proof because of this.”> The main front of

“In particular. Theorem 1 features a prominent use of the Union Axiom. as well as uses
of the Power Set and Separation Axioms to get the set of y-sets (as well as to formalize
well-orderings in set theory). Cantor’s diagonal argument can be formalized in terms of class
functions to avoid the Power Set Axiom, but it still requires the Separation Axiom. Finally,
Zermelo’s argument is impredicative, whereas Cantor’s is not (cf. the discussion below).

Tarski [1939: thm. 3] did have a version of Theorem 1: substantially the same version
appeared in the expository work of Nicolas Bourbaki [1956: 43] (Chapter 3. §2. Lemma 3).
Bourbaki’s version is weighted in the direction of the application to the Well-Ordering Theo-
rem: It supposes that forsome Z C P(M).y: Z — M withy(Y) ¢ Y forevery Y € Z. and
concludes that there is a (W, <) as in Theorem 1 except that its (b) is replaced by W ¢ Z.
From this version Bell [1995] developed a version in a many-sorted first-order logic and used
it to recast Frege’s work on the number concept.

' Dedekind termed his (126) “Theorem of definition by induction™; nowadays a distinction
is made between definitions by recursion and proofs by induction. See Heck [1995] for an
account of the theorem in Frege [1893].

*Poincaré [1906a: XIV] wrote at the end: “. .. although I am rather disposed to Zermelo’s
axiom. I reject his proof. which for an instant made me believe that aleph-one could indeed
exist.
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Poincaré’s criticism of Zermelo and the logicists, a criticism that would have
a decisive influence on Russell. was that they used impredicative definitions.
definitions that contain a “vicious circle” in that they first specify a collection
only to pick out a member.??

The proof of Theorem 1 is in fact essentially the argument for the Trans-
finite Recursion Theorem, the theorem that justifies definitions by recursion
along well-orderings. This theorem was first properly articulated and es-
tablished by von Neumann [1923, 1928] in his system of set theory. The
difference is only that Zermelo’s proof is defining the well-ordering itself.
One can latterly view the situation as follows: The Axiom of Replacement
1s central to von Neumann’s argument, and the axiom would eventually be
adjoined to the axiomatization of set theory. Zermelo’s proof stakes out
what can be done up to the application of the axiom.>* Seen in these various
ways Zermelo’s proof was seminal for modern set theory, especially when
viewed against the backdrop of how well-orderability was being investigated
at the time.

Cantor [1883: 550] had propounded the basic principle that every “well-
defined” set can be well-ordered. However, he came to believe that this
principle had to be established. and in a letter of 3 August 1899 to Dedekind
gave a remarkable argument.”® First. he distinguished between two kinds
of multiplicities (Vielheiten): There are multiplicities such that when taken
as a unity (Einheit) lead to a contradiction: such multiplicities he called
“absolutely infinite or inconsistent multiplicities” and noted that the “totality
of everything thinkable” is such a multiplicity.”® A multiplicity that can be
thought of without contradiction as “being together™ he called a “consistent
multiplicity or a ‘set’ ['Menge’]”. Using what has now come to be known
as the Burali-Forti Paradox, Cantor then pointed out that the class Q of all
ordinal numbers is an inconsistent multiplicity. He then proceeded to argue
that every set can be well-ordered through a presumably recursive procedure
whereby a well-ordering is defined through successive choices. The set must
get well-ordered. else all of Q would be injectible into it. so that the set
would have been an inconsistent multiplicity instead. G. H. Hardy [1903]
and Philip Jourdain [1904, 1905] also gave arguments involving the injection

28ee Goldfarb [1988] for more about Poincaré and the logicists, and for a contrasting
viewpoint. McLarty [1997].

*Textbooks usually establish the Well-Ordering Theorem by first introducing Replace-
ment, formalizing transfinite recursion, and only then defining the well-ordering using (von
Neumann) ordinals. This amounts to a historical misrepresentation. but one that resonates
with how acceptance of Zermelo’s proof broke the ground for formal transfinite recursion.

»See Ewald [1996: 931ff]. Van Heijenoort [1967: 113fi] translated a letter as it appeared in
Cantor [1932: 443fT]; however, as discovered by historians, that letter was a meshing of two
letters into one by Zermelo as editor of Cantor [1932].

2*The “absolute infinite” is a varying but recurring explanatory concept in Cantor’s work:
see Jané [1995].
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of Q. but such an approach would only get codified at a later stage in the
development of set theory in the work of von Neumann [1925] (see below).

Zermelo was presumably not privy to the 1899 Cantor-Dedekind cor-
respondence when he established his Well-Ordering Theorem. Consonant
with his observation on Schroder’s inconsistent classes that no M can satisfy
P(M) C M. Zermelo’s advance was to preclude the appeal to inconsistent
multiplicities by shifting the weight away from Cantor’s well-orderings with
their successive choices to the use of functions on power sets making simul-
taneous choices. Decades later Zermelo, when editing Cantor’s collected
works [1932] and coming to the 1899 Cantor-Dedekind correspondence,
chided Cantor for his reliance on successive choices and the doubts raised by
the possible intrusion of inconsistent multiplicities. Zermelo noted that “it
is precisely doubts of this kind that impelled the editor [Zermelo] a few years
later [in 1904] to base his own proof of the well-ordering theorem purely
upon the axiom of choice without using inconsistent multiplicities.”” En
passant. we note that in a foreshadowing, Dedekind [1888: (159)] got a de-
numerable subset of an infinite set through the idea of making successive
choices. and he astutely set up what amounts to simultaneous choices for a
well-defined definition by recursion.®

Many years later Godel expressed a remarkable point of view that amounts
to an anachronistic and ironic inversion. Godel wrote in a letter of 8 No-
vember 1957 to Stanistaw Ulam (Gdodel [2003: 295]):

I believe that his [von Neumann’s] necessary and sufficient condition which
a property must satisfy. in order to define a set, is of great interest. because
it clarifies the relationship of axiomatic set theory to the paradoxes. That
this condition really gets at the essence of things is seen from the fact that
it implies the axiom of choice, which formerly stood quite apart from other
existential principles. The inferences, bordering on the paradoxes. which
are made possible by this way of looking at things. seem to me, not only very
elegant. but also very interesting from the logical point of view. Moreover
I believe that only by going farther in this direction. i.e.. in the direction
opposite to constructivism, will the basic problems of abstract set theory
be solved.

TSee Cantor [1932:451] or van Heijenoort [1967: 117]. Zermelo [1908: 120] had already
become aware through Jourdain [1905] of the Cantorian approach to well-ordering via
inconsistent multiplicities and had dismissed Jourdain’s rendition as “a mere word game™.

%¥Zermelo [1909: 190, n. 5] later pointed out the implicit use of the Axiom of Choice
here: see also the beginning of the next section for Zermelo [1909] and finiteness. The
Axiom of Choice loomed large in Dedekind’s last section, where the master faltered in
his otherwise gap-less development by leaving the single gap that could and should have
been filled: Dedekind [1888: (171)] amounts to the Axiom of Choice for finite families of
sets, and instead of “selecting” elements “at pleasure™ he should have established this by
finite induction on the cardinality of the finite family. Zermelo [1908: 112] in a footnote
(footnote 3 of van Heijenoort [1967: 187]) commenting on work of Peano pointed out the
need for induction to establish the Axiom of Choice for finite families of sets.
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By “his necessary and sufficient condition” Godel was presumably referring
to Axiom IV2 of von Neumann [1925: 225]. to the effect that a class is a set
exactly when there is no surjection from that class onto the universe V of
sets. In words quoted by Ulam [1958: 13n], Godel focused on the maximum
character:

The great interest which this axiom [von Neumann’s Axiom V2] has lies
in the fact that it is a maximum principle. somewhat similar to Hilbert’s
axiom of completeness in geometry. For. roughly speaking, it says that any
set which does not, in a certain well-defined way, imply an inconsistency
exists. Its being a maximum principle also explains the fact that this axiom
implies the axiom of choice.

The class Q of all ordinal numbers is a proper class. so Axiom IV2 implies
that there is a surjection of Q onto V. and hence. as easily seen. a well-
ordering of V. However. this is exactly the tack that Cantor was taking in
the 1899 correspondence, arguing that an absolutely infinite or inconsistent
multiplicity like ¥ must get well-ordered in ordertype Q. Whereas Zermelo
had avoided such arguments by formulating and appealing to his Axiom of
Choice. Godel is regarding having a well-ordering of V' as a justification of
the Axiom of Choice! Godel’s writing in the first passage “The inferences,
bordering on the paradoxes. ... " is an opaque reflection of historical issues.
but now these inferences are “very interesting from the logical point of view.”

Zermelo [1904: 516] went on to note without much ado that his Well-
Ordering Theorem implies that every infinite cardinal number is an aleph
and satisfies m> = m. and that the theorem secured Cardinal Comparability.
i.e., for any two cardinal numbers m and n, either m < norn < m, — so
that the main issues raised by Cantor’s Beitrdge [1895] were at once resolved.
Zermelo maintained that the Axiom of Choice is a “logical principle” which
“is applied without hesitation everywhere in mathematical deduction”. and
this is reflected in the Well-Ordering Theorem being regarded as a theorem
in itself. The axiom is consistent with Cantor’s unitary view of the finite and
transfinite, in that it posits for infinite sets an unproblematic feature of finite
sets. On the other hand. the theorem did shift, in Zermelo’s later emphasis,
the weight from Cantor’s well-orderings with their residually temporal aspect
of numbering through successive choices to the use of a function on a power
set for making simultaneous choices. Cantor’s work had served to exacerbate
a growing stress among mathematicians, who were already exercised by two
related issues: whether infinite collections can be mathematically investigated
at all, and how far the function concept is to be extended. The positive
use of an arbitrary function operating on arbitrary subsets of a set having
been made explicit. there was open controversy after the appearance of
Zermelo’s proof.? This can be viewed as a turning point for mathematics,

»See Moore [1982: chap. 2].
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with the subsequent tilting toward the acceptance of the Axiom of Choice
symptomatic of a conceptual shift in mathematics.

§3. The second proof and axiomatization. 1907, Zermelo’s 36th year, was
a high point for him in that he both was awarded. at Gottingen through
Hilbert’s help. the first lectureship in the new subject of mathematical logic
ever awarded at a German university>’ and wrote two major articles, [1908].
dated 14 July 1907 and [1908a]. dated 30 July 1907.3! Zermelo [1908]
was a direct response to his critics: he not only provided a second proof
of the Well-Ordering Theorem but also a detailed and wide-ranging reply
that amounted to a spirited defense of his premises and argument as well
as his first extended articulation of his expansive view about mathematics.
Zermelo [1908a] provided the first full-fledged axiomatization of set theory:
axiomatization was assuming a general methodological role in mathematics,
but beyond that Zermelo through a simple and workable axiomatization
set forth an abstract, generative view of sets. Before getting to the 1908
publications. however, we tuck in Zermelo [1909]. which was actually dated
earlier, May 1907. since it is a pivoting point for several larger themes.3?

The thrust of Zermelo [1909].>} also reported in [1909a].3* was to re-
cast the principle of mathematical induction in terms of finite sets and thus
newly engage Dedekind and Poincaré. Zermelo [1909] began with number-
free formulations of finite set. Dedekind [1888] in a context provided by
the existence of an infinite set had established his principle of “complete in-
duction” for the natural numbers, mathematical induction as we would now
say.® Eschewing infinite sets. Zermelo proceeded to establish versions of
the principle for finite sets, writing at the end that he had argued within his
coming axiomatization of set theory. This exemplified Zermelo’s emerging

3See Peckhaus [1992].

3'Moore [1982: 158] has argued that these two publications. with the proximity of their
dates. should be regarded as a unitary pair.

2 According to Moore [1982: 163, n. 9] Zermelo had corresponded in 1907 with Poincaré
about publishing his article in the Revue de métaphysique et de morale, and in a letter of 19
June 1907 Poincaré wrote that the article was too mathematical for the Revue and that he had
proposed it to Mittag-Leffler for publication in Acta Mathematica. This is where the article
appeared fully two years later. Zermelo [1908a: 262] referred to a paper fitting the description
of [1909] as “in preparation”. but this may only be acknowledging the publication delay.

3See Parsons 1987] for more on this paper in the context of developing arithmetic in set
theory.

#Zermelo [1909a] was largely a report of his [1909] work presented at the 1908 Interna-
tional Congress of Mathematicians held at Rome.

#Strictly speaking, Dedekind first stated his theorem of complete induction for his
“chains™ in a general context ((59)). Only afterward did he appeal to the existence of
an infinite set to introduce the natural numbers (by abstraction, so that they are a “free
creation of the mind”) and then stated the theorem of complete induction for the natural
numbers ((80)).
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set-theoretic reductionism: Zermelo pioneered the reduction of mathemati-
cal concepts and arguments to set-theoretic concepts and arguments from
axioms, based on sets doing the work of mathematical objects.>® Zermelo
[1909] wrote at the beginning: ... for me. every theorem stated about fi-
nite numbers is nothing other than a theorem about finite sets.” (Zermelo’s
actual incorporation of the natural numbers into set theory would not be
done in [1909] but in his axiomatization paper [1908a] in connection with
his Axiom of Infinity: There is a set having the empty set 0 as a member and
closed under the taking of singletons. Zermelo [1908a] wrote at the end of
&§1: “The set Z, contains the elements, 0, {0}, {{0}}. and so forth, and it
may be called the number sequence. because its elements can take the place
of numerals.’”) Zermelo [1909] wrote in the conclusion:

If these axioms. that I propose to enunciate completely in another article,
are nothing more than purely logical principles, then the principle of [math-
ematical] induction is as well; if on the contrary they are intuitions of a
special sort, then one can continue to regard the principle of [mathematical]
induction as a result of intuition or as a “synthetic a priori judgment”.

In Kantian terms Poincaré regarded the principle of mathematical induction
as synthetic a priori, while Frege and the logicists would have it analytic. Zer-
melo was directing his remarks at Poincaré¢, but in a reply Poincaré [1909]
merely pointed out the impredicativity at work. Later Poincaré [1909a]
rejected Zermelo’s [1908a] axiomatization altogether. Be that as it may,
Zermelo would be vindicated to the extent that modern texts of set theory
invariably show how his axioms subsume the natural numbers and mathe-
matical induction.

To elaborate on the finiteness, the immediate sense of a set being finite is
having a bijection with {0. ..., n — 1} for some natural number n. Zermelo
provided two equivalent, non-numeric formulations, each exhibiting a her-
itage from Dedekind. The second formulation, thematically connected with
Dedekind’s [1888: 567, 8] analysis of greatest elements for finite sets of natural
numbers, was elegant: A set X is finite exactly when there is a well-ordering
< of X such that every non-empty subset of X not only has a <-least element
but also a <-greatest element. i.e.. the converse of < is also a well-ordering.®
In his incisive analysis Zermelo correlated his definitions of finite set with
Dedekind’s original [1888: (64)] definition. nowadays enshrined as: A set
X 1s Dedekind-finite exactly when there is no bijection between X and a
proper subset of X otherwise, X is Dedekind-infinite. Assuming that the

36See Hallett [1984: 244ff] and Taylor [1993] for more on Zermelo’s reductionism.

Kurt Grelling, a student and follower of Zermelo and later of “heterological” fame,
would base his Dissertation [1910] at Gottingen on Zermelo [1909]. Grelling advocated the
founding of arithmetic on Zermelo’s axiomatization of set theory. See Peckhaus [1994] for a
biography and bibliography of Grelling.

% This definition was arrived at independently by Stickel [1907).
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natural numbers (in some set-theoretic rendition) do form a set. a set is
Dedekind-infinite exactly when it has a denumerable subset. The simple as-
sertion that a finite set is Dedekind-finite is equivalent to what is now called
the Pigeonhole Principle (Dirichlet’s Schubfachprinzip). Zermelo [1909: §6]
established the converse, proceeding through his non-numeric definitions
and explicitly employing the Axiom of Choice.?® Tarski [1924] later pro-
vided not only another elegant definition of finite set*” but also a survey of
the various definitions of finite set, explicitly working in Zermelo’s [1908a]
axiomatization. Vindicating Zermelo’s appeal to the Axiom of Choice, the
earliest results in the 1960’s on the independence of the Axiom of Choice via
forcing established the consistency of having infinite. Dedekind-finite sets.
We now focus now on the major 1908 publications. Although the larger
objections raised against Zermelo’s [1904] proof had to do with the use
of arbitrary functions on arbitrary subsets of a set. there were also specific
objections raised about possible inconsistencies having to do with the class Q
of all ordinal numbers. After all. Zermelo had defined a well-ordering in a
new way. and what prevented this well-ordering from being identifiable with
Q? Largely to preclude these objections Zermelo in his second [1908] proof
resorted to a rendition of orderings in terms of segments and inclusion first
used by Gerhard Hessenberg [1906: 674ff] and a closure approach with roots
in Dedekind [1888]. This new tack is thematically related to Zermelo’s proof
of the Schréder-Bernstein Theorem, which he had already sent to Poincaré
in January 1906 and which had a similar incentive (cf. §4 below). Instead of
extending initial segments toward the desired well-ordering, Zermelo got at
the collection of its final segments by taking an intersection in a larger setting:
To well-order a set M using a choice function ¢ on P(M ). Zermelo defined
a ®-chain to be a collection ® of subsets of M such that: (a) M € @; (b)
if 4 € O, then 4 — {p(4)} € ©: and (c) if Z C O, then | Z € ©. He
then took the intersection 7 of all ®-chains, and observed that / is again a
®-chain. Finally. he showed that 7 provides a well-ordering of M given by:
a < biff thereisan A4 € I such thata ¢ 4 and b € A. I thus consists of the
final segments of the same well-ordering as provided by the [1904] proof.

