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How Gödel Transformed
Set Theory

Juliet Floyd and Akihiro Kanamori

K
urt Gödel (1906–1978), with his work on
the constructible universe L, established
the relative consistency of the Axiom of
Choice and the Continuum Hypothesis.
More broadly, he secured the cumulative

hierarchy view of the universe of sets and ensured
the ascendancy of first-order logic as the framework
for set theory. Gödel thereby transformed set the-
ory and launched it with structured subject mat-
ter and specific methods of proof as a distinctive
field of mathematics. What follows is a survey of
prior developments in set theory and logic in-
tended to set the stage, an account of how Gödel
marshaled the ideas and constructions to formu-
late L and establish his results, and a description
of subsequent developments in set theory that res-
onated with his speculations. The survey trots out
in quick succession the groundbreaking work at the
beginning of a young subject.

Numbers, Types, and Well-Ordering
Set theory was born on that day in December 1873
when Georg Cantor (1845–1918) established that
the continuum is not countable: There is no bijec-
tion between the natural numbers
N = {0,1,2,3, . . . } and the real numbers R, since
for any (countable) sequence of reals one can spec-
ify nested intervals so that any real in the inter-
section will not be in the sequence. Cantor soon in-
vestigated ways to define bijections between sets

of reals and the like. He stipulated that two sets
have the same power if there is a bijection between
them, and, implicitly at first, that one set has a
higher power than another if there is an injection
of the latter into the first but no bijection. In an
1878 publication he showed that R, the plane R × R,
and generally Rn are all of the same power, but
there were still only the two infinite powers as set
out by his 1873 proof. At the end of the publica-
tion Cantor asserted a dichotomy:

Every infinite set of real numbers ei-
ther is countable or has the power of the
continuum.

This was the Continuum Hypothesis (CH) in its
nascent context, and the continuum problem, to re-
solve this hypothesis, would become a major mo-
tivation for Cantor’s large-scale investigations of
infinite numbers and sets.

In his Grundlagen of 1883, Cantor developed the
transfinite numbers and the key concept of well-
ordering. The progression of transfinite numbers
could be depicted, in his later notation, in terms
of natural extensions of arithmetical operations:

0,1,2, . . .ω,ω + 1,ω + 2, . . .ω +ω(=ω·2),
. . .ω·3, . . .ω·ω(=ω2), . . .ω3, . . .ωω, . . .

A relation ≺ is a well-ordering of a set if and only
if it is a strict linear ordering of the set such that
every nonempty subset has a ≺-least element. Well-
orderings carry the sense of sequential counting,
and the transfinite numbers serve as standards
for gauging well-orderings. Cantor called the set of
natural numbers N the first number class (I) and
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the set of numbers whose predecessors are in bi-
jective correspondence with (I) the second number
class (II). The infinite numbers in the above display
are all in (II). Cantor conceived of (II) as bounded
above and showed that (II) itself is not countable.
Proceeding upward, Cantor called the set of num-
bers whose predecessors are in bijective corre-
spondence with (II) the third number class (III),
and so on. Cantor then propounded a basic prin-
ciple in the Grundlagen:

“It is always possible to bring any well-
defined set into the form of a well-
ordered set.”

Sets are to be well-ordered and thus to be gauged
by his numbers and number classes. With this
framework Cantor had transformed CH into the
positive assertion that (II) and R have the same
power. However, an emerging problem for Cantor
was that he could not even define a well-ordering
of R; the continuum, at the heart of mathematics,
could not be easily brought into the fold of the
transfinite numbers.

Almost two decades after his initial 1873 proof,
Cantor in 1891 came to his celebrated diagonal ar-
gument. In various guises the argument would be-
come fundamental in mathematical logic. Cantor
himself proceeded in terms of functions, ushering
collections of arbitrary functions into mathemat-
ics, but we cast his result as is done nowadays in
terms of the power set P(x) = {y | y ⊆ x} of a set
x . For any set x , P(x) has a higher power than x .

First, the function associating each a ∈ x with
{a} is an injection: x→ P(x) . Suppose now that F
is any function: x→ P(x) . Consider the “diagonal”
set d = {a ∈ x | a /∈ F (a)} . If d itself were a value
of F , say d = F (b) , then we would have the contra-
diction: b ∈ d if and only if b /∈ d. Hence, F cannot
be surjective.

Cantor had been shifting his notion of set to a
level of abstraction beyond sets of real numbers
and the like; the diagonal argument can be drawn
out of the earlier argument, and the new result gen-
eralized the old since P(N) and R have the same
power. The new result showed for the first time that
there is a set of a higher power than R, e.g.P(P(N)) .

Cantor’s Beiträge of 1895 and 1897 presented
his mature theory of the transfinite. Cantor re-
construed power as cardinal number, now an au-
tonomous concept beyond une façon de parler
about bijective correspondence. He defined the ad-
dition, multiplication, and exponentiation of car-
dinal numbers primordially in terms of set-theo-
retic operations and functions. As befits the
introduction of new numbers Cantor then intro-
duced a new notation, one using the Hebrew letter
aleph, ℵ . ℵ0 is to be the cardinal number of N and
the successive alephs

ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . .

are now to be the cardinal numbers of the succes-
sive number classes from the Grundlagen and thus
to exhaust all the infinite cardinal numbers. Can-
tor pointed out that 2ℵ0 is the cardinal number of
R, but frustrated in his efforts to establish CH he
did not even mention the hypothesis, which could
now have been stated as 2ℵ0 = ℵ1 . Every well-or-
dered set has an aleph as its cardinal number, but
where is 2ℵ0 in the aleph sequence?

