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BERNAYS AND SET THEORY
AKIHIRO KANAMORI

Abstract. We discuss the work of Paul Bernays in set theory, mainly his axiomatization
and his use of classes but also his higher-order reflection principles.

Paul Isaak Bernays (1888-1977) is an important figure in the development
of mathematical logic, being the main bridge between Hilbert and Gdédel in
the intermediate generation and making contributions in proof theory, set
theory, and the philosophy of mathematics. Bernays is best known for the
two-volume 1934,1939 Grundlagen der Mathematik [39, 40], written solely by
him though Hilbert was retained as first author. Going into many reprintings
and an eventual second edition thirty years later. this monumental work
provided a magisterial exposition of the work of the Hilbert school in the
formalization of first-order logic and in proof theory and the work of Godel
on incompleteness and its surround. including the first complete proof of
the Second Incompleteness Theorem.! Recent re-evaluation of Bernays’ role
actually places him at the center of the development of mathematical logic
and Hilbert’s program.”

But starting in his forties. Bernays did his most individuated, distinctive
mathematical work in set theory, providing a timely axiomatization and
later applying higher-order reflection principles, and produced a stream of
wide-ranging essays in the philosophy of mathematics. Bernays’ axioma-
tization, built on one of von Neumann’s. would become important for the
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44 AKIHIRO KANAMORI

development of set theory through its adoption, with mainly cosmetic sim-
plifications, by Godel in his work on the constructible universe. We refer to
Mancosu [49] for Bernays’ early philosophy; Parsons [59] for his later philos-
ophy: and Sieg-Tait [65] for acomprehensive selection of essays and extended
account of the philosophy. Here, summarizing his involvements with proof
theory when incumbent to round out the picture, we set out Bernays’ work in
set theory against the backdrop of historical circumstance and mathematical
interaction, assessing its role in the development of modern set theory.

§1. To the axiomatization. Bernays was born in London on 17 October
1888, officially a Biirger of the Swiss city of Ziirich. After a time in Paris
he grew up in Berlin and attended university there for two years. In 1909 he
continued at Gottingen, becoming involved in mathematics with Hilbert’s
circle and in philosophy with the “neo-Friesian school” of Leonard Nelson.?

To frame the time, we quickly recall some pivotal junctures. Hilbert [35] at
the Heidelberg 1904 International Congress of Mathematicians advocated a
simultaneous, axiomatic development of the laws of logic and of the arith-
metic of the real numbers, particularly to avoid the recent paradoxes of
logic and set theory. Stimulated by events at the congress Ernst Zermelo,
at Goéttingen and in Hilbert’s circle, soon formulated [77] the Axiom of
Choice and with it established the Well-Ordering Theorem. Then he in 1908
provided [78] the first full-fledged axiomatization of set theory, partly to es-
tablish set theory as a discipline free of paradoxes and particularly to put his
Well-Ordering Theorem on a firm footing. In 1910 Zermelo left Gottingen
to become a professor at the University of Ziirich.*

In 1912 Bernays received a doctorate under Edmund Landau with a thesis
on binary quadratic forms. He then took the opportunity to follow Zermelo
to Zirich and completed his Habilitation there at the end of 1912 with a thesis
on modular elliptic functions. Bernays served as an Assistent to Zermelo
and was a Privatdozent at the university.

Bernays’ first involvement with set theory, though elliptical, occurred in
this period, and this in connection with the development of the ordinals.
As is well-known, for Cantor the ordinal numbers were the ordertypes of
well-orderings. autonomous and separate from sets. In the early 1920s John
von Neumann [71] would formulate the set concept of ordinal, with the
basic idea of taking precedence in a well-ordering to be membership. Using
the Axiom of Replacement, von Neumann established the key instrumental
property of Cantor’s ordinal numbers for ordinals, that every well-ordering
is order-isomorphic to exactly one ordinal with membership. Von Neumann
forthwith ascribed to the ordinals the role of Cantor’s ordinal numbers,

’We refer to Moore [55] and Ebbinghaus [17] pp. 125-7 for many of the biographical
details about Bernays given here and below.
“We refer to Ebbinghaus [17] for biographical details about Zermelo given here and below.
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BERNAYS AND SET THEORY 45

drawing them into set theory. But in point of fact, Zermelo was most
probably the first chronologically to have formulated the concept of ordinal,
and this by 1915 in Zirich. The rudiments of the theory appear in items
in his Nachlass,’ and indications are there of collaboration with Bernays.®
With Zermelo never to publish this work. the first published comments about
it would appear in a later paper by Bernays [4] pp. 6.10.”

During his years in Ziirich Zermelo was plagued with tuberculosis, went
several times on sick leave. and had to arrange for others to give his lectures.
In 1916 he was finally retired from his professorship.® Zermelo went back
to Gottingen, where notably he gave a lecture on his new theory of ordinals
in November 1916. and eventually settled in Freiburg in 1921.

In the autumn of 1917. Hilbert gave his pivotal “Axiomatisches Denken”
[36] lecture at Ziirich. in which with renewed interest in foundations he
praised the Principia work of Russell and newly advocated the axiomatization
of logic itself and the reduction of number theory and set theory to logic in the
quest for consistency. Hilbert thereupon invited Bernays back to Gottingen
as his Assistent in the investigations of the foundations of mathematics, an
invitation that Bernays readily accepted.

The collaboration of Hilbert and Bernays led to a remarkable sequence of
formative lectures through the years 1917--1922 in which one sees the emer-
gence of first-order logic and proof theory.” In 1918 Bernays completed a
second Habilitation with a thesis that established the completeness of propo-
sitional logic.!® In the 1920 summer semester lectures Hilbert presented
Zermelo’s conceptualization of the ordinals. and through it the Burali-Forti
paradox. and a version of Zermelo’s 1908 axioms in a first-order context.
The lectures were written up by Bernays and Moses Schonfinkel.!! and this

“See Hallett [31] pp. 277ff for an analysis.

“See Ebbinghaus [17] 3.4.3.

" After Zermelo and before von Neumann. Dmitry Mirimanoff, a professor at Geneva, pub-
lished several papers [S1. 52. 53] in the French Swiss journal L’Enseignment Mathématique.
in which he formulated the ordinals and went a considerable distance toward shaping the
set-theoretic universe as von Neumann would later do. See Hallett [31] pp. 185fT for an
analysis.

* Abraham Fraenkel. in his autobiographical Lebenskrise. recounts the following (see [17]
p. 113): Shortly before the World War he [Zermelo] spent a night in the Bavarian alps. He
filled the column *“*Nationality™ in the hotel’s registration form with the words: “Not Swiss.
thank goodness.” Misfortune would have it that shortly after that the head of the Education
Department of the Canton Ziirich stayed at the same hotel and saw the entry. It was clear
that Zermelo could not stay much longer at the University of Ziirich.” This tale may be
apocryphal but was well-known during Zermelo’s lifetime: the substantive issue should of
course have been Zermelo's failing health.

’See Sieg [63]. in which Bernays is accorded equal credit with Hilbert.

""See Zach [76]. in which Bernays is accorded a central role in the development of propo-
sitional logic.