¥Dedekind [1888:(159), (160)] had first established that Dedekind-finite implies finite,
making an implicit use of the Axiom of Choice as Zermelo [1909: 190, n. 5] pointed out.
Zermelo was perhaps exercised by Poincaré’s [1906a: X] critical quotation of a remark from
Russell [1906:49]: “But, so far as I know. we cannot prove that the number of classes con-
tained in a [Dedekind-]finite class is always [Dedekind-]finite, or that every [Dedekind-]finite
number is an inductive number [i.e.. is in the closure of {0} under the successor operation].”
Zermelo already in a letter of 27 June 1905 to Hilbert wrote that the Axiom of Choice is
needed to prove that Dedekind-finite implies finite; see Moore [2002a: 50].

%A set X is finite exactly when every non-empty subset of P(X ) has a C-minimal element.
As pointed out by Gregory Taylor (private communication), Zermelo in his last publication
[1935] referred to Tarski’s definition; Zermelo was dealing with well-founded relations, and
Tarski’s definition amounts to: X is finite exactly when the proper inclusion relation on P(X')
is well-founded.
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This new proof is less comprehensible without the first [1904] proof. but
with the intersection approach no question could arise, presumably, about
intrusions by classes deemed too large like 2. While the first proof featured
what we would now call a transfinite recursive construction of a well-ordering
<. Zermelo in effect reconstituted the well-ordering with final segments
R(a) = {b | a < b} under reverse inclusion. a natural ordering for sets.*!
Zermelo thus moved further from Cantor’s structured sets by applying Hes-
senberg’s reduction of well-orderings to set-theoretic relations. We today
would regard the first [1904] proof as more economical: While that proof
required only separation of the set of y-sets from the power set of M and
taking the union of y-sets, the new proof required separation of the set of
®-chains from the power set of the power set of M. In anticipation of his
axiomatization Zermelo himself pointed out [1908: §1] the set existence prin-
ciples that he was applying in his new proof: the Separation and Power Set
Axioms, and of course, the Axiom of Choice. Although Zermelo neglected
to mention the Union Axiom. so prominent in the first proof, it too was
needed in the second proof.+?

Notably, Zermelo’s two proofs of his Well-Ordering Theorem correspond
to two distinguishable conceptions of natural number.** The first proof cor-
responds to “building up”. starting from zero and recursively applying the
successor function, and the second proof corresponds to “paring down”.
getting at the closure of zero under the successor function by taking an in-
tersection of all closed supersets. It is commonplace in modern mathematics
that the closure of a set under a mapping can be defined as either the union
of an increasing, recursively defined sequence of sets or the intersection of all
closed supersets. However, the first instances occurred in the foundational
investigation of the natural numbers and explicitly for a new situation in the
two Zermelo proofs. Dedekind [1888] had provided the general theory of
closures through paring down. In his terminology. given a set [System] S. a
mapping [Abbildung] ¢: S — S, and a subset 4 of S, the chain [Kette] of
A is the closure of 4 under ¢, i.e., [[{K C S| AU @“K C K}. Dedekind
had proceeded to define the natural numbers as the closure of {1} under

#1Zermelo [1908: §1] stressed how his new formulation of well-ordering “rests exclusively
upon the elementary notions of set theory, whereas experience shows that, with the usual
presentation, the uninformed are only too prone to look for some mystical meaning behind
Cantor’s relation @ < b, which is suddenly introduced.” Zermelo went on to make explicit a
characterization which can be economically rendered as follows: A set M is well-orderable
iff thereis an R: M — P(M) such that for any non-empty P C M there is a unique x € P
such that P C R(x).

#Zermelo [1908] formulated the Axiom of Choice as positing for any set M consisting
of non-empty. pairwise disjoint sets the existence of a set that meets each member of M in
exactly one element. However, to apply the axiom to choose elements from arbitrary subsets
of a given set, one needs first to establish a technical theorem that correlates such subsets with
pairwise disjoint sets. That theorem (Zermelo [1908a: para. 28]) requires the Union Axiom.

“This is elaborated in George—Velleman [1998].
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the successor operation. Frege in his Begriffsschrift [1879] and Grundlagen
[1884] had taken essentially the same approach. Zermelo’s ®-chains are
evidently a direct extension of Dedekind’s chains into the transfinite. Just as
Dedekind’s approach to the natural numbers required second-order logic, as
we would now say, and was impredicative, in that the set of natural numbers
was itself one of the chains to be intersected. likewise Zermelo’s approach
required one more power set (as has been noted) and was analogously im-
predicative. On the other hand, while “building up” is not impredicative
for the natural numbers, the first [1904] proof is avowedly impredicative,
perhaps an inevitable concession to the transfinite.
Zermelo started his axiomatization paper [1908a] as follows:

Set theory is that branch of mathematics whose task it is to investigate
mathematically the fundamental notions “number”, “order”. and “func-
tion”, taking them in their pristine, simple form. and to develop thereby
the logical foundations of all of arithmetic and analysis: thus it constitutes
an indispensable component of the science of mathematics.

Zermelo went to describe how the “antinomies™ had precluded the viability
of sets as extensions of concepts. so that Cantor’s definition of set must be
restricted, something that had not been successfully done. He continued:

Under these circumstances there is at this point nothing left for us to do

but to proceed in the opposite direction. and starting from set theory as

it is historically given, to seek out the principles required for establishing

the foundations of this mathematical discipline. In solving the problem we

must. on the one hand. restrict these principles sufficiently to exclude all

contradictions, and, on the other, take them sufficiently wide to retain all

that is valuable in this theory.

Now in the present paper I intend to show how the entire theory created

by Cantor and Dedekind can be reduced to a few definitions and seven

principles. or axioms. which appear to be mutually independent.
The first lines above are consonant with a pragmatic view, advocated in
Zermelo’s previous paper, of how mathematical axioms are to be justified
[1908: 112]: “by analyzing the modes of inference that in the course of history
have come to be recognized as valid and by pointing out that the principles
are intuitively evident and necessary for science.” Zermelo’s approach would
be successful in being sufficiently restrictive “to exclude all contradictions™
and sufficiently wide “to retain all that is valuable,” but he would moreover
transform the set theory of Cantor and Dedekind by making explicit new
set existence principles and promoting a generative point of view. Zermelo
had begun working out an axiomatization as early as 1905, incorporating
aspects of his own discovery of the Russell Paradox and addressing issues
raised by his [1904] proof.** The mature presentation is a precipitation of
seven axioms, and these do not just reflect “set theory as it is historically

%This is documented by Moore [1982: 155ff] with items from Zermelo’s Nachlass.
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given”, but explicitly buttress his proof(s) of the Well-Ordering Theorem.
Abstract set theory was thus launched from its mooring.*’

Zermelo’s axiomatization was methodologically in the spirit of Hilbert’s
Grundlagen der Geometrie [1899]. positing a domain of objects with a funda-
mental relation, membership. An object is to be a set if it is either empty or
has an object as a member; thus, incipiently urelements (now also called indi-
viduals or atoms), objects distinct from the empty set yet having no member
and capable of belonging to sets, were allowed. Beyond this oddity from the
modern perspective, Zermelo advanced the now-familiar view, analogous to
Hilbert’s for geometric objects and relations, of sets being solely structured
by membership and generated by simple operations. As for Hilbert, consis-
tency was important for Zermelo. but moreover his principles would have
a generative function. He had already written in [1908: 124]: “ ... if in set
theory we confine ourselves to a number of established principles such as
those that constitute the basis of our proof [of the Well-Ordering Theorem]
— principles that enable us to form initial sets and to derive new sets from
given ones — then all such contradictions [like Russell’s] can be avoided.”

Zermelo’s seven set axioms constitute the now familiar theory Z. Zermelo
set theory: Extensionality, Elementary Sets (0. {a}. {a.b}). Separation.
Power Set. Union, Choice, and Infinity. With Extensionality Zermelo of
course espoused the extensional viewpoint. However. Separation retained
an intensional aspect with its “separating out™ of a new set from a given
set using a definite property, where a property is “definite [definit] if the
fundamental relations of the domain. by means of the axioms and the uni-
versally valid laws of logic, determine without arbitrariness whether it holds
or not.” But with no underlying logic formalized. the ambiguity of defi-
nite property would become a major issue. A generous view is that at the
time there was no generally accepted system of logic. and so Zermelo was
pragmatically indicating the path to be followed.*® Another is that defi-
niteness is not to be given by language, formal or otherwise, but rather by
direct appeal to membership and generative set-forming operations as part
of Zermelo’s reductionism of mathematical concepts.*’ With Infinity and
Power Set Zermelo provided for sufficiently rich settings for set-theoretic
constructions. Tempering the logicians’ extravagant and problematic “all”

S Concerning “abstract”. Fraenkel in his text Abstract Set Theory [1953] distinguished
between abstract sets (the nature of whose elements are not of concern) and sets of points
(typically numbers). In the early years “general set theory” was also used with connotations
similar to “abstract set theory”. Cantor’s study of sets of points evolved into point-set
topology and descriptive set theory. Cantor and Dedekind certainly entertained abstract
sets. but it was Zermelo who set the theory going on its way to modern set theory. The
latter-day Skolem [1962] was still entitled Abstract Set Theory.

4See Ferreiros [1999: 323]. This accords with what Zermelo wrote when he returned to
the notion of definite property in Zermelo [1929: 340]: see §6 below.

#7See Taylor [1993: 546f].

This content downloaded from 128.197.60.227 on Thu, 25 Sep 2014 15:56:35 PM
All use subject to JSTOR Terms and Conditions




ZERMELO AND SET THEORY 505

the Power Set axiom provided the provenance for “all” for subsets of a given
set, just as Separation served to capture “all” for elements of a given set
satisfying a property. Finally, Union and Choice completed the encasing of
Zermelo’s proof(s) of his Well-Ordering Theorem in the necessary set exis-
tence principles. Notably, Zermelo’s recursive argumentation also brought
him in proximity of Replacement (as was pointed out in connection with
Theorem 1), the next axiom to be adjoined in the subsequent development
of set theory.*®

Zermelo’s first result in his axiomatic theory was just the result of his
Husserl note (§1). that every set M has (through Separation) a subset {x €
M | x ¢ x} not a member of M. with the consequence that there is no
universal set. In modern texts of set theory this is also the first substantial
result presented. but they usually take the opposite tack, showing that there
is no universal set by reductio to Russell’s Paradox.*’

Although Hilbert’s axiomatization of geometry may have served as a model
for Zermelo’s axiomatization of set theory and Dedekind’s [1888] essay as
a precursor, there are crucial differences having to do with subject matter
and proof. By the second edition of his Grundlagen [1903: 16] Hilbert had
incorporated his Completeness [ Vollstindigkeit] Axiom which made his ax-
loms categorical, i.e., having a unique model up to isomorphism, in this case
Euclidean space, the maximal possibility. Dedekind’s presentation [1888] of
the natural numbers had also been categorical. and so both in intent and
outcome Dedekind and Hilbert had been engaged in the analysis of fixed
subject matter. Zermelo’s axioms were by no means categorical, and in fact
he would in later life advocate an open-ended view with a hierarchy of mod-
els (see §6 below). This brings up the larger issue of the role of proof for
articulating sets.

By the time of Dedekind [1888] proof had become basic to mathematics.
and indeed his work did a great deal to enshrine proof as the vehicle for al-
gebraic abstraction and generalization.™ Like algebraic constructs sets were
new to mathematics and would become incorporated by setting down the
rules for their proofs. Just as calculations are part of the sense of numbers,
so proofs would become part of the sense of sets, as their “calculations”.

1t is notable that Cantor, in that letter of 3 August 1899 to Dedekind. advocated closure
for his notion of (“consistent”) set under the taking of unions and loose forms of Separation
and Replacement (see Cantor [1932:451] or van Heijenoort [1967: 117]). and. in an earlier
letter of 20 September 1899 to Hilbert, advocated closure for his notion of (“completed™) set
under the taking of power set and loose forms of Separation and Replacement (see Moore
[2002a: 44f1)).

#Zermelo applied his first result positively to generate specific sets disjoint from given sets
for his recasting of Cantor’s theory of cardinality in terms of immediately and mediately
equivalent sets (see below).

0The first sentence of the preface to Dedekind [1888] is: “In science nothing capable of
proof ought to be accepted without proof.”
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Just as Euclid’s axioms for geometry had set out the permissible geometric
constructions, the axioms of set theory would set out the rules for set gen-
eration and manipulation. But unlike the emergence of mathematics from
marketplace arithmetic and Greek geometry, sets and transfinite numbers
were neither laden with nor bolstered by substantial antecedents. There was
no fixed. intended subject matter. Like strangers in a strange land stalwarts
developed a familiarity with sets guided step by step by the axiomatic frame-
work. For Dedekind [1888] it had sufficed to work with sets by merely giving
a few definitions and properties. those foreshadowing Extensionality. Union.
and Infinity. Zermelo [1908a] provided more rules: Separation. Power Set.
and Choice.

In future years the basic scaffolding provided by Zermelo’s axioms, with
their schematic simplicity and open-endedness, would win out as a working
foundation for mathematics over the unwieldy and unsightly type theory of
Russell. a fearful symmetry imposed by an artful dodger. Set theory would
provide the underpinnings of mathematics, and Zermelo’s axioms would
resonate with emerging mathematical practice. To take one example. Mau-
rice Fréchet’s thesis [1906]. of similar vintage to Zermelo’s axiomatization
and seminal to functional analysis. proposed the study of function spaces,
formalizable with Power Set and Separation.

Zermelo’s analysis moreover served to draw out what would come to be
generally regarded as set-theoretic out of the presumptively logical. This
would be particularly salient for Infinity and Power Set and was strategi-
cally advanced by the segregation of property considerations to Separation.
Based on generative and prescriptive axioms, set theory would become more
combinatorial. less logical. That Zermelo did not develop a nuanced view
of logic. as particularly evidenced by his blanket reliance on definite prop-
erties. played to advantage. if anything. in emphasizing the set-theoretic.
Even though Zermelo himself regarded the Axiom of Choice as a “logical”
principle ([1904: 141][1930: 31]). its very isolation and its subsequent inves-
tigation by the Polish School®! established it as distinctly set-theoretic. It
was this sort of increasingly mathematical analysis that shifted the focus of
mathematical logic away from the Frege—Russell logicist program.

Zermelo’s reduction to seven axioms sufficient “for the entire theory cre-
ated by Cantor and Dedekind” went hand in hand with his reductionist
approach which. as Zermelo had written at the outset, would investigate
number, order. and function “taking them in their pristine. simple form.”
Zermelo’s formulation of the Axiom of Choice, an axiom which would seem
to be naturally cast in terms of functions. exemplified this: For any set M
consisting of non-empty, pairwise disjoint sets there is a set that meets each
member of M in exactly one element. Zermelo’s reductionism had already
exhibited itself in his [1909] (as we have discussed) and in his second [1908]

3!'Especially Sierpinski, Tarski. and Kuratowski.
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proof of the Well-Ordering Theorem. with the desired well-ordering given in
terms of reverse inclusion. However. we would recognize today that the re-
duction was not complete. since Zermelo did not objectify the well-ordering
itself as a set. For that. one needs to incorporate the ordered pair and
relations into set theory.>® Also. Zermelo wrote pointedly in [1908: 120]:
“... In Cantor’s theory ‘order types’ and ‘cardinal numbers’ are nothing
but convenient means of expression [ Ausdrucksmittel] for the comparison of
sets with respect to the similarity or equivalence of their parts ... This is
more of a pronouncement than a recounting, since Cantor had a substantial
commitment to his ordinal and cardinal numbers gua numbers. In any case.
Zermelo proceeds in his axiomatization paper [1908a] to develop the “theory
of [cardinal] equivalence” from his axioms:

First, Zermelo specified that for any disjoint sets M and N. M is immedi-
ately equivalent to N ., exactly when there isa ® C P(M U N ) such that every
member of M U N occurs in exactly one (unordered) pair {m.n} € ®. Thus
@ serves as a set-theoretic reduction of a bijection between M and N. Next.
appealing to there being no universal set Zermelo proved that for any sets
M and N there is a set M’ disjoint from M U N such that M’ is immediately
equivalent to M. With this in hand. Zermelo then specified that for any sets
M and N. M is mediately equivalent to N exactly when there is third set R
disjoint from both yet immediately equivalent to each. Using this notion
Zermelo proceeded to develop the theory of cardinal equivalence within his
axiomatic framework.