CH was thus embedded in the very interstices
of the beginnings of set theory. The structures that
Cantor built, while now of great intrinsic interest,
emerged largely out of efforts to articulate and es-
tablish it. The continuum problem was made the
very first in David Hilbert’s famous list of 23 prob-
lems at the 1900 International Congress of Math-
ematicians; Hilbert drew out Cantor’s difficulty by
suggesting the desirability of “actually giving” a
well-ordering of R.

Bertrand Russell (1872–1970), a main architect
of the analytic tradition in philosophy, focused in
1900 on Cantor’s work. Russell was pivoting from
idealism toward a realism about propositions and
with it logicism, the thesis that mathematics can
be founded in logic. Taking a universalist approach
to logic with all-encompassing categories, Russell
took the class of all classes to have the largest car-
dinal number but saw that Cantor’s 1891 result
leading to higher cardinal numbers presented a
problem. Analyzing that argument, by the spring
of 1901 he came to the famous Russell’s Paradox,
a surprisingly simple counterexample to full com-
prehension, the assertion that for every property
A(x) the collection of objects having that prop-
erty, the class {x | A(x)}, is also an object. Consider
Russell’s {x | x /∈ x} . If this were an object r , then
we would have the contradiction r ∈ r if and only
if r /∈ r . Gottlob Frege (1848-1925) was the first to
systematize quantificational logic in a formalized
language, and he aimed to establish a purely logi-
cal foundation for arithmetic. Russell famously
communicated his paradox to Frege in 1902, who
immediately saw that it revealed a contradiction
within his mature logical system.

Russell’s own reaction was to build a complex
logical structure, one used later to develop math-
ematics in Whitehead and Russell’s 1910-3 Principia
Mathematica. Russell’s ramified theory of types is
a scheme of logical definitions based on orders
and types indexed by the natural numbers. Russell
proceeded “intensionally”; he conceived this
scheme as a classification of propositions based on
the notion of propositional function, a notion not
reducible to membership (extensionality). Pro-
ceeding in modern fashion, we may say that the uni-
verse of the Principia consists of objects stratified
into disjoint types Tn , where T0 consists of the in-
dividuals, Tn+1 ⊆ {Y | Y ⊆ Tn}, and the types Tn for
n > 0 are further ramified into orders Oin with
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Tn =
⋃
i Oin. An object in Oin is to be defined either

in terms of individuals or of objects in some fixed
Ojm for some j < i and m ≤ n, the definitions al-
lowing for quantification only over Ojm . This pre-
cludes Russell’s Paradox and other “vicious cir-
cles”, as objects consist only of previous objects
and are built up through definitions referring only
to previous stages. However, in this system it is im-
possible to quantify over all objects in a type Tn ,
and this makes the formulation of numerous math-
ematical propositions at best cumbersome and at
worst impossible. Russell was led to introduce his
Axiom of Reducibility, which asserts that for each
object there is a predicative object consisting of ex-
actly the same objects, where an object is predica-
tive if its order is the least greater than that of its
constituents. This axiom reduced consideration to
individuals, predicative objects consisting of indi-
viduals, predicative objects consisting of predica-
tive objects consisting of individuals, and so on—
the simple theory of types. In traumatic reaction to
his paradox Russell had built a complex system of
orders and types only to collapse it with his Axiom
of Reducibility, a fearful symmetry imposed by an
artful dodger.

Ernst Zermelo (1871–1953) made his major ad-
vances in set theory in the first decade of the new
century. Zermelo’s first substantial result was his
independent discovery of the argument for Russell’s
Paradox. He then established in 1904 the Well-
Ordering Theorem, that every set can be well-
ordered, assuming what he soon called the Axiom
of Choice (AC). Zermelo thereby shifted the notion
of set away from Cantor’s principle that every well-
defined set is well-orderable and replaced that
principle by an explicit axiom.

In retrospect Zermelo’s argument for his Well-
Ordering Theorem proved to be pivotal for the de-
velopment of set theory. To summarize, suppose
that x is a set to be well-ordered, and through Zer-
melo’s AC hypothesis assume that the power set
P(x) = {y | y ⊆ x} has a choice function, i.e., a func-
tion γ such that for every nonempty member y of
P(x) , γ(y) ∈ y. Call a subset y of x a γ-set if there
is a well-ordering R of y such that for each a ∈ y ,
γ({z | z R a fails}) = a. That is, each member of y
is what γ “chooses” from what does not R -
precede it. The main observation is that γ-sets co-
here in the following sense: If y is a γ-set with
well-ordering R and z is a γ-set with well-ordering
S , then y ⊆ z and S is a prolongation of R, or vice
versa. With this, let w be the union of all the γ-sets.
Then w too is a γ-set, and by its maximality it
must be all of x , and hence x is well-ordered.

