AKIHIRO KANAMORI

THE EMERGENCE OF DESCRIPTIVE SET THEORY

Descriptive set theory is the definability theory of the continuum. the
study of the structural properties of definable sets of reals. Motivated
initially by constructivist concerns, a major incentive for the subject
was to investigate the extent of the regularity properties, those proper-
ties indicative of well-behaved sets of reals. With origins in the work
of the French analysts Borel, Baire, and Lebesgue at the turn of the
century. the subject developed progressively from Suslin’s work on the
analytic sets in 1916, until Godel around 1937 established a delimita-
tive result by showing that if V = L, there are simply defined sets of
reals that do not possess the regularity properties. In the ensuing years
Kleene developed what turned out to be an effective version of the theory
as a generalization of his foundational work in recursion theory, and
considerably refined the earlier results. -
The general impression of the development of set theory- during this
period is one of preoccupation with foundational issues: analysis of the
Axiom of Choice. emerging axiomatics, hypotheses about the transfinite.
and eventual formalization in first-order logic. Descriptive set theory
on the other hand was a natural outgrowth of Cantor’s own work and
provided the first systematic study of sets of reals building on his
methods, and as such, how it developed deserves to be better known. This
article provides a somewhat selective historical account, one that pursues
three larger theses: The first is that the transfinite ordinals became incor-
porated into mathematics, Cantor’s metaphysical bent and the ongoing
debate about the actual infinite notwithstanding, because they became
necessary to provide the requisite length for the analysis of mathemat-
ical concepts, particularly those having to do with sets of reals. The
second is that later work in recursion theory and set theory emanating
from Godel's results had definite precursors in pre-formal but clearly
delineated settings such as descriptive set theory. The third, related to the
second, is that as metamathematical methods became incorporated into
mathematics, they not only led to extra-theoretic closure results about
carlier problems but to intra-theoretic advances to higher levels. The
text Moschovalis [1980] serves as the reference for the mathematical
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development of descriptive set theory: the historical bearings estab-
lished there are elaborated in certain directions here.'

As Cantor was summing up his work in what were 10 be his last
publications, the Beitrdige, it was the French analysts Emile Borel, René
Baire, and Henri Lebesgue who were to carry the study of sets of reals
o the next fevel of complexity. As is well-known, they, perhaps influ-
enced by Poincaré, had considerable reservations about the extent of
permissible objects and methods in mathematics. And as with later
constructivists, their work led to careful analyses of mathematical con-
cepts and a body of distinctive mathematical results. But significantly,
the denumerable ordinals. Cantor's second number class, became nec-
essary in their work, as well as the Countable Axiom of Choice, that
every countable set of nonempty sets has a choice function.

Soon after completing his thesis Borel in his book (1898, pp. 46-47)
considered for his theory of measure those scts of reals obtained by
starting with the intervals and closing off under complementation and
countable union. The formulation was axiomatic and in effect impred-
icative, and seen in this light, bold and imaginative: the sets are now
known as the Borel sets and quite well understood.

Baire in his thesis (1899) took on a dictum of Dirichlet’s that a real
function is any arbitrary assignment of reals, and diverging from the [9th
Century preoccupation with pathological examples, sought a construc-
tive approach via pointwise limits. He formulated the following
classification of real functions: Baire class 0 consists of the continuous
real functions, and for countable ordinals o > 0, Baire class o consists
of those functions f not in any previous class. yet for some scquence
for fis for . . . of functions in previous classes f is their pointwise limit,
i.e. f(x) = lim, . f,(x) for every real x. The functions in these classes
are now known as the Baire functions. and this was the first analysis
in terms of a transfinite hicrarchy after Cantor. Baire mainly studied
the finite levels. particularly classes 1 and 2; he pointed out in a
note (1898) toward his thesis that Dirichlet’s function that assigns 1 to
rationals and O to irrationals is in class 2. He did observe (1899, pp.
70-71) that the Baire functions are closed under pointwise limits (with
an implicit use of the Countable Axiom of Choice), and that an appeal
o Cantor's cardinality arguments would imply that there are veal func-
tions that are not Baire.

Lebesgue's thesis (1902) is, of course, fundamental for modern
integration theory as the source of his concept of measurability. Inspired
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in part by Borel's ideas, Lebesgue's concept of measurable set subsumed
the Borel sets, and his analytic definition of measurable function had
the simple consequence of closure under pointwise limits, thereby
subsuming the Baire functions (and so Dirichlet’s old example). See
Hawkins (1975) for more on the development of Lebesgue measurability;
Lebesgue’s first major work in a distinctive direction was to be the
seminal paper in descriptive set theory.