See [18].
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46 AKIHIRO KANAMORI

may have been Bernays’ first serious encounter with axiomatic set theory.
In 1922 Bernays became a Professor Extraordinarius of the university. In
1922 Hilbert [37] and Bernays [2] set out what is now widely known as
“Hilbert’s program” for establishing the consistency of ongoing mathemat-
ics through finitary reasoning. Much, of course, has been written about this
and even more about Gddel’s incompleteness results and their transforming
effect on the program, and we only provide the main narrative impinge-
ments.

The three who would newly axiomatize set theory—von Neumann,
Bernays, and Godel—interacted first in connection with the new incom-
pleteness results, so that the nexus at set theory would in fact be interwoven
with the nexus at incompleteness. By 1923 von Neumann had come to the
ordinals and in developing their theory had accorded a central place to the
Axiom of Replacement. This axiom had been suggested earlier by Abraham
Fraenkel [20, 21] and Thoralf Skolem [66] as an addition to the Zermelo [78]
axiomatization, but to ensure that a certain collection of large cardinality
resulting from a simple recursion be a set. Also by 1923, von Neumann
had worked out his new axiomatization of set theory,!? the first significant
axiomatization since Zermelo’s and the subject of von Neumann’s 1926 Bu-
dapest doctoral thesis. He spent 19267 at Gottingen and was a Privatdozent
at Berlin 1927-9 and at Hamburg 1929-30.!3 Von Neumann’s [73] evidenced
his engagement with Hilbert’s program, and he together with Bernays and
Wilhelm Ackermann came to be regarded the “Hilbert school” in proof
theory.

When Godel first spoke in September 1930 at Konigsberg on his First
Incompleteness Theorem, von Neumann saw not only its broad significance
but its particular relevance to the work of the Hilbert school. Some weeks
after his lecture Godel established his Second Incompleteness Theorem, the
unprovability of consistency, and a few days later heard from von Neumann
that he too had established this result.'* Thus, there had to be something
wrong with Hilbert’s epsilon-term substitution argument for formulas as car-
ried out by Ackermann [1] to establish the consistency of number theory, and
von Neumann soon provided a formula for which the argument failed.!> Be-
yond the common impression that Godel’s Second Incompleteness Theorem
largely precluded Hilbert’s consistency program, this close interplay between
Godel and von Neumann brings out the specific mathematical impact that

2This becomes clear from an important 15 August 1923 letter of his to Zermelo (in
Zermelo’s Nachlass under signature C 129/85 and reprinted in [50] pp. 271-3).

3Von Neumann was again in Berlin in the winter of 1930, where Jacques Herbrand visited
him; see Sieg [64] p. 175.

'4See the initial letters from von Neumann to Godel of 20 November and 29 November
1930, Godel [30] pp. 3371T.

>The counterexample is given in the Hilbert-Bernays Grundlagen [40] pp. 123ff.
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BERNAYS AND SET THEORY 47

Godel’s result had on a concerted effort then being made by the Hilbert
school.!®

Bernays would maintain a long correspondence with Godel,!” and as
with von Neumann’s with Gddel, the main topic of the initial letters was
incompleteness. Having received from Gddel the galleys of his epochal
paper [22] and having “thoroughly digested” it in four days, Bernays in a
letter of 18 January 1931 to Gddel discussed at length some mathematical
implications vis-a-vis work of the Hilbert school. At the end he mentioned: '8

I have laid out a modified version of von Neumann’s set theory
which, first of all, establishes a closer relation to the ordinary log-
ical processes of set formation, and furthermore eliminates various
unnecessary deviations from Zermelo’s system and makes the for-
mulation of the axioms more easily understandable. (I lectured on
it last summer before the Gottingen Mathematical Society.)

In his reply of 2 April 1931. Gddel dealt at length with the issues raised by
Bernays, and wrote at the end:'® “Your improvement of the axiom system
of set theory would interest me very much, and I would be very grateful
to you for sending me a manuscript of your talk (in case such a thing is
available).” Godel was already thinking ahead to set theory, for as he stated
in a well-known, prescient footnote 48a to his [22], his undecidable propo-
sitions become decidable “whenever appropriate higher types are added”.
Fully one-third of a summary, dated 22 January 1931, of a talk given on his
incompleteness results is given over to set theory:2

In case we adopt a type-free construction of mathematics, as is done
in the axiom system of set theory, axioms of cardinality (that is, ax-
ioms postulating the existence of sets of ever higher cardinality) take
the place of type extensions, and it follows that certain arithmetic
propositions that are undecidable in Z [first-order Peano arithmetic]
become decidable by axioms of cardinality, for example. by the ax-
iom that there exist sets whose cardinality is greater than every a,,
where ap = Ng. a4 = 2%

This is Godel’s first remark on set theory of substance, and significantly, his
example of an “axiom of cardinality” has as the thrust the existence of the
set that both Fraenkel [20, 21] and Skolem [66] had pointed to as the one to
be secured by adding Replacement to Zermelo’s 78] axiomatization.

'®Correspondence between Godel and Herbrand also illuminates a mathematical impact
of the Second Incompleteness Theorem:; see Sieg [64].

"’See [29]: Solomon Feferman'’s introductory note to the corrspondence, pp. 41ff, is very
informative.

"8See Godel [23] p. 91.

"See Godel [29] pp. 991F.

05ee Godel [23] pp. 2341T.
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48 AKIHIRO KANAMORI

Instead of sending a manuscript, Bernays in an extended letter of 3 May
1931 wrote out a careful account of the new axiomatization, the first starting
with both set and class as primitive notions.?! Years later Godel would
use a version of Bernays’ axiomatization in his formalized proof with the
constructible universe L of the relative consistency of the Axiom of Choice
and the Generalized Continuum Hypothesis.?? In his 1940 monograph [25].
Godel routinely acknowledged Bernays by citing his published account [3]
of 1937, and this lends itself to a surface misleading of causal connections.
Godel had actually assimilated Bernays’ axiomatization through that May
1931 letter.?3 and Bernays [3] p. 65 himself stated that he had lectured on his
axiomatization already in 1929-30.

§2. The axiomatization. The following is Bernays’ axiomatization with
sets and classes essentially as in his May 1931 letter to Godel. but organized
according to his first published account [3, 4]. In his letter Bernays had
written:

... I mention at the outset that I will here adopt the contentual
[inhaltlichen] standpoint, i.e., I will employ the logical symbolism
only as a means of communication and also only insofar as it appears
advantageous to me for facilitating the overview.

A complete formalization. and in fact in a first-order [ersten Stufe]
framework, can be carried out without difficulty.

In his published account he wrote out the axioms in prose. We rely on logical
symbolism, at least at first, to approach what a first-order formalization
would be. There are two sorts of variables, lower case for sets and upper
case for classes, and two membership relations, a € b for sets and x 5 4 for
sets in classes. Bernays evidently adopted this use of # from von Neumann’s
last paper [74] p. 231 on axiomatization, a paper from which Bernays draws
significantly as we shall see. As to “first-order”, that the axiomatization
was historically and technically seen to be first-order is significant. There
would be axiomatizations of set theory in second-order terms, starting with
Zermelo’s contemporaneous one [79] discussed below. but this amounts to
the submergence of classes qua arbitrary collections into the logic. whereas
Bernays was axiomatizing class as a specific. delineated concept. More
broadly speaking, first-order logic had been isolated in 1917 lectures of
Hilbert. in the first year that Bernays was his Assistent.>* and Bernays’

1See Godel [29] pp. 105f.

2For Godel’s work in set theory, see Kanamori [42].

