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GODEL AND SET THEORY
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Kurt Godel (1906-1978) with his work on the constructible universe L
established the relative consistency of the Axiom of Choice (AC) and the
Continuum Hypothesis (CH). More broadly. he ensured the ascendancy of
first-order logic as the framework and a matter of method for set theory and
secured the cumulative hierarchy view of the universe of sets. Gddel thereby
transformed set theory and launched it with structured subject matter and
specific methods of proof. In later years Godel worked on a variety of set-
theoretic constructions and speculated about how problems might be settled
with new axioms. We here chronicle this development from the point of
view of the evolution of set theory as a field of mathematics. Much has been
written. of course. about Godel’s work in set theory. from textbook exposi-
tions to the introductory notes to his collected papers. The present account
presents an integrated view of the historical and mathematical development
as supported by his recently published lectures and correspondence. Beyond
the surface of things we delve deeper into the mathematics. What emerges
are the roots and anticipations in work of Russell and Hilbert. and most
prominently the sustained motif of truth as formalizable in the “next higher
system™. We especially work at bringing out how transforming Godel’s work
was for set theory. Itisdifficult now to see what conceptual and technical dis-
tance Godel had to cover and how dramatic his re-orientation of set theory
was. What he brought into set theory may nowadays seem easily explicated.
but only because we have assimilated his work as integral to the subject.
Much has also been written about Gddel’s philosophical views about sets
and his wider philosophical outlook. and while these may have larger sig-
nificance, we keep the focus on the motivations and development of Godel’s
actual mathematical constructions and contributions to set theory. Leaving
his “concept of set” alone. we draw out how in fact he had strong mathe-
matical instincts and initiatives. especially as seen in his last. 1970 attempt
at the continuum problem.
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154 AKIHIRO KANAMORI

§1. From truth to set theory. Godel’s advances in set theory can be seen
as part of a steady intellectual development from his fundamental work on
completeness and incompleteness. Two remarkably prescient passages in his
early publications serve as our point of departure. His incompleteness paper
[1931], submitted for publication 17 November 1930, had a footnote 48a:

As will be shown in Part II of this paper, the true reason for the
incompleteness inherent in all formal systems of mathematics is
that the formation of ever higher types can be continued into the
transfinite (cf. D. Hilbert, “Uber das Unendliche”, Math. Ann. 95,
p. 184), while in any formal system at most denumerably many of
them are available. For it can be shown that the undecidable propo-
sitions constructed here become decidable whenever appropriate
higher types are added (for example, the type w to the system
P). An analogous situation prevails for the axiom system of set
theory.

This passage has been made much of,! whereas the following has not. It
appeared in a summary [1932], dated 22 January 1931, of a talk on the
incompleteness results given in Karl Menger’s colloquium. Notably, matters
in a footnote, perhaps an afterthought then, have now been expanded to
take up fully one-third of an abstract on incompleteness:

If we imagine that the system Z is successively enlarged by the in-
troduction of variables for classes of numbers, classes of classes of
numbers, and so forth, together with the corresponding compre-
hension axioms, we obtain a sequence (continuable into the trans-
finite) of formal systems that satisfy the assumptions mentioned
above, and it turns out that the consistency (w-consistency) of any
of those systems is provable in all subsequent systems. Also, the
undecidable propositions constructed for the proof of Theorem 1
[the Godelian sentences] become decidable by the adjunction of
higher types and the corresponding axioms; however, in the higher
systems we can construct other undecidable propositions by the
same procedure, and so forth. To be sure, all the propositions
thus constructed are expressible in Z (hence are number-theoretic
propositions); they are, however, not decidable in Z. but only in
higher systems, for example, in that of analysis. In case we adopt
a type-free construction of mathematics, as is done in the axiom
system of set theory, axioms of cardinality (that is, axiom postu-
lating the existence of sets of ever higher cardinality) take the place
of type extensions, and it follows that certain arithmetic propo-
sitions that are undecidable in Z become decidable by axioms of

'See e.g., Kreisel [1980, pp. 183, 195, 197], a memoir on Gédel, and Feferman [1987].
where the view advanced in the footnote is referred to as “Gaodel’s doctrine™.
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GODEL AND SET THEORY 155

cardinality, for example, by the axiom that there exist sets whose
cardinality is greater than every a,,, where oy = Ng, a4 = 2.

The salient points of these passages is that the addition of the next “higher
type” to a formal system leads to newly provable propositions of the system;
the iterative addition of higher types can be continued into the transfinite;
and in set theory, new propositions become analogously provable from “ax-
ioms of cardinality”. The transfinite heritage from Hilbert [1926], cited in
footnote 48a, will be discussed in §5. Here we discuss the connections with
the frameworks of types and of truth, which can be associated respectively
with Bertrand Russell and Alfred Tarski.

Mathematical logic was emerging from the Russellian world of orders and
types, and Godel’s work would reflect and transform Russell’s initiatives.
Russell’s ramified theory of types is a scheme of logical definitions based
on orders and types indexed by the natural numbers. Russell proceeded
“intensionally”; he conceived this scheme as a classification of propositions
based on the notion of propositional function, a notion not reducible to
membership (extensionality). Proceeding however in modern fashion, we
may say that the universe is to consist of objects stratified into disjoint types
T,. where T consists of the individuals, T,.; C {X | X C T,}, and the
types T, for n > 0 are further ramified into orders O with T, = (J; O.
An object in O, is to be defined either in terms of individuals or of objects
in some fixed O;, for some J < iand m < n, the definitions allowing for
quantification only over O},. This precludes Russell’s Paradox and other
“vicious circles”, as objects can only consist of previous objects and are
built up through definitions only referring to previous stages. However, in
this system it is impossible to quantify over all objects in a type 7,, and
this makes the formulation of numerous mathematical propositions at best
cumbersome and at worst impossible. So Russell was led to introduce his
axiom of Reducibility, which asserts that for each object there is a predicative
object having exactly the same constituents, where an object is predicative
if its order is the least greater than that of its constituents. This axiom in
effect reduced consideration to individuals, predicative objects consisting of
individuals, predicative objects consisting of predicative objects consisting
of individuals, and so on—the simple theory of types.?

The above quoted Godel passages can be considered a point of transition
from type theory to set theory. The system P of footnote 48a is Godel’s
streamlined version of Russell’s theory of types built on the natural numbers
as individuals, the system used in [1931]. The last sentence of the footnote
calls to mind the other reference to set theory in that paper; Kurt Gédel [1931,
p. 178] wrote of his comprehension axiom IV, foreshadowing his approach to

’In substantial criticism based on how mathematics ought to be regarded as a “calculus
of extensions”, Frank Ramsey [1926] emphasized and advocated this reduction.

This content downloaded from 128.197.60.227 on Thu, 25 Sep 2014 14:52:52 PM
All use subject to JSTOR Terms and Conditions




156 AKIHIRO KANAMORI

set theory, “This axiom plays the role of [Russell’s] axiom of reducibility (the
comprehension axiom of set theory).” The system Z of the quoted [1932]
passage is already the more modern first-order Peano arithmetic, the system
in which Godel in his abstract described his incompleteness results. The
passage envisages the introduction of higher-type variables, which would
have the effect of re-establishing the system P, but as one proceeds to higher
and higher types, that “all the [unprovable] propositions constructed are
expressible in Z (hence are number-theoretic propositions)™ is an important
point about incompleteness. The last sentence of the [1932] passage is
Godel’s first remark on set theory of substance, and significantly, his exampie
of an “axiom of cardinality” to take the place of type extensions is essentially
the one that both Abraham Fraenkel [1922] and Thoralf Skolem [1923] had
pointed out as unprovable in Ernst Zermelo’s [1908] axiomatization of set
theory and used by them to motivate the axiom of Replacement.

We next face head on the most significant underlying theme broached
in our two quoted passages. Godel’s engagement with truth at this time,
whether with conviction or caution.? could be viewed as his entrée into full-
blown set theory. In later, specific terms, first-order satisfaction involves
canvassing arbitrary variable assignments, and higher-order satisfaction re-
quires, in effect, scanning all arbitrary subsets of a domain.

In the introduction to his dissertation on completeness Godel [1929] had
already made informal remarks about satisfaction, discussing the meaning
of “ ‘A system of relations satisfies [erfiillt] a logical expression’ (that is. the
sentence obtained through substitution is true [wahr]).” In a letter to Paul
Bernays of 2 April 1931 Gédel* described how to define the unary predicate
that picks out the Godel numbers of the “correct” [“richtig”] sentences of
first-order arithmetic. Godel then remarked, as he would in similar vein
several times in his career, “Simultaneously and independently of me (as I
gathered from a conversation), Mr. Tarski developed the idea of defining
the concept ‘true proposition’ in this way (for other purposes, to be sure).”
Finally, Godel emphasized the “decidability of the undecidable propositions
in higher systems” specifically through the use of the truth predicate.

The semantic, recursive definition of the satisfaction relation, both first-
order and higher-order, was first systematically formulated in set-theoretic
terms by Tarski [1933][1935]. to whom is usually attributed the undefinability
of truth for a formal language within the language.’ However. evident in
Godel’s thinking was the necessity of a higher system to capture truth, and
in fact Godel maintained to Hao Wang [1996, p. 82] that he had come to the

3Cf. Feferman [1984].

4See Feferman and Dawson, Jr. [2003a, pp. 97f].