In the memoir (1905) Lebesgue investigated the Baire functions,
stressing that they are exactly the functions definable via analytic
expressions (in a sense made precise). He first established a correla-
tion with the Borel sets by showing that they are exactly the pre-images
{x|f(x) € O} of open intervals O by Baire functions f. With this he
introduced the first hierarchy for the Borel sets (differing in minor details
from the now standard one from Hausdorff (1914)) with his open sets
of class o being those pre-images of some open interval via some function
in Baire class « that are not the pre-images of any open interval via
any function in a previous class. After verifying various closure
properties and providing characterizations for these classes, Lebesgue
cstablished two main results, The first demonstrated the necessity of
cxhausting the countable ordinals:

(1) The Baire hicrarchy is proper, i.e. for every countable ordinal a there is a Baire
function of class «, and consequently the corresponding hierarchy for the Borel
sets is analogously proper.

The second established transcendence beyond countable closure for his
concept of measurability:

(2) There is a Lebesgue measurable function which is not in any Baire class, and
consequently a Lebesgue measurable set which is not a Borel set,

The hierarchy result (1) was the first of all such results, and a definite
precursor of fundamental work in mathematical logic in that it applied
Cantor's universal enumeration and diagonal argument to achieve a
transcendence to a next level. What was missing of course was the for-
malization in first-order logic of Godel's Incompleteness Theorem, but
what was there was the prior extent of the ordinals, as in Gddel's later
construction of L. For the first time, Cantor’s second number class
provided the necessary length for an individuated analysis of a class of
simply defined sets of reals.

Baire (1899) had provided a characterization of Baire class 1, one
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elaborated by Lebesgue (1904), and had found examples of “effective™
functions in class 2 (1898) and class 3 (1906), with a systematic pre-
sentation in (1909). In a formal sense, it is necessary to use higher
methods to establish the existence of functions in every class.* Lebesgue
regarded the countable ordinals as an indexing system, “symbols™ for
classes, but nonetheless he exposed their basic properties, giving probably
the first formulation (1905, p. 149) of the concept of proof by transfi-
nite induction. To Bore!’s credit. it was he (cf. his [1905, note [I1]) who
had broached the idea of applying Cantor's diagonal method; Lebesgue
incorporated definability considerations to establish (1).

The transcendence result (2) was also remarkable in that Lebesgue
actually provided an explicitly defined set. one that was later seen to
be the basic example of an analytic, non-Borel set. For this purpose,
the reals were for the first time construed as codes for somcthing else,
namely countable well-orderings, and this not only further incorporated
the transfinite into the investigation of sets of reals, but foreshadowed
the later coding results of mathematical logic.

Lebesgue’s results, along with the later work in descriptive set theory,
can be viewed as pushing the mathematical frontier of the actual infinite
past Ry, which arguably had achicved a mathematical domesticity through
increasing usc in the late 19th century, to X,. The results stand in
elegant mathematical contrast to the metaphysical to and fro in the wake
of the antimonies and Zermelo's 1904 proof of the Well-Ordering
Theorem. Baire in his thesis (1899, p. 36) had viewed the denumerable
ordinals and hence his function hierarchy as merely une fagon de parler,
and continued to view infinite concepts only in potentiality. Borel (1898)
took a pragmatic approach and seemed to accept the denumerable
ordinals. Lebesgue was more equivocal but still accepting, perhaps out
of mathematical necessity, although he was to raise objections against
arbitrary denumerable choices. (For his (2) above. the example is
explicitly defined. but to establish the transcendence the Countable
Axiom of Choice was later scen to be necessary.) Poincaré (1906),
Shoenflies (1905) and Brouwer (1907) (his dissertation) all objected 10
the existence of ¥, although at least the latter two did accept the
denumerable ordinals individually. In any case. mathematics advanced in
Hausdorff's work (1908) on transfinite order types: Objecting to all the
fuss being made over foundations and pursuing the higher transfinite with
vigor, he formulated for the first time the Generalized Continuum
Hypothesis, introduced the 1, sets — prototypes for saturated model theory
— and broached the possibility of an uncountable regular limit cardinal
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— the beginning of large cardinal theory. The mathematical advances of
the period in set theory were soon codified in the classic text Hausdorff
(1914).

During these years, Lebesgue measure became widely accepted as a
regularity property, a property indicative of well-bchaved sets of reals.
Two others were discussed: the Baire property and the perfect set
property. All three properties were to become of central concern in
descriptive set theory for. unlike the Borel sets, there did not seem to
be any hierarchical analysis, and indeed the extent of the sets of reals
possessing these properties was quite unclear.