Although Zermelo’s treatment would nowadays be viewed as ad hoc. it
both exemplifies his reductionism and how we operate in his axiomatic the-
ory today. We too make unabashed use of set-theoretic operations. and we
too appeal freely to the Power Set axiom to provide a setting. even when we
are only interested in the subsets which are merely unordered pairs. And
we too develop the theory of cardinality as far as possible in terms of sets.
before getting to the matter of cardinal number objects. Indeed, Zermelo’s
development might be viewed as an elegant. minimalist approach to cardi-
nality.>® Of course. with the incorporation of the ordered pair. relations. and
functions into set theory — and through their reconstrual. the real numbers
— the reduction of mathematics to sets would become complete.

Zermelo’s development culminated with his proof of what is at times called
the Zermelo-Konig Inequality. In terms of cardinal numbers this theorem
states: If m, < n, for every 7 in a set 7. then £,m, < II;n,. Of course.
Zermelo formulated and established his inequality entirely in terms of sets.
The theorem subsumes Cantor’s theorem m < 2™ and the theorem of Konig

This was done by Hausdorff [1914]. the other great developer of Cantor’s set theory in
the next generation.

MSkolem as late as in 1957 (see his [1962]) presented the theory of cardinality without
formalizing functions, taking Zermelo’s approach instead.
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[1904] from the Heidelberg congress. which was for the special case of T
being countable. The result recalls the beginning and comes full circle. for
as an outcrop of the cottage industry investigating choice principles the
Zermelo-Konig Inequality was eventually shown to be equivalent to the
Axiom of Choice.**

84. The Schroder—Bernstein Theorem. Zermelo provided a proof of the
Schroder-Bernstein Theorem in [1908a]. and therein lies a tale involving
Poincaré. Russell. Peano. and ultimately Dedekind. Zermelo’s proof stands
in relation to an earlier proof of Bernstein’s as Zermelo’s second [1908] proof
of the Well-Ordering Theorem does to his first [1904] proof. Moreover, the
motivations for the second proofs were to address similar issues of fore-
stalling concerns about the role of number. Finally, Zermelo came to his
proof of the Schroder-Bernstein Theorem before his second proof [1908] of
the Well-Ordering Theorem. and so he could be seen to be predisposed to
the [1908] approach and its reductionism.

In the theory of cardinality the Schroder-Bernstein Theorem is the ba-
sic assertion that for cardinal numbers m and n, m < nand n < m im-
plies m = n. The issue first arose in Cantor’s development of cardinal
numbers: the early history is interlaced with the question of whether every
set can be well-ordered: and the theorem is of course immediate assuming
the Axiom of Choice because of Zermelo’s Well-Ordering Theorem. The
Schroder—Bernstein Theorem commands a separate significance only with a
proof involving no well-orderability assumptions. and the first correct such
proof tcgsappear in print was due to Bernstein and appeared in Borel [1898:
104-6].”-

Zermelo’s proof was for the synoptic formulation in terms of sets and
mappings which was how Cantor himself had first raised the issue in 1882:%

If M' C M, C M and there is a bijection ¢: M — M',
then there is a bijection: M — M.

The following is Zermelo’s proof in brief (and just to affirm notation. C
denotes proper inclusion and 2*X denotes the image of set X under func-
tion /):

Set Q = My, — M'. and for 4 C M, define f(4) = QU ¢“A4. [ is
monotonic: if 4 C B C M. then f(4) C f(B). SetT = {4 C M |
f(A4) C A4}.°7 Noting that T is not empty since M € T, let Ay = N T.

**Rubin-Rubin [1963: 75ff].

»Schroder [1898] claimed a proof. but it was flawed (cf. Korselt [1911]). and the theorem
is sometimes called the Cantor-Bernstein theorem.

6See Cantor’s 5 November 1882 letter to Dedekind in Ewald [1996: 874f1].

37Zermelo carefully pointed out that 7 is a set. through a typical appeal in his system to
the Power Set and Separation Axioms.
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Then Ay € T.5% Moreover. f(A4y) C Ay would imply by the monotonicity
of f that f(f(A4y)) C f(Ag) C Ay. contradicting the definition of A.
Consequently. we must have 49 = f(A4g) = Q U ¢“4y. It follows that
M, = Ay U (M' — ¢*“Ay) is a disjoint union, and of course so is M' =
¢“AgU (M’ — ¢“Ay). Hence. the function: M, — M’ which is ¢ on A, and
identity elsewhere is a bijection. and this suffices for the result.

Zermelo himself did not define the function f explicitly, but he did define
T and Ay = () T. and his argument turned on 4, being a “fixed point™ of /",
ie.. f(A()) — A().59

Bernstein’s earlier proof. like those most often given today. depends on
defining a countable sequence of sets by recursion. Poincaré’s “petitio prin-
cipii” criticism of the logicists was that “logical” developments of the natural
numbers and their arithmetic inevitably presuppose the natural numbers and
mathematical induction. and in connection with this Poincaré [1906: XX VI]
pointed out the circularity of developing the theory of cardinality with the
Schroder-Bernstein Theorem based on Bernstein’s proof. and therefore on
the natural numbers. This point had mathematical weight, and accord-
ing to a footnote in his [1908a: 272-3] Zermelo had sent Poincaré his new
proof of Schroder-Bernstein in January 1906.°" and it appeared in Poincaré
[1906a: XIV]. In the footnote Zermelo emphasized how his proof avoids
numbers and induction altogether. and noted that Peano [1906] published a
proof that was “quite similar”.®" Russell on first reading Zermelo [1908a]
expressed delight with his proof of Schroder-Bernstein but went on to crit-
icize his axiomatization of set theory.®? In the first volume of Whitehead
and Russell’s Principia Mathematica [1910-13] there was no formal use of

$This step makes the proof impredicative. like Zermelo’s argument used for Theorem 1.

Kanamori [1997] pursues the fixed point idea as part of a unifying mathematical theme.
one that continues next after Zermelo to Kuratowski [1922].

“Zermelo first gave his new proof in a letter of 28 June 1905 to Hilbert: see Moore
[2002a: 50].

1Zermelo’s footnote is footnote 11 of van Heijenoort [1967:209]. and Peano [1906] is
dated 31 March 1906. The reference to Peano [1906] is part of a contretemps involving
Poincaré: Poincaré [1906a: XIV] in publishing Zermelo’s proof proceeded to make it part of
his criticism of Zermelo’s work based on the use of impredicative notions. the main front
of Poincaré’s critique of the logicists and Zermelo. Zermelo in a footnote to his [1908: 118]
(footnote 8 of van Heijenoort [1967: 191]) expressed annoyance that Peano when referring
to Poincaré [1906a] only mentioned Peano [1906]. not Zermelo. in connection with the new
proof of Schroder-Bernstein but went on the argue against Zermelo’s espousal of the Axiom
of Choice.
“Russell in a letter of 23 March 1908 to Zermelo (Zermelo Nachlass C 129/99) wrote:

. especially remarkable to me was your simple and elegant new proof of the Schroder-
Bernstein Theorem.” Russell’s earlier letter of 15 March 1908 to Jourdain (Grattan-Guinness
[1977:109]) began: “I have only read Zermelo’s article once as yet. and not carefully. except
his new proof of Schroder-Bernstein. which delighted me.” Russell then criticized the Sep-
aration Axiom as being “so vague as to be useless.” For Russell. the paradoxes cannot be
avoided in this way but had to be solved through his theory of types.

“
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the class of natural numbers. and indeed the Axiom of Infinity was avoided:
while this would not satisfy Poincaré. the theory of cardinality was developed
using Zermelo’s proof.%?

It is now time to look at the mathematics more closely. There is really only
one proof idea for establishing the Schroder-Bernstein Theorem. Suppose
the hypothesis. that M’ C M; C M and there is a bijection ¢: M — M'.
Define sets

P() =M — Ml. Q() = 1\/[| - M’. and P,,+1 = ¢“P,, and Q,,+| = ¢"Q,,

by recursion. The P,’s and Q,’s can be pictured as concentric rings nested
inward: Py is the outer ring: Qg the next: then P,: then Q,: and so forth. Let

F:UP,, and§=UQn-
n n

Then P is the closure of Py under ¢, and Q is the closure of Qp under ¢.
Zermelo's Q and A are here Qy and Q respectively. and his proof results
in the function: M; — M’ which is ¢ on Q and identity elsewhere. That is,
the rings Q,, are sent inward to Q,,. successively and everything else in M
is fixed.
Bernstein (see Borel [1898: 104-6]) began with the hypothesis
Ay C A. By C B. A isbijective with B, and B is bijective with 4.

with the goal being to provide a bijection between 4 and B. However. we
can convert to the previous scheme by taking 4 to be M: 4, to be M;: and
through the bijective correspondence of B with A;. take M’ C 4, = M, to
be corresponding to Bj: so that there is a bijection ¢: M — M. Bernstein’s
proof then amounts to defining the P,’s and Q,’s as before by recursion but
now defining a bijection: M — M| which is ¢ on P and identity elsewhere.
That is. the rings P, are sent inward to P, .| successively and everything
else in M is fixed. Instead of Zermelo’s M|, — M’ map Bernstein in effect
developed the other possibility. the M — M| map.%*

The Zermelo and Bernstein proofs were compared early on. the modern
and also historically focal point being one discussed in §3, that the closure
of a set under a mapping can be defined either as the union of an increasing.
recursively defined sequence of sets or the intersection of all closed supersets.
Although the explicit stratifications P = |J,, P, and Q = |J, O, are helpful
to motivate and survey the proofs. as seen from Zermelo’s rendition one does
not need these stratifications nor indeed to presuppose the natural numbers
and recursion. The situation foreshadows. since Zermelo had come to his
Schroder-Bernstein proof by at least January 1906. that of Zermelo’s second

“The Schroder-Bernstein Theorem in Principia is 73 - 88.

“Beginning with the same hypothesis as did Bernstein. Schroder [1898] had developed
nested sequences of sets. e.g.. what in the above terminology would be M D ¢“M D
¢ (d"M)....and took “limits”. but did not in the end define a bijection: 4 — B.
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proof of the Well-Ordering Theorem. It is a testament to Zermelo’s unity of
vision.

In Whitehead and Russell’s Principia Mathematica. after Zermelo’s proof
was given in *73. the Zermelo and Bernstein approaches were pictured and
compared in #94 and the latter was carried out separately in *95. However,
in the orderly development the issue was not the presupposition of the
natural numbers: rather surprising to the modern eye. the prolonged and
gratuitous labor in the logic of relations contended with the different starting
hypotheses, i.e., the M’ C M; C M etc. hypothesis vs. the 4, C A4 and
B; C B etc. hypothesis.

The correlation of the different hypotheses had presented no difficulties in
the earlier Peano [1906: 338]. where a simple account of Bernstein’s argument
was provided in the M' C M; C M formulation. Moreover, Peano provided
a number-free proof for the existence of Bernstein’s M — M, bijection.
exactly analogous to Zermelo’s for the existence of his M| — M’ bijection,
also in light of Poincaré’s critique.

Finally, Hausdorff in his classic Grundziige der Mengenlehre [1914: 48f1)
was quite clear in his comparison of the Bernstein and Zermelo proofs.
Working toward the M| — M’ bijection. he first provided a proof a la
Bernstein and then presented Zermelo’s proof. Without fuss, Hausdorff
pointed out that both proofs amount to the same bijection sending each
0, to Q1. Modern mathematics would go this way. foregoing the logical
preoccupations and difficulties of Principia Mathematica and carrying out
increasingly set-theoretic constructions.

The role of Dedekind brackets this to and fro, both at the beginning and the
end. Zermelo in that footnote [1908a: 272-3] also pointed out that his proof
“rests solely upon Dedekind’s chain theory [1888:1V].” and this has more
substance than Zermelo realized at the time. Dedekind in fact had a proof
of Schroder-Bernstein already in 1887. but the proof only appeared in 1932,
both in a manuscript dated 11 July 1887 appearing in Dedekind’s collected
works [1932:447-9] and in an enclosure in a letter of 29 August 1899 from
Dedekind to Cantor appearing in Cantor’s collected works [1932:449].9
As editor for the latter, Zermelo noted in a footnote that Dedekind’s proof
is “not essentially different” from that appearing in Zermelo [1908a]. and
expressed puzzlement that neither Cantor nor Dedekind published the proof
(see Cantor [1932:451]).

Dedekind’s proof rested on a decomposition theorem that appeared in his
[1888].% In Dedekind’s terminology as described already before, given a set
[System] S. a mapping [Abbildung] ¢: S — S.andasubset 4 of S. the chain
[Kette] of A4 is the closure of 4 under ¢. ie.. ({K C S| AU¢“K C K}.
The decomposition theorem was the last theorem in section IV, “Mapping

% For a careful translation of the letter together with the enclosure. see Ewald [1996: 937-9].
*This is emphasized by Ferreirds [1999: 240].
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of a System into Itself”: Given a map ¢. suppose that ¢“K C L C K. If
U=K - L. Uyisthechainof U and V' = K — Uj. then:

K=UyuVand L =¢"UyUV.

Dedekind wrote afterward: “The proof of this theorem, of which (as of the
two preceding) we shall make no use. may be left for the reader.” Dedekind
was remarkably terse here.” But the unions are clearly disjoint. and so if
¢ 1s injective. there is evidently a bijection between K and L which is ¢
on Uy and identity elsewhere. This is exactly how Dedekind proved the
Schroder-Bernstein Theorem in that 1887 manuscript. Thus. the Dedekind
and Zermelo proofs use the same closure argument. though in Zermelo’s
terms instead of his M, — M’ map Dedekind gets the M — M| map.

An Eternal Return: After Cantor posed the problem in 1882 Dedekind
solved it using his chains in 1887. This unknown. Bernstein in 1898 found
a version of the argument depending on numbers and recursion: Zermelo in
1906, having absorbed Dedekind’s chain theory gave a number-free proof:
and Whitehead and Russell later elaborated on the matter with unforgiving
detail in the logic of relations. In 1932. it became known that Dedekind
himself had the simplest proof all along. one reflected in Zermelo’s.

§5. Ramifications. Zermelo left Gottingen in 1910 to take up a position
as ordinary Professor at the University of Zurich. but he had to vacate
that position in 1916. Notably. Paul Bernays completed his Habilitation on
analytic number theory at Zurich in 1912.%% From 1921 Zermelo lived in
Freiburg im Breisgau. and in 1926 he became an Honorarprofessor at the
University of Freiburg. At least of the 1910’s Zermelo later wrote that he
could not work on the foundations of set theory owing to a “lengthy illness
and isolation in a foreign country”.%” and he only published in the subject
again starting in 1929. In this fallow period he did publish a couple of papers
in the calculus of variations and an article [1914] on integral domains of
complex numbers that relied on the Axiom of Choice.”® Mostly notably. with
his predilection for applications Zermelo published two articles on chess.
[1913] on the possibility of a winning strategy and [1928] on the ranking of
players in tournaments. Before getting to Zermelo’s late work we tuck in a
discussion of [1913] because of its connection with the modern developments
in set theory and then go on to synopsize the relevant developments in set
theory to set the stage for Zermelo’s re-entry into the fray.

"Ferreirds [1999: 240] speculates as to why.

“®See Specker [1979: 382]. a short memoir of Bernays. Bernays entered university at
Goéttingen in 1909. It was probably through various interactions there and because of
Zermelo's move that Bernays went to Zurich.

%“From Zermelo's report to the Emergency Society of German Science [Wissenschaft] (See
Moore [1980]). a report sent to the society with a letter dated December 3, 1930.

