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IN PRAISE OF REPLACEMENT

AKIHIRO KANAMORI

Abstract. This article serves to present a large mathematical perspective and historical

basis for the Axiom of Replacement as well as to affirm its importance as a central axiom of

modern set theory.

The standard ZFC axioms for set theory provide an operative foundation
for mathematics in the sense that mathematical concepts and arguments can
be reduced to set-theoretic ones, based on sets doing the work of math-
ematical objects. As is widely acknowledged, Replacement together with
the Axiom of Infinity provides the rigorization for transfinite recursion and
together with the Power Set Axiom provides for sets of large cardinality, e.g.,
through infinite iterations of the power set operation. And in a broad sense,
in so far as the concept of function (mapping, functor) plays a central role
in modern mathematical practice, Replacement plays a central role in set
theory.
A significant motivation for the writing of this article is to confirm—to
rectify, if need be perceived—the status of Replacement among the axioms
of set theory. From time to time hesitation and even skepticism have been
voiced about the importance and even the need forReplacement.1 The issues,
animated by how, historically, Replacement emerged as an axiom later than
the others, have largely to do with ontological commitment, about what sets
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(there) are or should be. Replacement has been regarded as necessary only
to provide for large cardinality sets and, furthermore, unmotivated by an
ultimately ontological “iterative conception” of set.
The answer here, as well as the general affirmation, is that Replacement
is a subtle axiom, with the subtlety lying in both what it says and what it
does. Like the Axiom of Choice, Replacement has to do with functional
correlation, but the latter turns on formalization, on definability. And the
definability crucially leads to a full range of possibilities for recursive defini-
tion. Together with the Axiom of Foundation, Replacement is thus a crucial
pillar of modern set theory, which, as a matter of method, is an investigation
through and of recursion and well-foundedness. From a modern vantage
point, Replacement also carries the weight of the heuristic of reflection,
that any property ascribable to the set-theoretic universe should already be
ascribable to a curtailed initial segment, as an underlying and motivating
principle of set theory.
But stepping back even from this, Replacement can be seen as a crucial
bulwark of indifference to identification, in set theory and in modern math-
ematics generally. To describe a prominent example, several definitions of
the real numbers as generated from the rational numbers have been put
forward—in terms of the geometric continuum, Dedekind cuts, and Cauchy
sequences—yet in mathematical practice there is indifference to actual iden-
tification with any particular objectification as one proceeds to work with
the real numbers. In set theory, one opts for a particular representation
for an ordered pair, for natural numbers, and so forth. What Replacement
does is to allow for articulations that these representations are not necessary
choices and to mediate generally among possible choices. Replacement is
a corrective for the other axioms, which posit specific sets and subsets, by
allowing for a fluid extensionalism. The deepest subtlety here is also on the
surface, that through functional correlation one can shift between tokens
(instances, representatives) and types (extensions, classes), and thereby shift
the ground itself for what the types are.2

In what follows, these themes, here briefly broached, are widely explored
in connection with the historical emergence of set theory and Replacement.
This account can in fact be viewed as one of the early development of set
theory as seen through the prism of Replacement, drawing out how the
Replacement motif gauges the progress from 19th Century mathematics to
modern set theory. There is recursion emerging as method; early incentives
for trans-species coordination, expressive of indifference to identification;
provision for sets of relatively large cardinality; the crucial role in transfinite