Cantor’s work had served to exacerbate a grow-
ing discord among mathematicians with respect to
two related issues: whether infinite collections can
be mathematically investigated at all, and how far
the function concept is to be extended. The

positive use of an arbitrary function operating on
arbitrary subsets of a set having been made explicit,
there was open controversy after the appearance
of Zermelo’s proof. This can be viewed as a turn-
ing point for mathematics, with the subsequent tilt-
ing toward the acceptance of AC symptomatic of
a conceptual shift.

Axiomatization
In response to his critics Zermelo published a sec-
ond proof of the Well-Ordering Theorem in 1908,
and with axiomatization assuming a general
methodological role in mathematics he also pub-
lished in 1908 the first full-fledged axiomatiza-
tion of set theory. But as with Cantor’s work, this
was no idle structure building, but a response to
pressure for a new mathematical context. In this
case it was not for the formulation and solution of
a problem but rather to clarify a proof. Zermelo’s
motive in large part for axiomatizing set theory was
to buttress his Well-Ordering Theorem by making
explicit its underlying set existence assumptions.

To summarize Zermelo’s axioms much as they
would be presented today, there is an initial axiom
asserting that two sets are the same if they contain
the same members (Extensionality, i.e., membership
determines equality), and an axiom asserting that
there is an initial set ∅ having no members (Empty
Set). Then there are the generative axioms, specific
instances of comprehension: For any sets x, y,
{x, y} = {z | z = x or z = y} is a set (Pairs),⋃
x = {z | ∃y(y ∈ x and z ∈ y)} is a set (Union),

and P(x) = {y | y ⊆ x} is a set (Power Set). There is
an axiom asserting the existence of a particular re-
cursively specified infinite set (Infinity). Zermelo
aptly formulated AC in terms of sets as follows: For
any set x consisting of nonempty, pairwise disjoint
sets, there is a set y such that each member of x in-
tersects with y in exactly one element. Finally, there
is the axiom (schema) of Separation: For any set x
and “definite” property A(y), {y ∈ x | A(y)} is a set.
That is, the intersection of a set x and a class
{y | A(y)} is again a set. Zermelo saw that Sepa-
ration suffices for a development of set theory
that still allows for the “logical” formation of sets
according to property; Russell’s Paradox is pre-
cluded since only “logical” subsets are to be al-
lowed. But what exactly is a “definite” property?
This was a central vagary that would be addressed
in the subsequent formalization of Zermelo’s set
theory.

With his axioms Zermelo ushered in a new, ab-
stract view of sets as structured solely by member-
ship and built up iteratively according to governing
axioms, a view that would soon come to dominate.
Zermelo’s work also pioneered the reduction of
mathematical concepts and arguments to set-theo-
retic concepts and arguments from axioms, based
on sets doing the work of mathematical objects.
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recursive definition along well-orderings. The proof
had an antecedent in the Zermelo 1904 proof, but
Replacement was necessary even for the very for-
mulation, let alone the proof, of the theorem. With
the ordinals in place von Neumann completed the
incorporation of the Cantorian transfinite by defin-
ing the cardinals as the initial ordinals, those or-
dinals not in bijective correspondence with any of
their predecessors.

Replacement has been latterly regarded as some-
how less necessary or crucial than the other axioms,
the purported effect of the axiom being only on
large-cardinality sets. Initially, Abraham Fraenkel
(1891–1965) and Thoralf Skolem (1887–1963) had
independently proposed adjoining Replacement
to ensure that E(a) = {a,P(a),P(P(a)), . . . } would
be a set for a, the infinite set given by Zermelo’s
Axiom of Infinity, since, as they pointed out, Zer-
melo’s axioms cannot establish this. However, even
E(∅) cannot be proved to be a set from Zermelo’s
axioms, and if his Axiom of Infinity were refor-
mulated to accommodate E(∅), there would still be
many finite sets a such that E(a) cannot be proved
to be a set. Replacement serves to rectify the situ-
ation by admitting new infinite sets defined by “re-
placing” members of the one infinite set given by
the Axiom of Infinity. In any case, the full exercise
of Replacement is part and parcel of transfinite re-
cursion, which is now used everywhere in modern
set theory, and it was von Neumann’s formal in-
corporation of this method into set theory, as ne-
cessitated by his proofs, that brought in Replace-
ment.

Von Neumann (and others) also investigated the
salutary effects of restricting the universe of sets
to the well-founded sets. The well-founded sets are
the sets that belong to some “rank” Vα, these de-
finable through transfinite recursion:

V0 =∅; Vα+1 = P(Vα); and Vδ =
⋃{Vα | α < δ}

for limit ordinals δ.