The Baire property evolved from the other important concept in Baire's
thesis (1899). that of category: A set of reals is nowhere dense iff its
closure under limits contains no open set; a set of reals is meager (or
of first category) iff it is a countable union of nowhere dense sets: and
a set of reals has the Baire property iff it has a meager symmetric
difference with some open set. Straightforward arguments show that every
Borel set has the Baire property.

The second regularity property has its roots in the very beginnings
of set theory: A set of reals is perfect iff it is nonempty, closed and
:.;on'luins no isolated points; and a set of reals has the perfect set property
iff it is either countable or else has a perfect subset. Using his notion
of derived set emerging out of his work on the convergence of trigono-
metric series, Cantor (1883, 1884) and Bendixson (1883) established
that every closed set has the perfect set property. Since Cantor (1884)
established that every perfect set has the cardinality of the continuum.
this provided a more concrete approach to his Continuum Problem: at
least no closed set of reals can have an intermediate cardinality between
R, and the cardinality of the continuum. William Young (1903) extended
the Cantor-Bendixson result by showing that every G; set® of reals
has the perfect set property. However. unlike for the other regularity
properties it was by no means clear that every Borel set has the perfect
sct property and the verification of this was to only to come a decade
later with the shifting of the scene from Paris to Moscow.

The subject of descriptive set theory emerged as a distinct discipline
through the initiatives of the Russian mathematician Nikolai Luzin.
Through a focal seminar that he began in 1914 at the University of
Moscow. he was to establish a prominent school in the theory of
functions of a real variable.* Luzin had become acquainted with the work
and views of the French analysts while he was in Paris as a student,
and from the beginning a major topic of his seminar was the “descrip-
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tive theory of functions”. Significantly, the young Polish mathemati-
cian Wactaw Sierpiriski was an early participant: he had been interned
in Moscow in 1915, and Luzin and his teacher Egorov interceded on
his behalf to let him live freely until his repatriation to Poland a year
later. Not only did this lead to a decade long collaboration between Luzin
and Sierpitiski, but undoubtedly it encouraged the latter in his efforts
toward the founding of the Polish school of mathematics® and laid the
basis for its interest in descriptive set theory.

In the spring of 1915 Luzin described the cardinality problem for Borel
sets (operatively whether they have the perfect set property) to Pavel
Aleksandrov, an early member of Luzin's seminar and later a pioneer
of modern topology. By that summer Aleksandrov (1916) had established
his first important result:

(3) Every Borel set has the perfect set property.

Hausdorff (1916) also established this, after getting a partial result (1914,
p. 465). The proof of (3) required a new way of comprehending the Borel
sets, as underscored by the passage of a decade after Lebesguc’s work.
{t wrns out that the collection of sets having the perfect set property is
not closed under complementation, so that an inductive proof of (3)
through a hierarchy is not possible. The ncw, more direct analysis of
Borel sets broke the ground for a dramatic development.

Soon afterwards another student of Luzin's, Mikhail Suslin (often
rendered Souslin in the French transliteration). began reading Lebesgue
(1905). Memoirs of Sierpiriski (1950, p. 28ff) recalled how Suslin then
made a crucial discovery in the summer of 1916. For ¥ € R**', the
projection of Y is

pY = {{x)y . oo ) FyEyy, oL Xw ) € D)

Suslin noticed that at one point Lebesgue asserted (1905, pp. 191-192)
that the projection of a Borel subset of the plane® is also a Borel set.
This was based on the mistaken claim that given a countable collec-
tion of subsets of the plane the projection of their intersection equals
the intersection of their projections. Suslin found a counterexample to
Lebesgue’s assertion. and this led to his inspired investigation of what
are now known as the analytic sets. (Lebesgue later ruefully remarked
that his assertion was “simple, short, but false™ (Luzin [1930, p. vii]):
however, it did not affect the main results of his memoir.)
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Suslin (1917) formulated the analytic sets as the A-sets (les ensem-
bles (A).), sets resulting from an explicit operation, the Operation (A):
A defining system is a family {X,}, of sets indexed by finite sequences

s of integers. A({X,},). the result of the Operation (A) on such a system,
is that set defined by:

xe A{X,}) iff 3ff o> wVnewkxe X0)-

For X a set of reals,

Xis analytic iff X = A({X,},) for some defining system
{X,}, consisting of closed sets of reals.

As Suslin essentially noted, this implies that a ser of reals is analytic

iff it is the projection of a Gy subset of the plane.> He announced three
main results:

(4) Every Borel set is analytic.

In fact: i
(5) A sct of reals is Borel iff both it and its complement are analytic;
and:

(6) There is an analytic set that is not Borel.