2Willard Van Orman Quine with his theses of indeterminacy of reference and ontological
relativity illuminated indifference to identification, and discussed in particular the ordered
pair in his Word and Object [1960], §53. For recent articulations of indifference to identi-
fication see Richard Pettigrew [2008] and John Burgess [2009], from which the phrase was
drawn.
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recursion; and the formalization as principle of the heuristic of reflection.
§1 casts Replacement as underlying modern mathematics through the motif
{ti | i ∈ I }, the roots of this involvement going back particularly to the
infinitary initiatives of Richard Dedekind. §2 sets out the early history of
Replacement in the work of the pioneers of set theory from an adumbration
in correspondence of Cantor himself through to the formulations of Fraen-
kel and Skolem. §3 sets out the middle history of Replacement, largely the
work of von Neumann on transfinite recursion and the emergence of the
cumulative hierarchy picture. §4 sets out the later history of Replacement,
the main focus being onGödel’s work with the constructible universe. §5 dis-
cusses the various forms of Replacement, bringing out its many emanations
and applications. Finally, §6 sets out skeptical reactions about Replacement
and recent involvements of the axiom and affirms on general grounds the
importance of Replacement as a central axiom of modern set theory.

§1. Replacement underlying mathematics. The Axiom of Replacement is
expressible in first-order set theory as the following schema: For any formula
ϕ with free variables among a, x, y, z1, . . . , zn but not including b,

∀z1∀z2 . . . ∀zn∀a(∀x∃!yϕ −→ ∃b∀y(∃x(x ∈ a ∧ ϕ)←→ y ∈ b)), (Rep)

where ∃! abbreviates the formalizable “there exists exactly one”. Seen
through unpracticed eyes this formalization suggests complications and fuss;
in a historically resonant sense as we shall see, the first-order account conveys
a fundamental principle about functional substitution as an inherent feature
of modern mathematics. Informally, and as historically presented, Replace-
ment asserts that for any definable class function F (F (x) = y ←→ ϕ in
the above) and for any set a, the image F “a = {F (x) | x ∈ a} is a set.
Thus, Replacement is proximate whenever one posits {ti | i ∈ I } according
to some specifiable correlation of ti ’s to i ’s in an index set I . The many
facets of {ti | i ∈ I } only emerged in mathematics, however, in its 19th
Century transformation from a structural analysis of what there is to a com-
plex edifice of conceptual constructions, and it is worthwhile to recapitulate
this development. In what follows, “Replacement motif” is used to refer to
{ti | i ∈ I } as a broader conceptualization than “Replacement” for versions
of the later axiom.
As with the Axiom of Choice, before Replacement was articulated implicit
assumptions had beenmade that now can be seen as dependent on the axiom.
The seminal work of Richard Dedekind is particularly relevant, and in what
follows we highlight its involvement with Replacement. In the development
of set theory as a subject, the Replacement motif first occurred in Cantor’s
work in connection with cardinality (cf. §2) with the working assumption
that i 7→ ti was one-to-one, which is more faithful to “replacement”. The
injectivity would be importantly relaxed in important situations, however,
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and this is inherent in the consideration of more and more functions in
mathematics. To be noted is that in discussing the Replacement motif in the
early stages one is focusing on an emergent theme, and retroactive formal-
ization will only require, naturally enough, a small part of the full modern
schema.
Surely the first substantive appearance of {ti | i ∈ I } was in analysis,
with the ti ’s themselves functions and I the natural numbers. Initially, the
functions were typically real functions given symbolically as polynomials,
and the assignment i 7→ ti would not itself have been considered a function.
When infinite sequences of infinite series were considered, e.g., for nowhere
differentiable functions as limits of continuous functions, new stress was
put on the traditional approach to the infinite regarded only in potentiality.
The Replacement motif became substantively involved when the infinite
in actuality became incorporated into mathematics. This occurred with
the emergence of the now basic construction of a set I structured by an
equivalence relation E, the consideration of the corresponding equivalence
classes [i]E for i ∈ I leading to the totality {[i]E | i ∈ I }. One sees here
that, as the function i 7→ [i]E becomes something to be reckoned with, it
is quite general and, importantly, not one-to-one. This early move toward
modern algebra went hand in hand with the development of set-theoretic
conceptualizations, particularly in the work of Dedekind.
Already in the early [1857], Dedekind worked in modular arithmetic with
the actually infinite residue classes themselves as unitary objects. His context
was in factZ[x], the polynomials in x with integer coefficients, and with this
he was the first to entertain a totality consisting of infinitely many infinite
equivalence classes. The roots of these polynomials, first investigated by
Dedekind, are of course what came to be called the algebraic numbers. In a
telling passage discussing Z[x] modulo a prime number p, Dedekind wrote
(cf. Dedekind [1930–1932, vol. 1, pp. 46–47]):