2This becomes clear from Gadel’s letter of 19 June 1939 to Bernays (Gdodel [29] p. 115ff).

2The transcription of those lectures was done by Bernays and was actually an Ausar-
beitung, so that one can speculate that it was actually Bernays who first isolated first-order
logic.
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BERNAYS AND SET THEORY 49

axiomatization can be seen as another conduit from Hilbert to Godel in
connection with the later ascendancy of first-order logic in set theory.

1. Axioms of Extensionality
(1) Vx(x €cae— x€b) — a=b.
(2) Vx(xn A« xnB) — A= B.

I1. Axioms of Direct Construction of Sets

(1) Javx(x ¢ a).
(2) VYavb3cVx(x € ¢c «— x € aV x = b).

This last, asserting the existence of a U {b} for sets @ and b, had appeared in
the aforementioned 1920 Hilbert lectures. One now defines an ordered pair
(a, b)® and continues:

I11. Axioms for Construction of Classes
a(l) Ya3ddavx(xn A+ x = a).
a(2) VAIBYx(xn B «— —~xn A).
a(3) VAVBIACYx(xnC «— xnA & xnB).
b(1) 34Vx(xn A — JaV¥y(y € x «— y =a)). %
b(2) 34Vx(xn A «— JaTb(a € b & x = (a,b)).
b(3) VAIBYx(xn B «— JaIb(x = (a,b) & an 4)).
c(1) YAIBYx(xn B « 3y((x,y)n A))
c(2) YA3BVavb((a,b) € B — (b,a) € A).
c(3) VAIBYaV¥bVe({{a,b),c) € B — {(a,(b,c)) € A).

For these last three, Bernays actually had implications starting from the
assumption that 4 is a relation, “a class of pairs”. One formally defines
this concept as well as the concepts of function, one-to-one correspondence,
and so forth, and what it means for a set a to represent a class 4 (i.e.,
Vx(x € a «+— x5 A)) and continues:

IV. Axiom of Choice

Every relation C has a subclass which is a function and has the same
domain.?’

*In the May 1931 letter Bernays defined the ordered pair as {{a}, {0, {6}}} and in [3] he
adopted the Kuratowski ordered pair {{a}, {a,b}}.

Instead of this axiom positing the class of all singletons, Bernays in his May 1931 letter
to Gédel had the axiom positing the class of all (a, a). The latter axiom is more natural
in getting directly at what was wanted, the equality relation; see Bernays’ letter of 21 June
1939 to Gddel (Godel [29] p. 117) and footnote 11 of Bernays [3]. Since by [3] Bernays had
adopted the Kuratowski ordered pair, b(1) suffices in the presence of the axioms to get the
equality relation.

Eventually, Bernays realized that in any case b(1) is redundant; see [9] §20.

2"This formulation, evidently drawn from von Neumann [74], is easily seen to admit a
simple self-refinement in the presence of the other axioms, that there is a global choice
function. See the forthcoming discussion.
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50 AKIHIRO KANAMORI

V. Axioms Concerning the Representation of Classes by Sets

a. (Separation) VavVA43bVx(x € b —— x €a & xnA).

b. (Replacement) If the domain of a one-to-one correspondence is repre-
sented by a set, then so is the range.

c. (Union) Va3bVx(x € b «— Jy(y €a & x € y)).

d. (Power Set) Va3bV¥x(x € b «— x C a).

V1. Axiom of Infinity
There is a set in one-to-one correspondence with a proper subclass.?

VII. Axiom of Foundation®
VA(BxnA — 3bbnAd & —Fz(z € b & zqA))).

After the formulation of Foundation in his May 1931 letter Bernays no-
tably defines “transitive” (really, “vollzdhlig” in the German) for sets and
provides a definition, with Foundation implicitly assumed, of (von Neu-
mann) ordinal as a transitive set each of whose members is transitive. This
first direct definition is in contradistinction to Neumann'’s involved defini-
tion through order-isomorphisms and may be attributable to Bernays’ earlier
interaction with Zermelo.

What are the similarities between the Bernays and von Neumann systems?
Von Neumann'’s was the first significant axiomatization after Zermelo’s, and
the first, through the I-objects and II-objects, to allow sets together with
proper classes, as we would now say, while avoiding the paradoxes, this
being accomplished by having only sets be members. Bernays transported
this basic framework.

Bernays’ axiom group I1I for the construction of classes has a direct coun-
terpart in von Neumann, and those axioms establish in modern terms the
Predicative Comprehension Schema:

For any formula ¢(v;....,v,) of the formalized system in the free
set variables as displayed and no quantified class variables, there is
a corresponding class, i.e., a class 4 such that ¢(a;..... ay) holds
exactly when (a,.... ap)nA.

In the recursive proof of this schema a(2) handles negation, a(3) handles
conjunction, b(1) and b(2) provide for atomic formulas, b(3) handles V, c(1)
handles 3, and ¢(2) and ¢(3) handle the changing of the order of appearance
of variables. Thus, a few instances of the Predicative Comprehension Schema

BInstead of this classical Dedekind formulation. Bernays in his May 1931 letter to Godel
preferred the specific Ix(# € x & Va(a € x — a U {a} € x)). This now-standard
version had appeared in the aforementioned 1920 Hilbert lectures.

This is drawn from von Neumann [74] as we shall soon discuss. Bernays [3] had
“Restriction” here instead of “Foundation™; the now standard term is from Zermelo [79].
A significant refinement, that Foundation only for sets suffices, is due to Godel in 1939
correspondence and discussed in the next section.

This content downloaded from 128.197.60.227 on Thu, 25 Sep 2014 15:03:05 PM
All use subject to JSTOR Terms and Conditions



BERNAYS AND SET THEORY 51

lead to the full schema. and this finite axiomatizability, particularly the
drawing out of the technical ¢(2) and ¢(3). is a notable feature of the move
into classes.

In the historical development of set-theoretic axioms, Zermelo’s origi-
nal [78] Separation axiom, with its separating out of members of a given set
according to a “definite property”, was widely regarded as in need of clarifi-
cation. Von Neumann [72] took as one of the crucial accomplishments of his
axiomatization such a clarification, with his axioms for generating classes
sufficient so that all definite properties can be correlated with classes ac-
cording to his Reduction Theorem [72] §3. essentially the Predicative Com-
prehension Schema.’® In his May 1931 letter to Godel. Bernays in effect
asserts the full schema, regarding it as the realization of Zermelo’s definite
property—so axiom Va serves indeed as the Separation Axiom.

What are the differences between the Bernays and von Neumann systems?
Commentators gravitate to the most evident difference. that von Neumann
had taken function as a primitive notion with his I-objects and II-objects
being functions, whereas Bernays reverted to collections, sets and classes.
However, between von Neumann and Bernays there is a striking conceptual,
and as we shall see. strategic difference that we draw out by looking at the
thrust of the main axioms.

The focal axiom of von Neumann’s system, the provenance of its power,
is his axiom IV 2. We state it in terms of sets and classes. with V' the class of
all sets:

A class A is not (represented by) a set exactly when there is a surjec-
tion of 4 onto V.