These results are analogous to later, better known results with
“recursive” replacing “Borel” and “recursively enumerable” replacing
“analytic™, (1917) was to be Suslin's sole publication, for he succumbed
to typhus in a Moscow epidemic in 1919 at the age of 25. (The whole
episode recalls a well-known equivocation by Cauchy and the clarifi-
cation due to the young Abel that led to the concept of uniform
convergence. even to Abel's untimely death.)

In an accompanying note, Luzin (1917) announced the rcgularity
properties for the analytic sets:

(7)  Every analytic set is Lebesgue measurable, has the Baire property, and has the perfect
set property.
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He attributed the last to Suslin.”

Whether via the geometric operation of projection of Gy sets or via
the explicit Operation (A) on systems of closed sets, the Russians had
hit upon a simple procedure for transcending the Borel scts. one that
preserves the regularity properties, Paradigmatic for later hicrarchy
results, Suslin’s (5) provided a dramatically simple characterization from
above of a class previously analyzed from below in a hicrarchy of length
X,. and held the promise of a new method for gencrating simply defined
sets of reals possessing the regularity properties.”

The notes of Suslin (1917) and Luzin (1917) were to undergo con-
siderable elaboration in the ensuing years. Proofs of the announced results
(4)-(6) appeared in Luzin-Sierpiriski (1918. 1923):; as for (7). the
Lebesgue measurability result was established in the former, the Baire
property result in the latter, and the perfect set property had to await
Luzin (1926). Luzin-Sicrpifiski (1923) was a pivotal paper. in that it
shifted the emphasis toward co-analytic sets, complements of analytic
scets, and provided a basic representation for them from which the main
results of the period flowed. With it, they established:

(8) Every analytic sct is both a union of ®; Borel sets and an intersection of ®, Borel
sets.

The representation of co-analytic sets had an evident precedent in
Lebesgue's proof of (2); the idea can be conveyed in terms of the
Operation (A): Suppose that ¥ C R is co-analytic, i.e. ¥ = R = X for
some X = A({X,},). so that

xeV iff xeX iff Vfo-o odnxe X))

For finite sequences s, and s,. define: s, < s, iff 5, is a proper initial
segment of s,. For a real x define: T, = {s|x € X, for every initial scgment
t of s}. Then

9) x e Y iff<onT,isa well-founded relation,

i.e. there is no infinite descending sequence . . . < 5, < 5, < 8.

Thus did well-founded relations enter mathematical praxis. The well-
known analysis by von Neumann (1925) and Zermelo (1930) prefigured
by Mirimanoff (1917) was particular to the membership relation: this
of course led to the Axiom of Foundation and the cumulative hierarchy
view of the universe of scts, and crucial as this development was, the
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main thrust was in the direction of axiomatization of an underlying
structural principle.

Luzin and Sierpiriski (1918, 1923) linearized their well-founded
relations, submerging well-foundedness under the better known frame-
work of well-ordering and getting an ordinal analysis of co-analytic
sets. This was natural to do for their results, as various technical aspects
became simplified by appeal to the linear comparability of well-ordered
sets. The linearization was through none other than what is now known
as the “Kleene-Brouwer” ordering. But already in Luzin (1927, p. 50)
well-founded relations on the integers were defined explicitly because
of their necessary use in his proof of the Borel separability of analytic
sets,” one route to Suslin’s (5). It was only later through the funda-
mental collapsing isomorphism result of Andrzej Mostowski (1949) that
well-founded relations were seen to have a canonical representation via
the membership relation that well-orderings have in the correlation with
(von Neumann) ordinals. Dana Scott’s celebrated result (1961) that if a
measurable cardinal exists, then V # L can be viewed as a well-founded
version of a previous result about well-orderings due to Keisler (1960).
Through such reorientations, well-foundedness has achieved a place of
prominence in current set theory shoulder-to-shoulder next to well-
ordering. :

The next conceptual move, a significant advance for the theory, was,
to extend the domain of study by taking the operation of projection as
basic. Luzin (1925a) and Sierpiriski (1925) defined the projective sets
as those sets obtainable from the Borel sets by the iterated applications
of projection and complementation. We have the corresponding projec-
tive hierarchy in modern notation: For A C R*,

Ais ZV iff A is analytic,

(defined as for k= | in terms of a defining system consisting of closed
subsets of R*) and inductively for integers n,

AisTl! iff RE-AisZ!, and

n?