The preceding theorems correspond exactly to those of number
divisibility, in that the whole system of infinitely many functions
of a variable congruent to each other modulo p behaves here as a
single concrete number in number theory, as each function of that
system substitutes completely for any other; such a function is a
representative of the whole class; each class possesses its definite
degree, its divisors, etc., and all those traits correspond in the
same manner to each particular member of the class. The system
of infinitely many incongruent classes—infinitely many, since the
degree may grow indefinitely—corresponds to the series of whole
numbers in number theory.

One can arguably date the entry of the actual infinite into mathematics
here, in the sense of infinite totalities serving as unitary objects within an
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infinite mathematical system,3 as well as the beginnings of mathematical
indifference to identification for equivalence classes and particular represen-
tatives.
In a fragment “Aus den Gruppen-Studien (1855–1858)” Dedekind [1930–
1932, vol. 3, pp. 439–445], working notationally with finite groups, gave
in effect the Homomorphism Theorem, that given a homomorphism of
a group G onto a group H with a corresponding kernel K , there is an
isomorphism between the quotient group G/K and H . Allowing for the
historical happenstance of working in the finite, Dedekind here was first to
start with a function and develop corresponding equivalence classes. The
Replacement motif {ti | i ∈ I } comes into focus, soon to be put in a new
light.
In Dedekind’s Nachlass can be found sketches, conjectured to be from
1872,4 of the now-familiar genetic generation of the integers as equivalence
classes of pairs of natural numbers, a pair representing their difference, and
of the rational numbers as equivalence classes of pairs of integers, a pair
representing their ratio. With this approach to achieve the status of defini-
tions in mathematics, one sees here the further beginnings of mathematical
indifference to identification. Not only are there to be correlations with
antecedent notions of integers and rationals, but also correlations between
construals of integers and their reconstruals as rationals. Today one works
indifferently with integers and rationals as algebraic systems.
Notably, equivalence classes would not be initially involved in the genetic
generation of the reals from the rationals. Dedekind’s [1872] cuts themselves
represented the reals, and Cantor [1872] considered that he had defined the
reals as fundamental, i.e., Cauchy, sequences of rationals but did not actually
work with equivalence classes of such sequences.
Also in 1872 Dedekind worked his way down to the bedrock of the natural
numbers, and the eventual result was his celebrated essayWas sind und was
sollen die Zahlen? [1888]. Dedekind here took sets [Systeme] and mappings
[Abbildungen] as basic notions; worked with unions and intersections of sets
and compositions and inversions of mappings; and developed a theory of
chains [Ketten], sets with one-to-one mappings into themselves.

3Carl Friedrich Gauss, in his Disquisitiones Arithmeticae and later, worked in modular
arithmetic directly with residues and never entertained equivalence classes as unitary objects.
Bernard Bolzano in his Paradoxien des Unendlichen [1851] and elsewhere (see his mathe-

matical works in Russ [2004]) had earlier advocated the actual infinite, but his advocacy went
only so far as to discuss comparative mappings between infinite collections and moreover
was not embedded in mathematical practice.
In the prefaces to both his celebrated essays [1872] and [1888] Dedekind recorded the