5See Tarski [1933][1935] §5, theorem I; in a footnote Tarski wrote: “We owe the method
used here to Godel. who has employed it for other purposes in his recently published work,
[GOdel [1931]] ... .” See Feferman [1984], Murawski [1998], Krajewski [2004], and Wolenski
[2005] for more on Godel and Tarski vis-a-vis truth.
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GODEL AND SET THEORY 157

undefinability of arithmetical truth in arithmetic already in the summer of
1930.% In a letter to Zermelo of 12 October 1931 Godel” pointed out that
the undefinability of truth leads to a quick proof of incompleteness: The
class of provable formulas is definable and the class of true formulas is not,
and so there must be a true but unprovable formula. Gobdel also cited his
[1931] footnote 48a. and this suggests that he himself invested it with much
significance.®

Higher-order satisfaction is particularly relevant both for footnote 48a and
the [1932] abstract. Rudolf Carnap at this time was working on his Logical
Syntax of Language, and in a manuscript attempted a definition of “analyt-
icity” for a language that subsumed the theory of types. Working upward,
he provided an adequate definition of truth for first-order arithmetic. In a
letter to Carnap of 11 September 1932 Godel® pointed out however that Car-
nap’s attempted recursive definition for second-order formulas contained a
circularity. Godel wrote:

. this error may only be avoided by regarding the domain of
the function variables not as the predicates of a definite language,
but rather as all sets and relations whatever.! On the basis of this
idea, in the second part of my work [1931] I will give a definition
for “truth”, and I am of the opinion that the matter may not be

done otherwise ... .

'This doesn’t necessarily involve a Platonistic standpoint, for I assert only that
this definition (for “analytic”) be carried out within a definite language in which
one already has the concepts “set” and “relation”.

The semantic definition of second-order truth requires “all sets and relations

whatever” and must be carried out where one “already has the concepts ‘set’

and ‘relation’ .10

®Wang [1996. p. 82] reports Godel as having conveyed the following: Godel began work
on Hilbert’s problem to establish the consistency of analysis in the summer of 1930. Gddel
quickly distinguished two problems: to establish the consistency of analysis relative to number
theory, and to establish the consistency of number theory relative to finitary number theory.
For the first problem, Godel found that he had to rely on the concept of truth for number
theory, not just the consistency of a formal system for it, and this soon led him to establish the
undefinability of truth. The second problem led, of course, to the incompleteness theorems.
Note here that Godel had already focused on establishing relative consistency results.

’See Feferman and Dawson, Jr. [2003b, pp. 423ff].

¥In a letter to Godel of 21 September 1931 Zermelo (see Feferman and Dawson, Jr.
[2003b, pp. 420ff]) had actually given the argument for the undefinability of arithmetical
truth in arithmetic, thinking that he had found a contradiction in Godel [1931] whereas he
had only conflated truth with provability. This followed the one meeting between Zermelo
and Godel, for which see Kanamori [2004, §7].

9See Feferman and Dawson, Jr. [2003a, p. 347].

""In a reply of 25 September 1932 to Godel, Carnap (see Feferman and Dawson, Jr.
[2003a, p. 351]) seems somewhat the foil when he asked how this last is to be understood,
and further: “Can you define the concept ‘set’ within a definite formalized semantics?”
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158 AKIHIRO KANAMORI

A succeeding letter of 28 November 1932 from Godel to Carnap elaborated
on Gédel’s footnote 48a.!! Godel never actually wrote a Part II to his [1931]
and laconically admitted in the letter that such a sequel “exists only in the
realm of ideas”. Gddel then clarified how the addition of an infinite type w
to the [1931] system P would render provable the unprovable propositions he
had constructed—specifically since a truth definition can now be provided.
Significantly, Godel wrote however:

... theinterest of this definition does not lie in a clarification of the

concept ‘analytic’ since one employs in it the concepts ‘arbitrary
sets’, etc., which are just as problematic. Rather 1 formulate it
only for the following reason: with its help one can show that
undecidable sentences become decidable in systems which ascend
farther in the sequence of types.

The definition of truth is not itself clarificatory, but it does serve a mathe-
matical end.

Tarski, of course, did put much store in his systematic definition of truth
for formal languages, and Carnap would be much influenced by Tarski’s
work on truth. Despite their contrasting attitudes toward truth, Godel’s and
Tarski’s approaches had similarities. Tarski’s [1933][1935] undefinability
of truth result is couched in terms of languages having “infinite order”,
analogous to Godel’s [1931] system P having infinite types, and Godel’s
infinite type w is analogous to Tarski’s “metalanguage”. In a postscript in
his [1935, p. 194, n. 108], Tarski acknowledged Godel’s footnote 48a.

In a lecture [1933] Godel expanded on the themes of our quoted passages.
He propounded the axiomatic set theory “as presented by Zermelo, Fraenkel.
and von Neumann” as “a natural generalization of the [simple] theory of
types, or rather, what becomes of the theory of types if certain superfluous
restrictions are removed.” First, instead of having separate types with sets of
type n+1 consisting purely of sets of type n, sets can be cumulative in the sense
that sets of type n can consist of sets of all lower types. If S, is the collection
of sets of type n, then: Sy is the type of the individuals, and recursively,
Spy1 =S, U{X | X C S,}. Second. the process can be continued into the
transfinite, starting with the cumulation S,, = J, S,.. proceeding through
successor stages as before, and taking unions at limit stages. Godel [1933,
p. 46] again credited Hilbert for opening the door to the formation of types
beyond the finite types. As for how far this cumulative hierarchy of sets is
to continue, the “first two or three types already suffice to define very large
ordinals” ([1933, p. 47]) which can then serve to index the process, and so
on, in an “autonomous progression” in later terminology. In a prophetic
remark for set theory and new axioms, Godel observed: “We set out to find
a formal system for mathematics and instead of that found an infinity of

See Feferman and Dawson, Jr. [2003a, p. 355].
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GODEL AND SET THEORY 159

systems, and whichever system you choose out of this infinity, there is one
more comprehensive, i.e., one whose axioms are stronger.” Further echoing
the quoted [1932] passage Godel [1933, p. 48] noted that for any formal
system S there is in fact an arithmetical proposition that cannot be proved
in S, unless S is inconsistent. Moreover, if S is based on the theory of types,
this arithmetical proposition becomes provable if to S is adjoined “the next
higher type and the axioms concerning it.”

Godel’s approach to set theory, with its emphasis on hierarchical truth,
should be set into the context of the axiomatic development of the subject.!?
Zermelo [1908] had provided the initial axiomatization of “the set theory
of Cantor and Dedekind”, with characteristic axioms Separation, Infinity,
Power Set, and of course, Choice. Work most substantially of John von
Neumann [1923](1928] on ordinals led to the incorporation of Cantor’s
transfinite numbers as now the ordinals and the axiom schema of Replace-
ment for the formalization of transfinite recursion. Von Neumann [1929]
also formulated the axiom of Foundation, that every set is well-founded,
and defined the cumulative hierarchy in his system via transfinite recursion:
The axiom entails that the universe V' of sets is globally structured through a
stratification into cumulative “ranks” V,, where with P(X) = {Y | Y C X'}
denoting the power set of X,

Vo =0: Vay1 = P(Va): Vs = Uyes Va for limit ordinals 6 :
and
V=U,Va-

Zermelo in his remarkable [1930] subsequently provided his final axiomati-
zation of set theory, proceeding in a second-order context and incorporating
both Replacement (which subsumes Separation) and Foundation. These
axioms rounded out but also focused the notion of set, with the first pro-
viding the means for transfinite recursion and induction and the second
making possible the application of those methods to get results about all
sets. GoOdel’s coming work would itself amount to a full embrace of Replace-
ment and Foundation but also first-order definability, which would vitalize
the earlier initiative of Skolem [1923] to establish set theory on the basis of
first-order logic.!> The now standard axiomatization ZFC is essentially the
first-order version of the Zermelo [1930] axiomatization, and ZF is ZFC
without AC.

§2. The constructible universe L. Set theory was launched on an indepen-
dent course as a distinctive field of mathematics by Godel’s formulation of the

12For a fuller account documenting the contributions of many, see Kanamori [1996).
3See §6 for a comparative analysis of the approaches of Zermelo and Gédel.
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160 AKIHIRO KANAMORI

class L of constructible sets through which he established the relative consis-
tency of AC in mid-1935 and CH in mid-1937.'* In his first announcement,
communicated 9 November 1938, Godel [1938] wrote:

“[The] ‘constructible’ sets are defined to be those sets which can
be obtained by Russell’s ramified hierarchy of types, if extended to
include transfinite orders. The extension to transfinite orders has
the consequence that the model satisfies the impredicative axioms
of set theory, because an axiom of reducibility can be proved for
sufficiently high orders.”

This points to two major features of the construction of L:

(i) Godel had refined the cumulative hierarchy of sets described in his
1933 lecture to a hierarchy of definable sets which is analogous to the orders
of Russell’s ramified theory. Despite the broad trend in mathematical logic
away from Russell’s intensional intricacies and toward versions of the simple
theory of types, Godel had assimilated the ramified theory and its motiva-
tions as of consequence and now put the theory to a new use, infusing its
intensional character into an extensional context.

(i1) Godel continued the indexing of the hierarchy through al/l the ordi-
nals as given beforehand to get a class model of set theory and thereby to
achieve relative consistency results. His earlier [1933. p. 47] idea of using
large ordinals defined in low types for further indexing in a bootstrapping
process would not suffice. That “an axiom of reducibility can be proved for
sufficiently high orders™ is an opaque allusion to how Russell’s problematic
axiom would be rectified in the consistency proof of CH (see §3) and more
broadly to how the axiom of Replacement provided for new sets and enough
ordinals."> Von Neumann’s ordinals would be the spine for a thin hierarchy
of sets, and this would be the key to both the AC and CH results.

In a brief account [1939b] Godel informally presented L much as is doie
today: For any set x let def(x) denote the collection of subsets of x definable
over (x.€) via a first-order formula allowing parameters from x. Then
define

Lo=0: Loy =def(Ly). Ly = J,<5Lq for limit ordinals d;
and the constructibie universe

L=U,La.

"See Dawson. Jr. [1997. pp. 108. 122]: in one of Godel’s Arbeitshefte there is an indication
that he established the relative consistency of CH in the night of 14-15 June 1937.