Vω+1 contains every set consisting of natural num-
bers (finite ordinals), and so already at early levels
there are set counterparts to many objects in math-
ematics. That the universe V of all sets is the cu-
mulative hierarchy

V =
⋃{Vα | α is an ordinal}

is thus the assertion that every set is well-founded.
Von Neumann essentially showed that this asser-
tion is equivalent to a simple assertion about sets,
the Axiom of Foundation: Any nonempty set x has
a member y such that x∩ y is empty. Thus, non-
empty well-founded sets have ∈ -minimal mem-
bers. If a set x satisfies x ∈ x, then {x} is not well-
founded; similarly, if there are x1 ∈ x2 ∈ x1 , then
{x1, x2} is not well-founded. Ordinals and sets con-
sisting of ordinals are well-founded, and

Unlike the development of classical mathematics
from marketplace arithmetic and Greek geometry,
sets were neither laden with nor bolstered by well-
worked antecedents. Zermelo axiomatization, un-
like Russell’s cumbersome theory of types, provided
a simple system for the development of mathe-
matics. Set theory would provide an underpinning
of mathematics, and Zermelo’s axioms would res-
onate with mathematical practice.

In the 1920s fresh initiatives structured the
loose Zermelian framework with new features and
corresponding developments in axiomatics, the
most consequential moves made by John von Neu-
mann (1903–1957) in his dissertation, with antic-
ipations by Dimitry Mirimanoff (1861–1945). The
transfinite numbers had been central for Cantor but
peripheral to Zermelo, and in Zermelo’s system
not even 2ℵ0 = ℵ1 could be stated directly. Von
Neumann reconstrued the transfinite numbers as
bona fide sets, the ordinals, and established their
efficacy by formalizing transfinite recursion.

Ordinals manifest the idea, natural once iterative
set formation is assimilated, of taking the relation of
precedence in a well-ordering simply to be mem-
bership. A set (or class) x is transitive if and only if
whenever a ∈ b for b ∈ x , a ∈ x . A set x is a (von
Neumann) ordinal if and only if x is transitive, and
the membership relation restricted to x = {y | y ∈ x}
is a well-ordering of x . The first several ordinals are
∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . . , to be
taken as the natural numbers 0,1,2,3, . . .. The union
of these finite ordinals is an ordinal, to be taken as
ω; ω∪ {ω} is an ordinal, to be taken as ω + 1; and
so forth. It has become customary to use the Greek
letters α,β,γ, . . . to denote ordinals; the class of all
ordinals is itself well-ordered by membership, and
α < β is written for α ∈ β ; and an ordinal without
an immediate predecessor is a limit ordinal. Von
Neumann established, as had Mirimanoff before him,
the key instrumental property of Cantor’s ordinal
numbers for ordinals: Every well-ordered set is
order-isomorphic to exactly one ordinal with mem-
bership. The proof was the first to make full use of
the Axiom of Replacement and thus drew that ax-
iom into set theory.

For a set x and property A(v,w ) , the property is
said to be functional on x if for any a ∈ x, there is ex-
actly one b such that A(a, b). The Axiom (schema)
of Replacement asserts: For any set x and property
A(v,w ) functional on x, {b | ∃a(a ∈ x and A(a, b))}
is a set. This axiom posits sets that result when mem-
bers of a set are “replaced” according to a property;
a simple argument shows that Replacement sub-
sumes Separation.

Von Neumann generally ascribed to the ordinals
the role of Cantor’s ordinal numbers, and already
to incorporate transfinite arithmetic into set the-
ory he saw the need to establish the Transfinite Re-
cursion Theorem, the theorem that validates
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well-foundedness can be viewed as a generalization
of the notion of being an ordinal that loosens the
connection with transitivity. The Axiom of Foun-
dation eliminates pathologies like x ∈ x and
through the cumulative hierarchy rendition allows
inductive arguments to establish results about the
entire universe.

In a remarkable 1930 publication Zermelo pro-
vided his final axiomatization of set theory, one that
recast his 1908 axiomatization and incorporated
both Replacement and Foundation. He herewith
completed his transmutation of the notion of set,
his abstract, prescriptive view stabilized by further
axioms that structured the universe of sets. Re-
placement provided the means for transfinite re-
cursion and induction, and Foundation made pos-
sible the application of those means to get results
about all sets. Zermelo proceeded to offer a strik-
ing, synthetic view of a procession of natural mod-
els for his axioms that would have a modern res-
onance and applied Replacement and Foundation
to establish isomorphism and embedding results.

Zermelo’s 1930 publication was in part a re-
sponse to Skolem’s advocacy, already in 1922, of
the idea of framing Zermelo’s 1908 axioms in first-
order logic. First-order logic is the logic of formal
languages consisting of formulas built up from
specified function and relation symbols using log-
ical connectives and first-order quantifiers ∀ and
∃, quantifiers to be interpreted as ranging over
the elements of a domain of discourse. (Second-
order logic has quantifiers to be interpreted as
ranging over arbitrary subsets of a domain.) Skolem
had proposed formalizing Zermelo’s axioms in the
first-order language with ∈ and = as binary rela-
tion symbols. Zermelo’s definite properties would
then be those expressible in this first-order lan-
guage in terms of given sets, and Separation would
become a schema of axioms, one for each first-order
formula. Analogous remarks apply to the formal-
ization of Replacement in first-order logic. As set
theory was to develop, the formalization of Zer-
melo’s 1930 axiomatization in first-order logic
would become the standard axiomatization, Zer-
melo-Fraenkel with Choice (ZFC). The “Fraenkel”
acknowledges Fraenkel’s early suggestion of in-
corporating Replacement. Zermelo-Fraenkel (ZF) is
ZFC without AC.