autumn of 1858 as when he first came to the Dedekind cuts. Thus he had devised his best-
known construction of an infinite system consisting of infinite totalities serving as unitary
objects just a year after his analysis of Z[x] modulo a prime.
4See Sieg and Schlimm [2005, pp. 134–138].
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Dedekind famously defined (paragraph 64) an infinite set to be a set
having a one-to-one mapping into a proper subset. With this he had come to
a positive formulation of the actual infinite, one which is evidently the logical
negation of Dirichlet’s Pigeonhole Principle.5 Dedekind then (in)famously
“proved” (66) the existence of a Dedekind-infinite set by invoking “my
own realm of thoughts”. Working toward the natural numbers, Dedekind
defined (71) a “simply infinite system” to be a set N for which there is a
one-to-one mapping φ into itself and a 1 ∈ N not in the range such that
N is the closure of {1} under φ. From a Dedekind-infinite set he got to
a simply infinite system, and abstracting from particulars but proceeding
with the same notation, took (73) the natural numbers to be the members
of N , with base element 1 and successor operation n′ = φ(n). This was the
paradigmatic move between token and type; Dedekind soon gave expression
to this indifference to identification by affirming recursive definition.
Recursive definition is crucial for modern mathematics, the basic case
being the formulation of {ti | i ∈ I } with I the natural numbers and ti+1
uniformly given in terms of ti—with the shifting of the focus to the function
i 7→ ti itself. One has here the Replacement motif cast with iteration of
procedure as a generalization of counting itself. Dedekind proceeded to
establish the Recursion Theorem (126): Given a set Ω, a distinguished
element ù ∈ Ω, and a mapping è : Ω → Ω, there is one and only one
mapping ø : N → Ω satisfying ø(1) = ù and ø(n′) = è(ø(n)) for every n.
Dedekind was the first to point out the need to posit the existence of a
completed mapping in this way,6 and with the theorem, he soon provided
the now-familiar recursive definition of addition as a mapping, the recursive
definition of multiplication in terms of addition, and the recursive definition
of exponentiation in terms of multiplication. However, it is instructive
to point out that Dedekind’s argument at this foundational level, as seen
through modern eyes, can be considered to be subtly circular:
To establish (126), Dedekind appealed to the preparatory (125) according
to which one can recursively define finite mappings øn on {1, . . . , n} unique
in satisfying: øn(1) = ù and øn(m

′) = è(øn(m)) for m < n. What is

5One cannot presume that Dedekind consciously negated the Pigeonhole Principle to get
his definition of infinite set, but there are interactions and confluences: The Pigeonhole
Principle seems to have been first applied in mathematics by Dirichlet in papers of 1842
(cf. Dirichlet [1889/97, pp. 579, 636]), one on Pell’s equation and another in which the
principle is applied to prove a crucial approximation lemma for his well-knownUnit Theorem
describing the group of units of an algebraic number field. The Pigeonhole Principle occurred
in Dirichlet’s Vorlesungen über Zahlentheorie [1863], edited and published by Dedekind. The
occurrence is in the second, 1871 edition, in a short Supplement VIII by Dedekind on Pell’s
equation, and it was in the famous Supplement X that Dedekind laid out his theory of ideals
in algebraic number theory, working directly with infinite totalities.
6Gottlob Frege in his 1893Grundgesetze also established the Recursion Theorem; seeHeck

[1995] for an account.
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the status of {øn | n ∈ N} at this point? Dedekind did consider sets
[Systeme] of mappings, e.g., in (131), but to have construed the sequence
〈øn | n ∈ N 〉 as an objectified mapping at (125) would have been circular
since it is (126) itself which posits recursively presentedmappings. Dedekind
then considered the desired mapping for (126) to be given by ø(n) = øn(n)
as a direct definition. He had deftly devolved first to the approximations
øn ’s, but without the øn’s collectively comprehended, how is one running
through the indexing of the øn? Seen through modern eyes sensitized to
the ways of paradox, this “diagonal” stipulation would not be taken to be a
contextually internal definition. The thrust of the Recursion Theorem (126)
is to be able to pass from a given mapping to another mapping stipulated
by recursion; the proof of (126) itself has this form, but with the givenness
of 〈øn | n ∈ N 〉 not quite in hand.