Thus, von Neumann crucially transformed the negative concept of proper
class, which had appeared in various guises, e.g., Cantor’s “inconsistent
multiplicities”, into the positive concept of having a surjection onto V. IV 2is
an existence principle that plays the role of regularizing proper classes. much
as the Axiom of Choice does for sets, by extending the Cantorian canopy of
cardinality over them through the positing of functional correspondences,
and this will become more explicit through a deduction below. Of IV 2 von
Neumann [72] §3 wrote:
Axiom IV 2. finally, deviates quite essentially from what Zermelo
and Fraenkel have. and indeed it is the distinctive feature of our
axiomatization. It is. to be sure. related in a certain sense to the
axioms of separation and replacement, but it goes much further. On
the one hand it guarantees the existence of subsets and image sets,
and in general it makes possible the theory of ordinals and alephs
(which can hardly be developed successfully in an axiom system

% Already in that letter of 15 August 1923 to Zermelo (in Zermelo’s Nachlass under
signature C 129/85 and reprinted in [50] pp. 271--3). von Neumann wrote that he does not
introduce definiteness explicitly but rather through schemes.
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that lacks the axiom of replacement): yet all that could essentially
be achieved by the axiom of replacement alone. But beyond this,
IV 2 occupies an altogether central position in the axiom system: in
several cases it enables us to prove that a set is “not too big”. and
finally it yields the well-ordering theorem.

Indeed, von Neumann’s IV 2 entails Replacement Vb as a natural conse-
quence: If F is a one-to-one correspondence whose range is not represented
by a set. then there is a surjection G of that range onto V: but then F com-
posed with G is a surjection of the domain of ¥ onto V. and consequently
the domain is not represented by a set.

On how VI 2 “yields the well-ordering theorem”. von Neumann argued
that since the class On of all ordinals cannot be a set by the Burali-Forti
argument. IV 2 implies that there is a surjection of On onto V. and inverting
the surjection according to least preimages induces a well-ordering of V' itself.
This immediately implies Zermelo’s Axiom of Choice (for sets). With the
proof of Zermelo’s Well-Ordering Theorem. von Neumann’s conclusion is
equivalent to the following formulation of modern set theory. Global Choice:

There is a choice function # on V. i.e.. for any non-empty set a.
F(a) € a.
Global Choice is quickly seen to be a simpler, equivalent formulation of
Bernays’ Axiom of Choice 1V, since the one choice function ¥ can be applied
to any relation.

The striking difference with Bernays’ axiomatization is that von Neu-
mann’s axiom IV 2 is missing. Instead. its consequences Choice IV and
Replacement Vb appear. and moreover Foundation VII. This last warrants
a discussion:

In his last paper on axiomatization von Neumann [74] defined the cumu-
lative hierarchy by transfinite recursion. In modern terms. he had defined
the class of well-founded sets through their stratification into cumulative
ranks V,. where

Vo =0: Var1 = P(Va): and Vs = |J,.s5 Ve for limit ordinals 6.

Mirimanoff [51] pp. 51ff had been first to study the well-founded sets. and the
cumulative hierarchy is distinctly anticipated in his work. In the axiomatic
tradition Fraenkel [21]. Skolem [66], and von Neumann [72] had considered
the salutary effects of restricting the universe of sets to the well-founded sets.
Then von Neumann [74] formulated, in his functional terms. Foundation
VII and observed that it is equivalent to the assertion that the cumulative
hierarchy is the universe. V = J, V. Moreover. by restricting the uni-
verse to the cumulative hierarchy he established the first relative consistency
result via “inner models™; his argumentation. as we would now say, estab-
lished the consistency of Foundation relative to Zermelo’s [78] axioms plus
Replacement.
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BERNAYS AND SET THEORY 53

Zermelo in his remarkable [79] subsequently provided his final axiom-
atization of set theory, incorporating for the first time both Replacement
and Foundation in an axiomatization. Like Bernays, Zermelo worked with
proper classes, but he took the diametrically opposite approach of proceed-
ing with sets in what we would now say is a full second-order context and not
distinguishing a concept of class. The now standard axiomatizations ZFC
and ZF of set theory are recognizable. the main difference being of course
that these are theories of first-order logic. Zermelo was actually presenting a
dramatically different view of set theory as based on a procession of models,
domains each having a basis of urelements. sets without members yet distinct
from each other, and a height a Grenzzahl. either w or an inaccessible cardi-
nal. Significantly. Zermelo pointed out (p. 38) that those domains starting
with one urelement satisfy von Neumann’s axiom IV 2. However, in Zer-
melo’s general approach IV 2 would not always hold. this depending on the
cardinality of the starting collection of urelements.’!

Von Neumann [74] himself had established in the presence of Foundation
VII that the two consequences Choice 1V and Replacement Vb of his axiom
IV 2 actually imply it:

For any class A. A4 is the union of the layers AN( V4| — V) by Foundation.
If 4 is not represented by a set. then these layers are nonempty for arbitrarily
large o by Replacement. But each such layer has a well-ordering by Choice.
and these well-orderings can be put together to well-order all of 4. again
by Choice. Hence. there is a bijection between 4 and the class On of all
ordinals.

Hence. assuming Foundation VII. von Neumann’s IV 2 is equivalent to
Choice 1V and Replacement Vb in the presence of the other axioms.*? This
result has the notable thematic effect of localizing the thrust of IV 2 through
Choice IV to its equivalent Global Choice. having one choice function on the
universe. What Bernays did in his axiomatization was to adopt Foundation
and replace 1V 2 with the conjunction of Choice IV and Replacement Vb.

While von Neumann did not adopt Foundation as an axiom. perhaps
preferring that his central axiom IV 2 have its full sway in a larger setting,
both Zermelo and Bernays espoused it. With Bernays having first lectured
on his axiomatization in 1929-30.** he and Zermelo must have arrived at the
idea of incorporating Foundation almost at the same time. But Bernays. like
von Neumann. worked in “pure” set theory without urelements and thus
drew in von Neumann's IV 2 into set theory as a consequence of Founda-
tion.

*'See Kanamori [41] p. 525 and generally for Zermelo's work in set theory.

“Levy [45] latterly showed by a clever argument that the Union Axiom Ve also follows
from von Neumann’s [V 2. so that IV 2 is equivalent to Choice IV. Replacement Vb and
Union Vc in the presence of the other axioms.

“ Again. see Bernays [3] p. 65.
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Foundation would henceforth be part of axiomatizations of set theory,
with Zermelo [79] being the first published instance and the Bernays axiom-
atization filtering through Godel’s later adoption. These axiomatizations
rounded out but also focused the notion of set, with Replacement providing
the means for transfinite recursion and induction and Foundation making
possible the application of those methods to get results about all sets, they
now being in the cumulative hierarchy. In a notable inversion, what has come
to be regarded as an underlying iterative conception based on the cumulative
hierarchy picture has become a heuristic for motivating the axioms of set the-
ory generally, particularly through writings of Godel. Foundation may be
the one axiom unnecessary for the recasting of mathematics in set-theoretic
terms, but the axiom ascribes to membership the salient feature that distin-
guishes investigations specific to modern set theory as an autonomous field
of mathematics.

In summary, the features of Bernays’ axiomatization that would com-
mend its further use and influence were that it recast von Neumann’s work
to present a viable theory starting with sets and classes as primitive no-
tions that allowed the full sway of logical constructions, and it incorporated
Replacement and Foundation into set theory, as did Zermelo’s late axiom-
atization, but in a first-order context and without the relativism of having
urelements.