"Zermelo [1914] used the axiom to get a “Hamel basis” for the complex numbers over the
rationals. This work was taken up by Emmy Noether [1916]: see Moore [1982: 173ff].
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Zermelo’s An application of set theory to the theory of chess [1913] is widely
regarded as having established the first theorem of game theory. Zermelo first
noted that though he focused on chess his considerations apply to “all similar
games of reason”. The main assumptions were that there are two competing
players who alternately play moves and that there are only finitely many pos-
sible positions; however. no stopping rules were assumed (unlike how chess
is actually played) so that there could be infinitely long plays. After having
construed the problem of how to evaluate a chess position as a mathemati-
cal problem. Zermelo wrote [1913: 501]: “The method used for solving this
problem in what follows is drawn from ‘set theory’ and ‘logical calculus’ and
shows the fertility of these branches of mathematics in a case where nearly all
aggregates considered are finite.” This recalls the [1909] reductionist empha-
sis on finite sets. It is a measure of how far set-theoretic thinking has become
embedded in mathematics that today we would regard the “application of
set theory” in Zermelo’s paper as merely set-theoretic formulation in set-
theoretic notation. However, it must be remembered that such formulations
for the mathematization of problems were still quite novel at the time.”!

Zermelo [1913] first discussed the concept of being in a “winning position”
in chess and advanced a version of what has since been referred to in game
theory as Zermelo’s Theorem: In chess, either White can force a win. or else
Black can force a win, or else both players can force a draw. Turning to his
main focus he then argued that if from a chess position ¢ a player can force
a win at all. then there is a natural number #(¢) such that he can force a win
in at most 7(¢) moves no matter how his opponent plays. As later clarified
by Dénes Konig [1927]. embedded in Zermelo’s arguments was the concept
of a winning strategy. a function for one of the players from positions to
moves such that if he plays according to this function he will always win.
and determinacy. the assertion that one of the players has a winning strategy.
Koénig [1927] pointed to an inadequacy in Zermelo’s argument for #(q).
and in an appendix presented a new, simple proof of the result verbally
communicated to him by Zermelo that we would now recognize as showing.
in the parlance of game theory. that (finite length) zero-sum two-person games
of perfect information are strictly determined. Soon afterwards Lazl6 Kalmar
[1928] generalized this work by allowing infinitely many positions, and gave
the first clear formulation and proof of Zermelo’s Theorem.”> Zermelo
[1913] may not have initiated game theory. but on the other hand his work
predates the pioneering work of Borel [1921] and von Neumann [1928b] on
the now familiar minimax strategy.

"' Even in the much later classic von Neumann—Morgenstern [1944: §§8-10] of game theory.
special attention was paid to the benefits of defining games in set-theoretic terms.

2Schwalbe-Walker [2001] analyzes this early work by Zermelo. Konig. and Kalmar on
games and provides an English translation of Zermelo [1913]: the analysis does not however
connect Zermelo’s argument in the appendix of Konig [1927] to determinacy.
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The investigation of the determinacy of infinite length games is perhaps the
most distinctive and intriguing development of modern set theory, and the
subject was to expand across the breadth of set theory from combinatorics
and forcing to large cardinals and inner model theory.”® The beginning of
this investigation was the basic result of Gale-Stewart [1953] that “open”
games are determined. a result to which the subject would return and return,
and the argument is essentially the same as Zermelo’s.

Enduring his prolonged period of illness and inactivity Zermelo, perhaps
perched on a magic mountain in the Black Forest. at least could have had the
satisfaction of seeing that his articulations would take root and thrive. The
Axiom of Choice became increasingly applied as an explicit construction
principle throughout mathematics. Wide-ranging consequences were inves-
tigated and even equivalences established. and this mathematization, like
the development of non-Euclidean geometry. led eventually to a deflating
of metaphysical attitudes and attendant concerns about truth and existence.
Zermelo’s axiomatization had initially drawn ambivalent response among
commentators, especially those exercised by the paradoxes, but the eventual
success of the framework would be secured by its increasing mathematical use
to structure and clarify arguments. and the underlying abstract. generative
view of sets would become generally accepted by the mid-1930’s.7

The work of Friedrich Hartogs [1915] is particularly notable for being an
early confluence with historical import. Cardinal Comparability, the asser-
tion that for any two cardinal numbers m and n either m < norn < m,
had become a problem for Cantor by the time of his Beitrdge [1895]. Har-
togs showed, explicitly working in Zermelo’s axiomatization sans the Axiom
of Choice, that Cardinal Comparability implies that every set can be well-
ordered. Thus, an evident consequence of the principle that every set can be
well-ordered also implied the principle, and this first “reverse mathematics™
result established equivalence among the well-ordering principle, Cardinal
Comparability, and Axiom of Choice over a base theory. This was the
first substantial use of Zermelo’s axiomatization after his own in the Well-
Ordering Theorem. and as with that theorem, the axiomatization served to
ground the investigation of well-orderings in the post-Cantorian era.

In the 1920’s fresh initiatives structured the loose Zermelian framework
with new features and corresponding developments in the axiomatics. The
three most important figures here were Abraham Fraenkel, John von Neu-
mann, and Thoralf Skolem. Zermelo would be influenced by the first two
and exercised by the third. particularly in their various attempts at coming
to grips with what definite properties are to be for the Separation Axiom.
Much has been written with various thematic emphases about these devel-
opments.’> which are briefly synopsized below.

*See Kanamori [2003: chap. 6].
"See Moore [1982] for the history.
See Moore [1982: 260ff]. Hallett [1984: part 2]. and Ferreirds [1999: XI].
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Fraenkel suggested substantial innovations for Zermelo’s axiomatization.
promoting an algebraic approach that also led to the first independence re-
sults for the axioms. Starting from some urelements and initial sets and
closing off under set-theoretic operations, Fraenkel [1922a] constructed a
model in which the Axiom of Choice fails for a countable set consisting of
pairs.”® The analogy with Hilbert’s Grundlagen [1899] was extended, since
he too had provided models for establishing axiom independence. These
models were typically algebraic closures. and this was to have a thematic
reverberation back in set theory. where there was no fixed subject matter:
Fraenkel’s efforts brought to the fore the attitude latent in Zermelo [1908a]
that the domain of set theory is to be an algebraic closure according to the
axioms.”” Fraenkel broached several innovations for Zermelo’s axiomati-
zation, innovations that would eventually be adopted but mainly through
the more incisive analyses of others. The first was to exclude urelements.
notwithstanding his model-building work, and ill-founded sets: the second
was to clarify what definite properties are to be for the Separation Axiom;
and the third was to close also under functional replacement as provided by
the Axiom of Replacement.

Fraenkel [1921][1922: 234ff] raised the issue of categoricity for Zermelo’s
axiomatization and to get at it proposed his Axiom of Restriction
[Beschrinktheit]: There are no sets other than are necessary as per the
axioms. While Hilbert had achieved categoricity for his axioms by incor-
porating a maximality condition with his Completeness Axiom. Fraenkel
would enforce minimality by a now standard. although still clumsy sound-
ing. restriction clause for closures, having in mind taking the intersection of
all possible domains for sets. Fraenkel [1922: 234] specifically mentioned the
superfluousness of urelements and ill-founded sets. These would eventually
be dispensed with in the mainstream development of set theory owing to
considerations of elegance. parsimony. and canonicity, but not through such
an ad hoc device as Fraenkel’s vague, meta-theoretic axiom.

Fraenkel’s model building led him to realize [1922a: 286] that the Separa-
tion Axiom had to be clarified. and so he formulated set-theoretic proposi-
tional functions whose purpose was to render Separation via their algebraic

"®Fraenkel [1922a] started with urelements a,. @, for n € w and the set 4 = {{a,. @y} |
n € w} of unordered pairs and argued that for any set M in the resulting model there is a
co-finite A4y C A such that M is invariant if members of any {a,.@,} € Ay are permuted.
This immediately implies that there is no choice function for 4 in the model. Finally, Fraenkel
argued that the model satisfies the other Zermelo axioms, keeping in mind the restriction of
Extensionality to sets.

Much later Andrzej Mostowski [1939] forged a method with post-Godelian sensibilities.
bringing out the importance of groups of permutations leaving various urelements fixed. and
the result models as well as later versions are now known as the Fraenkel- Mostowski models.

" Taylor [1993: 544ff] emphasizes this closure aspect of Zermelo [1908a] while observing
that the Axioms of Choice and Separation are anomalous.
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closure. Fraenkel [1922] also pointed out that at least in one way the alge-
braic closure approach had to be enriched: He observed the inadequacy of
Zermelo’s axioms for establishing that E = {Z. P(Z). P(P(Zy))....}isa
set, where Zy = {0. {0}. {{0}}....} is Zermelo’s infinite set from his Axiom
of Infinity. and proposed the Axiom of Replacement idea to remedy this
defect. Fraenkel [1922a: 286][1925: 254][1926: 132ff] proposed several recur-
sive definitions for the propositional functions to figure in Separation and
Replacement. Unfortunately. Replacement with these functions was later
shown to be inadequate even to secure the set £ in question and moreover
can already be derived from Zermelo’s original axioms.”® Actually. Zer-
melo’s axioms turn out to be very weak for handling recursive definitions:
The union of £, with membership restricted to it, is a model of Zermelo
set theory. yet this model does not contain {(). P(0), P(P(0)).... } nor its
union, the countable set consisting of the hereditarily finite sets. Hence,
Zermelo set theory cannot establish the existence of some simple countable
sets consisting of finite sets and could be viewed as remarkably lacking in
closure under finite recursion. Replacement simply serves in part to rec-
tify the situation by rounding out the available sets.” Such examples show
how necessary the Replacement idea is for basic set-theoretic constructions,
despite how Replacement has sometimes been portrayed as only affecting
large-cardinality sets and regarded as less crucial than the Zermelo axioms.
In any case, it was von Neumann’s formal incorporation of a method into set
theory, transfinite recursion, that necessitated the full exercise of Replace-
ment.

Von Neumann effected a counter-reformation of sorts by incorporating
Cantor’s transfinite numbers and even his absolutely infinite or inconsistent
multiplicities into a distinctively new axiomatization of set theory and more-
over began the process of focusing the subject matter of set theory on the
cumulative hierarchy.

®See von Neumann [1928: 375ff]. Skolem [1923] independently pointed out the inade-
quacy of Zermelo’s axioms for procuring the set E above and proposed Replacement in the
framework of first-order logic. It is this proposal that would eventually be adopted. but
in any case Skolem in a publication [1962: 13] appearing a year before his death wrote of
Replacement. simply and without nuance: “Fraenkel introduced a further axiom which is
more powerful with respect to the proof of the existence of large transfinite cardinals.”

7See Mathias [2001] for more on the weakness of Zermelo set theory in this direction:
Mathias provides a general method for constructing “slim™ transitive proper class models
of the theory and gets such a model in which the hereditarily finite sets do not form a set.
Zermelo’s Axiom of Infinity stated that there is a set Z such that ) € Z and whenever x € Z.
so also {x} € Z. One could in retrospect take the view that the thrust of an axiom of infinity
should be to legitimize one instance of finite recursion that results in an infinite set. To ensure
the existence of the set of hereditarily finite sets one could posit: There is a set Z such that
0 € Z and whenever x. y € Z.soalso x U {y} € Z. This would round out Zermelo’s theory
in the finite domain. but Mathias’s results establish that many sets “isomorphic™ to the set of
hereditarily finite sets still cannot be shown to exist.
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For Cantor the transfinite numbers had become central to his investigation
of definable sets of reals and the Continuum Problem, and sets had emerged
structured with well-orderings and only as the developing context dictated.
with the “set of ” operation never iterated more than three or four times. For
Zermelo his second. reverse-inclusion-chain proof of the Well-Ordering The-
orem served to eliminate any residual role that the transfinite numbers may
have played in the first proof and highlighted the set-theoretic operations.
However, Zermelo’s reductionism with respect to numbers mainly concerned
reducing mathematical arguments to set-theoretic arguments from axioms
and would give way to von Neumann’s systematic incorporation of the trans-
finite numbers as bona fide sets.

Von Neumann [1923, 1928], and before him Dimitry Mirimanoff [1917.
1917a] and Zermelo in unpublished 1915 work, isolated the now familiar
concept of ordinal, with the basic idea of taking precedence in a well-ordering
simply to be membership.8? Appealing to forms of Replacement Mirimanoff
and Von Neumann then established the key instrumental property of Can-
tor’s ordinal numbers for ordinals: Every well-ordered set is order-isomorphic
to exactly one ordinal ordered by membership. Von Neumann in his own ax-
iomatic presentation took the further step of ascribing to the ordinals the role
of Cantor’s ordinal numbers. Thus, like Kepler’s laws by Newton’s, Cantor’s
several principles of generation for ordinal numbers would be subsumed by
the Zermelian framework. For this and already to define the arithmetic
of ordinals von Neumann saw the need to formalize transfinite recursion.
And Replacement was necessary even for the very formulation. let alone the
proof. With the ordinals in place von Neumann [1928, 1928a] completed
the restoration of the Cantorian transfinite by defining the cardinals as the
initial ordinals, codifying a strategy that had in fact appeared in the 1899
Cantor-Dedekind correspondence.

That correspondence. it will be remembered, featured Cantor’s absolutely
infinite or inconsistent multiplicities in distinctive juxtaposition with sets,
and von Neumann’s own axiomatization [1925] of set theory would dra-
matically incorporate these multiplicities in the first systematic treatment of
sets together with proper classes. In a rectification of Fraenkel’s functional
approach to Separation, von Neumann axiomatized a notion of function
taken as primitive and proceeded to establish a context sufficient for the full
exercise of Replacement and hence for the Cantorian theory of transfinite
numbers as transmuted to ordinals. He then encapsulated the distinction
between sets and proper classes in his pivotal Axiom I'V2: A class is a set ex-
actly when there is no surjection from that class onto the universe V" of sets.
This axiom was alluded to at the end of §2 in connection with the Axiom of
Choice. More crucially, IV2 together with Replacement obviated the need
to have Separation at all, as von Neumann'’s functions handily supplanted

¥See Hallett [1984: §8.1].
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Zermelo’s definite properties. Generally speaking, IV2 transformed Cantor’s
negative concept of inconsistent multiplicity with their taint of paradox into
the positive concept of having a surjection onto ¥ and hence onto the class Q
of all ordinals. This is reminiscent of how the age-old negative concept of in-
finite was transformed into the positive concept of being Dedekind-infinite.
1.e., having a countable subset.

For reasons of parsimony and elegance the basic Zermelian framework
will be reaffirmed as sufficient in the coming decades, when formalized in
first-order logic. However, from von Neumann would be inherited both a
predisposition to entertain proper classes in the mathematical development
of set theory, a predisposition that would have fruitful consequences partic-
ularly in the theory of large cardinals. and also the finite axiomatizability of
definability, which would be antithetical to Zermelo’s later infinitistic vision
but would play a significant role in the development of set theory, e.g.. in the
development of Godel’s constructible universe (cf. §8 below).

With ordinals and Replacement. set theory continued its shift toward a
theory of a more definite transfinite subject matter, a process fueled by the
incorporation of well-foundedness. Mirimanoff [1917: S1ff] was the first
to study the well-founded sets. and the cumulative hierarchy is distinctly
anticipated in his work. In the axiomatic tradition Fraenkel [1922]. Skolem
[1923] and von Neumann [1925] considered the salutary effects of restricting
the universe of sets to the well-founded sets. Von Neumann [1929: 231, 236ff]
formulated in his functional terms the Axiom of Foundation, that every set
is well-founded 3! and defined the cumulative hierarchy in his system via
transfinite recursion: In modern notation. the axiom, as is well-known,
entails that the universe V' of sets is stratified into cumulative ranks V.
where

Vo=0: Var1 = P(Va): Vs = Jyes Ve for limit ordinals o:
and
V =U,Va.

Von Neumann used this the cumulative hierarchy to establish the first relative
consistency result in set theory via “inner models”; his argumentation in
particular established the consistency of Foundation relative to Zermelo’s
axioms plus Replacement.

Getting finally to Skolem’s main contribution, his prescient [1923] made
the proposal of using for Zermelo’s definite properties for the Separation
Axiom those properties expressible in first-order logic. After Leopold
Lowenheim [1915] had broken the ground for model theory with his re-
sult about the satisfiability of a first-order sentence, Skolem [1920, 1923]

Syx(x # 0 — Iy € x(x Ny = 0)). This is von Neumann’s Axiom VI4 in terms of sets.
The term “Foundation [Fundierung]™ itself comes from Zermelo [1930].
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had located the result solidly in first-order logic and generalized it to the
Lowenheim-Skolem Theorem: If a countable collection of first-order sen-
tences is satisfiable, then it is satisfiable in a countable domain. That Skolem
intended for set theory to be a first-order system without a privileged inter-
pretation for € becomes evident in the initial application of the Lowenheim-
Skolem Theorem to get the Skolem Paradox: In first-order logic Zermelo’s
axioms are countable, Separation having become a schema, a schematic col-
lection of axioms, one for each first-order formula; the theorem then implies
the existence of countable models of the axioms although they entail the
existence of uncountable sets. Skolem intended by this means to deflate the
possibility of set theory becoming a foundation for mathematics.