AisZ, | iff A =pY for some IT. set ¥ C R¥*!,

n

Also

Ais Al iff Aisboth X! and IT..
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Luzin (1925c¢) and Sierpiiiski (1925) recast Lebesgue’s use of the Cantor
diagonal argument to show that the projective hierarchy is proper,
and soon its basic properties were established by various people. e.g.
cach of the classes ! and TI! is closed under countable union and
intersection,

On the other hand, the investigation of projective sets encountered
basic obstacles from the beginning. For one thing, unlike for the analytic
sets the perfect set property for the [T}, or co-analytic, sets could not
be established. Luzin (1917, p. 94) had already noted this difficulty,
and it was emphasized as a major problem in Luzin (1925a). In a
confident and remarkably prophetic passage, he declared that his efforts
towards its resolution led him to a conclusion “totally unexpected”, that
“one does not know and one will never know” of the family of projec-
tive sets, although it has the cardinality of the continuum and consists
of “effective” sets, whether every member has the cardinality of the
continuum if uncountable, has the Baire property. or is even Lebesgue
measurable. This speculation from mathematical analysis stands in
contrast to the better known anticipation by Skolem (1923, p. 229) of
the independence of the Continuum Hypothesis based on metamathe-
matical considerations. Luzin (1925b) pointed out another problem, that
of establishing the Lebesgue measurability of T} sets. Both these diffi-
culties at TT} and X} were also observed by Sierpiriski (1925. p. 242),
although he was able to show:

(10) Every Z} set is the union of R, Borel sets.

The first wave of progress from Suslin’s results having worked itself
out, Luzin provided systematic accounts in two expository papers (1926,
1927) and a text (1930). In (1927) and more generally in (1930) he
introduced the concepts of sieves and constituents, implicit in earlier
papers. Loosely speaking, a sieve is a version of a defining system for
Operation (A), and a constituent is, in terms of (9), a set of form

C,={x € Y|< on T, has rank «}.

for some ordinal a. (Every well-founded relation has a rank. its “height”,
defined by transfinite recursion. These constituents turn out to be Borel
sets if the defining system consists of Borel sets, and so the first half
of (8) is already evident in ¥ = g <y, C,.) Sieves and constituents
not only became the standard tools for the classical investigation of the
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first level of the projective hierarchy, but also became the subjects of
considerable study in themselves.

Most extensively in his classic text (1930), Luzin aired the con-
structivist views of his French predecessors. Not only did he contrive
self-cffacingly to establish definite precedents for his own work in
theirs,'® but he also espoused their distrust of the unbridled Axiom of
Choice and advocated their views on definability, especially analyzing
Lebesgue’s informal concept of nameability (qu'on peut nommer). He
regarded his investigations as motivated by these considerations. as
well as by specific new intuitions. For instance, he considered the
complementation operation used in the formulation of the projective
hierarchy to be “negative” in a sense that he elaborated, its use
equivalent to that of all the denumerable ordinals, and that this led to
the difficulties. He wrote (1930, p. 196): “Thus, the transfinite can be
profoundly hidden in the form of a definition of a negative notion.”
Related to this, Lebesgue (1905) had ended with question, “Can one name
a non-measurable set?”, and taking this as a starting point for his own
work, Luzin (1930, p. 323) wrote sagaciously: “. . . the author
considers the question of whether all projective sets are measurable or
not 1o be unsolvable [insoluble], since in his view the methods of defining
the projective sets and Lebesgue measure are not comparable, and con-
sequently. not logically related.”

If the projective sets proved intractable with respect to the regularit{l
properties. significant progress was nonetheless made in other directions.

In Luzin (1930a) the general problem of uniformization was proposed.
For A, B C R?,

A is uniformized by B iff B C A and Vx(3y({x, y) € A) &
3ly(x. y) € B)).

(As usual, 3! abbreviates the formalizable “there exists exactly one".)
Since B is in effect a choice function for an indexed family of sets,
asserting the uniformizability of arbitrary A C R? is a version of the
Axiom of choice. Taking this approach to the problem of definable
choices, Luzin announced several results about the uniformizability of
analytic sets by like sets. One was affirmed in a sharp form by Novikov
(1931). who showed that there is a closed set that cannot be uniformized
by any analytic set. It was eventually shown by Yankov (1941) that every
analytic set can be uniformized by a set that is a countable intersection
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of countable unions of differences of analytic sets. Interestingly enough,
von Neumann (1949, p. 448ff) also established a less structured
uniformization result for analytic sets as part of an extensive study of
rings of operators. Presumably because of his difficultics with IT} sets,
Luzin (19304, p. 351) claimed that there were IT) sets that could not
be uniformized by any “distinguishable™ set, and gave a purported
cxample. Notwithstanding, Sierpiriski (1930) asked whether every IT)
set can be uniformized by a projective set, and a result of Petr Novikov
in Luzin-Novikov (1935) implied that they can, by scts that are at least
T} Building on this, the Japanese mathematician Motokiti Kondé (1937,
1939) established the I} Uniformization Theorem:

(11) Every I} subset of R can be uniformized by a TI} set.