SWang [1981, p. 129]. reporting on conversations with Godel in 1976, wrote how he “spoke
of experimenting with more and more complex constructions [of ordinals for indexing] for
some extended period somewhere between 1930 and 1935.” Kreisel [1980, pp. 193. 196] wrote
of Godel’s “reservations” about Replacement which initially held him back from considering
all the ordinals as being given beforehand.
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GODEL AND SET THEORY 161

Toward the end Godel [1939b, p. 31] pointed out that L “can be defined
and its theory developed in the formal systems of set theory themselves.”
This is a remarkable understatement of arguably the central feature of the
construction of L:

(iii) L is a class definable in set theory via a transfinite recursion that
could be based on the formalizability of def(x). the definability of definabil-
ity. Godel had not embraced the definition of truth as itself clarificatory,'®
but through his work he in effect drew it into mathematics to a new mathe-
matical end. Though understated in Godel’s writing, his great achievement
here as in arithmetic is the submergence of metamathematical notions into
mathematics.

In the proof of the incompleteness theorem, Godel had encoded provabil-
ity—syntax—and played on the interplay between truth and definability.
Godel now encoded satisfaction—semantics—with the room offered by the
transfinite indexing. making truth, now definable for levels, part of the
formalism and part of the subject matter. In modern parlance. an inner
model of ZFC is a transitive (definable) class containing all the ordinals such
that, with membership and quantification restricted to it, the class satisfies
each axiom of ZFC. Godel in effect argued in ZF to show that L is an inner
model of ZFC, and moreover that L satisfies CH. He thus established the
relative consistency Con(ZF) implies Con(ZFC + CH). In what follows.,
we describe his proofs that L is an inner model of ZFC and in §3 that L
satisfies CH.

In his sketch [1939b] Gdodel simply argued for the ZFC axioms holding
in L as evident from the construction, with the extent of the ordinals and
the sets provided by def(x) sufficient to establish Replacement in L. Only at
the end when he was attending to formalization did he allude to the central
issue of relativization. For here and later, recall that for a formula ¢ and
classes C and M. ™ and CM denote the relativizations to M of ¢ and
C respectively. i.e., @™ denotes o but with the quantifiers restricted to the
elements of M. and CM denotes the class defined by the relativization to
M of a defining formula for C. Godel’s [1939b] arguments for relative
consistency amount to establishing ¢ as theorems of set theory for various
o starting with the axioms of set theory themselves, and could only work if
deff(x) = def(x) for x € L. This absoluteness of first-order definability is
central to the proof if L is to be formally defined via the def(x) operation,
but notably Gddel himself would never establish this absoluteness explicitly,
preferring in his one rigorous published exposition of L to take an approach
that avoids def(x) altogether.

In his monograph [1940a], based on 1938 lectures, Godel provided a spe-
cific, formal presentation of L in a class-set theory developed by Paul Bernays

'°See the last displayed passage in §1.
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[1937]. a theory based in turn on a theory of von Neumann [1925]. First,
Godel carried out a paradigmatic development of “abstract” set theory
through the ordinals and cardinals with features that have now become com-
mon fare, like his particular well-ordering of pairs of ordinals.!” Godel then
used eight binary operations, producing new classes from old, to generate L
set by set via transfinite recursion. This veritable “Go6del numbering” with
ordinals bypassed the def(x) operation and made evident certain aspects
of L. Since there is a direct, definable well-ordering of L, choice functions
abound in L, and AC holds there.

Much of the analysis of L would have to be devoted to verifying Replace-
ment or at least Separation there, this requiring an analysis of the first-order
formalization of set properties. It has sometimes been casually asserted that
Godel [1940a] through his eight operations provided a finite axiomatization
of Separation, but this cannot be done. Through closure under the opera-
tions one does get Separation for bounded formulas, i.e., those formulas all
of whose quantifiers can be rendered as Vx € y and 3x € y. Godel estab-
lished using Replacement (in V') that for any set x C L, thereisa y € L
such that x C y (9.63 of [1940a]). He then established that a wide range of
classes C C L satisfy the condition that forany x € L, xN C € L, that C
is “amenable” in later terminology. With this. he established o’ for every
axiom o of ZFC, the relativized instances of Replacement being the most
crucial to confirm.'® Having bypassed def(x). this argumentation makes no
appeal to absoluteness.

83. Consistency of the Continuum Hypothesis. Godel’s proof that L sat-
isfies CH consisted of two separate parts. He established the implication
V = L — CH., and. in order to apply this implication within L. the abso-
luteness LY = L to establish the desired (CH)Z. That ¥ = L — CH es-
tablished a connection between two quite non-absolute concepts, the power
set and successor cardinality of an infinite set, and the absoluteness L- = L
effected the requisite relativization. That LY = L had been asserted in his
first announcement [1938]. and follows directly from def’(x) = def(x) for
x € L, which was broached in the sketch [1939b]. In [1940a], his approach to
LY = L was rather through the evident absoluteness of the eight generating
operations which in particular entailed that being a (von Neumann) ordinal
is absolute and ensured the internal integrity of the generation of L. There
is a nice resonance here with Godel [1931], in that there he had catalogued
a series of functions to be primitive recursive whereas now he catalogued a
series of set-theoretic operations to be absolute—the submergence of prov-
ability (syntax) for arithmetic evolved to the submergence of definability

"In footnote 14 added in a 1951 printing of his [1940a] Godel (see Feferman [1990. p. 54])
even used the device later attributed to Dana S. Scott [1955] for reducing classes to sets by
restricting to members of lowest rank.

18 Jech [2002, §13] presents a modern version of Godel’s argument.
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(semantics) for set theory. The argument in fact shows that for any inner
model M of ZFC. LM = L. Decades later many inner models based on
first-order definability would be investigated for which absoluteness consid-
erations would be pivotal. and Godel had formulated the canonical inner
model.

Godel’s argument for V' = L — CH rests, as he himself wrote in a brief
summary [1939a]. on “a generalization of Skolem’s method for constructing
enumerable models.” This was the first significant use of Skolem functions
since Skolem’s own [1920] to establish the Lowenheim-Skolem theorem.
Gaodel [1939b] specifically established:

For infinite «, every constructible subset of L,

belongs to some Ly for a 8 of the same cardinality as o. (%)

It is straightforward to show that for infinite ., L, has the same cardinality
as that of a. It follows from (x) that in L, the power set of L,, is included
in L,,,. and so CH follows. (Godel emphasized the Generalized Continuum
Hypothesis (GCH), that 2% = R, for all @, and V = L — GCH follows
by analogous reasoning.) Godel [1939b] proved () for an X C L, such
that X € L by getting a set M C L containing X and sufficiently many
ordinals and definable sets so that M will be isomorphic to some Ly, the
construction of M ensuring that # has the same cardinality as «. Godel’s
approach to M, different from the usual approach taken nowadays, can
be seen as proceeding through layers defined recursively. a new layer being
defined via closure according to new Skolem functions and ordinals based on
the preceding layer. This was indeed a “generalization of Skolem’s method”,
being an iterative application of Skolem closures. M having been sufficiently
bolstered, Godel then confirmed that M is isomorphic with respect to €
to some L. making the first use of the now familiar Mostowski transitive
collapse.

Godel in his monograph [1940a], having proceeded without def(x), for-
mally carried out his [1939b] argument in terms of his eight operations, and
this had the effect of obscuring the Skolem definability and closure. There
is. however, an economy of means that can be seen from Godel [1940a]: The
arguments there demonstrated that absoluteness is not necessary to establish
either that L is an inner model of ZFC or that V = L — CH; absoluteness
is only necessary where it is intrinsic, to establish Lt = L.

Until the 1960s accounts of L dutifully followed Godel’s [1940a]. presen-
tation, and papers generally in axiomatic set theory often used and referred
to Godel’s specific listing and grouping of his class-set axioms. However,
modern expositions of L proceed in ZFC with the direct formalization of
def(x), first formulating satisfaction-in-a-structure and coding this in set
theory. They then establish Replacement or Separation in L by appeal-
ing to an L analogue of the ZF Reflection Principle, drawn from Richard
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Montague [1961, p. 99] and Azriel Levy [1960, p. 234].'° Moreover, they
establish V' = L — CH via some version of the Condensation Lemma: If 6
is a limit ordinal and X is an elementary substructure of L, then there is a
B such that X is isomorphic to Ly. Instead of Godel’s hand-over-hand al-
gebraic approach to get (), one incorporates the satisfaction-in-a-structure
relation and takes at least a £,-elementary substructure of an ambient L; in
a uniform fashion using its Skolem functions. This higher-level approach is
indicative of how the satisfaction relation has been assimilated into modern
set theory but also of what Godel’s approach had to encompass.

One is left to speculate why, and perhaps to rue that, Godel did not himself
articulate a reflection principle for use in L or some version of the Con-
densation Lemma based on the model-theoretic satisfaction-in-a-structure
relation. The requisite Skolem closure argument would have served as a mo-
tivating entrée into his [1939b] proof of CH in L. Moreover, this approach
would have provided a thematic link to Godel’s later advocacy of the heuris-
tic of reflection, described in §7. Finally, with satisfaction-in-a-structure
becoming the basis of model theory after Tarski—Vaught [1957] and the ZF
Reflection Principle emerging only through the infusion of model-theoretic
methods into set theory around 1960, a fuller embrace by Gdédel of the
satisfaction relation might have accelerated the process. That infusion was
stimulated by Tarski through his students. and this sets in new counterpoint
Godel’s indirect engagement with truth and satisfaction.2?

Godel’s fine grained [1940a) approach made transparent the absoluteness
of L without having to confront def(x). but it also obfuscated the intuitive
underpinnings of definability and the historical motivations, and this may
have hindered the understanding of L for years. On the other hand, once L
became assimilated. Godel’s [1940a] presentation would serve as the direct
precursor for Ronald Jensen’s [1972] potent and fruitful fine structure theory.

84. Descriptive set theory results. In his first announcement [1938] Godel
listed together with the Axiom of Choice and the Generalized Continuum
Hypothesis two other propositions that hold in L. These were propositions

The principle asserts that for any (first-order) formula (v, . . ., v,) in the free variables
as displayed and any ordinal f8, thereisa limit ordinal @ > f suchthatforany x;....,x, € V,
we have @[x),....2 xa] iff @ o [x1... ..o x.]. where again ¢ denotes the relativization of the
formula ¢ to M. This principle is equivalent to Replacement and Infinity in the presence of
the other ZF axioms.