Significantly, before this standardization both
Skolem and Zermelo raised issues about the limi-
tations of set theory as cast in first-order logic.
Skolem had established a fundamental result for
first-order logic with the Löwenheim-Skolem The-
orem: If a countable collection of first-order sen-
tences has a model, then it has a countable model.
Having proposed framing set theory in first-order
terms, Skolem pointed out as a palliative for tak-
ing set theory as a foundation for mathematics
what has come to be called the Skolem Paradox:

Zermelo’s 1908 axioms when cast in first-order
logic become a countable collection of sentences,
and so if they have a model at all, they have a
countable model. We thus have the “paradoxical”
existence of countable models for Zermelo’s axioms
although they entail the existence of uncountable
sets. Zermelo found this antithetical and repugnant,
and proceeded in avowedly second-order terms in
his 1930 work. However, stronger currents were at
work leading inexorably to the ascendancy of first-
order logic.

Constructible Universe
Enter Gödel. Gödel virtually completed the math-
ematization of logic by submerging “metamathe-
matical” methods into mathematics. The Com-
pleteness Theorem from his 1930 dissertation
established that logical consequence could be cap-
tured by formal proof for first-order logic and se-
cured its key instrumental property of compactness
for building models. The main advance was of
course the direct coding, “the arithmetization of
syntax”, which together with a refined version of
Cantor’s diagonal argument led to the celebrated
1931 Incompleteness Theorem. This theorem es-
tablished a fundamental distinction between what
is true about the natural numbers and what is prov-
able and transformed a program advanced by
Hilbert in the 1920s to establish the consistency
of mathematics by finitary means. Gödel’s work
showed in particular that for a (schematically de-
finable) collection of axioms A , its consistency, that
from A one cannot prove a contradiction, has a for-
mal counterpart in an arithmetical formula Con(A)
about natural numbers. Gödel’s “second” theorem
asserts that if A is consistent and subsumes the
elementary arithmetic of the natural numbers, then
Con(A) cannot be proved from A .

Gödel’s advances in set theory can be seen as
part of a steady intellectual development from his
fundamental work on incompleteness. His 1931
paper had a prescient footnote 48a:

As will be shown in Part II of this paper,
the true reason for the incompleteness
inherent in all formal systems of math-
ematics is that the formation of ever
higher types can be continued into the
transfinite (cf. D. Hilbert, “Über das Un-
endliche”, Math. Ann. 95, p. 184), while
in any formal system at most count-
ably many of them are available. For it
can be shown that the undecidable
propositions constructed here become
decidable whenever appropriate higher
types are added (for example, the type
ω to the system P [the simple theory of
types superposed on the natural num-
bers as individuals satisfying the Peano
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axioms]). An analogous situation pre-
vails for the axiom system of set theory.

Gödel’s letters and lectures clarify that the ad-
dition of an infinite type ω to Russell’s theory of
types would provide a “definition for ‘truth’ ” for
the theory and hence establish hitherto unprovable
propositions like those provided by his Incom-
pleteness Theorem. Inherent in Russell’s theory
was the indexing of types by the natural numbers,
and Gödel’s citation in the footnote of Hilbert’s
1926 paper in connection with the possibility of ad-
joining transfinite types would bridge the past and
the future. Hilbert there had attempted a proof of
CH using transfinite indexing in his formalism,
and Gödel would achieve what success is possible
in this direction. Gödel never published the an-
nounced Part II, which was to have been on truth,
but his engagement with truth and its distinction
from provability could be viewed as his entrée into
full blown set theory. In a 1933 lecture Gödel ex-
pounded on axiomatic set theory as a natural gen-
eralization of the simple theory of types “if certain
superfluous restrictions” are removed: One could
cumulate the types starting with individuals D0
and taking Dn+1 = Dn ∪P(Dn) , and one could ex-
tend the process into the transfinite, mindful that
for any type-theoretic system S a new proposition
(e.g., Con(S )) becomes provable if to S is adjoined
the “the next higher type and the axioms con-
cerning it”. Thus Gödel came to the cumulative hi-
erarchy as a transfinite extension of the theory of
types that incorporates higher and higher levels of
truth.

Alfred Tarski (1902–1983) completed the math-
ematization of logic in the early 1930s by provid-
ing a systematic “definition of truth”, exercising
philosophers ever since. Tarski simply schema-
tized truth by taking it to be a correspondence be-
tween formulas of a formal language and set-
theoretic assertions about an interpretation of the
language and by providing a recursive definition
of the satisfaction relation, that which obtains when
a formula holds in an interpretation. The eventual
effect of Tarski’s mathematical formulation of se-
mantics would be not only to make mathematics
out of the informal notion of satisfiability, but also
to enrich ongoing mathematics with a systematic
method for forming mathematical analogues of
several intuitive semantic notions. For coming pur-
poses, the following specifies notation and con-
cepts:

For a first-order language, suppose that M is an
interpretation of the language (i.e., a specification
of a domain as well as interpretations of the func-
tion and relation symbols), ϕ(v1, v2, . . . , vn) is a for-
mula of the language with the (unquantified) vari-
ables as displayed, and a1, a2, . . . , an are the
domain of M . Then