As for the emergence of first-order logic, Hilbert effected a basic shift in
the development of mathematical logic when he took Whitehead and Rus-
sell’s Principia Mathematica. viewed it as an uninterpreted formalism, and
made it an object of mathematical inquiry. The text Hilbert-Ackermann
[1928]. which has a considerable overlap with lecture notes for a course first
given in 1917-8 by Hilbert at Géttingen.®? reads remarkably like a modern
text. In marked contrast to the formidable works of Frege and Russell with
their forbidding notation and all-inclusive approach. the text proceeded
pragmatically and upward to probe the extent of structure, making those
moves emphasizing forms and axiomatics typical of modern mathematics.
After a complete analysis of sentential logic it distinguished and focused
on first-order logic (“functional calculus”. and later “(restricted) predicate
calculus™) as already the source of significant problems. Thus, while Frege
and Russell never separated out first-order logic, Hilbert through his math-
ematical investigations established it as a subject in its own right.

As Hilbert was lecturing on logic in 1917-8 his former student Hermann
Weyl brought out a notable monograph, Das Kontinuum [1918]. Endeavor-
ing to provide a predicative foundation for analysis Weyl started with the
natural numbers and constructed what is essentially a version of that part
of the ramified theory of types in which quantification is restricted to vari-
ables ranging over the natural numbers. Referring specifically to Zermelo’s
definite property Weyl [1918: 36] thought of his approach as providing a
satisfactory rendition: earlier, Weyl [1910] had raised the issue of how to
characterize definiteness. As for temporal priority Skolem [1923: 152] wrote
that he had in fact communicated his result on the relativism of set-theoretic
notions to Bernstein in the winter of 1915-6.

§6. Second-order ZF and its models. After his long hiatus and in his late
fifties Zermelo returned to the fray in 1929 for what would be a brief, final
burst of activity in the foundations of set theory and logic. Exercised by
new finitistic trends in mathematical logic Zermelo advocated an expansive,

82See Moore [1988: 188fi] and Sieg [1999: B].
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infinitistic viewpoint, in what would turn out to be a rearguard action against
the new mathematics of finitary metamathematics.®* Zermelo delivered a
series of broad-ranging lectures on foundational issues in Warsaw in May
and June.®* In his first publication [1929] on the foundations of set theory
in nearly two decades Zermelo. roused by criticism of the vagueness of his
definite property for the Separation Axiom. provided an axiomatization for
the property in second-order terms.

In reference to his informal appeal to definiteness in his axiomatization
paper Zermelo [1929: 340] wrote: “A generally accepted ‘mathematical logic’
to which I could have appealed did not exist at that time, as it does not
today when each foundational researcher has his own system of logic [seine
eigene Logistik].” He then criticized Fraenkel’s approach to Separation
through his recursively defined propositional functions as “constructive” and
presupposing in their formulation the natural numbers — this of course runs
afoul of Zermelo’s set-theoretic reductionism. Zermelo advocated taking
instead an “axiomatic” approach. nodding to von Neumann [1925] but
preferring a simpler presentation. Starting generally from a system R of
fundamental relations. Zermelo [1929: 344] stipulated that the collection of
definite properties relative to R is to contain the relations in R: is to be closed
under the logical connectives and first- and second-order quantification: and
is to have no proper subcollection enjoying these features. Thus. Zermelo
axiomatically presented the definite properties as an explicit c/osure, and this
has an almost affecting thematic resonance with his functional closure proof
of the Schroder-Bernstein Theorem (cf. §4 above). his second. intersection
proof of the Well-Ordering Theorem, and his axiomatization of set theory
as a closing off of the domain of set theory. The incentive of the first had
been the presupposition of the natural numbers in an earlier proof. and
this too resonates with Zermelo’s criticism of Fraenkel’s approach. Zermelo
[1929: 344] pointed out that he had not presupposed the natural numbers.
In any case, in his first explicit engagement with syntax he supported the use
of a finitary language in his explication of definiteness.

Skolem [1930] responded with alacrity and in the same journal to Zermelo
[1929]. Zermelo may have avoided the natural numbers. but Skolem pointed
out the unrestrained use of set theory itself in Zermelo’s axiomatization of
definite property. Skolem was sensitive to the economy of resources to be
used in the metalanguage. and this extended more crucially to the underlying
logic: Skolem referred back to his [1923] and its first-order logic proposal

$3Van Dalen—Ebbinghaus [2000] and Taylor [2002] both suggest an early genesis for Zer-
melo’s infinitistic views, pointing to a one-page typescript. Thesen iiber das Unendliche in der
Mathematik. found in Zermelo’s Nachlass which set out his conviction that mathematics is
of an infinitary character and its logic must be based on an infinitary language. However.
the assumption that this typescript is from 1921 is put into question by Ebbinghaus [2003].
who argues that it is only from 1942.

% For more on these lectures see Moore [1980: §10.2] and van Dalen-Ebbinghaus [2000].
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for Separation and proceeded to argue against the new vagueness introduced
by Zermelo in allowing second-order quantification. Finally, he informed
Zermelo of (what we now call) Skolem’s Paradox. Zermelo had already
been preparing his next paper [1930] for publication in Fundamenta, and he
may only have become aware of Skolem [1923] after seeing proofs of Skolem
[1930].%% In any case, exercised by adversity Zermelo made several changes
that accentuated his position, and as he had done two decades before, he
published a paper that would mark a signal advance.

Zermelo in his remarkable On Boundary Numbers and Set Domains [1930]
offered his final axiomatization of set theory as well as a striking, synthetic
view of a procession of natural models that would have a modern resonance.
Appearing only six articles after Skolem [1930] in Fundamenta, Zermelo
[1930] is ostensibly a response, more informal and rough around the edges
than his writings decades earlier, but its dramatically new picture of set
theory reflects gained experience and suggests the germination of ideas over
a prolonged period. The article is a tour de force which set out principles
that would be adopted in the further development of set theory and focused
attention on the cumulative hierarchy picture, dialectically enriched by initial
segments serving as natural models.

Zermelo [1930:§1] first formulated his axiom system, and though the
presentation is opaque largely because of a second-order lens, the thrust of
ZFC is there. Indeed, Zermelo used the term “Zermelo-Fraenkel” and the
acronym “ZF” to indicate the result of adding Replacement to the Zermelo
[1908a] axioms.®?® Zermelo proceeded to focus his investigations on “ZF"”,
the result of deleting Infinity as not being part of “general” set theory.®’
assuming Choice as an implicit, underlying “general logical principle”, and
adjoining Foundation.

As described in §5 above, Foundation in modern set theory ranks the uni-
verse of sets into a cumulative hierarchy V' =, V,. Zermelo substantially
advanced this schematic generative picture with his inclusion of Foundation
in an axiomatization. Replacement and Foundation focused the notion of
set, with the first making possible the means of transfinite recursion and
induction, and the second making possible the application of those means
to get results about all sets. In a notable inversion, what has come to be
regarded as the underlying iterative conception became a heuristic for moti-
vating the axioms of set theory generally. It is nowadays almost banal that
Foundation is the one axiom unnecessary for the recasting of mathematics in
set-theoretic terms, but the axiom ascribes to membership the salient feature

¥3See Ebbinghaus [2003: 201]. Skolem [1930] himself noted that Zermelo “does not seem
to know my Helsinki talk [i.e., Skolem [1923]].”

§6<Zermelo-Fraenkel” was first invoked by Von Neumann [1928: 374] for this purpose.

8This recalls the strategy of Zermelo [1909]. As discussed below. Infinity will hold in all
of his models except those of one “characteristic”, namely w. and there is an interaction there
with Foundation in connection with the first “development” theorem.
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that distinguishes investigations specific to set theory as an autonomous field
of mathematics. Indeed. it can be fairly said that modern set theory is at base
a study couched in well-foundedness, the Cantorian well-ordering doctrines
adapted to the Zermelian generative conception of sets.

Modern ZFC is recognizable in Zermelo’s presentation except for ambigu-
ity about the applicability of Separation and Replacement. What properties.
as given by propositional functions or logical formulas, are to be in the
purview of these two axioms? The vagueness of definite property for Sep-
aration had prompted several efforts at remedy including Zermelo [1929].
and Zermelo [1930: 31] himself wrote that “when appropriately interpreted”
Replacement implies Separation. The discussion below of Zermelo’s models
clarifies how these two axioms are to be taken in his second-order context.
There is also an issue about Zermelo’s specific formulation of Foundation.
and this too will be addressed in due course.

Zermelo [1930: §2] provided formulations now basic to modern set the-
ory, but as with the ZFC axioms the presentation is opaque, here because
of Zermelo’s insistence on having urelements and fixing one as the empty
set. Zermelo formulated the von Neumann ordinals, but starting generally
from any urelement w: w, {u}, {u.{u}}..... (For convenience, these will
be referred to as the u-ordinals; the usual (von Neumann) ordinals are a
special case. and we shall avail ourselves of them and their usual notation in
what follows.) Notably. Zermelo in unpublished 1915 work may have been
the first to sketch the rudiments of the von Neumann ordinals.®® Nonethe-
less, it is evident from his presentation that for Zermelo Cantor’s ordinal
numbers retained a prior sense; Zermelo’s reductionism interestingly did
not extend to identifying the numbers with sets, and the various u-ordinals
only “represent” the ordinal numbers. With urelements in play. Zermelo
investigated the various normal domains, models of ZF' when the member-
ship relation is restricted to them. In Zermelo’s words, a normal domain
has a “width” given by its basis consisting of urelements, and a “height”
given by its characteristic. the supremum of ordinal numbers represented
in it.

Zermelo’s crucial observation was that there are simple set-theoretic con-
ditions on the ordinals that secure his ZF', conditions that newly underscore
how the Zermelian sets are to be an algebraic closure of his axioms. In an
inspired move, Zermelo took the characteristic £ of a normal domain P to
be again an ordinal number, thereby “resolving” the Burali-Forti Paradox
by having « outside of P but within set theory. Zermelo’s simple conditions
are:

(I) & is a regular cardinal. i.e..if @ < k and F: @ — k., then |J F“a < &,
and
(IT) & is a strong limit cardinal, i.e.. if # < &. then 2# < &.

88See Hallett [1984: 278ff].
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Zermelo initially observed that these conditions are necessary; he argued
in terms of his representing u-ordinals, but we can proceed directly with the
usual (von Neumann) ordinals: To establish (I). suppose that & < k and
F:a — k. Since a € P, by a crucial use of Replacement F“« is a set in P.
|J F“a is thus a set, in fact an ordinal, in P, and hence |J F“a < k. To
establish (II), suppose that f < . Then P(f) is a set in P by the Power Set
Axiom. If to the contrary 2# > k. there would be a G : P(f) — & such that
G“P(f) = k. But by another crucial application of Replacement G*“P(f)
must be a set in P, which is a contradiction.

The intended applicability of Separation and Replacement can be in-
formed by these proofs. Zermelo [1930: 30] had stated Separation in terms
of propositional functions and provided the following footnote:

Here the propositional function f(x) can be quite arbitrary [ganz beliebig].
as can the replacement function in (E) [the Replacement Axiom]. Thus
none of the consequences of restricting these functions to a particular class
are relevant for the point of view taken here. I reserve for myself a detailed
discussion of the issue of ‘definiteness” following my last note in this Journal
[Zermelo [1929]] and the critical “Remarks” thereon by T. Skolem [Skolem
[1930]].

Despite Zermelo [1929]. Zermelo now foregoes all restrictions and lets his
properties for Separation be arbitrary. This footnote has been variously
projected into the larger conceptual context of Zermelo’s advocacy of an
infinitistic viewpoint in the mid-1930’s.%” While such projections are germane
and broadly significant, there is also an immediate mathematical necessity
in the context of Zermelo [1930]:

The above arguments for the necessity of conditions (I) and (II) both
require that Replacement be applied without restriction. In modern terms,
Replacement should be taken as a single, second-order axiom quantifying over
all possibilities, yielding what we now call Second-Order ZF. It does not even
suffice for Replacement to be a schema of second-order axioms, and the
reference in the above cited footnote to Zermelo [1929], which would still
sanction Separation and Replacement taken as schemata, is misleading.”
Zermelo’s exposition is generally less meticulous than it was two decades
before and especially haphazard on the role of Replacement: Arguing for
the necessity of condition (I). Zermelo only pointed out that the union of a
set of u-ordinals is again a u-ordinal. but does not discuss how he has a set.
For the necessity of (II), he does not explicitly associate u-ordinals to the
subsets of a set, and when finally he appeals to Replacement it is for a limit
case made redundant by (I).

¥See Moore [1982:269]. Taylor [1993:550]. Van Dalen-Ebbinghaus [2000: 152]. and
Ebbinghaus [2003: 201, 205].

*Tait [1998] makes this point. albeit for a less direct reason than the necessity of (I)
and (II).
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Zermelo [1930: §3] continued with three “development” theorems for his
normal domains. The first stated that each normal domain P is indeed
stratified according to rank because of Foundation: Let Q be the basis and
 the characteristic of P. With the caveat that for general X. P(X) is to
denote the collection of all subsets of X, recursively define the cumulative
ranks:

VOQ —0: Ve =v2uPr2): V:,Q = Uyes VE for limit ordinals J:

a+l
and conclude that

P=ve=,..V~

a<Kk’ & « "

Zermelo emphasized the partitioning into disjoint layers VQQJrl — V£ and
pointed out that each such layer contains a w-ordinal. and so the hierarchy
is strict. It becomes evident that, consistent with his expansive view of
Replacement, Zermelo is entertaining all possible subsets in his normal
domains. so that the P(V£) above has an absolute significance independent
of the domain P.°! However. there is an ambiguity, or at least a relativism,
about the status of Q. Zermelo’s “totality” [“Gesamtheit”] of urelements: Is
it itself to be a set? Zermelo did not posit that it be a set in the sense of P,
and the open-ended articulation above of Zermelo’s scheme accommodates
this with the ranks V£ not necessarily being sets in the sense of P.%2 In the
special case of Q being finite. Zermelo’s axioms do ensure that Q and all the
V(,Q ’s are sets.

The first development theorem raises an issue about Foundation and Infin-
ity. Zermelo [1930: 31] actually formulated Foundation both as stipulating
that there are no infinite descending €-chains, “Or equally: every partial
domain T contains at least one element ¢y none of whose elements are in
T.” As is now well-known, the former form implies the latter only in the
presence of substantial axioms, including the Choice. Aside from this, the
latter. a second-order form of Foundation, was needed in the proof of the
first development theorem: It is well-known that usual (set) Foundation
implies such a strong form assuming Transitive Containment, that every set
is a subset of a transitive set.”> Furthermore. (first-order) Replacement and

IThis is clarified by the first isomorphism theorem in [1930: §4] mentioned below.

1t is plausible. even natural. for the totality of urelements not to be a set: cf. Barwise
[1975: 11], in which KPU is Kripke-Platek set theory with urelements and KPU™ is that
theory augmented with the axiom that the urelements form a set.

Gregory Taylor (private communication) avers that Zermelo intended for the basis Q to
be a set in the sense of P: Taylor takes Zermelo [1930] and his later [1935] as forming a
common framework and cites [1935: 141] where in a hierarchy of propositions Zermelo starts
with a set.

%Suppose that T is a non-empty class. say with x € T. Let 7 be a transitive set such
that {x} C r and consider the set r N T'. given by Separation. By (set) Foundation there
isa € tN T suchthat 70Nt N T = (. But then, since ¢ is transitive, 7o N 7 = @. This
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Infinity do imply Transitive Containment.”® However, Zermelo is not as-
suming Infinity. In fact, it is a latter-day observation that Second-Order ZF
with only (set) Foundation but without Infinity does not suffice to establish
Transitive Containment, and in fact has models whose membership relation
is ill-founded.”® Hence. Foundation as Zermelo formulated it in second-
order terms is necessary for his cumulative hierarchy analysis in the absence
of Infinity. i.e.. in case of normal domains with characteristic .

The second development theorem addressed unit domains, those normal
domains P with a single urelement, Q = {u}, and provided information
about their ranks.”® Zermelo had defined a Beth-type cardinal-valued func-
tion as follows: W(0) = 0: W(¢ + 1) = 2¥): and for limit ordinals a.
¥(a) = sup:, ¥(£). Zermelo now proved that each V2 has cardinality

¥(a) for infinite @.”” Here he pointed out that VGQ 1S a set because of

Replacement, in an argument that should have been used to establish the
necessity of (I).