This was the culminating result of the ordinal analysis of TI} sets.
As Kondé noted, his result implics through projections that every X!
set can be uniformized by a ) set, but the question of whether every
IT} set can be uniformized by a projective set was left open.

There was also systematic elaboration. Of Luzin’s school,' Lavrent'ev
and Keldysh carried out a deeper investigation of the Borel hierarchy
in terms of topological invariance, canonical sets, and constjtuents of
sieves. And Selivanovskii. Novikov. Kolmogorov, and Lyapunov pushed
the regularity properties to a stage intermediate between the first and
second levels of the projective hierarchy with their study of the C-sets
and especially the R-sets. The Poles, who had redeveloped the basic
theory through various shorter papers in Fundamenta Mathematicae
through the 1920's, emphasized topological generalization. lifting the
theory to what are now known as Polish spaces.'” Baire (1909) had
already stressed the economy of presentation in switching from the reals
to what is now known as Baire space, {f|f. @ — w}, essentially the
“fundamental domain™ of Luzin (1930). Soon the development of the
theory in axiomatically presented topological spaces became popular.
As for Luzin himself, he returned to the problem of the perfect set
property for I1} sets, first broached in his (1917); in a lecture in 1935,
anticipating Godel's delimitative result Luzin stated several constituent
problems, cach of which would establish the existence of a IT| set without
the perfect set property.'*

The next advances were to be made through the infusion of meta-
mathematical techniques. Kuratowski-Tarski (1931) and Kuratowski
(1931) observed that in the study of the projective sets, the set-
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theoretic operations correspond to the logical connectives, and projec-
tion to the existential quantifier, and consequently. the basic manipula-
tions with projective sets can be recast in terms of logical operations.
This move may seem like a simple one, but one must recall that
it was just during this period that first-order logic was being estab-
lished as the canonical language for foundational studies by the great
papers of Skolem (1923) and Godel (1930, 1931). This sacred tradition
established a precise notion of “‘definable”, and so in retrospect, prudent
was the profane choice of the term “descriptive”.

The total impasse in descriptive set theory with respect to the regu-
larity properties was to be explained by Gédel's work on the consistency
of the Axiom of Choice (AC) and the Continuum Hypothesis (CH).
This work can be viewed as a steady intellectual development from his
celebrated Incompleteness Theorem, and with respect to our theme of the
mathematical necessity of the transfinite, the prescient footnote 48a of
Godel (1931) is worth quoting:

The true reason for the incompleteness inherent in all formal systems of mathematics is
that the formation of ever higher types can be continued into the transfinite . . . while
in any formal system at most denumerably many of them are available. For it can be shown-
that the undecidable propositions constructed here become decidable wheneyer appropriate
higher types are added. . . . An analogous situation prevails for the axiom system of set
theory.

Godel of course established his consistency results by formulating
the inner model L, still one of the most beautiful constructions in set
theory, and showing that if V = L, then AC and CH holds. His main
breakthrough can be loosely described as taking the extent of the ordinals
as a priori and carrying on a kind of Godel numbering of definable
sets through the transfinite. Here we see in an ultimate form how having
enough length turns negative or paradoxical assertions to positive ones.
Russell’s paradox became the proposition that the universe is not a set;
Burali-Forti’s paradox became Hartog’s proposition about the existence
of the next aleph, and Goédel's Incompleteness Theorem became a
rectification of Russell’s ill-fated Axiom of Reducibility with the proof,
making an ironic use of Skolem’s paradox argument, of the consistency
of the Continuum Hypothesis.

In his initial article (1938) on L, Gddel announced:

(12) If V = L, then there is a A} set of reals which is not Lebesgue measurable and a
T1} sct of reals which does not have the perfect set property.
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Thus. the classical descriptive set theorists were up against an essential
obstacle of ZFC. The importance that Gddel attached to these results
can be evinced from his listing of each of them on equal footing with
his AC and CH results. Gddel did not publish proofs, and more than
a decade was to pass before proofs first appeared in Novikov (19‘51.).
In the meantime, Godel in the second edition (1951, p. 67) of his
monograph on L had sketched a more basic result:

(13) If V = L, then there is a I} well-ordering of the reals.