7 However basic Dedekind was taking
the notion of mapping, with (126) he had made an existence assertion about
mappings, and logically speaking, an existence assertion cannot be arrived
at without generative existence principles at work. And if one were to make
such principles explicit for (126) as Dedekind had done elsewhere for sets
[Systeme], one would be drawing in some version of the Replacement motif
{øn | n ∈ N}.
Looking briefly ahead to compare and contrast, how one articulates recur-
sion would become a crucial theme in the formalization of both arithmetic
and set theory. Thoralf Skolem [1923a], developed elementary arithmetic
by taking the “recursive mode of thought” as basic and proceeding with
a system of equation rules. Primitive Recursive Arithmetic is a subsequent
formalization of Skolem’s approach, in which function symbols are sim-
ply introduced for each (primitive) recursion and their generating rules
in the manner of Dedekind’s (126) are given as axioms. Like Dedekind,
Skolem took function as a basic concept, but he made explicit the recur-
sions. Paul Bernays [1941, pp. 11–12], in an exposition of an axiomatic set
theory with classes, articulated Dedekind’s (126) argument prior to intro-
ducing an axiom of infinity by formalizing functions as classes of ordered
pairs and applying the “class theorem” or the predicative comprehension
schema, which asserts that extensions of formulas without class quantifiers
are classes. With this, {øn | n ∈ N} is a class and so also the resulting ø. In
ZFC set theory, functions are formalized as sets of ordered pairs; N can be
taken to be the natural numbers as given by the Axiom of Infinity; one can
appeal to Replacement to get {øn | n ∈ N} as a set; and Union establishes
ø =

⋃
{øn | n ∈ N} to be a set.

8

7Something of this circularity surfaces in Landau’s text Grundlagen der Analysis [1930],
cf. its preface.
8This importantly is the argument when the Recursion Theorem is situated in set theory

with Ω not necessarily a set. When Ω is a set, one can appeal to Power Set and Separation,
getting {øn | n ∈ N} as a subset of P(N × Ω). This is often done in expository accounts,



IN PRAISE OF REPLACEMENT 53

Returning to Dedekind [1888], the first use of the Recursion Theorem
(126) was actually to establish (132) that all simply infinite systems are iso-
morphic. In (126) one takes Ω to be an arbitrary simply infinite system
and, appealing to “complete induction” in both N and Ω, shows that the
resulting è is an isomorphism. The result is nowadays touted as establish-
ing the second-order categoricity of the Dedekind–Peano axioms, although
strictly speaking Dedekind was not proceeding in an axiomatic context. Re-
placement can again be seen as involved in providing for indifference to
identification, to establish both the efficacy of a chosen representative token
of a type and a crucial pliability whereby one can entertain various tokens
as efficacious.
Many years later, Ernst Zermelo in his final axiomatization paper [1930b]
also established a second-order categoricity result, one for his natural models
of set theory. With transfinite recursion he pieced together their cumulative
hierarchies, and Replacement—incorporated into his later axiomatization—
is crucial for the process. Zermelo in his progress toward his first axiomati-
zation [1908b] had studiedWas sind und was sollen die Zahlen? carefully and
had subsequently pointed out what turned out to be Dedekind’s only other
logical gap in his essay. Dedekind had established (160) that, as we would
now say, Dedekind-finite sets are finite, but Zermelo [1909, p. 190, n. 5]
pointed out that this requires a use of the Axiom of Choice, to choose from
a set of sets of mappings. Also, Dedekind’s proof relied on the Recursion
Theorem (126). If formalization through reduction to sets is to be worked
out, then Dedekind’s work needs the Axiom of Choice, and in a method-
ologically similar way, Replacement, namely to procure certain sequences of
mappings. These two principles are thus implicated, for the first time, in the
formalization of the infinite in actuality, and they would become part and
parcel of its accommodation in set theory.
Although Replacement would seem to have a crucial role underpinning
mathematics through {ti | i ∈ I }, textbook expositions of ZFC set theory
most often introduce the axiom schema rather late in the development. This
presumably has to do with several factors: As formally stated in first-order
logic, the axiom schema is syntactically complicated, and its paraphrase in
terms of classes adds a layer of conceptualization over sets; Replacement,
together with the Axiom of Foundation, was adjoined to Zermelo’s initial
1908 axioms significantly later; and the set-theoretic reduction of the ordered
pair, and thereby function, induced ready appeals to the Power Set Axiom in
preference to Replacement. Instead, one can proceed as in the text Bernays
[1958] and introduce Replacement early, emphasizing the motif {ti | i ∈ I }