In remarks following the second theorem Zermelo concluded that unit do-
mains satisfy von Neumann’saxiom I'V2 (cf. §§2. 6). that a class is a set exactly
when there is no surjection from that class onto the entire universe. Zermelo
thus established the consistency of IV2 relative to his axioms. proceeding
in his second-order context with natural models. Zermelo noted. “For unit
domains, though not for arbitrary normal domains, von Neumann’s axiom
holds . ... Restricting set theory just to ‘unit domains’ would rob it for the
most part of its applicability.” Moreover, Zermelo [1930: 45] returned with
emphasis to this point to criticize the putative restrictiveness of von Neu-
mann’s axiom. However, the following result shows that Zermelo’s reserva-
tions have only to do with the nature and size of the totality of urelements.
| X'| denotes the cardinality of a set X in the presence of the Axiom of Choice,
i.e.. the least ordinal bijective with X : that a cardinal x satisfying (I) and (II)
satisfies | J,., £ = & 1s a simple exercise in cardinal arithmetic: recall that
in our articulation of Zermelo’s context the basis Q of a normal domain P
may or may not be a set, though it is not assumed to be a set in the sense of P.

PROPOSITION 4. For any normal domain P with basis Q and characteristic k.
von Neumann's axiom holds in P iff Q is a set satisfying |Q| < k.

argument may have been first given by Godel. in his letter of 20 July 1939 to Bernays (Godel
[2003: 121]).

*For any set x and n € w, recursively define xo = x. and X, = [Jx,. Then |J, x, is a
transitive set containing x. The use of Replacement and Infinity in this argument was noted
by Gddel in the letter cited in the previous footnote.

%See Vopénka-Hajek [1963] and Hauschild [1966].

%Zermelo had fixed a urelement o to be the empty set. so this u is presumably not to
be uy.

9Zermelo proved for finite a that V¢ has cardinality W(« + 1). His indexing of the
cumulative ranks started at 1 instead of 0.
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PrOOF. Suppose first that von Neumann’s axiom holds in P. Since & itself
is a proper class of P. k is surjective onto P and hence by Replacement P
would be a set. But then, Q can be separated from P as the ser of its members
that are empty.

For the converse. suppose that Q is a set satisfying |Q| < . Every set
in P, being well-orderable. is bijective with some u-ordinal in P.°® and hence
has cardinality less than x. Hence, one can prove by induction that for
every a < K, |V‘f2 | € Uper &% = k. So presuming that urelements are
exempted. von Neumann’s axiom for P amounts to: Forany X C P, X € P
i 1X| <&

The forward direction was already noted. For the converse, if | X| < &,
then applying Replacement and (I) to the function F: X — & given by
F(x) = the least ¢ such that x € V'F . it follows that there is an a < & such

G+
that X C V(g.andszEVQ C P. -

a+l =

The third development theorem provided a more refined hierarchy for
normal domains based on the ¥ function. to wit the (a + 1)th cumulative
level is now to be formed by adjoining only subsets of the ath level of
cardinality at most W(«a ), and with it established that conditions (I) and (II)
are also sufficient for V.2 to be a normal domain. Actually. this “canonical”
hierarchy is. strictly speaking, not needed here or for the later results of the
article. but it does clarify how Zermelo viewed his normal domains and their
interactions.

Those cardinals « satisfying conditions (I) and (II) were called Grenz-
zahlen [boundary numbers) by Zermelo.” and when k > @ are now called
the (strongly) inaccessible cardinals. These cardinals are basic in the the-
ory of large cardinals, a mainstream of modern set theory devoted to the
investigation of strong hypotheses and consistency strength, and in fact are
the modest beginnings of a natural linear hierarchy of stronger and stronger
postulations extending ZFC.'® It is through Zermelo [1930] that inaccessi-
ble cardinals became structurally relevant for set theory as the delimiters of
natural models. Just 13 articles before Zermelo’s in Fundamenta. Sierpinski-
Tarski [1930] had formulated the inaccessible cardinals arithmetically as
those uncountable cardinals that are not the product of fewer cardinals each
of smaller power and observed that inaccessible cardinals are regular limit
cardinals. the first large cardinal concept. from Hausdorff [1908:443]. Be

*This fundamental von Neumann result. a consequence of (first-order) Replacement, was
pointed out by Zermelo [1930: §2(6)].

P“Boundary number” is how “Grenzzahlen™ has been translated. e.g.. by Hallett in his
translation of Zermelo [1930] in Ewald [1996]. The more literal “limit number” has its
connotative advantages as well: Zermelo [1930] referred to Kant’s antinomies, and Kant
in his Prolegomena had distinguished between Grenzen and Schranken, with the first having
entities beyond.

1®See Kanamori [2003].
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that as it may. in the early model-theoretic investigations of set theory the
inaccessible cardinals provided the natural models as envisioned by Zermelo.
Years later Shepherdson [1952] provided more formal proofs of Zermelo’s
results in a first-order context with sets and classes but without urelements,
taking account of the relativity of concepts and isolating Zermelo’s models as
the transitive and super-complete models.'”! Very recently Uzquiano [1999]
investigated models of Second-Order Zermelo set theory (no Replacement
but taking Separation as a single second-order axiom) and showed that V
for limit ordinals & >  are by no means the only possibilities and that there
is already considerable variation at level w.

Zermelo [1930: §4] proceeded with three isomorphism theorems that es-
tablished a second-order categoricity of sorts for his axioms in terms of the
cardinal numbers of the bases and the characteristics. Note that it is still
plausible for the bases not to be sets. since Zermelo was taking cardinal num-
ber in a prior Cantorian sense and not as von Neumann ordinals.'"> The first
isomorphism theorem stated that two normal domains with the same charac-
teristic and bases of the same cardinality are isomorphic. the isomorphisms
generated by bijections between the bases. Unbridled second-order Replace-
ment is crucial here as well, this time to establish that the cumulative ranks of
the two domains are level-by-level extensionally identical. and this clarified

the sense in which the P( Ve ) must have an absolute significance. There is
a historical resonance with Dedekind [1888] who had established the cate-
goricity of his second-order axioms for arithmetic. Dedekind needed finite
recursion to exhibit bijective mappings between models, and Zermelo needed
transfinite recursion and thus Replacement. The second isomorphism theo-
rem stated that two normal domains with different characteristics and bases
of the same cardinality are such that one is isomorphic to a cumulative
rank of the other. The third isomorphism theorem stated that two normal
domains with the same characteristic are such that one is isomorphic to a
subdomain of the other. Hence, as Zermelo emphasized. a normal domain
is characterized up to isomorphism by its zype, the pair (q. ) where q is the
cardinal number of the basis, which can be arbitrary, and « is the character-
istic. which must be @ or inaccessible: and given two types (q. ) and (¢, &’).
isomorphic embeddability is a consequence of q < q’ and k < .

Zermelo [1930: §5] concluded with a brief discussion of existence, consis-
tency. and categoricity. Speculating on the possibilities for characteristics,
Zermelo pointed out that w is a characteristic, as starting with any normal

19T A class is super-complete iff any subset is an element. Shepherdson [1952: 227] wrote:
“[Equivalent results] were obtained by Zermelo although in an insufficiently rigorous manner.
He appeared to take no account of the relativity of set-theoretical concepts pointed out by
Skolem.” Skolem relativity has seemingly become entrenched. but Zermelo of course was
deliberately working in a second-order context and decidedly opposed “Skolemism”!

12 However, Fraenkel-Bar Hillel [1958: 92] found Zermelo [1930] not “stringent” and in
particular found the concept of the cardinality of the basis “objectionable”.
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domain P with basis Q one can consider the subdomain V(UQ. He actually
viewed this in terms of the “canonical” hierarchy of his third development
theorem, and this brings out how V& for him consists of the hereditarily
finite subsets of P and reinforces for infinite Q how Q is not to be a set in the
sense of P. This also suggests why Zermelo deliberately eschewed Infinity,
which thus establishes the relative consistency of ZF'. Zermelo proceeded
by analogy to the least inaccessible cardinal via the ordinal type of the next
normal domain, and pointed out how, like w. such a cardinal cannot be
proved to exist in ZF'. This kind of positing by analogy with Infinity is
now typical in the theory of large cardinals and is resonant with Cantor’s
own seamless account of number across the finite and the transfinite. Since
already it is seen that @ may exist in one model but not another. Zermelo
[1930: 45] wrote: “Our axiom system is non-categorical, which in this case
is not a disadvantage but rather an advantage. for on this very fact rests the
enormous importance and unlimited applicability of set theory.”

In a sweeping climax Zermelo put forward the general hypothesis that “ev-
ery categorically determined domain can also be interpreted [aufgefasst] as
a ‘set’.i.e., can appear as an element in a (suitably chosen) normal domain”
and postulated “the existence of an unbounded sequence of boundary num-
bers [Grenzzahlen]” as a new axiom of “meta-set theory”. The hypothesis
calls into question the contention that the bases are not necessarily sets. but
he had started his remarks by discussing unit domains, and by now he was
painting in broad strokes. The postulation would bijectively correlate the
ordinal numbers with the inaccessible cardinals and so provide for an endless
procession of models.'”® The open-endedness of Zermelo’s original [1908a]
axiomatization had been structured by Replacement and Foundation, but
after synthesizing the sense of progression inherent in the new cumulative
hierarchy picture and the sense of completion in the inaccessible cardinals,
Zermelo advanced a new open-endedness with an eternal return of models.
This dynamic view of sets and set theory was a marked departure from Can-
tor’s (and later, Godel’s) focus on a fixed universe of sets. Through means
dramatically different and complementary to Cantor’s absolute infinite Zer-
melo dissolved the traditional antinomies of set theory through a dialectical
interplay between the global and the local.'® Furthermore, not only did
Zermelo subsume von Neumann’s axiom V2, that principled means of han-
dling classes too large, but by having such classes be elements in a next
normal domain and therefore coming under the purview of his generative
axioms like Power Set, Zermelo dissolved further antinomies like Hilbert’s

%3 Tarski [1938] also and later posited arbitrarily large inaccessible cardinals via his Axiom

of Inaccessible Sets: he was led to this axiom by cardinality and closure considerations, and
he formulated it in such a way that it implies the Axiom of Choice. In contrast to Zermelo’s
informal, second-order approach Tarski could be seen to be working in first-order ZF.

1%Tait [1998] provides a sophisticated account of this aspect of Zermelo’s conception of
set theory and draws out large cardinal reflection principles.
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Paradox (see §1) and the related incompatibility of 25 > k with x being
the cardinal number of the universal class, the original “contradiction” that
Russell came to in 1900 while studying Cantor’s work.

Zermelo [1930: 47] concluded grandly and polemically:

The “ultrafinite antinomies of set theory” that scientific reactionaries
and anti-mathematicians refer to so assiduously and passionately in their
campaign against set theory. these seeming “contradictions”. are only due
to the confusing of set theory itself, which is non-categorically determined
by its axioms, with its particular representing models: What appears in
one model as an “ultrafinite non- or super-set” is in the next higher one
already a fully valid “set” with cardinal number and ordinal type, and is
itself a foundation stone for the construction of a new domain. The unlim-
ited series of Cantor’s ordinal numbers is matched by just as unlimited a
double series of essentially different set-theoretic models, in each of which
the whole classical theory is expressed. The two diametrically opposing
tendencies of the thinking mind [denkenden Geistes]. the ideas of creative
progress and of collective completion. ideas that also lie at the basis of the
Kantian “antinomies”, find their symbolic representation and their sym-
bolic reconciliation in the transfinite number series based on the concept
of well-ordering. which in its unrestricted progress reaches no true con-
clusion. only interim stopping points, namely those “boundary numbers”
[“Grenzzahlen”] that separate the higher from the lower model types. And
thus, the set-theoretic “antinomies™ lead, if properly understood. not to a
narrowing or mutilation. but rather to a presently unsurveyable unfolding
and enriching of mathematical science.

As set theory would go. Foundation and the corresponding cumulative hi-
erarchy picture would provide the setting for a developing high tradition that
had its first milestone in Kurt Godel’s development [1938] of the constructible
hierarchy. Zermelo [1930] would be peripheral to this development, presum-
ably because of its second-order lens and its lack of rigorous detail and of at-
tention to relativism. Indeed, it was little cited for decades except as a source
for Foundation and ZFC set theory. However, with the assimilation of set-
theoretic rigor, increasing confidence in consistency, and the emergence of
ZFC as the canonical set theory, there has been of late new appreciation of
the sweep of Zermelo [1930] especially because of renewed interest in second-
order logic. Zermelo himself did not pursue axiomatic set theory after his
[1930]. but took and developed its schematic picture in a new direction.

§7. Incompleteness and infinitary logic. Zermelo’s final efforts in mathe-
matics were directed at developing an infinitary logic based on well-founded
relations, this largely in response to what he perceived as a threat to set
theory and mathematics presented by the “finitistic prejudice” of Skolem.!%

195 Although this was the main thrust, Zermelo in his return to mathematical activity also
published a couple of papers in the calculus of variations and applied mathematics in 1930
and 1931 respectively and (as we have seen) edited Cantor’s collected works [1932].
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Loosely speaking, Zermelo proposed logics based on quantifiers regarded
as infinitary conjunctions or disjunctions, reverting to an old view but now
newly cast with unrestricted cardinalities, and proofs not as formal deduc-
tions from axioms. but as semantic determinations of truth or falsity of
a proposition through transfinite induction based on its well-founded con-
struction from elementary propositions. In this Zermelo seemed to have been
little aware or took little interest in his old mentor Hilbert’s development of
metamathematics. or proof theory, and its avowedly finitistic approach and
economy of means for establishing mathematical consistency.!’® Zermelo’s
efforts would be quickly overshadowed and largely forgotten in the wake
of concurrent developments in first-order logic. initially isolated as an un-
interpreted formalism by Hilbert, which would lead to the emergence of
mathematical logic as a field of mathematics.

Kurt Godel virtually completed the mathematization of logic by submerg-
ing metamathematical methods into mathematics. The main vehicle was
of course the direct coding. “the arithmetization of syntax™. in his cele-
brated Incompleteness Theorem [1931], which transformed Hilbert’s consis-
tency program and led to the undecidability of the Decision Problem from
Hilbert-Ackermann [1928] and the development of recursion theory. But
starting an undercurrent, the earlier Completeness Theorem [1930] from his
thesis answered affirmatively a Hilbert-Ackermann [1928] question about
semantic completeness, clarified the distinction between the formal syntax
and model theory (semantics) of first-order logic. and secured its key instru-
mental property with the Compactness Theorem.'?’

Tarski [1933, 1935] then completed the mathematization of logic by pro-
viding his definition of truth, exercising philosophers to a surprising extent
ever since. Tarski simply extensionalized truth in formal languages and pro-
vided a formal. recursive definition of the satisfaction relation in set-theoretic
terms. This new response to a growing need for a mathematical framework
became the basis for model theory, but thus cast into mathematics truth
would leave behind any semantics in the real meaning of the word. Tarski’s
[1933] was written around the same time as his [1931], a seminal paper
that highlights the thrust of his initiative. In [1931] Tarski gave a precise
mathematical (that is, set-theoretic) formulation of the informal concept of
a first-order definable set of reals, thus infusing the intuitive (or semantic)
notion of definability into ongoing mathematics. This mathematization of
intuitive or logical notions was accentuated by Kuratowski-Tarski [1931],
where second-order quantification over the reals was correlated with the

1%Zermelo did maintain. in a letter of 4 February 1932 to Richard Courant found in the
Nachlass. that Hilbert was “his first and only teacher in science.”

1"7Notably. Godel’s dissertation adviser was Hans Hahn, who almost three decades before
had written with Zermelo that encyclopedia article Zermelo—Hahn [1904] on the calculus of
variations.
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geometric operation of projection. beginning the process of explicitly wed-
ding descriptive set theory to mathematical logic. The eventual effect of
Tarski’s [1933] mathematical formulation of so-called semantics would be
not only to make mathematics out of the informal notion of satisfiability, but
also to enrich ongoing mathematics with a systematic method for forming
mathematical analogues of several intuitive semantic notions.