(According to Kreisel (1980, p. 197). “. . . according to G&‘)de.l’s
notes, not he, but S. Ulam. steeped in the Polish tradition of descrip-
tive set theory. noticed that the definition of the well-ordering . . . of
subsets of @ was so simple that it supplied a non-measurable [Z1] set
of real numbers . . .".) Mostowski had also established the result in a
manuscript destroyed during the war, but it is not apparent in Novikov
(1951). Details were eventually provided by John Addison (1959) yho
showed that in L every projective set can be uniformized by a projec-
live set:

(14) If V = L, then for n > | every I subsct of R? can be uniformized by a T set.

Godel’s incisive metamathematical analysis not only provided an
explanation for the descriptive set theorist in terms of the limits of formal
systems, but also provided explicit counterexamples at t'he next level,
once logical operations were correlated with thc.: classical concepts.
Perhaps Wittgenstein would have found congenial the [hcme of fhe
mathematical necessity of the transfinite ordinals through their increasing
use, but no friend of set theory, in his railings against metamathematics
he would have frowned at its inversion into mathematics par e:\'c?I-
lence, owing ultimately to the coding possibilities afforded by infinite
sets. . o

Looking ahead, just a year after Paul Cohen’s invention .of torcxx}g,
Robert Solovay (1965, 1970) established the following rglunve consis-
teney result, showing what level of argument is possible with the
method.

(15) Suppose that in ZFC there is an inaccessible cardinal. Then there is a ZFC forcing
extension in which every projective set of reals is Lebesgue measurable, has the
Baire property, and has the perfect set property.
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The existence of an inaccessible cardinal is the weakest in the hier-
archy of “large cardinal” axioms adding consistency strength to ZFC that
have been extensively studied. Solovay himself noted that that consis-
tency strength is necessary for the perfect set property, and rather
unexpectedly, it was eventually shown by Saharon Shelah (1984) that
it was also necessary for Lebesgue measurability, but not for the Baire
property. These beautiful results in terms of relative consistency provide
a mathematically satisfying resolution of the universal possibilities for
the projective sets. Solovay was actually able to get a model of ZF in
which every set of reals whatsoever has the regularity properties; this
is well-known to contradict AC, but on the other hand Solovay’s model
satisfied the Axiom of Dependent Choices, a weak form of AC adequate
for carrying out all of the arguments of descriptive set theory.

As for forcing and uniformization, Levy (1965) observed that in the
original Cohen model (“adding a Cohen real over L") there is a IT} set
that cannot be uniformized by an projective set, in contradistinction to
(14) and establishing that (11) is the best possible (cf. the paragraph after).

Scott’s result that if there is a measurable cardinal, then V # L was
already mentioned. The existence of a measurable cardinal is the par-.
digmatic large cardinal hypothesis, much stronger in consistency strength
than the existence of an inaccessible cardinal. In 1965, building on (15)
Solovay reactivated the classical program of investigating the extent of -
the regularity properties by providing characterizations at the level of
Godel’s delimitative results (see Solovay (1969) for the perfect set
property), and establishing the following direct implication:

(16) If there is a mcasurable cardinal, then every £} set is Lebesgue mcasurable, has
the Baire property, and has the perfect set property.

Natural inductive arguments were later to establish that, under hypotheses
about the determinateness of certain infinitary games, every projective
set possesses the regularity properties. These results focused attention
on the Axiom of Determinacy and its weak versions, and led in the
latter 1980’s to remarkable advances in the investigation of strong hypoth-
esis and relative consistency.' But an adequate discussion of these
matters would go far beyond the scope of this paper.

Returning to much earlier developments based on Gédel’s work, after
his fundamental work on recursive function theory in the 1930's Stephen
Kleene expanded his investigations of effectiveness and developed a
general theory of definability for relations on the integers. In (1943)
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he studied the arithmetical relations, those relations obtainable from
the recursive relations by application of number quantifiers. De\{eloping
canonical representations, he classified these relations into a hlerarch.y
according to quantifier complexity and showed that the hl'crarchy is
proper. In (1955, 19554, 1955b) he studied the analytical relatfon‘?, thosg
relations obtainable from the arithmetical relations by applications of
function quantifiers. Again, he worked out representation and hierarchy
results, and moreover, established an elegant theorem that turned out
10 be an effective analogue of Suslin’s characterization (5) of the Borel
sets. ‘