M |=ϕ[a1, a2, . . . , an]

asserts that the formula ϕ is satisfied in M ac-
cording to Tarski’s recursive definition when vi is
interpreted as ai . A subset y of the domain of M
is first-order definable over M if and only if there
is a formula ψ(v0, v1, v2, . . . , vn) and a1, a2, . . . , an
in the domain of M such that

y = {z | M |= ψ[z, a1, . . . , an]}.
Set theory was launched on an independent

course as a distinctive field of mathematics by
Gödel’s formulation of the class L of constructible
sets through which he established the relative con-
sistency of AC and CH. He thus attended to the fun-
damental issues raised at the beginning of set the-
ory by Cantor and Zermelo. In his first 1938
announcement Gödel described L as a hierarchy
“which can be obtained by Russell’s ramified hier-
archy of types, if extended to include transfinite
orders.” Indeed, with L Gödel had refined the cu-
mulative hierarchy of sets to a cumulative hierar-
chy of definable sets which is analogous to the or-
ders of Russell’s ramified theory. Gödel’s further
innovation was to continue the indexing of the hi-
erarchy through all the ordinals. Von Neumann’s
canonical well-orderings would be the spine for a
thin hierarchy of sets, and this would be the key
to both the AC and CH results. In a 1939 note
Gödel informally presented L essentially as is done
today: For any set x let def(x) denote the collection
of subsets of x first-order definable over x ac-
cording to the previous definition. Then define:

L0 =∅; Lα+1 = def(Lα), Lδ =
⋃{Lα | α < δ}

for limit ordinals δ;

and the constructible universe

L =
⋃{Lα | α is an ordinal}.

Gödel pointed out that L “can be defined and its
theory developed in the formal systems of set the-
ory themselves.” This follows by transfinite re-
cursion from the formalizability of def(x) in set the-
ory, the “definability of definability”, which was
later reaffirmed by Tarski’s systematic definition
of the satisfaction relation in set-theoretic terms.
In modern parlance, an inner model is a transitive
class containing all the ordinals such that, with
membership and quantification restricted to it, the
class satisfies each axiom of ZF. Gödel in effect ar-
gued in ZF to show that L is an inner model and
moreover that L satisfies AC and CH. He thus es-
tablished the relative consistency Con(ZF) implies
Con(ZFC + CH).

In his 1940 monograph, based on 1938 lectures,
Gödel formulated L via a transfinite recursion that
generated L set by set. His incompleteness proof
had featured “Gödel numbering”, the encoding of
formulas by natural numbers, and his L recursion
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note. In a comment bringing out the intermixing
of types and orders, Gödel pointed out that “there
are sets of lower type that can only be defined with
the help of quantifiers for sets of higher type.” For
example, constructible members of Vω+1 in the
cumulative hierarchy will first appear quite high in
the constructible Lα hierarchy; resonant with
Gödel’s earlier remarks about truth, members of
Vω+1, in particular sets of natural numbers, will en-
code truth propositions about higher Lα ’s. Gödel
had given priority to the ordinals and recursively
formulated a hierarchy of orders based on defin-
ability, and the hierarchy of types was spread out
across the orders. The jumble of the Principia Math-
ematica had been transfigured into the con-
structible universe L.

Gödel’s argument for CH holding in L rests, as
he himself wrote in a brief 1939 summary, on “a
generalization of Skolem’s method for construct-
ing enumerable models”, now embodied in the
well-known Skolem Hull argument and Condensa-
tion Lemma for L. It is the first significant appli-
cation of the Löwenheim-Skolem Theorem since
Skolem’s own to get his paradox. Ironically, though
Skolem sought through his paradox to discredit set
theory based on first-order logic as a foundation
for mathematics, Gödel turned paradox into
method, one promoting first-order logic. Gödel
showed that in L every subset of Lα belongs to
some Lβ for some β of the same power as α (so
that in L every real belongs to some Lβ for a count-
able β , and CH holds). In the 1939 lecture he as-
serted that “this fundamental theorem constitutes
the corrected core of the so-called Russellian axiom
of reducibility.” Thus, Gödel established another
connection between L and Russell’s ramified the-
ory of types. But while Russell had to postulate his
Axiom of Reducibility for his finite orders, Gödel
was able to derive an analogous form for his trans-
finite hierarchy, one that asserts that the types are
delimited in the hierarchy of orders.

Gödel brought into set theory a method of con-
struction and argument and thereby affirmed sev-
eral features of its axiomatic presentation. First,
Gödel showed how first-order definability can be
used in a transfinite recursive construction to es-
tablish striking new mathematical results. This sig-
nificantly contributed to a lasting ascendancy for
first-order logic which beyond its sufficiency as a
logical framework for mathematics was seen to
have considerable operational efficacy. Gödel’s con-
struction moreover buttressed the incorporation of
Replacement and Foundation into set theory. Re-
placement was immanent in the arbitrary extent of
the ordinals for the indexing of L and in its formal
definition via transfinite recursion. As for Foun-
dation, underlying the construction was the well-
foundedness of sets. Gödel in a footnote to his 1939
note wrote: “In order to give A [the axiom V = L ,

was a veritable Gödel numbering with ordinals,
one that relies on their extent as given beforehand
to generate a universe of sets. This approach may
have obfuscated the satisfaction aspects of the
construction, but on the other hand it did make
more evident other aspects: Since there is a direct,
definable well-ordering of L, choice functions
abound in L, and AC holds there. Also, L was seen
to have the important property of absoluteness
through the simple operations involved in Gödel’s
recursion, one consequence of which is that for any
inner model M , the construction of L in the sense
of M again leads to the same class L. Decades later
many inner models based on first-order definabil-
ity would be investigated for which absoluteness
considerations would be pivotal, and Gödel had for-
mulated the canonical inner model, rather analo-
gous to the algebraic numbers for fields of char-
acteristic zero.