The 1931 annual September meeting of the Deutsche Mathematiker-
Vereinigung held at Bad Elster. like the 1904 Heidelberg International Con-
gress, would mark a generational transition. Both the 60-year-old Zermelo
and the 25-year-old Godel spoke on the same afternoon, of the 15th, Zer-
melo on his proposals for infinitary logic and Gddel on his recently published
Incompleteness Theorem. This was certainly a pivotal clash of viewpoints,
one that was to play itself out in a subsequent, albeit brief. exchange of
letters. '8

Zermelo wrote to Godel ([Godel 2003a: 420ff]) within a week of the meet-
ing, on 21 September, enclosing a copy of Zermelo [1930] and raised an issue
based on the introductory sketch in Godel [1931]. Zermelo questioned the
assertion that the predicate

Bew[R(n); n]

is in the “system” where famously R(n) is the nth formula in some recursive
enumeration of the formulas in one free variable; [R(n); n]is a term denoting
the sentence resulting when the free variable is replaced by the numeral of
n: Bew (abbreviating Beweis [proof]) is the provability predicate; and the
overline is negation. Of course, that the displayed predicate is expressible
in the system is crucial to Godel’s argument. Not understanding, Zermelo
proposed to omit “Bew” and write instead

[R(n):n]

and proceeded to point out that if this were in the system. then one would
have the now paradigmatic contradiction that with ¢ such that R(g) is
[R(n):n]. [R(g):q] is both true and false. Zermelo then averred: “Just as
in the Richard and Skolem paradoxes, the mistake rests on the (erroneous)
assumption that every mathematically definable notion is expressible by a
“finite combination of signs’ (according to a fixed system!) — what I call the
“finististic prejudice’.”

Godel replied on 12 October ([2003a: 423ff]) at length, patiently and re-
spectfully, and urged a reading of his paper beyond the introductory sketch
to see that his provability predicate is indeed expressible in the system. Godel

painstakingly pointed out that [R(n); n] has no meaning and that Zermelo

1%8See Moore [2002] for more on this “controversy” and Taussky—-Todd [1987: 37ff] for an
affecting account of this one encounter between Zermelo and Godel.
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must mean “[R(n): n] is not correct [richtig]”. This should be rendered
WI[R(n):n]

where W (x) (W presumably for Wahrheit [truth]) is to mean “x is a formula
that expresses a true assertion.” This is a unary predicate, and if it were
expressible in the system then one would have a genuine contradiction as
Zermelo pointed out.

This to and fro is striking on two counts. First, that Zermelo shifted to
the improper [R(n): n], leaving implicit that it is to convey a truth value, is
focally symptomatic of his conflation, or at least willful assimilation, of the
syntactic and semantic in his development of logic. Second. with his clear
intent of predicating truth Zermelo had come to the argument for what is
now known as Tarski’s Undefinability of Truth.!?”

Concerning the first, it should be noted that the difference between truth
and provability was by no means as clear as it became after Godel’s work.
Although we now readily refer to Gddel’s “true but unprovable™ proposi-
tions, he himself in his [1931] emphasized their “formal undecidability” and
when referring to their actual status never used the word “true™ [“wahr”]
but only “correct” [“richtig”]. This may have been due to caution in the face
of the Hilbert school’s emphasis on provability and consistency as opposed
to outright truth''” but also because of Gddel’s participation in the Vienna
Circle, which strongly opposed metaphysics. Only after a couple of years
did Godel, in lectures, start to use “true” to describe his propositions.

Concerning the undefinability of truth in a formal system, Goédel main-
tained to Hao Wang [1996: 82] that he had established it in the summer
of 1930, this having been the first observation of his numerical coding of
formulas. (Godel first announced the existence of formally undecidable
propositions on 6 September 1930 at a conference in Konigsberg.!!!) The
undefinability of truth is commonly attributed to Tarski [1933: 85, thm. 1],
and Godel’s first public account of it is in his lecture [1934: §7]. Be that as
it may. the undefinability of truth seems to have been communicated first in
this exchange between Zermelo and Godel. Godel toward the end of his
reply actually pointed out that the undefinability of truth leads to a quick
proof of incompleteness: The class of provable formulas is definable and the
class of correct [richtig] formulas is not, and so there must be a correct but
unprovable formula.!'!?

19See Murawski [1998] and Krajewski [2004] for the interactions of Tarski and Godel on
the undefinability of truth.

"0Cf. Feferman [1984].

See Godel [1986: 196ff].

112 A5 Godel pointed out, this proof “furnishes no construction of the undecidable propo-
sition and is not intuitionistically unobjectionable™; he of course constructed a specific
undecidable proposition.
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Toward the end of his reply Godel addressed Zermelo’s remark about the
“finitistic prejudice’:

That one can not capture all of mathematics in one formal system already
follows according to Cantor’s diagonal procedure, but nevertheless it re-
mains conceivable that one could at least formalize certain subsystems of
mathematics completely (in the syntactic sense). My proof shows that that
is also impossible if the subsystem contains at least the concepts of addi-
tion and multiplication of whole numbers. ... To be sure, the relatively
undecidable propositions are always decidable in higher systems, to which I
have also expressly alluded in my paper (cf. p. 191, footnote 48a); but even
in those higher systems undecidable propositions of the same kind remain,
and so on ad infinitum.

Footnote 48a of Godel’s [1931], sans contextualizing remarks, is as follows:

... the true reason for the incompleteness inherent in all formal systems of
mathematics is that the formation of ever higher types can be continued into
the transfinite . .. while in any formal system at most denumerably many of
them are available. For it can be shown that the undecidable propositions
constructed here become decidable whenever appropriate higher types are
added (for example, the type  to the system P [Peano Arithmetic]). An
analogous situation prevails for the axiom system of set theory.

This prescient note would be an early indication of a steady intellectual
progress on Godel’s part that would take him from the Incompleteness The-
orem through pivotal relative consistency results for set theory via the con-
structible universe to speculations about large cardinal axioms. Much has
been made of this footnote:'!* that Godel mentioned it indicates that he
himself put much store in it. The footnote is understood as asserting that
first-order satisfaction for a formal system becomes definable in a “higher
type” over the system, although “truth” and satisfaction would only be
systematically discussed in Tarski [1933]. Gddel concluded his reply by
thanking Zermelo for his [1930] paper, mentioning that he had already read
it soon after its appearance and suggesting that he could impart his thoughts
about it to Zermelo. Alas, this would not happen; Godel’s remarks on
[1930] would have been illuminating, particularly if they were to bear on
connections between his footnote 48a and Zermelo’s approach through his
Grenzzahlen.

In what turned out to be the final letter (Godel [2003a: 430ff]) between
them. Zermelo wrote back to Gddel on 29 October that he could now
infer what Godel had meant about provable propositions under a “finitistic
restriction”. However, Zermelo wrote of having an uncountable collection of
propositions only countably many of which are provable, so that there must
be undecidable propositions. Moreover, Zermelo skewed Godel’s “higher

"¥See e.g., Kreisel [1980: 183, 195, 197], a memoir on Gédel, and Feferman [1987], where
the view enunciated in the footnote is elevated to “Godel’s doctrine™.
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systems” as not distinguishable by having new propositions but merely new
means of proof. Zermelo continued:

. what a “proof™ really is is itself not in turn provable, but must in some
form be taken for granted, presupposed [angenommen, vorausgesetzt]. And
here it is just a question: What does one understand by a proof? Quite
generally, one understands by this a system of propositions such that under
the assumption of the premises, the validity of the assertion can be made
evident [einsichtig]. And there remains only the question, what counts as
“evident”? In any case, not merely — and that you yourself show precisely
— the propositions of some finitistic schema, which in your case too can
always be extended.

Zermelo was evidently not taking in Godel’s proof. but impatient, was pro-
ceeding to broach themes of his approach through infinitary logic. in which
there are to be uncountably many propositions. what a proof is is to be taken
for granted. and the only remaining question as to proof is what counts as
evident [einsichtig].

What would unify both Zermelo’s approach to set theory and to logic
would be the reliance on well-founded relations. Zermelo had already written
on 7 October 1931 to his colleague Reinhold Baer (Weingartner-Schmetterer
[1987: 4511]):

I believe I have at last found in my “Foundation Principle” [*“Fundierungs-
prinzip”] the right instrument for explaining whatever is in need of eluci-
dation. But nobody understands it, just as nobody has yet reacted to my
Fundamenta article [1930] — not even my good friends in Warsaw.'!*

Well-founded relations would become central to set theory. but Zermelo’s
“logical” proposals involving them would be forgotten.

Zermelo’s published account [1932] of his Bad Elster talk (see also the
related [1932a]) described his transfinite, well-founded proposition systems
[Satzsysteme]. But [1932] was also a manifesto of sorts that railed against
the “finitistic prejudice”, affirming:

. the true subject matter of mathematics is not, as many would have it,
“combinations of signs™ but conceptually-ideal relations [begrifflich-ideale
Relationen] between the elements of a conceptually determined infinite man-
ifold [Mannigfaltigkeit]. And thus are our systems of signs only devices,
forever incomplete and shifting from case to case, that help our finite under-
standing to at least approximate step by step mastery of the infinite, which
we cannot immediately and intuitively “survey” or grasp.

"4This is revealing of the lack of response to Zermelo [1930]. In this letter Zermelo carried
on unguardedly and revealingly: “At Bad Elster I avoided any direct polemic against Godel
both in the lecture itself and afterward: one should not frighten off enterprising beginners.”
... the gentlemen will have to declare their hand finally when I publicly assert that Godel’s
much-admired ‘proof” is nonsense [Unsinn]; ... " Referring to his letter of 21 September:
“He [Godel] still has not answered my letter. Apparently he has nothing else to grouse
[meckern] about.”
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Zermelo went on to criticize the relativism of Gddel’s approach, though iron-
ically Godel, at least according to his subsequent writings. would not have
disagreed with what Zermelo wrote above. For Gddel the incompleteness of
formal systems is a crucial mathematical phenomenon to be reckoned with
but also to transcend, whereas Zermelo, not having appreciated that logic
has been submerged into mathematics, insisted on an infinitary logic that
directly reflected transfinite reasoning.

Several years would pass before Zermelo [1935] provided more details for
his theory of propositions, in what would turn out to be his last mathematical
publication.!’®  Zermelo began. significantly, by introducing the general
notion of well-founded relation and its crucial stratification property.''¢ A
binary irreflexive relation < on an X is well-founded exactly when every
non-empty ¥ C X has an <-minimal element, and such a relation provides
a stratification of X through a rank function p: X — ordinals given by:
p(x) = sup{p(y) + 1| y < x}.'"" The Axiom of Foundation is just the
assertion that the membership relation on sets is itself well-founded, and the
cumulative hierarchy is the resulting stratification.

Zermelo [1935] then introduced his expansive concept of proposition
[Satzsystem], positing that the natural component relation be well-
founded.!'® Viewing the situation syntactically through modern eyes and
presuming a formal language. this would seem to be de rigueur for parsing
formulas, but Zermelo was working directly with propositions, assertions.
This led to the concept of a well-founded hierarchy of propositions, in evi-
dent analogy to the [1930] cumulative hierarchies of sets. The bases this time
are to consist of collections Q of elementary propositions: an important case
is to have a domain D of elements and a collection of (finitary) relations
and to take Q as consisting of all propositions Ray.. ... ay for R an n-ary
relation and ay. ..., a, € D The successive levels PQ .1 are then to consist
of negations —.A for A € P¢ and conjunctions AK and disjunctions VX for
K C P, in full exercise of the power set operation and as a general way
of rendering quantification. As with the cumulative hierarchies of sets well-
foundedness served to establish the universality of the hierarchical schemes
and so the generality of inductive arguments.

"5This despite “(First Communication) [(Erste Mitteilung)]” in the title. Hitler effected
the reincorporation of the Saar on 15 January 1935. Zermelo refused to give the Hitler salute
and was soon debarred from teaching at the University of Freiburg.

""This however was not the first time that well-founded relations were formulated. Well-
founded relations were crucial for the descriptive set theory analysis of analytic sets in Luzin—
Sierpinski [1918, 1923], and well-founded relations on the natural numbers were explicitly
formulated in the systematic presentation of analytic sets in Luzin [1927: 50].

'""Assume to the contrary that some member of X eludes this ranking. By well-
foundedness let x € X be <-minimal with this property. But p(x) is then defined after
all, a contradiction.

"8 Taylor [2002] provides a detailed reconstruction of Zermelo’s theory. and our account
here follows his notationally.
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With every proposition hierarchically analyzed Zermelo’s notion of proof
is a simple one. Any truth assignment for a basis Q of elementary propo-
sitions recursively induces a truth assignment through the hierarchy of the
P5&’s. A proof of an implication AKX — A, where A and every member
of K is in PZ. is then just an affirmation that any truth assignment for Q
that assigns every member of K true also renders A true. Thus, a proof for
Zermelo is much like an affirmation of satisfiability in a structure (interpre-
tation of a formal language) for Tarski. except that on the one hand there
1s no explicit engagement with quantifiers, but on the other, the recursive
definition is transfinite. With this simple view of proof, what we would
now regard as a conflation of syntax with semantics, every proposition is
either provable or else refutable with a counterexample truth assignment,
and this conforms with an earlier declaration in Zermelo [1932a] that every
mathematical proposition is decidable.

Zermelo had written in his second letter to Godel that what a proof
is “must in some form be taken for granted, presupposed [angenommen,
vorausgesetzt]”. But Zermelo had also written that the only remaining
question as to proof is “what counts as ‘evident’ [‘einsichtig’]”. Zermelo
[1935: 144f] wrote toward the end:

... A “proof” will contain infinitely many intermediate propositions in
most cases. and it is not yet clear to what extent and through what auxiliary
means it can be made self-evident [einleuchtend] to our finite understand-
ing. At root. any mathematical proof, e.g.. proof by complete induction.,
is thoroughly infinitary, and nonetheless we are capable of grasping it. On
the face of it there seems to be no fixed bounds to intelligibility.

Actually, proof by mathematical induction is not today considered “thor-
oughly infinitary” but paradigmatic in both being finitary and establishing
universal propositions about infinite domains. In a sense, Zermelo in his
final efforts had to face a basic problem with his semantic notion of proof
which was solved for first-order logic by Godel by his Completeness The-
orem: The logical consequences though analyzable may not be surveyable,
but if they are shown to be provable consequences according to finitary rules
of proof, then they become recursively enumerable.

§8. Toward categoricity. What does Zermelo’s infinitary logic have to do
with his set theory? With his correlation of his cumulative hierarchies of
propositions with those of sets. it is evident that Zermelo had in mind a
joint development, and in fact a reduction of his infinitary logic to his
cumulative hierarchy of sets.!'” Ebbinghaus [2003] in his penetrating analysis

"9This is brought out by Taylor [2002]. who also emphasizes the involvement of the
Grenzzahlen, inaccessible cardinals. Zermelo [1935: 141f] had written: “Proceeding upward,
a well-stratified system of propositions can be closed off at will, e.g., at a well-defined
‘Grenzzahl’ 7 (cf. Zermelo [1930]), and then possess all the attributes of a set.”
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of Zermelo’s concept of definite property, using items from his Nachlass,
describes two shifts in Zermelo’s thinking prompted by Skolem [1930]: First,
though Zermelo [1929] had espoused a formulation of definite property in
a finitary. albeit second-order. language. he thereafter pursued an approach
through infinitary languages. Second, in terms of infinitary logic Zermelo
pursued the possibility that every set is “categorically” definable, definable in
a categorical system of axioms, and that there is such system for set theory,
this in contradistinction to the non-categorical ZF' of Zermelo [1930] with
its procession of natural models. The infinitary logic would presumably be
as developed in [1935] in correlation with [1930], but the tension between
having a static universe to be given by a categorical axiom system and the
[1930] “free unfolding” of models would not be resolved. Ebbinghaus [2003]
describes how Zermelo at the end of his work in set theory was close to
the recursive procedure for defining Gddel’s constructible universe L. also
formulated by 1935.'2° To expand on this point and generally to compare
and contrast, we describe Godel’s separate progress in set theory as brought
out by his lectures:

In his lecture [1933], Godel expanded on the theme of footnote 48a from
his[1931]. He propounded the view that the axiomatic set theory of Zermelo,
Fraenkel. and von Neumann is “a natural generalization of [Russell’s simple]
theory of types, or rather, what becomes of the theory of types if certain
superfluous restrictions are removed.” First. instead of having separate
types with sets of type n + 1 consisting purely of sets of type n, sets can be
cumulative in the sense that sets of type n can consist of sets of al/l lower
types. If S, is the collection of sets of type n. then: S is the type of the
“individuals”. and recursively, S,.; = S, U{X | X C S,}. Second. the
process can be continued into the transfinite, starting with the cumulation
Sw = U, Sn. proceeding through successor stages as before, and taking
unions at limit stages. Godel [1933:46] credited Hilbert for pointing out the
possibility of continuing the formation of types beyond the finite types. As
for how far this cumulative hierarchy of sets is to continue. the “first two or
three types already suffice to define very large ordinals™ ([1933:47]) which
can then serve to index the process, and so on. Godel observed that although
this process has no end, this “turns out to be a strong argument in favor of
the theory of types™ ([1933:48]). Implicitly referring to his incompleteness
result Godel noted that for a formal system S based on the theory of types
a number-theoretic proposition can be constructed which is unprovable in
S but becomes provable if to S is adjoined “the next higher type and the
axioms concerning it” ([1933:48]). Thus. although he never mentioned
Zermelo [1930], Gddel was thus entertaining its cumulative hierarchies, but
as motivated by the theory of types. On the other hand. while never getting to
Zermelo’s Grenzzahlen Godel emphasized the definability. both of ordinals

'2Géodel told von Neumann about L in 1935; see e.g., Dawson [1997: 122ff].
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at low types for the indexing of higher types and of propositions unprovable
at one type but becoming provable in the next higher type.