§3. Ramifications. Soon after the National Socialists came to power in
1933, Bernays as a “non-Aryan” was no longer allowed to teach, and for
six months during this period Hilbert employed Bernays privately. In his
time in Gottingen, Bernays would be advisor to one student and this role he
played together with Hermann Weyl for Saunders Mac Lane. who getting his
doctorate in 1934 can be regarded as the last mathematician from Hilbert’s
Gottingen.

By the Spring of 1934 Bernays had moved to Ziirich, being a Biirger of
the city. He would thus no longer associate directly with Hilbert, but around
then he brought out the first volume of the Grundlagen and working in Ziirich
he would bring out the second volume five years later. At Ziirich Bernays at
first held a temporary position at the Eidgenossische Technische Hochschule
(ETH). He would eventually become a half-time Professor Extraordinarius
in 1945, a position that he continued to hold until he became Professor
Emeritus in 1959.

Bernays visited the Institute for Advanced Study at Princeton for the year
1935-6, two years after it became instituted, and had direct association with
Godel.3* Godel had by then come to the constructible universe L and the
relative consistency of the Axiom of Choice, but because of severe depression

¥They crossed the Atlantic together on a liner in September. and on the trip and later at the
Institute Bernays absorbed the details of the Second Incompleteness Theorem from Godel,
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he did not continue to work and returned to Vienna for recuperation in No-
vember. Bernays lectured on his axiomatization at the Institute. According
to an autobiographical note, Bernays [14] “had hesitated to publish it be-
cause he felt that [the] axiomatization was, to a certain extent, artificial. He
expressed this feeling to Alonzo Church, who replied with a consoling smile:
‘That cannot be otherwise’: this persuaded him to publish.” This Bernays
proceeded to do in The Journal of Symbolic Logic in several parts starting in
1937, and we discuss these publications soon below.

Returning in 1938 to the Institute. Godel lectured on L, having a year
earlier achieved the crucial breakthrough to the relative consistency of the
Generalized Continuum Hypothesis. These lectures were worked into the
monograph [25]. which at the beginning set out set theory with Godel’s ver-
sion of the Bernays axiomatization. After a lapse of several years Godel and
Bernays would have extensive correspondence in 1939 about the monograph
and L, beginning with a letter from Gddel concerning his use of the Bernays
axiomatization.

Godel in a brief account [24] of L informally presented it much as is done
today: For any set x let def(x) denote the collection of subsets of x definable
over (x.€) via a first-order formula allowing parameters from x. Then
define

Lo =0: Loy =def(Ly). Ly = |JyeyLa for limit ordinals 8
and the constructible universe

L=U,La

Toward the end Godel [24] pointed out that L “can be defined and its theory
developed in the formal systems of set theory themselves.” This is a remark-
able understatement of arguably the central feature of the construction of L.
L is a class definable in set theory via a transfinite recursion that could be
based on the formalizability of def(x). the definability of definability.

Godel’s [24] arguments for relative consistency amount to establishing
that various ¢ hold in the sense of L. starting with the axioms of set theory
themselves, and could only work if def (x) remains unaltered when applied in
L with quantifiers restricted to L. This absoluteness of first-order definability
is crucial if L is to be formally defined via the def(x) operation, but Godel
himself would never establish this absoluteness explicitly. Later in the 1960s
model-theoretic methods would become infused into set theory, but at this
time Godel was presumably averse to having to formalize satisfaction-in-a-
structure and in his monograph [25] proceeded without def(x) and by relying
on the Bernays axiomatization.

which eventually appeared in the second. 1939 volume of the Grundlagen. See Dawson [16]
p. 109. and generally for the biographical details on Godel below.
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There, Godel channeled the von Neumann—Bernays class construction ax-
ioms III into eight corresponding binary operations, producing new classes
from old, to generate L set by set via a transfinite recursion. In effect, Godel
relied on the aforementioned finite axiomatizability of the Predicative Com-
prehension Lemma to get at def(x) through evidently absolute operations.
Thus the von Neumann idea of casting the logical operations through class
construction to get at the “definite properties” became a specific transfinite
construction in Godel’s hands. and the Bernays axiomatization served a
specific mathematical purpose.

What are the differences between the Godel [25] and Bernays systems?
In fact, the differences have only to do with economy of presentation. The
most conspicuous change is that Godel only has one sort. class. and one
membership relation and introduces a predicate for set-hood. Godel does
not bother with Separation Va, as it was well-known to follow from Replace-
ment Vb. For Infinity Godel reverted to the von Neumann [72] formulation:
Ja(Ix(x €a) & Vx(x €a — Jy(y €a & x C y))). For Choice Godel
simply took Global Choice. Finally, several bi-conditionals in Bernays’ for-
mulation Godel reduced to implications when sufficient.

In view of Godel’s attempt at a parsimonious presentation, there is one
notable logical point arising from the 1939 correspondence. In the initial,
19 June letter from Godel,*> he pointed to a minor discrepancy between
Bernays’ May 1931 letter axiomatization and the Bernays [3] 1937 one.
Godel himself did not use Bernays’ axiom b(1), the existence of the class of
all singletons, and for making all order changes of variables relied on two
“axioms of inversion” for 3-place relations:

(B7) VAIBVYxVyVz((x.(y.z)) € B «— (y.(z.x)) € A).
(B8) VYAIBVxYyVz((x.(y.z)) € B« (x.{z.¥)) € A).

(B7) is equivalent to Bernays’ one inversion axiom c(3). as in both systems
one can construct converse relations. In a letter of response of 21 June
1939, Bernays in effect pointed out to Godel that (B8) is not necessary if
one has axiom b(1), the existence of the class of all singletons. But Bernays
eventually showed that b(1) is redundant in his axiomatization and noted
that thus (B8) must be redundant in Gddel’s axiomatization.*® But this is
simple to see: To get B as in (B8). one projects to the second coordinate,
takes the converse relation, and then adjoins a coordinate x—all possible
through his other axioms.

There is a more significant point of axiomatic parsimony raised by the 1939
correspondence. In the initial letter of 19 June Godel stated Foundation for
sets and inquired whether this goes back to von Neumann. In his response
of 21 June Bernays wrote that he took over the conception wholly from von

3See Godel [29] p. 11511
36See Bernays [9). especially footnote 95.
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Neumann and believed that Foundation VIIL. for classes. is necessary. In
a letter of 20 July Godel insisted that the set form is sufficient and from
it derived the class form. astutely pointing out the need for Infinity and
Replacement:

Suppose that 7" is a non-empty class. say with x € 7. Let 7 be a transitive
set such that {x} C ¢ and consider the set 1 1 7. given by Separation. By
(set) Foundation there is a tg € + 71 7 such that 1o+ N T = (. But then.
since 7 is transitive. 7o T - 0.7

Bernays in a letter of 28 September 1939 to Godel expressed great interest
in this reduction of Foundation to sets and observed that with Choice one
can also make the reduction via infinite descending €-sequences. It is a
notable point of modern ZF that the very simply stated Foundation (for
sets) is equivalent to the formalizable assertion that the universal class is
exactly the recursively defined cumulative hierarchy.