In a 1939 lecture about L Gödel described what
amounts to the Russell orders for the simple situ-
ation when the members of a countable collection
of real numbers are taken as the individuals and
new real numbers are successively defined via
quantification over previously defined real num-
bers, and he emphasized that the process can be
continued into the transfinite. He then observed
that this procedure can be applied to sets of real
numbers and the like, as individuals, and moreover,
that one can “intermix” the procedure for the real
numbers with the procedure for sets of real num-
bers “by using in the definition of a real number
quantifiers that refer to sets of real numbers, and
similarly in still more complicated ways.” Gödel
called a constructible set “the most general [object]
that can at all be obtained in this way, where the
quantifiers may refer not only to sets of real num-
bers, but also to sets of sets of real numbers and
so on, ad transfinitum, and where the indices of it-
eration …can also be arbitrary transfinite ordinal
numbers.” Gödel considered that although this de-
finition of constructible set might seem at first to
be “unbearably complicated”, “the greatest gener-
ality yields, as it so often does, at the same time
the greatest simplicity.” Gödel was picturing Rus-
sell’s ramified theory of types by first disassociating
the types from the orders, with the orders here
given through definability and the types repre-
sented by real numbers, sets of real numbers, and
so forth. Gödel’s intermixing then amounted to a
recapturing of the complexity of Russell’s ramifi-
cation, the extension of the hierarchy into the
transfinite allowing for a new simplicity.

Gödel went on to describe the universe of set the-
ory, “the objects of which set theory speaks”, as
falling into “a transfinite sequence of Russellian
[simple] types”, the cumulative hierarchy of sets.
He then formulated the constructible sets as an
analogous hierarchy, the hierarchy of his 1939
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that the universe is L] an intuitive meaning, one has
to understand by ‘sets’ all objects obtained by
building up the simplified hierarchy of types on an
empty set of individuals (including types of arbi-
trary transfinite orders).” Some have been baffled
about how the cumulative hierarchy picture came
to dominate in set-theoretic practice; although
there was Mirimanoff, von Neumann, and espe-
cially Zermelo, the picture came in with Gödel’s
method, the reasons being both thematic and his-
torical: Gödel’s work with L with its incisive analy-
sis of first-order definability was readily recog-
nized as a signal advance, while Zermelo’s 1930
paper with its second-order vagaries remained
somewhat obscure. As the construction of L was
gradually digested, the sense that it promoted of
a cumulative hierarchy reverberated to become the
basic picture of the universe of sets.

New Axioms
How Gödel transformed set theory can be broadly
cast as follows: On the larger stage, from the time
of Cantor, sets began making their way into topol-
ogy, algebra, and analysis so that by the time of
Gödel, they were fairly entrenched in the structure
and language of mathematics. But how were sets
viewed among set theorists, those investigating
sets as such? Before Gödel, the main concerns were
what sets are and how sets and their axioms can
serve as a reductive basis for mathematics. Even
today, those preoccupied with ontology, questions
of mathematical existence, focus mostly upon the
set theory of the early period. After Gödel, the
main concerns became what sets do and how set
theory is to advance as an autonomous field of
mathematics. The cumulative hierarchy picture
was in place as subject matter, and the meta-
mathematical methods of first-order logic mediated
the subject. There was a decided shift toward epis-
temological questions, e.g., what can be proved
about sets and on what basis.

As a pivotal figure, what was Gödel’s own stance?
What he said would align him more with his pre-
decessors, but what he did would lead to the de-
velopment of methods and models. In a 1944 ar-
ticle on Russell’s mathematical logic, in a 1947
article on Cantor’s continuum problem (and in a
1964 revision), and in subsequent lectures and cor-
respondence, Gödel articulated his philosophy of
“conceptual realism” about mathematics. He es-
poused a staunchly objective “concept of set” ac-
cording to which the axioms of set theory are true
and are descriptive of an objective reality schema-
tized by the cumulative hierarchy. Be that as it
may, his actual mathematical work laid the ground-
work for the development of a range of models and
axioms for set theory. Already in the early 1940s
Gödel worked out for himself a possible model for
the negation of AC, and in a 1946 address he

described a new inner model, the class of ordinal
definable sets.