but the direct appeal to Power Set is not cardinally parsimonious. Alternately, one can
invoke the Dedekind chain theory by defining a function φ ⊆ (N × Ω) × (N × Ω) by
φ(〈n, x〉) = 〈n′, ø(x)〉 and taking the closure of 〈1, ù〉 under φ; Power Set and Separation
are used here to get the closure.



54 AKIHIRO KANAMORI

as basic. The text sets out a formal apparatus with class terms {x | ϕ(x)}
and the conversion ϕ(a)←→ a ∈ {x | ϕ(x)}.
But even in an elementary text, one can develop axiomatic set theory to
exhibit Replacement as reflective of the use of {ti | i ∈ I } in mathematical
practice: After an informal look at first-order logic and class terms, intro-
duce the initial axioms of Extensionality, Separation, Existence, Pairing, and
Union and develop the basics through the Kuratowski ordered pair to rela-
tions and functions. With the work on Separation as a first-order schema
having prepared the way, now introduce Replacement and emphasize the
paraphrases in terms of class functions and {ti | i ∈ I }. Put Replacement
forthwith to use to establish, e.g., that given an equivalence relation the
equivalence classes together form a set, and that given two sets their Carte-
sian product exists.9 Proceed to introduce the Axiom of Infinity and the
natural numbers. With Replacement, establish Dedekind’s Recursion The-
orem and with it the arithmetic of the natural numbers as well as Transitive
Containment, i.e., that every set is a subset of a transitive set. With prece-
dents set, proceed to the (von Neumann) ordinals, and with Replacement
in full play establish the basic theory through to the Transfinite Recursion
Theorem. As Cantor and Dedekind had come to see, ordinality should be
prior to cardinality, and so only now introduce cardinality and the Power
Set Axiom to give the concept heft. One thus sees that the substantive issues
about the existence of large cardinality sets arise with Power Set, not Re-
placement. Finally, there is the Axiom of Foundation and the picture of the
cumulative hierarchy of sets; with all sets now to appear in this recursively
defined hierarchy, Replacement and Foundation work together to establish
results by recursion for all sets.

§2. Early history of Replacement. The history of the emergence of Re-
placement as an integral axiom of modern ZFC set theory, like that of the
Axiom of Choice, has to do most importantly with the emergence of set-
theoreticmethods and their formalization. WithChoice, it waswell-ordering
and through it maximalization as with Zorn’s Lemma, and with Replace-
ment it was transfinite recursion and through it closure of the set-theoretic
universe under processes involving large cardinality. With the thrust of Re-
placement involving functional correlation, its history, like that of Choice,
has to do initially with the liberalization of the concept of function and the
expansion of the concept of set. Themotif {ti | i ∈ I } underlyingmathemat-
ics, as described in the previous section, became rigorized as a set-existence
principle, one that became central to set theory.