201t is, however, notable that in a seminal paper, Tarski [1931] gave a precise, set-theoretic
formulation of the concept of a set of reals being first-order definable in the structure
(Reals, +, x) that bypassed formulating the concept of satisfaction in this structure. Rather,
Tarski worked with Boolean combinations and geometric projections. Like Godel, Tarski at
the time worked to dispense with the metamathematical underpinnings. With the develop-
ment of mathematical logic, we now see results stated there as leading to the decidability of
real closed fields via the elimination of quantifiers.
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of descriptive set theory. the definability theory of the continuum.?! To
state them in modern terms, we first recall some terminology: With R the
set of real numbers and considering R” as a topological space in the usual
way., suppose that ¥ C R". Y is E} (analytic) iff 'Y is the projection
pB = {(x),....: xn) | Iy ((x1.. ... Xn.y) € B)} of a Borel subset B of R"*1.
(Equivalently, Y is the image under a continuous function of a Borel subset
of some R¥.) Y isI} iff R” — Y isE]. Y is I} iff Y is the projection of a I}
subset of R"*1. Y is TI} iff R” — Y is £}. Y is A} iff it is both X} and IT3.
Proceeding thus through finite indices we get the hierarchy of projective sets.
A set of reals has the perfect set property if either it is countable or else has a
perfect subset.?2 Godel’s propositions following from ¥ = L can be cast as
follows:

(a) Thereisa Aé set of reals which is not Lebesgue measurable.
(b) There is a IT] set of reals which does not have the perfect set property.

It had been known from Luzin [1914] that every Z‘.} set 1s Lebesgue mea-
surable and has the perfect set property. and so (a) and (b) provided an
explanation in terms of relative consistency about the lack of progress up the
projective hierarchy.

Godel never again mentioned (a) or (b) in print, and only in an endnote
to a 1951 printing of his [1940a] did he describe a relevant result. There.
he pointed out that the inherent [1940a] well-ordering of L when restricted
to its reals is a E; subset of R?. describing how generally to incorporate his
[1940a] development into the definability context of descriptive set theory.
When every real is in L. this £} well-ordering is A} and does not satisfy
Fubini’s Theorem for Lebesgue measurable subsets of the plane. and this is
one way to confirm (a). (b) is most often derived indirectly: what may have
been Godel’s original argument is given in Kanamori [2003, p. 170].

Correspondence with von Neumann casts some light here. In a letter to
von Neumann of 12 September 1938 Godel®? pointed out: “The theorem on
one-to-one continuous images of [IT}] sets, which we had discussed at our last
meeting, turned out to be false (refuted by Mazurkiewicz in Fund[amenta
Mathematicae] 10). ... I now even have some results in the opposite direc-
tion ... ” What was at issue here were images under one-to-one continuous
functions. Godel had been working on ongoing mathematics and would use
L to address a mathematical question by giving a negative consistency result
as per the axioms of set theory—a new kind of impossibility result.

With the reconstrual of projections as continuous real functions, the X}
sets are exactly the sets that are the continuous images of H{ sets. Noting

21See Moschovakis [1980] or Kanamori [2003] for the concepts and terminology of de-
scriptive set theory. See Kanamori [1995] for the emergence of descriptive set theory.

2 A set of reals is perfect if it is non-empty, closed, and has no isolated points.

3See Feferman and Dawson, Jr. [2003b, p. 361].
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that Sierpinski had asked whether the one-to-one continuous image of any
l'[} set is again l'l{. Mazurkiewicz [1927] had observed that this was not so by
showing that the difference of any two 2{ sets is the one-to-one continuous
image of a I} set. In his letter to von Neumann, Gédel proceeded to
announce the consistency of (b) and the version of (a) asserting that there
is a non-measurable (and hence not l'I}) one-to-one continuous image of a
l'l{ set. With the recasting of continuous functions as projections, his actual
statement of (a) in [1938]. communicated two months later on 9 November
1938, was in the stringent and telling form: There is a non-measurable set
such that both it and its complement are one-to-one projections of H{ subsets
of R2. Godel was focused on one-to-one images, and one can reconstruct
this consistency result with L.2*

In a letter to Godel of 28 February 1939 von Neumann (see Feferman
and Dawson, Jr. [2003b, p. 363]) brought to his attention the paper of
Motokiti Kondd [1939]). For 4, B C R2, A4 is uniformized by B iff B C A
and Vx(Jy((x,y) € 4) « Iy({x.y) € B)). Kondd [1939] had established
the culminating result of the early, classical period of descriptive set theory,
that every IT} subset of R? can be uniformized by a ITj set. With this it was
immediate that every I} set is the one-to-one continuous image of a ITj set,
and (a) as stated above is indeed equivalent to Godel’s original [1938] form.
In a letter to von Neumann of 20 March 1939 Gddel®® wrote: “The result
of Kondod is of great interest to me and will definitely allow an important
simplification in the consistency proof of [(a)] and [(b)] of the attached
offprint.”26

Godel’s results (a) and (b) can be put into a broad historical context.
Cantor’s early preoccupation was with sets of reals and the like, and sub-
stantially motivated by his CH he both developed the transfinite numbers
and investigated topological properties of sets of reals. In particular, he
established that the closed sets have the perfect set property and so “satisfy
the CH” since perfect sets have the cardinality of the continuum. Zermelo
developed abstract set theory, with € having no privileged interpretation and
sets regulated and generated by axioms.?” In the first decades of the 20th

2 For example, one can apply the idea used in Kanamori [2003, p. 170].

3See Feferman and Dawson, Jr. [2003b, p. 365].

Al this to and fro tends to undermine the eye-catching remark of Kreisel [1980, p. 197]
that: ... according to Godel’s notes, not he. but S. Ulam. steeped in the Polish tradition
of descriptive set theory. noticed that the definition of the well-ordering ... of subsets of w
was so simple that it supplied a non-measurable PCA [i.e., £}] set of real numbers ... .”

*’See Kanamori [2004] for Zermelo and set theory. Concerning “abstract”, Fraenkel in
his text Abstract Set Theory [1953] distinguished between abstract sets (the nature of whose
elements are not of concern) and sets of points (typically numbers). In the early years
“general set theory” was also sometimes used with connotations similar to “abstract set
theory”, though Zermelo himself consistently used “general set theory” to refer to axiomatic
set theory without Infinity. The latter-day Skolem [1962] was still entitled Abstract Set Theory.
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Century descriptive set theory carried forth the investigation of sets of reals
through the Borel and analytic sets into the projective sets, while in abstract
set theory Cantor’s transfinite numbers were incorporated into the axiomatic
framework by von Neumann with his ordinals. Then formal definability was
brought into descriptive set theory by Tarski [1931], which before his well-
known paper [1933] on truth dealt with the concept of a first-order definable
set of reals, and by Kuratowski-Tarski [1931] and Kuratowski [1931], which
pursued the basic connection between existential number quantifiers and
countable unions and between existential real quantifiers and projection and
used these “logical symbols” to aid in the classification of sets in the Borel
and projective hierarchies. Godel in his monograph [1940a, p. 3] developed
“abstract” set theory, and in that 1951 endnote started ab initio to correlate
definability in L with formal definability in descriptive set theory. Godel’s
results (a) and (b) constitute the first real synthesis of abstract and descrip-
tive set theory, in that the axiomatic framework is brought to bear on the
investigation of definable sets of reals.

§5. L through the lectures. Godel’s posthumously published lectures
[1939¢] and [1940b] provide considerable insight into his motivations and
development of L. Both Hilbert and Russell loom large in Gddel’s lecture
[1939c], given at Hilbert’s Gottingen on 15 December 1939. Gaodel recalled
at length Hilbert’s previous work [1926] on CH and cast his own as an
analogical development, one leading however to the constructible sets as a
model for set theory. Hilbert [1926] apparently thought that if he could show
that from any given formalized putative disproof of CH, he could prove CH,
then CH would have been established. At best, Hilbert’s argument could
only establish the relative consistency of CH: this was evident to Godel, who
unlike Hilbert saw the distinction between truth and consistency clearly and
wrote [1939¢, p. 129] “the first to outline a program for a consistency proof
of the continuum hypothesis was Hilbert.” For Hilbert, any disproof of CH
would have to make use of number-theoretic functions whose definitions in
his system needed his ¢-symbol. his well-known device for abstracting quan-
tification. He thus set out to replace the use of such functions by functions
defined instead by transfinite recursion through the countable ordinals and
via recursively defined higher-type functionals. The influence of Russell’s
ramified hierarchy is discernible here both in the preoccupation with defin-
ability and with the introduction of a type hierarchy, albeit one extended into
the transfinite. Finally, Hilbert’s scheme rested on establishing a bijection
between such definitions and the countable ordinals to establish CH.

Godel started his description of L by recalling two main lemmas in
Hilbert’s argument and casting two main features of L in analogous fash-
ion. Contrasting his approach with Hilbert’s however, Godel [1939c¢, p. 131]
emphasized about L that “the model ... is by no means finitary: in other
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words, the transfinite and impredicative procedures of set theory enter into
its definition in an essential way. and that is the reason why one obtains only
a relative consistency proof [of CH] ... " Gddel then pointed out a crucial
property of L to which there was no Hilbertian counterpart. that it has “a
certain invariance™ property. i.e.. the absoluteness L~ = L. To motivate the
model Godel again referred to Russell’s ramified theory of types. Godel first
described what amounts to the orders of that theory for the simple situation
when the members of a countable collection of real numbers are taken as the
individuals and new real numbers are successively defined via quantification
over previously defined real numbers. and emphasized that the process can
be continued into the transfinite. He [1939c, p. 131] then observed that this
procedure can be applied to sets of real numbers and the like, as individuals,
and moreover. that one can “intermix” the procedure for the real numbers
with the procedure for sets of real numbers “by using in the definition of a
real number quantifiers that refer to sets of real numbers. and similarly in still
more complicated ways.” Godel called a constructible set “the most general
[object] that can at all be obtained in this way. where the quantifiers may
refer not only to sets of real numbers. but also to sets of sets of real numbers
and so on. ad transfinitum. and where the indices of iteration ... can also
be arbitrary transfinite ordinal numbers.”™ Godel [1939c¢. p. 137] considered
that although this definition of constructible set might seem at first to be
“unbearably complicated™. “the greatest generality yields, as it so often does.
at the same time the greatest simplicity.” Godel was picturing Russell’s
ramified theory of types by first disassociating the types from the orders.
with the orders here given through definability and the types represented by
real numbers. sets of real numbers. and so forth. Godel’s intermixing then
amounted to a recapturing of the complexity of Russell’s ramification. the
extension of the hierarchy into the transfinite allowing for a new simplicity.