We tuck in here that Bernays in the subsequent discussion of L in his letter
pointed out “a certain analogy to Hilbert's approach to the proof of the
continuum hypothesis: the underlying theory of ordinals corresponds to the
species of variables {variable types). proposition A to lemma 1. and your
theorem 2 to Lemma II.” Bernays was referring to Hilbert’s attempted proof
of CH in [38]. In a lecture of |5 December at Gottingen on L. Godel would
draw out this very analogy.™

The axiomatic system presented in Godel [25] would come to be called
“Godel-Bernays™ or “Bernays-Géodel”. with “von Neumann” sometimes
inserted. Be thatas it may. the system is substantively Bernays’. with the main
difference the cosmetic one of making certain reductions. particularly that of
contracting two membership relations into one. Still. the idea of having only
one sort of object. class. was in its way a conceptual advance. Also. it was the
thrust of Godel’s achievement with L. which through the details of its formal
presentation propelled the new axiomatization into prominence. The impact
of Godel [25] was such that its axioms. even to their groupings. would become
reverently cited in the next two decades. In particular. with first-order logic
having been shown to have considerable operational efficacy in establishing
striking new mathematical results. the logic as filtering from Hilbert through
Bernays™ axiomatization would achieve a lasting ascendancy in set theory.
In sum. the Bernays’” axiomatization was a substantial departure from von
Neumann’s in that one moves from functions to sets and classes. and one
shifts from his axiom IV 2 to Replacement. Choice. and Foundation. The

“"Where Infinity and Replacement are needed is to establish Transitive Containment. that
every set is a subset of a transitive set. Notably. Zermelo [79] actually needed Foundation
for classes in his framework. as he was not assuming Infinity. It is a latter-day observation
that Second-Order ZF with only Foundation for sets but without Infinity does not suftice to
establish Transitive Containment: see Vopénka Hajek [75) and Hauschild [34]. For more on
Foundation for sets vs. for classes and Gédel's subvention. see Felgner [19].

“See Godel [28] pp. 126-155.
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second shift to the Godel axiomatization is less logically significant, but still
conceptually salutary.

Bernays published a leisurely account of his axiomatization and its ramifi-
cations in a series consisting of seven parts in The Journal of Symbolic Logic
[3,4.5. 6,7, 8, 9] dating from 1937 through 1954—his first and only journal
publications in English. Aspects of the axiomatization itself we have already
discussed, and so we focus on the development of set theory, especially those
aspects that have become part of the heritage of the subject.

Part I presents the axioms I - III and is mainly devoted to establishing,
in its terms, the aforementioned Predicative Comprehension Schema. A
small point is that this is the first publication in which the now-standard
term “transitive” for sets appears (p. 67).>> The adoption of the Kuratowski
ordered pair (a,b) = {{a}.{a.b}} is from here (p. 68) as well with ac-
creditation to Kuratowski [43]: von Neumann [72] 11§5 had mentioned the
possibility, and without accreditation.

Part II presents the rest of the axioms IV - VII and develops the basics
of ordinals, finite recursion, and finite sets and classes. After crediting Zer-
melo with the “general theory”, Bernays provides a now-standard definition,
adopted from Robinson [61], of “ordinal” (p. 6): A transitive set a such that
forany x, y € a, eitherx € yorx = yory € x4

This is the source of noun use in English, which lends itself to the con-
traction from “ordinal number”, a contraction unavailable for the German
“Ordnungszahl” or “Ordinalzahl”.

Part III first deals with various axioms of infinity and then proceeds to the
reals as Dedekind cuts and the “foundations of analysis”. To this purpose
Bernays emphasizes the Countable Axiom of Choice and isolates (p. 86)
the Axiom of Dependent Choices. As this principle became focal. Bernays
has come to be acknowledged as the source, but it should be said that the
principle had already been isolated and applied by Oswald Teichmuiller [68].
Bernays in a later part does come to refer ([7] p. 93. citing a review) to
this paper, which appeared in the short-lived journal Deutsche Mathematik
devoted to “Aryan mathematics”.

Part 1V first develops the Cantorian theory of cardinality in “general set
theory” as conveyed mainly by axioms I - IV and Replacement. There is
a necessarily careful analysis of one-to-one correspondence distinguishing
sets and classes. The rest of Part IV is devoted to well-orderability and the
definition of cardinal number as initial ordinal. Part V deals with “general”
recursion, provable in general set theory, and how with it one can prove Zorn’s
Lemma from Choice IV and formalize ordinal arithmetic. Part VI finally

¥ As mentioned earlier, the term (really “vollzihlig”) had appeared in Bernays® May 1931
letter to Godel.

40 As mentioned earlier Bernays in his May 1931 letter to Gddel had provided the first
direct definition of ordinal. as a transitive set each of whose members is transitive.
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draws on Foundation V11, establishing its aforementioned consequence, von
Neumann’s axiom IV 2. The emphasis is on how 1V 2 simplifies the theory of
cardinality with all the proper classes put together into one cardinality class
without paradox. Bernays also defines the cumulative hierarchy and with
it established von Neumann’s relative consistency result about Foundation,
as well as used V,, and V,,.,. and ¥V, to establish various independences
among the axioms. In this Bernays can be seen as pursing axiomatic analysis
in the Hilbert Grundlagen der Geometrie tradition by establishing indepen-
dences through models built within the system. an approach first taken in
set theory by Fraenkel [20]. In the final Part VII. Bernays continues with
independences using a well known interpretation of the membership rela-
tion in arithmetic due to Ackermann and shows at the very last that the
axiom III b(1) is redundant.

In that Part VII pp. 88fT Bernays establishes the independence of Founda-
tion from the other axioms. a result that he had announced in Part Il p. 10.
This is a result of separate significance. both for being a counterweight to
von Neumann'’s relative consistency result and in terms of axiomatic analysis
since Bernays had newly adopted Foundation. In abstract terms one can see
his approach as starting with the finite ordinals and building a cumulative
hierarchy S over them. and then. with /" a permutation of the finite ordinals.
defining a new “membership” relation by x €, y exactly when f(x) € y.
Then S together with €, serves as a model of all the axioms except Foun-
dation, and with a proper choice of f one can have instead Ja(a = {a}).
In his 1952 ETH Habilitationsschrift Ernst Specker (cf. [67]) similarly es-
tablished the independence of Foundation by getting a’s satisfying a = {a}.
and moreover he coordinated such a’s playing the role of urelements in his
refinement of the Fraenkel-Mostowski method for deriving independence
results related to the Axiom of Choice.