9The expected argument works with any adequate definition of the ordered pair, i.e., any
for which one can uniquely recover the first and second coordinates. Conversely, Mathias
[∞, sect. C] has observed that if as a schema Cartesian products exist for every adequate
definition of ordered pair, then Replacement follows.
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Replacement first occurred in an early form in terms of one-to-one corre-
spondence in late work of Georg Cantor himself. The motif {ti | i ∈ I } had
in any case been congenial to Cantor both in his investigation of cardinal-
ity and because of his generation principles for limit and higher cardinality
ordinal numbers.10 Having developed the transfinite landscape for over
two decades, Cantor in correspondence with Hilbert and Dedekind newly
formulated a crucial juncture for set existence.11

In a letter toHilbert of 26 September 1897, Cantor stressed that “the total-
ity of all alephs cannot be conceived as a determinate, well-defined finished
set [fertige Menge]” since a cardinal number for it cannot be entertained
without contradiction. He repeated this assertion in a letter to Hilbert of 2
October 1897 where he wrote further that a set can be thought of as finished
if “it is possible . . . to think of all its elements as existing together, . . . ”
A year later, in a letter to Hilbert of 10 October 1898 elaborating his con-
cept of finished set, Cantor concluded as a “theorem” the assertion that if
two multiplicities are cardinally equivalent (i.e., in one-to-one correspondence)
and one is a finished set, then so is the other. This is the first substantive
anticipation of Replacement in set theory. In that letter Cantor made the
observation that the totality of all subsets of the natural numbers is cardi-
nally equivalent to the totality of all functions from the natural numbers into
{0, 1}, a few years before Russell would make this connection in his theory
of relations. With this observation applied to the “linear continuum” and
a prior “proposition” that “[t]he multiplicity of all the subsets of a finished
set M is a finished set”, Cantor then derived that the “linear continuum”
is a finished set. Thus, Cantor could be seen as adumbrating indifference
to identification for the roughest criterion, one-to-one correspondence, and
with it, expressing a now-standard plasticity for the real numbers.
In a well-known letter to Dedekind of 3 August 1899, Cantor, after con-
fronting the Burali-Forti Paradox,12 emphasized his distinction between
consistent multiplicities—sets—and inconsistent, absolute multiplicities—
like the totality of all ordinal numbers. Cantor in fact argued that if a definite
multiplicity does not have an aleph as its cardinal number, then there would
be a “projection” of the totality of all ordinal numbers into the multiplicity.
Cantor wrote: “Two equivalent multiplicities either are both ‘sets’ or are
both inconsistent.” Thus his anticipation of Replacement now served less
as a set existence principle and more as an articulation of dichotomy based
on the possibilities for well-ordering. In any case, Replacement had been

10Bernays in his book [1958] introduced Replacement early for “general set theory”, which
was to correspond to Cantor’s context for generating the transfinite numbers.
11The correspondence appears in Meschkowski and Nilson [1991], and some letters are

translated in Ewald [1996], including those cited below except that of 10 October 1898.
12Cantor came to the “paradox” of the largest ordinal number before the appearance of

Burali-Forti [1897]. Whether paradoxical or not, it had to be confronted and analyzed. See
Moore and Garciadiego [1981] for the history of the Burali-Forti paradox.
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anticipated in a pre-formal setting with one-to-one correlation taken as a
basic notion.13

The early set-theoretic work of Zermelo, formative of course for the de-
velopment of set theory, has bearing through thematic points of contact.14

Zermelo [1904] famously made explicit an initial appeal to the Axiom of
Choice and established the Well-Ordering Theorem, that every set can be
well-ordered. The proof of the theorem presented a new mode of argument,
one that can be viewed as an anticipation of the proof of the later Transfi-
nite Recursion Theorem, the theorem that validates definitions by recursion
indexed by well-orderings. This theorem was first properly articulated and
established by von Neumann (see below) using Replacement. The differ-
ence is only that Zermelo’s proof does not require functional correlation, as
enabled by Replacement, as one is defining the well-ordering itself.
Zermelo’s proof generated controversy about the acceptability of the Ax-
iom of Choice, and largely in response, Zermelo subsequently published
both a second proof [1908a] of the Well-Ordering Theorem and the first
full-fledged axiomatization [1908b] of set theory. Zermelo’s axioms were
few and had a remarkable simplicity, except for the one “logical” axiom
having to do with properties, the Axiom of Separation. As it provided for
the crucial separating out of members of a given set according to a “definite”
property, what these properties were came to be seen as in need of clarifi-
cation as mathematical logic was further developed. As is well-known, the
stronger property-based Axiom of Replacement played no role in Zermelo’s
axiomatization. Zermelo was proceeding pragmatically and parsimoniously
to establish set theory as a discipline axiomatically given in the Hilbertian
style and to put his Well-Ordering Theorem on a sound footing with a
modicum of set-existence principles. Zermelo’s second proof [1908a] of the
Well-Ordering Theorem indeed coordinated with the axioms, particularly
as concerns well-ordering. Taking an approach first used by Gerhard Hes-
senberg [1906, pp. 674ff], Zermelo cast a well-ordering as the set of its final
segments under the reverse-inclusion ordering, thereby situating the concept
in his axiomatic framework.
The work of Friedrich Hartogs [1915] on well-orderings and Cardinal
Comparability is a conspicuous juncture having interaction with Replace-
ment as motif but still historically and mathematically prior to the use of