Godel [1939¢. p. 137] went on to describe the universe of set theory.
“the objects of which set theory speaks”. as falling into “a transfinite se-
quence of Russellian [simple] types™ the cumulative hierarchy of sets that
he had described in his [1933]. He then formulated the constructible sets
as an analogous hierarchy. the hierarchy of [1939b]. Giving priority to
the ordinals, Godel had introduced transfinite Russellian orders through
definability, and the hierarchy of types was spread out across the orders.
The jumble of the Principia Mathematica had been transfigured into the
model L of the constructible universe. Goédel forthwith pointed out a salient
difference between the V' and the L hierarchies with respect to cardinal-
ity: Whereas |V,.1| > |V, | because of the use of the power set operation,
|Los1] = |Lo| = || for infinite .

In a comment bringing out the intermixing of types and orders, Godel
[1939c¢. p. 141] pointed out that “there are sets of lower type that can only
be defined with the help of quantifiers for sets of higher type.” Constructible
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subsets of L, will first appear high in the L hierarchy; in terms of the [1933,
p. 48] remarks, sets of natural numbers will encode truth propositions about
higher L,’s. However, these cannot be arbitrarily high. Gédel [1939c, p. 143]
announced the version of (x) (cf. §3) for countable ordinals as the crux of the
consistency proof of CH. He subsequently asserted that “this fundamental
theorem constitutes the corrected core of the so-called Russellian axiom
of reducibility.” Thus, Godel established another connection between L
and Russell’s ramified theory of types. But while Russell had to postulate
his axiom of Reducibility for his finite orders, Godel was able to prove an
analogous form for his transfinite hierarchy, one that asserts that the types
are delimited in the hierarchy of orders. Not only did Godel resurrect the
ramified theory with L, but his transfinite type extension rectified Russell’s
ill-fated axiom. Reflecting a remark from [1931] quoted in §1 about the
axiom of Reducibility as “the comprehension axiom of set theory”, Godel
wrote [1939c, p. 145]:

This character of the fundamental theorem as an axiom of re-
ducibility is also the reason why the axioms of classical mathe-
matics hold for the model of the constructible sets. For after all,
as Russell showed, the axioms of reducibility, infinity and choice
are the only axioms of classical mathematics that do not have
[a] tautological character. To be sure. one must observe that the
axiom of reducibility appears in different mathematical systems
under different names and in different forms, for example, in Zer-
melo’s system of set theory as the axiom of separation, in Hilbert’s
systems in the form of recursion axioms, and so on.

This passage shows Godel to be holding a remarkably synthetic, unitary view,
viewing as he does Russell’s axiom of Reducibility, Zermelo’s Separation
axiom, and Hilbert’s [1926] recursion axioms all as one. Actually, () as such
is not necessary to establish that L is a model of set theory:; it is sufficient that
for any «, the constructible subsets of L,, all belong to some Ly and for this
one only needs the full extent of the ordinals as bolstered by Replacement.
That (x) is sufficient but separate is acknowledged by Godel when he next
wrote: “Now the axiom of reducibility holds for the constructible sets on
the basis of the fundamental theorem ... ” Thus, it is more proper to regard
Reducibility, Replacement, and the Reflection Principle (cf. end of §3) all as
one, and the thrust of Godel’s comments on Reducibility are more in this
direction.

Godel in his lecture did not detail the proof of LL = L, mentioning [1939c,
p- 145] only that “an essential point in it is that the notion of ordinal number
is absolute: that is, ordinal number in the model of the constructible sets
means the same as ordinal number itself.” He then launched into a detailed
account of the proof of the “fundamental theorem”, i.e., (x) for countable
ordinals, the proof being the one sketched in [1939b]. This lecture of G6del’s
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is a remarkably clear presentation of both the mathematical and historical
development of L, and had it become widely accessible together with his
[1940a], it would no doubt have accelerated the assimilation of L.

Hilbert and Russell also figure prominently in a later lecture [1940b] on
CH given on 15 November 1940 at Brown University, of which we mainly
describe the new ground covered. Godel began by announcing that he had
“succeeded in giving the [consistency] proof a new shape which makes it
somewhat similar” to Hilbert’s [1926] attempt and proposed to sketch the
new proof, considering it “perhaps the most perspicuous”. First however,
Godel described the issues involved in general terms and reviewed the def(x)
construction of L. Once again he emphasized that his argument for showing
that CH holds in L proves an axiom of reducibility, this time putting more
stress on Separation [1940k, p. 178]: “... itis not surprising that the axioms
of set theory hold for the constructible sets, because the axiom of reducibil-
ity or its equivalents, e.g., Zermelo’s Aussonderungsaxiom [Separation], is
really the only essential axiom of set theory.” Godel then turned to his new
approach and introduced the concept of a relation being “recursive of order
a” for ordinals a. This concept is a generalization of the notion of defin-
ability, a generalization obtained by essentially interweaving the operation
def(x) with a recursion scheme akin to Hilbert’s for his [1926] hierarchy
of functionals.?® As Godel [1940b, p. 180] wrote: “The difference between
this notion of recursiveness and the one that Hilbert seems to have had in
mind is chiefly that I allow quantifiers to occur in the definiens.” This, of
course, is a crucial difference, and having separated out arithmetical aspects
of definability a la Hilbert, Godel [1940b, p. 181] because of the quantifiers
had to face head on “defining recursively the metamathematical notion of
truth” a la Tarski. This 1940 juncture is arguably when Godel came closest,
having never written that part II to his [1931], to describing what could have
been its contents:

Now this metamathematical notion of truth, i.e., the class of num-
bers of truth propositions, can be defined by a method similar to
the one which Tarski applied for the system of Principia mathe-
matica. The point is to well-order all propositions of our domain
in such a manner that the truth of each depends in a precisely
describable manner on the truth of some of the preceding: this
gives then the desired recursive definition.

Using the new concept of recursiveness—better, new concept of definabil-
ity—Godel gave a model of Russell’s Principia, construed as his [1931],
system P, in which CH holds. The types of this model were essentially
coded versions of L, ., — Ly,. Echoing his [1931], footnote 48a, Gdodel
[1940a, p. 184] subsequently wrote:

2 As analyzed by Solovay in his introductory notes (cf. Feferman [1995, p. 122]), for
a > w, a relation on « is recursive of order a exactly when it appears in Ly..

This content downloaded from 128.197.60.227 on Thu, 25 Sep 2014 14:52:52 PM
All use subject to JSTOR Terms and Conditions




GODEL AND SET THEORY 171

You know every formal system is incomplete in the sense that
it can be enlarged by new axioms which have approximately the
same degree of evidence as the original axioms. The most general
way of accomplishing these enlargements is by adjoining higher
types, e.g., the type w for the system of Principia mathematica. But
you will see that my proof goes through for systems of arbitrarily
high type.
However high a transfinite type that one wanted to include, one can similarly
establish the relative consistency of CH in the corresponding “inner model”.
A coda, returning to truth: Years later, in a letter to Hao Wang of 7 March
1968 Godel?® wrote, in implicit criticism of Hilbert:

. there was a special obstacle which really made it practically
impossible for constructivists to discover my consistency proof. It
is the fact that the ramified hierarchy, which had been invented
expressly for constructive purposes, had to be used in an entirely
nonconstructive way. A similar remark applies to the concept of
mathematical truth, where formalists considered formal demon-
strability to be an analysis of the concept of mathematical truth
and, therefore, were of course not in a position to distinguish the
two.

Wang [1996, pp. 250ff] described how Gddel in January 1972 retrospectively
contrasted Hilbert’s approach to CH with his.

§6. Set theory transformed. Godel with L broughtinto set theory a method
of construction and argument and thereby affirmed several features of its
axiomatic presentation. First, Godel showed how first-order definability
can be formalized and used in a transfinite recursive construction to es-
tablish striking new mathematical results. This significantly contributed to
a lasting ascendancy for first-order logic, which beyond its sufficiency as
a logical framework for mathematics was seen to have considerable opera-
tional efficacy. Godel’s construction moreover buttressed the incorporation
of Replacement and Foundation into set theory. Replacement was imma-
nent in the arbitrary extent of the ordinals for the indexing of L and in its
formal construction via transfinite recursion. In his analysis of Russell’s
mathematical logic Godel [1944, p. 147] again wrote about how with L
he had proved an axiom of reducibility, and in fact that “ ... all impred-
icativities are reduced to one special kind, namely the existence of certain
large ordinal numbers (or well-ordered sets) and the validity of recursive
reasoning for them.” As for Foundation, underlying the construction was
the well-foundedness of sets. Godel in a footnote to his account [1939b,
fn12] wrote about his axiom 4, i.e., ¥ = L: “In order to give 4 an intuitive

®See Feferman and Dawson, Jr. [2003b, p. 404].
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meaning, one has to understand by ‘sets’ all objects obtained by building
up the simplified hierarchy of types on an empty set of individuals (includ-
ing types of arbitrary transfinite orders).” Godel [1947, pp. 518ff] later
wrote: 0

... there exists a satisfactory foundation of Cantor’s set theory in
its whole original extent, namely axiomatics of set theory, under
which the logical system of Principia mathematica (in a suitable
interpretation) may be subsumed.