With the set theory ZFC coming to be taken formally as a first-order
theory with Replacement as a schema. connections were drawn during this
period between the two set theories ZFC and Bernays-Godel (BG). Ilse
Novak [58]. in her 1948 Radcliffe thesis. constructed a model of BG within
the formal syntax of ZFC to show that if the latter is consistent, then so is
the former. Adapting Novak’s proof Andrzej Mostowski [56] showed that
BG is a conservative extension of ZFC. i.e.. any sentence of ZFC (so no class
variables) provable in BG is already provable in ZFC. Joseph Shoenfield [62]
subsequently showed how to convert a proof in BG about sets to a proof
in ZFC by finitary means. i.e.. through a primitive recursive procedure.
Generally speaking. if one expands a first-order theory by adding predicative
(no bounded class variables) second-order logic and replacing schemas by
single axioms. one gets a conservative extension. Thus. as far as propositions
about sets are concerned there was formal assurance that the resources of
BG do not transcend those of ZFC.
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In 1958 Bernays brought out a full text, Axiomatic Set Theory [10], which
first establishes a specific logical framework and then proceeds to develop
more formally the axiomatic theory in his series of journal articles. At
the beginning of his first article [3] Bernays had written that “[t]he theory
is not set up as a pure formalism ... ™ but that it “can be formalized by
means of the logical calculus of first order (“Pradikatenkalkl” or “engerer
Funktionenkalkiil”) with the addition of the formalism of equality and the
1-symbol for “descriptions” (in the sense of Whitehead and Russell).” This
approach to formalization, the one that had been taken in the Grundlagen,
Bernays proceeds to set out for sets. but he takes a particular tack with classes.
Class variables are used but no class quantification; class membership # is
reduced to € a la Godel: and he introduces class terms {x | ¢(x)} for
formulas ¢ in his language and the conversion scheme ¢(a) «— a €
{x | ¢(x)}. Through this means and having made his logic explicit there is
no longer need for his axioms III for construction of classes. and his other
axioms involving classes are newly stated schematically. precluding finite
axiomatizability. Bernays thus presented a theory much closer to modern
ZFC. with an elaborated underlying first-order logic that includes classes as
extensions of propositions. While a modern preoccupation about Bernays-
Godel theory is its finite axiomatizability as a formal theory of classes,
Bernays himself formalized a theory with classes playing a role ancillary
to sets.

Bernays in this text develops set theory largely following the progression
of his journal articles, but there is also axiomatic parsimony in the gradual
introduction of axioms only as needed and some rearrangement to this
purpose. For “general set theory”. now more explicitly to correspond to
Cantor’s principles for generating the transfinite numbers. Bernays has his
two axioms II. one giving the empty set for starting and the other giving
a U {b} for successors, and now a new third axiom giving | J., t(x) for
class operators ¢ (given by applying the ;-symbol to class terms). This last
axiom is evidently a combination of Union and Replacement. With only
these three axioms Bernays is able to go a considerable distance. in this way
exhibiting the expanse in a formalized setting that the original Cantorian
initiative covers. Bernays then introduces Power Set and Choice, the latter
now in a set version. Remarkable is the substantial development carried out
until one gets to Infinity, and with it the development of the real numbers.
Bernays’s final axiom is Foundation for sets. With classes in an ancillary role,
von Neumann’s axiom IV 2 is no longer contextually relevant, but with the
historical precedent Bernays did formulate Global Choice and showed with
it and Foundation that the universe V' of sets and the class On of ordinals
are in bijective correspondence. Significantly. even with this result, which is
really one about proper classes. Bernays reverts to taking classes seriously: in
modern set theory one does not assume such principles as Global Choice as
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part of the basic framework. Despite this. we have in Axiomatic Set Theory
a remarkable development of how set theory might in several respects be
presented today. with the original approaches of Cantor and Zermelo in full
evidence and Foundation at the end.

Gert Miiller. who was an Assistent to Bernays at the ETH for the years
1952-1959. wrote in the mid-1970s:*!

As far as | have understood from many discussions. Paul Bernays did
not consider classes as real mathematical objects (in this respect his
attitude differs from von Neumann’s). In describing the use of the
set concept (via some axiomatisation) in its frame theoretic role for
mathematics (1.e.. its outermost use). classes (as extensions of condi-
tions) are considered as a useful element of our language with which
we describe such an axiomatisation. In addition the distinction
between mathematical objects as elements of something vs. classes
which are not objects (in the formal sense ) becomes transparent. For
this purpose the axiomatic arrangement of sets and classes as given
in Bernays (1958} ... seems to be the best adaptation.

This may be a fair account of Bernays™ general attitude toward classes. but
remarkably. a year after the appearance of Axiomatic Set Theory Bernays
would be impelled by new mathematical possibilities to work with the full
quantification of classes in a dramatic development.

§4. Reflection principles. Entering his eighth decade Bernays was newly
stimulated by work of the Israeli mathematician Azriel Levy in his 1958
Jerusalem doctoral thesis. Upon receiving a copy Bernays plunged into the
details in the original Hebrew. according to Muller. Levy’s work on reflection
principles in his dissertation and a subsequent paper [44] would lead Bernays
to a new elaboration involving classes.

Reflection principles. both as heuristic and as formal propositions. have
become a common feature of modern set theory due in large part to the
work of Levy. To affirm terminology. o' denotes the relativization of the
formula ¢ to the set y. i.e.. ¥x is replaced by ¥x € v and Jx by dx € .
these latter being formalizable. The ZV Reflection Principle. drawn from
Montague [54] p. 99 and Levy [44] p. 234. asserts that for any ZF formula

ovy..... vy ) in the free variables as displayed and any ordinal f8. there is a
limit ordinal & > # such that for any x;...... Xy €V,
elyy..... ot e . Xn]-

Montague showed that the principle holds in ZF. and Levy showed that
it is actually equivalent to Replacement (schema) together with Infinity in

*'See the preface p. vii of [57).
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the presence of the other axioms of ZF. Through this work the ZF Reflec-
tion Principle has become well-known as making explicit how reflection is
inherent to the ZF system.

Levy [44] took the ZF Reflection Principle as motivation for stronger
reflection principles involving large cardinals. The first in his hierarchy

asserts that for any formula (v, ..., v, ). there is an inaccessible cardinal o
such that for any xy....,x, € V,,
; Vn
wlxy, ..., Xa) i @ X1, ... Xal

Levy showed that this principle is equivalent to the assertion that the class
of inaccessible cardinals is definably stationary, i.e., every definable closed
unbounded class of ordinals contains an inaccessible cardinal. At the be-
ginnings of set theory Paul Mahlo [46. 47. 48] had studied what are now
known as the weakly Mahlo cardinals, those cardinals x such that the set
of smaller regular cardinals is stationary in k. i.e., every closed unbounded
subset of k contains a regular cardinal. These cardinals figured in the earliest
investigation of higher fixed-point phenomena in the Cantorian transfinite,
and today are at the lower end of the hierarchy of large cardinals. Levy’s
work established a close connection between Mahlo’s cardinals and struc-
tural principles about sets. Levy recast Mahlo’s concept by replacing regular
cardinals by inaccessible cardinals. On the other hand. whereas Mahlo had
entertained arbitrary closed unbounded subsets. Levy’s principle is restricted
to definable closed unbounded classes. Be that as it may. it would be through
Levy’s work that Mahlo’s cardinals would come into use in modern set the-
ory cast as the strongly Mahlo cardinals, those regular cardinals x such that
the set of smaller inaccessible cardinals is stationary in «.

Mahlo’s investigations featured getting a hierarchy of cardinals, the a-
Mahlo cardinals: 1-Mahlo cardinals are the Mahlo cardinals; (o + 1)-
cardinals are those cardinals x such that the set of smaller a-Mabhlo cardinals
is stationary in x: and 6-Mabhlo cardinals for limit  are those cardinals which
are a-Mabhlo for every a < 8. Levy [44] showed how to get these higher
Mabhlo cardinals through corresponding strengthenings of reflection, begin-
ning with 2-Mabhlos arising from reflecting down to V, where « is itself
Mabhlo.