Kleene was developing what amounted to the effective content of
the classical theory. unaware that his techniques had di.rect antecedents
in the papers of Lebesgue, Luzin, and Sierpiriski. Certainly, he had very
different motivations: with the arithmetical relations he wanted to cxten.d
the Incompleteness Theorem, and analytical relations grew out of his
investigations of notations for recursive ordinals. On the other hz!nd.
already in (1943, p. 50) he did make elliptic remarks about possible
analogies with the classical theory. Once the conceptual move was made
to the consideration of relations on functions of integers and with the
classical switch to Baire space already in place, it was Kleene's stu(.ient
Addison who established the exact analogies: the analytical rf:lallc)ns
are analogous to the projective scts, and the arithmeticz'il relations are
analogous to the sets in the first @ levels of the Borel hlellzxrc.hy. )

Another mathematical eternal return: Toward the end of his life, Godel
recarded the question of whether there is a linear hierarchy for the
recursive sets as one of the big open problems of mathematical logic.
Intuitively, given two decision procedures, one can of:ten pc seen to be
simpler than the other. Now a sct of integers is recursive iff both it and
its complement are recursively enumerable. The.pwoml r.csult of.cl:xs-
sical descriptive set theory is Suslin’s. that a set is Borel {ff both it and
its complement are analytic. But before that. a hierarchy .for the Borel
sets was in place. In an ultimate inversion, as we look back into the rccur-
sive scts, there is no known hierarchy.

Boston University

NOTES

' Moore (1982) also provided some historical guidance. |
H H Q : if N N oa o ” o
2 Iy qurns out that every real function is of Baire class at most 3 it K, is a countable
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union of countable sets, and this proposition is consistent with ZF by forcing as first
observed by Feferman-Levy (1963).

> Gj sets are the countable intersections of open sets in the cumulative hierarchy for Borel
scts (rom Hausdorff (1914),

* Sce Phillips (1978). Uspenskii (1985) and Kanovei (1985) are recent, detailed surveys
of the work of Luzin and his school in descriptive set theory. Uspenskii (1985, p. 98)
wrote: ™. . . in his days the descriptive theory, distinguished by his work and that of Suslin,
Aleksandrov, Kantorovich, Keldysh, Kolmogorov, Lavrent'ev, Lyapunov, and Novikov,
was the fame of mathematics in our country . . ",

* Sce Kuzawa (1968) and Kuratowski (1980).

® The Borel subsets of the plane, R?, and generally those of R, are defined analogously
to those of R.

7 This attribution is actually a faint echo of a question of priority. According to the
memoirs of Aleksandrov (1979, pp. 284-286) it was he who had defined the A-sets, and
Suslin proposed the name, as well as “Operation (A)” for the corresponding operation,
in Aleksandrov’s honor. This eponymy is not mentioned in Suslin (1917), but is supported
by recollections of Lavrent’ev (1974, p. 175) and Keldysh (1974, p. 180) as well as
Kuratowski (1980, p. 69). Aleksandrov recalled that it was he who had shown that every
Borel set is an A-sct and that every A-set has the perfect set property, although this s
not explicit in his (1916). He then tried hard in 1916 1o show that every A-sct is Borel,
only ceasing his efforts when it became known that in the summer Suslin had found a
non-Borel A-set. According to Alcksandrov: “Many years later Luzin started to call
A-sets analytic sets and began, contrary to the facts, which he knew well, to assert that
the ternn “A-set’ is only an abbreviation for *analytic set’. But by this time my personal
rclations with Luzin, at one time close and sincere, were estranged.” Luzin .(1925, 1927)
did go 10 some pains to trace the term “analytic™ back to Lebesgue (1905) and pointed

out that the original example there of a non-Borel Lebesgue measurable set is in fact
the first example of an non-Borel analytic set. Sec also the text Luzin (1930, pp. 186-187),

in which the Operation (A) is conspicuous by its absence. Aleksandrov also wrote: “This

question of my priority in this case never made much difference to me; it was just my
first result and (maybe just because of that) the one dearest to me”.

* Although there may have been growing acceptance of the denumerable ordinals, it

was still considered hygienic during this transitional period to eliminate the use of the

transfinite where possible. The emphasis of Suslin (1917) was on how (5) does this for

the definition of the Borel sets. Sicrpifiski (1924) featured a “new” proof without

transfinite ordinals of the perfect set property for Borel sets. And carlier his younger

compatriot Kuratowski (1922) had offered what is now known as Zorn's Lemma primarily

to avoid the use of transfinite ordinals.

° If X and Y are disjoint analytic sets, there is a Borel set B such that X € B and

YNnB=0.

'“" But see endnote 7.

For details and references, see Kanovei (1985).

Complete scparable metric spaces.

See Uspenskii (1985, p. 126ff), Kanovei (1985, p. 162ff), and especially Uspenskii-

Kanovei (1983).

' See Martin-Steel (1988, 1989) and Woodin (1988).

"
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