It might at first seem that the set-theoretical paradoxes would
stand in the way of such an undertaking, but closer examination
shows that they cause no trouble at all. They are a very serious
problem, but not for Cantor’s set theory. ... Thisconceptofset. ..
according to which a set is anything obtainable from the integers
(or some other well-defined objects) by iterated application of
the operation “set of”, and not something obtained by dividing
the totality of all existing things into two categories, has never
led to any antinomy whatsoever; that is, the perfectly “naive”
and uncritical working with this concept of set has so far proved
completely self-consistent.

A new emphasis here is on the inherent consistency of the cumulative hier-
archy stratification, which, to emphasize, is provided by the axioms, most
saliently Foundation interacting with Replacement, Power Set, and Union.

The approaches of Godel and of Zermelo [1930] (mentioned in §1) to
set theory merit comparison with respect to the emergence of the cumu-
lative hierarchy view, the focus on models of set theory, and subsequent
influence.3! Zermelo had first adopted Foundation, thereby promoting
the cumulative hierarchy view of sets, and posited an endless procession
of models of his axioms of form V, for inaccessible cardinals®?> x with
one model a set in the next. Both Zermelo and Goddel advocated direct
transfinite reasoning, with Zermelo proceeding in an avowedly second-order
axiomatic context and Godel formalizing first-order definability in his trans-
finite extension of the theory of types. Godel came close to Zermelo [1930]
in his informal sketch [1939b] about L when he stated his relative con-
sistency results in terms of the axioms of Zermelo [1908] as rendered in
first-order logic and asserted that Lo, where Q is “the first inaccessible num-
ber”, is a model of Zermelo’s axioms together with Replacement. Also,
making his only explicit reference to Zermelo [1930], Godel [1947, p. 520]
later gave the existence of inaccessible cardinals as the simplest example
of an axiom that asserts still further iterations of the ‘set of” operation

3Here the footnotes to the text are excised.

3K reisel [1980] draws this comparison for didactic purposes.

32 An uncountable cardinal « is inaccessible if x is a regular cardinal, i.e.. if & < & and
F:a — K, then|JF“a < k, and & is a strong limit cardinal, i.e., if # < &, then 2¥ < k.
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and can supplement the axioms of set theory without arbitrariness.’®> Be-
yond the imprint on Godel himself, which could be regarded as significant,
Zermelo [1930] seemed to have had little influence on the further devel-
opment of set theory, presumably because of its second-order lens and its
lack of rigorous detail and attention to relativism.3* On the other hand,
Godel’s work with L with its incisive analysis and use of first-order defin-
ability was readily recognized as a signal advance. Issues about consistency,
truth, and definability were brought to the forefront, and the CH result es-
tablished the mathematical importance of a hierarchical analysis. As the
construction of L was gradually digested, the sense it promoted of a cumu-
lative hierarchy reverberated to become the basic picture of the universe of
sets.

How Godel transformed set theory can be broadly cast as follows: On
the larger stage, from the time of Cantor, sets began making their way into
topology, algebra, and analysis so that by the time of Gddel, they were fairly
entrenched in the structure and language of mathematics. But how were sets
viewed among set theorists, those investigating sets as such? Before Godel,
the main concerns were what sets are and how sets and their axioms can serve
as a reductive basis for mathematics. Even today, those preoccupied with
ontology, questions of mathematical existence, focus mostly upon the set
theory of the early period. After Godel, the main concerns became what sets
do and how set theory is to advance as an autonomous field of mathematics.
The cumulative hierarchy picture was in place as subject matter, and the
metamathematical methods of first-order logic mediated the subject. There
was a decided shift toward epistemological questions, e.g., what can be
proved about sets and on what basis.

87. Truth and new axioms. A pivotal figure Goédel, what was his own
stance? What he said would align him more with his predecessors, but
what he did would lead to the development of methods and models. In a
critical analysis [1944) of Russell’s mathematical logic, a popular discussion
[1947] of Cantor’s continuum problem, and subsequent lectures and corre-
spondence, Gddel articulated his philosophy of “conceptual realism” about
mathematics. He espoused a staunchly objective “concept of set” according
to which the axioms of set theory are true and are descriptive of an objective
reality schematized by the cumulative hierarchy. Be that as it may, his actual
mathematical work laid the groundwork for the development of a range of

3Godel referenced Zermelo [1930] after writing: “[This] axiom, roughly speaking, means
nothing else but that the totality of sets obtainable by exclusive use of the processes of
formation of sets expressed in the other axioms forms again a set (and, therefore, a new basis
for a further application of these processes).” This was just what Zermelo had emphasized;
for Godel there would also be the overlay of truth in the “next higher system”.

34For the record, Kreisel [1980, p. 193] wrote that Zermelo’s paper “made little impression”
but adduced historically peculiar reasons.
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models and axioms for set theory. Already in 1942 Godel worked out for
himself a possible model for the negation of AC in the framework of type
theory.®> In his steady intellectual development Godel would continue to
pursue the distinction between truth and provability into the higher reaches
of set theory.

In oral, necessarily brief remarks at a conference Godel [1946] made sub-
stantial mathematical suggestions that newly engaged truth in terms of ab-
soluteness and with concepts involving the heuristic of reflection. Pursuing
his “next higher system” theme Godel explored possible absolute notions
of demonstrability and definability, those not dependent on any particular
formalism. For absolute demonstrability, Godel again pointed out how for-
malisms can be transcended and the process iterated into the transfinite. And
recalling his remarks about L, he pointed out that while no one formalism
would embrace the entire process, “it could be described and collected in
some non-constructible way”. Godel then charted new waters, with remarks
having an anticipation in the [1932] passage quoted in §1:

In set theory, e.g., the successive extensions can most conveniently
be represented by stronger and stronger axioms of infinity. It is
certainly impossible to give a combinational and decidable char-
acterization of what an axiom of infinity is; but there might exist,
e.g., a characterization of the following sort: An axiom of infinity
is a proposition which has a certain (decidable) formal structure
and which in addition is true. Such a concept of demonstrability
might have the required closure property, i.e., the following could
be true: Any proof for a set-theoretic theorem in the next higher
system above set theory (i.e., any proof involving the concept of
truth which I just used) is replaceable by a proof from such an
axiom of infinity. It is not impossible that for such a concept
of demonstrability some completeness theorem would hold which
would say that every proposition expressible in set theory is decid-
able from the present axioms plus some true assertion about the
largeness of the universe of sets.

This is a remarkably optimistic statement about the possibility of discovering
new “true” axioms that will decide every set-theoretic proposition. The
engagement with truth has introduced a new element, “strong axioms of
infinity”, and an argument by reflection: “Any proof for a set-theoretic
theorem in the next higher system above set theory”, i.e., if the satisfaction
relation for V itself were available, “is replaceable by a proof from such
an axiom of infinity.” There is still an afterglow here from Russell’s axiom
of Reducibility as filtered through Godel’s work. Reaching further back,
there is more resonance with another notion of absoluteness, Cantor’s of

3See e.g., Dawson, Jr. [1997, p. 160].
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the absolutely infinite, or the Absolute.*® Recast in terms of the cumulative
hierarchy, the universe V' = |J, V cannot be comprehended, and so any
particular property ascribable to it must already be ascribable to some rank
V&, some postulations becoming the strong axioms.

For absolute definability, Godel pointed out that here also there is a trans-
finite hierarchy, one of “concepts of definability”, and “it is not possible to
collect together all these languages in one, as long as you have a finitistic
concept of language.” Whereas for demonstrability he had envisioned the
use of strong axioms of infinity, for definability he turned to expanding the
language by allowing constants for every ordinal. This is resonant with
Godel’s formulation of L in that the main non-constructive feature is the
indexing through the ordinals and their arbitrary extent is again brought to
the fore and made use of. Godel [1946, p. 3] made a crucial claim:

By introducing the notion of truth for this whole transfinite lan-
guage, i.e., by going over to the next language, you will obtain
no new definable sets (although you will obtain new definable
properties of sets).

The passages quoted in §1 and the construction of L had featured the in-
troduction of higher types allowing for the definability of new satisfaction
relations and hence new definable sets of lower type. Godel saw that hav-
ing the satisfaction relation for set theory for the enriched language with
constants for every ordinal leads to a closure for definability, “no new de-
finable sets”, as separated from truth, “new definable properties of sets”.
Sets definable in the enriched language via the satisfaction relation are de-
finable without it, and this reflection provides an absoluteness for definabil-
1ty.

Godel’s [1946] remarks would remain largely unknown in the succeeding
two decades. John Myhill and Dana Scott in their [1971] carried out the
development of the sets Godel described, the ordinal definable sets. Godel
had at first described the constructible sets informally and shown that being
constructible is itself formally definable in ZF; Godel’s claim above entails
that being ordinal definable is likewise formally definable in ZF. This Myhill
and Scott established with the ZF Reflection Principle, and this speaks to the
road not taken by Godel [1940a] discussed at the end of §3. Moreover, as was
anticipated by Godel [1946, p. 4] the ordinal definable sets provided a new
proof for the relative consistency of AC: HOD, the class of hereditarily ordinal
definable sets is an inner model of ZFC. HOD has become an important
feature of modern set theory, and important results about it have articulated
Godel’s absolute definability motivation.?’

%See Jané [1995] for the role of the absolute infinite in Cantor’s conception of set.
Wang [1996, pp. 282ff] reported on how Godel in 1975 acknowledged Cantor’s “Absolute”,
particularly in connection with a set theory of Ackermann.