In his 1947 article on the continuum problem
Gödel pointed out the desirability of establishing
the independence of CH, i.e., in addition to his rel-
ative consistency result, that also Con(ZF) implies
Con(ZFC + the negation of CH). However, Gödel
stressed that this would not solve the problem.
The axioms of set theory do not “form a system
closed in itself”, and so the “very concept of set on
which they are based” suggests their extension by
new axioms, axioms that may decide issues like CH.
New axioms could even be entertained on the ex-
trinsic basis of the “fruitfulness of their conse-
quences”. Gödel concluded by advancing the re-
markable opinion that CH “will turn out to be
wrong” since it has as paradoxical consequences
the existence of thin, in various senses he de-
scribed, sets of reals of the power of the contin-
uum.

Later touted as his “program”, Gödel’s advo-
cacy of the search for new axioms mainly had to
do with large cardinal axioms. These postulate
structure in the higher reaches of the cumulative
hierarchy, often by positing cardinals whose prop-
erties entail their inaccessibility from below in
strong senses. Speculations about large cardinal
possibilities had occurred as far back as the time
of Zermelo’s first axiomatization of set theory.
Gödel advocated their investigation, and they can
be viewed as a further manifestation of his foot-
note 48a idea of capturing more truth, this time by
positing strong closure points for the cumulative
hierarchy. In the early 1960s large cardinals were
vitalized by the infusion of model-theoretic meth-
ods, which established their central involvement in
embeddings of models of set theory. The subject
was then to become a mainstream of set theory
after the dramatic introduction of a new way of get-
ting extensions of models of set theory.

Paul Cohen (1934–) in 1963 established the in-
dependence of AC from ZF and the independence
of CH from ZFC. That is, Cohen established that
Con(ZF) implies Con(ZF + the negation of AC) and
that Con(ZF) implies Con(ZFC + the negation of
CH). These results delimited ZF and ZFC in terms
of the two fundamental issues raised at the be-
ginning of set theory. But beyond that, Cohen’s
proofs were soon to flow into method, becoming
the inaugural examples of forcing, a remarkably
general and flexible method for extending models
of set theory by adding “generic” sets. Forcing has
strong intuitive underpinnings and reinforces the
notion of set as given by the first-order ZF axioms
with conspicuous uses of Replacement and Foun-
dation. With L analogous to the field of algebraic
numbers, forcing is analogous to making tran-
scendental field extensions. If Gödel’s construction
of L had launched set theory as a distinctive field
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of mathematics, then Cohen’s method of forcing
began its transformation into a modern, sophisti-
cated one. Set theorists rushed in and were soon
establishing a cornucopia of relative consistency re-
sults, truths in a wider sense, some illuminating
problems of classical mathematics. In this sea
change the extent and breadth of the expansion of
set theory dwarfed what came before, both in terms
of the numbers of people involved and the results
established.

Already in the 1960s and into the 1970s large
cardinal postulations were charted out and elabo-
rated, investigated because of the “fruitfulness of
their consequences” since they provided quick
proofs of various strong propositions and because
they provided the consistency strength to establish
new relative consistency results. A subtle connec-
tion quickly emerged between large cardinals and
combinatorial propositions low in the cumulative
hierarchy: Forcing showed just how relative the
Cantorian notion of cardinality is, since bijections
could be adjoined easily, often with little distur-
bance to the universe. In particular, large cardinals,
highly inaccessible from below, were found to sat-
isfy substantial propositions even after they were
“collapsed” by forcing to ℵ1 or ℵ2, i.e., bijections
were adjoined to make the cardinal the first or
second uncountable cardinal. Conversely, such
propositions were found to entail large cardinal hy-
potheses in the clarity of an L-like inner model,
sometimes the very same initial large cardinal hy-
pothesis. In a subtle synthesis, hypotheses of length
concerning the extent of the transfinite were cor-
related with hypotheses of width concerning the
fullness of power sets low in the cumulative hier-
archy, sometimes the arguments providing equi-
consistencies. Thus, large cardinals found not only
extrinsic but intrinsic justifications. Although their
emergence was historically contingent, large car-
dinals were seen to form a linear hierarchy, and
there was the growing conviction that this hierar-
chy provides the hierarchy of exhaustive principles
against which all possible consistency strengths can
be gauged, a kind of hierarchical completion of ZFC.

In the 1970s and 1980s possibilities for new
complementarity were explored with the develop-
ment of inner model theory for large cardinals, the
investigation of minimal L-like inner models hav-
ing large cardinals, models that exhibited the kind
of fine structure that Gödel had first explored for
L. Also, determinacy hypotheses about sets of reals
were explored because of their fruitful consequences
in descriptive set theory, the definability theory of
the continuum. Then in a grand synthesis, certain
large cardinals were found to provide just the con-
sistency strength to establish the consistency of
ADL(R) , the Axiom of Determinacy holding in the
minimal inner model L(R) containing all the reals.
In a different direction, Harvey Friedman has

recently provided a variety of propositions of finite
combinatorics that are equi-consistent with the ex-
istence of large cardinals; this incisive work serves
to affirm the “necessary use” of large cardinal ax-
ioms even in finite mathematics. In set theory it-
self, Hugh Woodin has developed a scheme based
on a new logic in an environment of large cardinals
that argues against CH itself, and with an additional
axiom, that 2ℵ0 = ℵ2 . These results serve as re-
markable vindications for Gödel’s original hopes
for large cardinals.
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