Modern set theory was launched by Godel’s formulation of the model
L of “constructible” sets, a model of set theory that established the rela-
tive consistency of the Axiom of Choice and the (Generalized) Continuum
Hypothesis. In his first announcement Godel [1938: 556] described L as a
hierarchy “which can be obtained by Russell’s ramified hierarchy of types. if
extended to include transfinite orders.” Indeed. with L Godel had refined
the cumulative hierarchy of sets described in his [1933] to a cumulative hier-
archy of definable sets which is analogous to the orders of Russell’s ramified
theory. Godel’s further innovation was to continue the indexing of the hi-
erarchy through all the ordinals to get a model of set theory. The extent of
the ordinals was highlighted in his monograph [1940]. based on lectures in
1938, in which he formally generated L set by set using a sort of Godel num-
bering in terms of ordinals. In his [1939], Gddel presented the constructible
hierarchy L essentially as it is presented today:

My ={0}: My = U0<B M, for limit ordinals f; and M, = M/,

where M’ is “the set of subsets of M defined by propositional functions
¢(x) over M.” these propositional functions having been precisely defined.
Gaodel’s construction affirmed the incorporation of Replacement and Foun-
dation into set theory. Replacement was immanent in the arbitrary extent
of the ordinals for the indexing of L and in its formal construction, schema-
tized above in terms of the definable def operation, via transfinite recursion.
As for Foundation, underlying the construction was the well-foundedness of
sets, and significantly, footnote 12 of [1939] revealed that Gddel viewed his
axiom A, that every set is constructible (now written V' = L following Godel
[1940]). as deriving its contextual sense from the cumulative hierarchy of sets
regarded as an extension of the simple theory of types: “In order to give 4
an intuitive meaning, one has to understand by ‘sets’ all objects obtained by
building up the simplified hierarchy of types on an empty set of individuals
(including types of arbitrary transfinite orders).”

Gaodel in his lecture [1939a] motivated L by referring explicitly to Russell’s
ramified theory of types. Gdodel first described what amounts to the orders of
that theory for the simple situation when the members of a countable collec-
tion of real numbers are taken as the “individuals” and new real numbers are
successively defined via quantification over previously defined real numbers,
and emphasized that the process can be continued into the transfinite. He
then observed Godel [1939a: 135] that this procedure can be applied to sets
of real numbers, and the like, as “individuals”, and moreover, that one can
“intermix” the procedure for the real numbers with the procedure for sets
of real numbers “by using in the definition of a real number quantifiers that
refer to sets of real numbers, and similarly in still more complicated ways.”
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Godel called a constructible set “the most general [object] that can at all be
obtained in this way, where the quantifiers may refer not only to sets of real
numbers, but also to sets of sets of real numbers and so on. ad transfinitum.
and where the indices of iteration . . . can also be arbitrary transfinite ordinal
numbers”. Godel considered that although this definition of constructible
set might seem at first to be “unbearably complicated”, “the greatest gen-
erality yields, as it so often does, at the same time the greatest simplicity”
([1939a: 137]). Godel was picturing Russell’s ramified theory of types by first
disassociating the types from the orders, with the orders here given through
definability and the types represented by real numbers, sets of real numbers.
and so forth. Gaodel’s intermixing then amounted to a recapturing of the
complexity of Russell’s ramification, the extension of the hierarchy into the
transfinite allowing for a new simplicity.

Godel went on to describe the universe of set theory, “the objects of
which set theory speaks”, as falling into “a transfinite sequence of Russel-
lian [simple] types™ ([1939a: 137]). the cumulative hierarchy of sets that he
had described in [1933] and referred to in that footnote 12 of [1939]. He
then formulated the constructible sets as an analogous hierarchy, the hierar-
chy of [1939]. in effect introducing the Russellian ramifying orders through
definability. In a comment bringing out the intermixing of types and orders,
Gaodel pointed out that “there are sets of lower type that can only be defined
with the help of quantifiers for sets of higher type” ([1939a: 141]).

In his monograph [1940] Godel had provided a formal presentation of L
using an axiomatization of set theory with an antecedent in von Neumann
[1925]. Godel’s formalization not only recalled von Neumann’s [1925: 1]
analysis of “subsystems”, but also shed light on von Neumann’s main con-
cern: the categoricity of his axiomatization. Recall (see §5 above) that
Fraenkel [1922] had sought to close off the Zermelian generative axioms
through an “axiom of restriction”; it was to pursue this that von Neumann
had investigated subsystems for his axiomatization, but he concluded that
there was probably no way to formally achieve Fraenkel’s idea of a minimiz-
ing. and hence categorical, axiomatization. Godel’s axiom A, that every set
is constructible, can be viewed as formally achieving this sense of categoric-
ity, since, as he essentially showed in [1940], in axiomatic set theory L is a
definable class, containing all the ordinals, that together with the member-
ship relation restricted to it is a model of set theory, and L is a submodel of
every other such class.

What are the points of contact, the similarities in approach and attitude.
between Zermelo and Godel? Both Zermelo and Godel embraced direct
transfinite reasoning, for Godel actually viewed L as an outright construc-
tion in metamathematics.!?! Gaodel latterly wrote in a letter of 7 March
1968 to Wang [1974: 8ff]: “there was a special obstacle which really made

121See Wang [1974: 8ff).
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it practically impossible for constructivists to discover my consistency [of
the Continuum Hypothesis] proof. It is the fact that the ramified hierarchy,
which had been invented expressly for constructive purposes, had to be used in
an entirely nonconstructive way.” This nonconstructive way was to prolong
the ramified hierarchy using arbitrary ordinal numbers for the indexing, and
for this the extent of the ordinal numbers as sets, the von Neumann ordinals,
had to be sustained by Replacement. It is known from the Zermelo-Gddel
correspondence that Godel had read Zermelo [1930] soon after its appear-
ance, and Replacement plays a central role there as we have seen.'?> In
his first published sketch of L. Godel [1939] stated his relative consistency
results in terms of the axioms of Zermelo [1908] with definiteness as for-
malized in first-order logic. and although Zermelo [1930] is never cited, his
Grenzzahlen make a cameo appearance when Gddel in his main statement
of formal consistency asserted that M, where Q is “the first inaccessible
number”, is a model of Zermelo’s axioms together with Replacement.

Zermelo was stalking a categorical axiom system, and Godel achieved one
with V' = L. However, that categoricity was achieved through minimization.
In later years Godel advocated a search for new axioms in a maximal direc-
tion antithetical to V' = L. particularly axioms of large cardinal character.
As described in §7, both Zermelo and Godel urged venturing into higher
systems to overcome inadequacies, and with Zermelo’s ready incorporation
of a proper class of inaccessible cardinals in his [1930] he would not have
been unsympathetic to maximal approaches. Be that as it may, Zermelo in
his efforts with his infinitary logic never even succeeded in carrying out a
mathematical construction of any categorical domain of sets.

What was missing in Zermelo’s approach? There are two salient gaps.
one following from the other: Zermelo did not appreciate the mathematical
importance of uninterpreted formalism as Hilbert did, particularly the op-
erational efficacy of first-order logic, and so Zermelo could not take in the
submergence of metamathematical methods into mathematics in the work
of Godel.'?

122K reisel in his memoir [1980: 190ff] on Godel stressed the “non-elementary™ character
of the axioms of Zermelo [1930] and its cumulative hierarchy picture. attributed comparative
significance to it with respect to Godel’s “thin™ hierarchy of constructible sets. and suggested
how Replacement had a growing importance in Gddel’s thinking. The comparison between
the Zermelo and Gdodel hierarchies mostly serves a didactic purpose: Godel. as described
above. saw himself as extending Russell’s ramified theory of types.

'2In this Zermelo was certainly not alone. Russell wrote in a letter of 1 April 1963 to
Leon Henkin: “It is fifty years since I worked seriously at mathematical logic and almost the
only work that I have read since that date is Godel’s. I realized, of course, that Godel’s work
is of fundamental importance, but I was puzzled by it. It made me glad that I was no longer
working at mathematical logic. If a given set of axioms leads to a contradiction, it is clear
that at least one of the axioms must be false. Does this apply to school-boys’ arithmetic, and.
if so, can we believe anything that we were taught in youth? Are we to think that 2 + 2 is
not 4, but 4.001? Obviously. this is not what is intended. . ..
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From early on Zermelo was exercised by Richard’s Paradox. and how it
retained its force for him is symptomatic. Richard’s Paradox.'?* it will be
recalled. is a definability version of Cantor’s diagonal argument: Enumerate
the finite strings of the 26 letters, retain only those that define real numbers,
and let u. up. u3. ... be the enumeration of the corresponding real numbers,
an enumeration therefore containing all real numbers definable by finitely
many words. Now consider the real number with integral part 0 and nth digit
in the decimal expansion the sequent of nth digit in the decimal expansion
of u,, where for i < 9 the sequent of / is 7 + 1 and for i = 9 the sequent is 0.
This real number is thus definable, yet cannot be any u,.

Just after introducing his Separation Axiom Zermelo [1908a: 264] aptly
described how separating subsets from sets already given excludes contradic-
tory notions like the set of all sets, but also how with definiteness “all criteria
such as ‘definable by means of a finite number of words’, hence the ‘Richard
Paradox’ ... vanish.” Thus, definiteness was also to restrict conceptual
resources in the formation of sets.'”> The collection E = {uy, us, u3....}
cannot be separated out from the real numbers, as definability in a natural
language is not a definite property.'

Gaodel [1931] wrote in his introductory sketch about his main line of argu-
ment: “The analogy of this argument with the Richard antinomy leaps to
the eye.” As described in the discussion of the Zermelo-Gdodel correspon-
dence, Zermelo misconstrued Gddel’s argument and then averred: “Just as
in the Richard and Skolem paradoxes. the mistake rests on the (erroneous)
assumption that every mathematically definable notion is expressible by a
“finite combination of signs’ (according to a fixed system!) ...”'?" In par-
ticular, Zermelo no longer took the thrust of Richard’s Paradox to be the
mathematical inaccessibility of the collection of definable real numbers. but
having acceded to “combinations of signs” in “systems”, uninterpreted for-
malisms, Zermelo saw the issue now to be the inadequacy of any one such
finitary system for expressing every “mathematically definable notion.” The

You note that we [Whitehead and Russell] were indifferent to attempts to prove that our
axioms could not lead to contradictions. In this, Godel showed that we had been mistaken.
But I thought that it must be impossible to prove that any given set of axioms does not lead
to a contradiction, and, for that reason. I had paid little attention to Hilbert’s work.”

124See Richard [1905]: for a discussion of Richard’s Paradox contemporary with Zermelo’s
late work see Church [1934].

12 Taylor [1993: 547ff] emphasizes this aspect of Separation and puts it on an equal footing
with “limitation of size”.

126Richard [1905] himself diagnosed the problem to be the taking of E as “totally de-
fined” and this diagnosis was endorsed by Poincaré [1906a: VII] presumably because of the
impredicativity.

2In that unguarded letter of 7 October 1931 to Reinhold Baer. Zermelo wrote
(Weingartner-Schmetterer [1987: 45ff]): “The question of the antinomy of Richard and the
Skolem doctrine must at last be discussed seriously, seeing that frivolous dilettantism is again
at work to discredit the whole area of research ....”
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connection with Cantor’s diagonal argument in the role of defining a new
real number is now more immediate, and Zermelo sees this as supporting his
accommodation of uncountably many propositions via infinitary languages.

However Zermelo weighted Richard’s Paradox he remained gripped by it
and skeptical about definability cast as a mathematical concept. Tarski and
Godel wove first-order definability into mathematics, the former already in
his [1931] formulating the definable sets of reals, and the latter proceeding
from footnote 48a of his [1931] to the definition of L. In his monograph
[1940] Godel took pains to define definability, as we might now say. by
proceeding in a weak second-order system that in effect provided a finite
axiomatization of Separation. This formal presentation left no doubt about
the construction and results. but obscured the metamathematical ideas. In
later years, L would come to be presented more directly. as it was by Godel
in his [1939], in terms of first-order definability formalized in ZFC. Godel
[1940a: 176] wrote:

One may at first doubt that this assertion [4, that every set is constructible]
has a meaning at all. because A is apparently a metamathematical state-
ment since it involves the manifestly metamathematical term “definable”
or “constructible”. But now it has been shown in the last few years how
metamathematical statements can be translated into mathematics, and this
applies also to the notion of constructibility and the proposition 4. so that
its consistency with the axioms of mathematics is a meaningful assertion.

We have now converged to the heart of the matter. Zermelo aimed at
categorical definability through direct engagement with transfinite reasoning.
Gadel took the ordinal numbers as given and used them to index a hierarchy
based on first-order definability. He was able to carry out a mathematical
construction by building on the Hilbertian focus on first-order logic and
mathematization of its metamathematics and on the Russellian type hierar-
chy as ramified by orders through definability.

What, finally, about Zermelo’s definite property for Separation? Through
his [1929]. with its second-order axiomatization of definite property., Zer-
melo bolstered the latent sense of his [1908a] axioms as specifying the do-
main of sets through algebraic closure. From his [1930] on. faced with
“Skolemism” Zermelo took an expansive approach to definiteness that soon
became based on an infinitary logic, but unlike much of his previous work
this approach had no accompanying local closure feature. With definability
made mathematical a new closure became possible: Godel formulated L in
[1940] explicitly as a closure of the ordinals based on a few “fundamental
operations” and in [1939] more structurally as levels of a cumulative hierar-
chy with successive levels given by definable closure. Moreover, in a twist of
fate the Skolem Paradox argument, that bugbear of Zermelo’s, participated
in a new rectification of Separation through a closure argument in Godel’s
context:
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Referring to his result that every constructible real appears by the w;th
level M,,, . a result that has as an immediate consequence that the Continuum
Hypothesis holds in L, Gddel [1940a: 178] wrote:

You will see that this theorem is actually nothing else but an axiom of
reducibility for transfinite orders, for it says that an arbitrary propositional
function with integers as arguments is always formally equivalent with a
propositional function of an order < ). So since an axiom of reducibility
holds for constructible sets it is not surprising that the axioms of set theory
hold for the constructible sets, because the axiom of reducibility or its
equivalents, e.g., Zermelo’s Aussonderungsaxiom [Separation Axiom]. is
really the only essential axiom of set theory.

The argument for the Continuum Hypothesis holdingin L has as a significant
feature a Skolem hull or closure argument, somewhat obscured in the formal
presentation of Godel [1940] but common fare nowadays in model theory.'?®
The passage shows Godel to be holding a remarkably synthetic, unitary view.
equating as he does Russell’s ill-fated Axiom of Reducibility in his type theory
with Zermelo’s Separation Axiom in set theory and regarding the latter, in
the end, as the “the only essential axiom of set theory.”

Lives, especially creative, struggling ones, can often be summed up with
ironic juxtapositions. Zermelo did indeed transform the set theory of Cantor
and Dedekind through the axiomatic incorporation of generative operations
and new principles, and in the process drew out principles as specifically set-
theoretic out of the presumptively logical. But in establishing an operational
basis for set theory and promoting a predisposition for the set-theoretic
analysis of a wide range of conceptualizations Zermelo provided the precon-
ditions for the incisive work of Godel and Tarski, the mathematization of
metamathematics and the formalization of satisfiability. The latter’s “defi-
nition of truth” is but a simple recursive definition in set-theoretic terms, a
mapping of truth into set theory. And now is the irony:

Zermelo himself did not take the linguistic turn, in that he did not develop
an uninterpreted formalism. Having separated out set theory from logic he
did not appreciate, perhaps could not take in, the reincorporation of logic
back into set theory. The important advances in the subsequent development
of set theory, starting with Godel’s L, would be based on the definability of
definability, of satisfiability in set-theoretic structures. Zermelo was first to
surpass Cantor, but Zermelo himself was surpassed by Godel.
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