37Leaping forward, see Steel [1995].
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In his article [1947] on Cantor’s continuum problem Gddel put emphasis
on how his philosophical outlook could be brought to bear on mathemat-
ical problems and effect mathematical programs. Of the three possibilities
in axiomatic set theory, that CH could be demonstrable, disprovable, or
undecidable, Godel [1947, p. 519] regarded the third as the “most likely”,
and so advocated the search for a proof of the independence of CH, i.e..
to establish Con(ZF) implies Con(ZFC + —CH) to complement his own
relative consistency result with L. However, Godel stressed that this would
not “settle the question definitively” and turned to the possibility of new
axioms. The axioms of set theory do not “form a system closed in itself”,
and so the “very concept of set on which they are based suggests their ex-
tension by new axioms which assert the existence of still further iterations
of the operation ‘set of’.” Godel then elaborated on the strong axioms of
infinity he had alluded to in his [1946] by giving as examples the inaccessible
cardinals (as mentioned in §6 in connection with Zermelo [1930]) and the
Mahlo cardinals. These were entertained early in the development of set
theory and are at the beginning of the modern hierarchy of large cardinal
hypotheses, hypotheses that posit distinctive structure in the higher reaches
of the cumulative hierarchy, most often by positing cardinals whose defining
properties entail their inaccessibility from below in strong senses.?®

Godel pointed out two significant aspects of large cardinal hypotheses to
which attention would be drawn many times in their development. First, in
a new twist on the passages quoted in §1, each strong axiom of infinity “can,
under the assumption of consistency, be shown to increase the number of
decidable propositions even in the field of Diophantine equations.” Large
cardinal hypotheses establish the consistency of ZFC and stronger theories,
and so even though they posit distinctive structure high in the cumulative
hierarchy they lead to new simple, decidable propositions even about natural
numbers.?® Second, for the inaccessible and Mahlo cardinals and the like,
the “undisprovability of the continuum hypothesis . .. goes without change”.
These cardinals relativize to L, i.e., they retain their defining properties in L,
and so the existence of these cardinals is consistent with CH.*

Godel went on to speculate about possible strong axioms of infinity based
on “hitherto unknown principles”, and then, in a well-known passage, ar-
gued for new axioms just on extrinsic and pragmatic bases:

. even disregarding the intrinsic necessity of some new ax-
iom, and even in case it had no intrinsic necessity at all, a decision

3¥See Kanamori [2003] for the theory of large cardinals.

¥The specific focus on Diophantine equations could already be seen in a lecture Godel
[1937], which anticipated now well-known work on Hilbert’s 10th Problem.

4 Actually, that inaccessible cardinals relativize to L was already noted in Godel’s first
announcement [1938]. It would be a pivotal advance that not all large cardinals relativize to
L (see below).
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about its truth is possible also in another way, namely, inductively
by studying its ‘success’, that is, its fruitfulness in consequences
and in particular in ‘verifiable’ consequences, i.e., consequences
demonstrable without the new axiom, whose proofs by means of
the new axiom, however, are considerably simpler and easier to
discover, and make it possible to condense into one proof many
different proofs. The axioms for the system of real numbers, re-
jected by the intuitionists, have in this sense been verified to some
extent owing to the fact that analytical number theory frequently
allows us to prove number-theoretical theorems which can subse-
quently be verified by elementary methods. A much higher degree
of verification than that, however, is possible. There might exist
axioms so abundant in their verifiable consequences, shedding so
much light upon a whole discipline, and furnishing such power-
ful methods for solving given problems (and even solving them,
as far as that is possible, in a constructivistic way) that quite
irrespective of their intrinsic necessity they would have to be as-
sumed at least in the same sense as any well established physical
theory.

This advocacy of new axioms merely because of their “success” according
to “fruitfulness of consequences” interestingly undercuts an avowedly realist
position with a pragmatism that dilutes the force of “truth”, but is reso-
nant with subsequent investigations. Godel [1947] concluded by forwarding
the remarkable opinion that CH “will turn out to be wrong” since it has
as paradoxical consequences the existence of “thin” (in various senses he
articulated) sets of reals of the power of the continuum. These examples,
one involving one-to-one continuous images, further emphasize how Godel
was aware of and influenced by the articulation of the continuum by the
descriptive set theorists (cf. §4).

In 1963 Paul Cohen established the independences Con(ZF) implies Con
(ZF + -AC) and Con(ZF) implies Con(ZFC + —CH), these being, of
course, the inaugural examples of forcing, a remarkably general and flexible
method for extending models of set theory. If Godel’s construction of L
had launched set theory as a distinctive field of mathematics, then Cohen’s
method of forcing began its transformation into a modern, sophisticated
one.

In a published revision [1964] of his [1947] Gddel took into account new
developments, most notably Cohen’s independence result for CH. As for
large cardinals, in a new footnote 20 Godel cited the emerging work on
what are now known as the strongly compact, measurable, weakly compact,
and indescribable cardinals, results which in particular showed that these
cardinals are far larger in strong senses than the least inaccessible cardinal.
Godel mentioned in particular the pivotal result of Dana S. Scott [1961]
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that if there is a measurable cardinal, then V # L.*! In an unpublished,
1966 revision of that footnote Godel*? argued that these “extremely strong
axioms of infinity of an entirely new kind” are “supported by strong argu-
ments from analogy, e.g., by the fact that they follow from the existence of
generalizations of Stone’s representation theorem to Boolean algebras with
operations on infinitely many elements.” He was evidently referring to the
compact cardinals. This is the first appearance in his writing of the heuristic
of generalization for motivating large cardinals. Recalling Cantor’s unitary
view of the transfinite as seamlessly extending the finite, some properties
satisfied by ¥y would be too accidental were they not ascribable to higher
cardinals in an eternal recurrence.

In the tremendous expansion of set theory following the introduction of
forcing, the theory of large cardinals developed a self-fueling momentum
of its own and blossomed into a mainstream of set theory far overshadow-
ing Godel’s early speculations. Nowhere would his words be acknowledged
as having been a source of inspiration. On the other hand, an articu-
lated and detailed hierarchy of large cardinal hypotheses was developed
with the heuristics of reflection and generalization very much in play, and
these hypotheses were shown to decide a wide range of strong set-theoretic
propositions. Godel’s hopes that large cardinals could settle the continuum
problem itself were dispelled by the observation of Levy-Solovay [1967],
known by 1964, that small cardinality forcing notions preserve the defining
properties of inaccessible large cardinals, so that CH is independent of their
postulations. In a 1966 revision of his [1964] Godel*® himself implicitly
acknowledged this. In a late, unpublished note [1972] Godel’s advocacy of
large cardinal hypotheses had two notable modulations. First, he speculated
on their possible use to settle, not CH, but questions of “Goldbach type”,
ie., H? sentences of arithmetic. Second, Godel pointed to what modern set
theorists understand well:

These principles show that ever more (and ever more complicated)
axioms appear during the development of mathematics. For, in
order only to understand the axioms of infinity, one must first have
developed set theory to a considerable extent.

Extensive work through the 1970s and up to the present day has consid-
erably strengthened the view that the emerging hierarchy of large cardinals

“Earlier, in a draft of a (presumably unsent) letter to Tarski of August 1961, Godel (see
Feferman and Dawson, Jr. [2003b, p. 273]) had written: “I have heard it has been proved
that there is no two valued denumerably additive measure for the first inacc. number. I still
can’t believe that this is true, but don’t have the time to check it because I am working mainly
on phil[osophy]. I understand the proof is based on some work of yours? You probably have
heard of Scott’s beautiful result that V' # L follows from the existence of any such measure
for any set. I have not checked this proof either but the result does not surprise me.”

42See Feferman [1990, pp. 260ff].

#See Feferman [1990, p. 270).
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provides the hierarchy of exhaustive principles against which all possible
consistency strengths can be gauged, a kind of hierarchical completion of
ZFC. First, the various hypotheses. though historically contingent, form a
linear hierarchy with respect to relative consistency strength. Second, a wide
range of strong statements arising in set theory and mathematics have been
informatively bracketed in consistency strength between two large cardinal
hypotheses. The stronger hypothesis implies that there is a forcing exten-
sion in which the statement holds; and if the statement holds, there is an
L-like inner model satisfying the weaker hypothesis. Equiconsistency results
were established by refining proof ideas and weakening large cardinals to
achieve optimal formulations. Throughout, in addition to their “intrinsic”
significance, large cardinals amply exhibited “fruitfulness of consequences™
by providing the context for quick proofs and illuminating methods, some
later found not to require large cardinals at all. These developments have
highlighted the contention that large cardinal hypotheses are not a matter of
belief, but rather of method. Going far beyond the true and the false, large
cardinals have provided the means for understanding strong statements of
set theory and mathematics through relative consistency proofs.

Godel’s early advocacy of the search for new axioms can be seen as vin-
dicated by these broad developments, although that vindication has been
in much more subtle ways than he could have anticipated. In latter-day
accounts, with modern set theory having reached a high degree of sophisti-
cation, there have been retrospective analyses that cast Godel’s sparse words
across the vast modern landscape of large cardinal hypotheses, crediting
them with enunciating “Gddel’s program”. 4

Entering his sixties, mostly preoccupied with philosophy and health prob-
lems and despite his earlier advocacy of strong axioms of infinity, Godel
would draw on a distant mathematical initiative taken around the time of
his birth to address the continuum problem anew.

§8. Envoi. In a letter to Cohen of 22 January 1964 Godel,* in connection
with possible new uses of forcing, wrote:

Once the continuum hypothesis is dropped the key problem con-
cerning the structure of the continuum, in my opinion, is what
Hausdorff calls the “Pantachie Problem”,! i.e., the question of
whether there exists a set of sequences of integers of power X;
which for any given sequence of integers contains one major-
ing it from a certain point on. Hausdorff evidently was trying
to solve this problem affirmatively (see [Hausdorff [1907]] and
[Hausdorff [1909]]). I was always suspecting that, in contrast to
the continuum hypothesis, this proposition is correct and perhaps

“See Kennedy-van Atten [2004], Koellner [2006], and Hauser [2006] for Gdel’s program.
4See Feferman and Dawson, Jr. [2003a, pp. 383ff].
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even demonstrable from the axioms of set theory. Moreover I have
a feeling that, if your method does not yield a proof of indepen-
dence here, it may lead to a proof of this proposition. At any rate
it should be possible to prove the compatibility of the “Pantachie
Hypothese” with 2% > X,

'In German the problem is frequently called “Problem der
Wachstumsordnungen”. Perhaps there exists some standard Eng-
lish expression for it, too.