To this new investigation based on a new theme, Bernays in a 1961 paper
[12], a contribution to a volume of papers commemorating the 70th birth-
day of Fraenkel, made quite significant advances. He first considered the
curtailed reflection schema

¢ — Jy(Trans(y) & )

for formulas ¢ without y or any class variables, where Trans(y) asserts that y
is transitive. Levy in his dissertation routinely required such reflecting y’s
to model ZF, and this necessitated working with a formalized satisfaction
predicate. Starting with the observation that set parameters ay, ..., a, can

This content downloaded from 128.197.60.227 on Thu, 25 Sep 2014 15:03:05 PM
All use subject to JSTOR Terms and Conditions



BERNAYS AND SET THEORY 63

appear in ¢ and y can be required to contain them by introducing clauses
Jx(a; € x) into . Bernays just with his schema established Pair, Union,
Infinity, and Replacement (schema)—in effect achieving a remarkably eco-
nomical presentation of ZF.

Bernays then made his main contribution by introducing classes, and quite
precipitously, allowed quantifications V.4 and 34 of classes. For formulas ¢
of this expanded language. we can cast his class reflection schema as follows:

Here the relativization has to be newly and carefully stipulated: First, all de-
fined terms are assumed eliminated in favor of their definitions, this including
any class terms of the Bernays 1958 text using the conversion schema. Then
set quantification is relativized as before and now class quantification VA4 is
replaced by Vx C y, this being formalizable. Bernays showed that with this
crucial move into quantification over classes. all the various Levy reflection
principles for getting the higher, a-Mahlo cardinals are at once subsumed. In
modern terms. the Mahlo reflection principles amount to asserting the exis-
tence of strong closure ordinals for Skolem functions, and with the conceptu-
ally stronger VA4 one can get at this by taking an intersection of closed classes.

Given Bernays’ modest approach to classes in his 1958 text, how are we
to take this incursion by him into what we would now regard as full second-
order logic? Gddel in his late sixties, and despite his own earlier pronounce-
ments about how the Continuum Hypothesis is false and how new large
cardinal axioms might establish this, worked on “orders of growth” axioms
that might actually establish the Continuum Hypothesis.*> In this Godel ex-
hibited a remarkable fluidity, to see simply where the mathematics leads. So
too Bernays, despite his lack of commitment to classes as “real mathematical
objects”. In the end Bernays’ mathematical instincts manifested themselves
and he. stimulated by Levy’s work. established a significant result properly
of second-order set theory.

Bernays’ work itself would soon be subsumed into set theory with V,
playing the role of the universe V' and quantification over classes. etc. car-
ried forth with higher-order quantifiers. In a 1961 abstract William Hanf
and Dana Scott [33] formulated the indescribable cardinals by thus as-
cribing reflection properties to domains V.. In this context. Bernays’
principle amounts to the ascription of second-order indescribability, IT}-
indescribability for all #. to the class On of all ordinals. Here, T1! refers
to the quantifier complexity for the second-order quantifiers with just » al-
ternations of quantifiers starting with V. Hanf and Scott characterized the
weakly compact cardinals, large cardinals arising from the investigation of
infinitary languages. exactly as the H{-indescribable cardinals. and in fact
Bernays® argument for subsuming the Mahlo hierarchy with his reflection

#28ee Kanamori [42] §8.
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schema requires only universal class quantification. This raises a historically
interesting point:

In his Berkeley Ph.D. work done by 1960. Hanf had in effect shown through
their incipient infinitary language formulation that weakly compact cardinals
x are a-Mahlo for every a < x.** This in a strong sense had answered a
pivotal. classical question of Tarski in the theory of large cardinals: Can
the least inaccessible cardinal be measurable? The answer is most decidedly
no. as measurable cardinals are weakly compact and a-Mahlo cardinals
are highly inaccessible. This result was greeted by Abraham Robinson [60)]
p. 78 as “a spectacular success” for metamathematical methods. Hanf’s
work radically altered size intuitions about problems that were coming to be
understood in terms of large cardinals.

Bernays’ work, given the I1}-indescribability of weakly compact cardinals.
established Hanf’s result. Moreover. Bernays’ work was probably done ear-
lier. for he announced [11] his results at a September 1959 conference. And. it
would be through reflection phenomena rather than involved infinitary lan-
guage approaches that such transcendence results for large cardinals would
henceforth be approached. Had Bernays looked in different directions for
sufficient hypotheses to derive his class reflection schema or had he applied
already known results about measurability. he would have been first to solve
Tarski’s problem. Godel in a letter of 11 August 1961 latterly mentioned
new work on Tarski’s problem.** but this did not seem to elicit a response.

Bernays at the ETH had over a dozen students. including J. Richard Biichi
and Erwin Engeler. and as colleagues active in set theory. Ernst Specker and
his student Hans Lauchli. In 1946 Bernays together with the philosophers
Ferdinand Gonseth and Gaston Bachelard founded the now-prominent jour-
nal Dialectica. Bernays produced lucid and incisive. wide-ranging philo-
sophical essays and reviews over several decades.* In 1976 there appeared
a celebratory volume on Bernays™ set-theoretic work edited by Miiller. In
his late eighties. Bernays passed away in Ziirich on 18 September 1977. four
months before Godel.

§5. Envoi. From the point of view of modern set theory Bernays can be
considered an important transitional figure in two respects. First. Bernays
recast von Neumann’s work to provide a viable first-order axiomatization
of sets and classes that. like Zermelo's late axiomatization. incorporated
Replacement and Foundation. Godel then made crucial use of Bernays’
axiomatization to formally cast logical operations and definability. However.
classes would lose this role with ZFC becoming the standard axiomatization
and the satisfaction predicate become domesticated in set theory. Classes

“*Hanf's work appeared in print only years later in [32}.
#See Godel [29] p. 1931T.
**See Sieg and Tait [65].
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would remain very much a part of the practice of set theory, but they would
come to be regarded as informal constructs, usually extensions of formulas.
This transition is already in evidence in Bernays’ final development [10] of
set theory.

Second, Bernays evidently took classes as partaking in a conceptual analy-
sis of sets, this being worked out through axiomatization. However varying
his ontological commitment to classes. they participate in the process of pro-
viding mathematical sense to sets. This way of thinking would recede in the
1960s after Paul Cohen’s discovery of forcing. as set theory became more like
group theory, with a profusion of models for various combinatorial propo-
sitions and the development of more and more methods for investigating a
range of hypotheses and their relative consistencies.*

In a 1965 international colloquium on the philosophy of mathematics,
Bernays [13] maintained that the recent results of Cohen (p. 109) “do not di-
rectly concern set theory itself. but rather the axiomatization of set theory”,
and took forcing extension models to have the “character of non-standard
models”. After alluding to the fact stressed by Kreisel that the Continuum
Hypothesis is decided in second-order logic. Bernays averred (p. 111ff): “Our
inability to deal successfully with the continuum problem is certainly con-
nected with the circumstance that our explicit knowledge of the continuum
is very restricted.”

The advent of forcing would be looked upon more favorably as an opening
up of set theory and the beginning of its transformation into a modern,
sophisticated field of mathematics. one that through elaboration of method
would provide new insights into issues even like the continuum problem.
Forcing itself went a considerable distance in downgrading any formal theory
of classes because of the added encumbrance of having to specify the classes
of generic extensions.

But there would be an eternal return. As methods evolved ever more
sophisticated. new levels of understanding have been considered to have
been achieved about “the concept of set” in the unbridled formulations
about classes, particularly in the work of Hugh Woodin on the Continuum
Hypothesis. Of this at least. Bernays would have approved.
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