In a letter to Stanistaw Ulam of 10 February 1964 Godel,* after praising
Cohen’s work, wrote similarly about the “Pantachie Problem”. What Godel
was describing properly has to do with the “Scale Problem” of Hausdorff
[1907, p. 152]. “w, the set of functions from w to w, can be partially ordered
according to: f <* g, f is eventually dominated by g, iff Im € wVn € w
(m <n— f(n) <g(n)). Ak-scaleis a subset of “w which according to <*
is cofinal in “w and of ordertype x. Without further elaboration, we shall
extend these concepts in the expected way to other ordered sets besides w.
Hausdorff observed that CH implies that there is an w;-scale, and opined
that the existence of an w-scale is of significance independently of CH. This
is echoed by Godel in the above passage, but what he was “suspecting” there
has an ironic twist.

It soon became known that in Cohen’s original model for -CH, i.e., the one
resulting from adding many Cohen reals, there is no w,-scale. On the other
hand, if one adds many (Solovay) random reals to a model of CH. then any
w;-scale in the ground model remains one in the generic extension.*’” Thus,
the existence of w,-scales, like CH, comes under the purview of forcing and
is independent of ZFC.

Because of its broader involvement in Godel’s later speculations, we review
Hausdorf’s work on pantachies as such. Most of Hausdorff[1907] is devoted
to the analysis of pantachies and the main section V is entitled “On Pantachie
Types”.*® The term “pantachie” derives from its initial use by Paul Du Bois—
Reymond [1880] to denote everywhere dense subsets of the continuum and
then to various notions connected with his work on rates of growth of real-
valued functions and on infinitesimals.*’ Hausdorff redefined “pantachie”

See Feferman and Dawson, Jr. [2003b, p. 298].

47Stephen Hechler in his dissertation of 1967 (cf. Hechler [1974]) introduced dominating
reals, and by iterating his forcing established the general assertion that if in the sense of the
ground model, x and 4 are cardinals of uncountable cofinality such that 2™ < k and 4 < &,
then there is a cardinal-preserving generic extension in which 2% = , and there is a A-scale.

“See Plotkin [2005] for a penetrating analysis of Hausdorf’s work on pantachies and
more generally ordered sets, work remarkable for its depth and early appearance.

“ At the end of his [1880] Du Bois-Reymond maintained that he rather than Cantor
had come first to the concept of a dense subset of the continuum. In his book [1882]
Du Bois-Reymond explained that his adjective ‘pantachish’ derives from the Greek words
navtays, mavtayob for “everywhere”. For real functions increasing without bound, Du
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as a subset of “R maximal with respect to being linearly ordered by the
eventual dominance ordering, and a further refinement led to scales on “w.
This anticipated Hausdorff’s later work on maximal principles, principles
equivalent to the Axiom of Choice. For an ordered set (X, <), a (x, A*)-gap
isaset {xq | <K} U{ys | a< i} C X suchthat x, < xp < y, < ys for
a< f<kandd <y < A, yet thereis no z € X such that x, < z < y, for
a < k and y < A. Pantachies were easily seen to have no countable cofinal
or coinitial subset and no (w, w*)-gaps. Regarding pantachies as higher
order continua, it was natural to consider whether there could be (w;, ®7)-
gaps, their absence being a principle of higher-order continuity. Hausdorff
established that with CH all pantachies are isomorphic and have (w;. w})-
gaps. In his [1909] he subsequently established that there is a pantachie
with an (w;.w])-gap without appeal to CH, and this recast from “R to
“w (cf. Hausdorff [1936]) was to become well-known in modern set theory
as an “indestructible” ZFC gap, one that cannot be filled with any forcing
that preserves X|. Hausdorff [1907, p. 151] asked in the concluding “The
Pantachie Problem” subsection whether there could be a pantachie with no
(w).w})-gaps. Strikingly, Hausdorff [1907, p. 128] had shown earlier that if
there were such a pantachie, then 2% = 2% and hence ~CH. This was the first
time that a question in ongoing mathematics had entailed the denial of CH.

In the late 1960s Godel was mostly preoccupied with philosophy: through
association with a new generation of set theorists he also kept abreast of the
burgeoning developments in the subject. Yet, going his own way and struck
by the plausibility of Hausdorff’s old formulations, Godel in 1970 proposed
“orders of growth™ axioms for deciding the value of 2% in two handwritten
notes [1970a][1970b].%°

In [1970a], entitled Some considerations leading to the probable conclusion
that the true power of the continuum is ¥, Godel claimed to establish 280 = R,
from the following axioms:

(1) For every n € w, there is a w,|-scale on “*w,,.

(2) In addition, for every n € w, the set of all initial segments of all the
functions in the w,-scale on “"w, has cardinality w,.

(3) There is a pantachie with every well-ordered increasing or decreasing
descending subset having length at most ;.

(4) In addition, the pantachie has no (w;. w})-gaps.

Bois—Reymond had considered an ordering where f < g, f ~ g, or f > g according
to whether lim,_. f(x)/g(x) is zero, finite but not zero, or +0c0. He had advocated
considering those f, g with f ~ g as representing the same “order of infinity” and ranking
these orders according to <. But of course, there are f, g incomparable according to Du
Bois-Reymond’s scheme, and on this basis Hausdorff [1907, p. 107] proclaimed that “the
infinitary pantachie in the sense of Du Bois—Reymond does not exist.”

%See Solovay’s introductory note in Feferman [1995, pp. 405ff] and Brendle-Larson—
Todorcevi¢ [oo] for extensive mathematical analyses.
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To modern eyes, there is an affecting, quixotic grandeur to this reaching back
to primordial beginnings of set theory to charge the windmill once again.
Godel’s only use of (4) was to apply Hausdorff’s conclusion that CH fails,
and then he argued that (1)—(3) implies that 2% < R,. However, Martin
pointed out that the argument does not work, and Solovay (cf. Feferman
[1995, pp. 412ff]) elaborated, showing how by adding many random reals
it is consistent to have (1)-(3) and the continuum arbitrarily large. On
the other hand, Brendle-Larson-Todorcevi¢ [oc] showed that there is a
substantial part of Godel’s argument that does work to establish 2% < R,
from propositions closely related to (1)—(3).

Godel [1970a] took his axioms (1) and (2) to entail for all m < n < w
the existence of w,-scales on “"w,, such that the set of initial segments of
all the functions involved has cardinality w,.>' In his attempted proof, he
appealed to such a scale for » = 2 and m = 1. In fact, the existence of such
a scale for n = 1 and m = 0 already implies CH, and this was the thrust of
his [1970b], entitled A proof of Cantor’s continuum hypothesis from a highly
plausible axiom about orders of growth. At its end, Godel wrote:

It seems to me this argument gives much more likelihood to the
truth of Cantor’s continuum hypothesis than any counterargu-
ment set up to now gave to its falsehood, and it has at any rate the
virtue of deriving the power of the set of a// functions w —
from that of certain very special sets of these functions.

A few years later, in a letter to Abraham Robinson of 20 March 1974
Godel?? wrote:
Hausdorff proved that the existence of a ‘continuous’ system of
orders of growth (i.e., one where every decreasing w;-sequence
of closed intervals has a non-empty intersection) is incompatible
with Cantor’s Continuum Hypothesis. Surprisingly the same is
true even for a ‘dense’ system, i.e., one where every decreasing
) sequence of closed intervals, all of which are larger than some
fixed interval I, has a non[-]lempty intersection. I think many
mathematicians will consider this to be a strong argument against
the Continuum Hypothesis.
Here, the ‘continuous’ is clear, that there are no (w;, w})-gaps. but ‘dense’
is not. Robinson was fatally inflicted with pancreatic cancer and died three
weeks after the date of this letter, on 11 April 1974.33

S'In an unsent letter to Tarski Godel (see Feferman [1995, p. 424]) soon disavowed this
entailment.

32See Feferman and Dawson, Jr. [2003b, p. 204].

331t is striking to see Godel offer comfort to a dying colleague by sharing a piece of
mathematics with him. Earlier in the letter Godel had written: “As you know I have
unorthodox views about many things. Two of them would apply here: 1. I don’t believe
that any medical prognosis is 100% certain, 2. The assertion that our ego consists of protein
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Wang [1996, p. 89] reported on how Godel in 1976, two years before his
own death, made the following observations:

The continuum hypothesis may be true, or at least the power of
the continuum may be no greater than aleph-two, but the general-
ized continuum hypothesis is definitely wrong.

I have written up [some material on] the continuum hypothesis
and some other propositions. Originally I thought [I had proved]
that the power of the continuum is no greater than aleph-two, but
there is a lacuna [in the proof]. I still believe the proposition to be
true; even the continuum hypothesis may be true.

What are we to make of all this? In his [1947] Godel had written with
authority about the continuum problem, opining that CH would be shown
independent, averring that it is actually false particularly because of its
implausible consequences for the continuum, and suggesting that new strong
axioms of infinity could settle the matter. With the revitalization of set
theory after Cohen and perhaps partly spurred by the 1964 Levy-Solovay
observation that large cardinal hypotheses have no direct effect on CH, Gédel
pursued his rekindled interest in the very old initiatives of Hausdorff and
formulated “orders of growth” axioms to inform the continuum problem
anew. In this Godel exhibited a remarkable fluidity, siding with his axioms
and letting the mathematics attend to CH, come what may. In the end
Godel’s strong mathematical instincts manifested themselves, and with the
continuum problem still looming large and despite his “concept of set” and
his once-held enthusiasm for large cardinals, he brought in old mathematical
ideas from a different quarter and tried to push forward new mathematics.
As set theory was to develop after Godel, there would be a circling back,
with deep and penetrating arguments from strong large cardinal hypotheses
that, after all, lead to 2% = R,.5
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