13The little known A. E. Harward, in an article [1905] about cardinal arithmetic and well-
orderings, also came to these issues and ideas entertained by Cantor. Though Harward took
a distinction between his “unlimited classes” and “aggregates” as provisional, he emphasized
how the class of all ordinal numbers is unlimited and like Cantor, anticipated Replacement
as following from the meaning of the terms (p. 440): “Any class of which the individuals can
be correlated one to one with the elements of an aggregate is itself an aggregate.” Although
Harward would remain obscure, he probably has the distinction of being the first to have
anticipated Replacement in print. See Moore [1976] for more about Harward.
14See Kanamori [2004] for more on Zermelo.
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Replacement as axiom. The thrust of [1915] is that for any set x there is
a well-ordered set y not injectible into x. Cardinality Comparability—that
for any two sets, one is injectible into the other or vice versa—then implies
that x is injectible into y and hence is well-orderable. Thus, Cardinal Com-
parability implies the Axiom of Choice, a first “reverse mathematics” result
establishing the equivalence among the Axiom of Choice, the Well-Ordering
Theorem, and Cardinal Comparability.
In what follows, we give the spine of Hartogs’ proof to better discuss how
he proceeded with the details: Given a set x, let W consist of the well-
orderings of subsets of x. Let E be the equivalence relation defined onW
by r E s exactly when r is order-isomorphic to s . Then < on E-equivalence
classes is well-defined by: [r]E < [s]E exactly when s has an initial segment
in [r]E . Moreover, < is a well-ordering of {[r]E | r ∈ W }. Finally, this
set cannot be injectible into x, else the range of the injection would have a
well-ordering belonging toW and<would be order-isomorphic to an initial
segment of itself, which is a contradiction.
This argument, amounting to a positive subsumption of the Burali-Forti
paradox, would have to be properly implementable without the Axiom of
Choice in order to effect the implication from Cardinal Comparability to
Choice. To affirm this, Hartogs emphasized implementation in the Zermelo
[1908b] system without Choice. This early use of Zermelo’s axiomatization
is resonant with Zermelo’s own, initial use to buttress his proof of the Well-
Ordering Theorem.
Pursuing the above sketch, the first implementation issue is how to render
a well-ordering and thus to have the setW . NorbertWiener [1914] and Felix
Hausdorff [1914, pp. 32ff, 70ff] rendered the ordered pair, and with this a
theory of relations and functions can be developed in set theory. Hartogs
was quite unlikely to be aware of this, but he had become aware of a known
approach for rendering well-ordering with sets. In his appendix Hartogs
acknowledged being informed by Hessenberg that well-orderings can be
rendered in Zermelo’s axiomatization through systems of final segments—
which is what in fact Zermelo had done in his second proof [1908a] of the
Well-Ordering Theorem. Thus, with Power Set and Separation, one can
take W as a set, being a subset of P(P(x)) given by a definite property.
Proceeding, once the equivalence relation E is formulated, {[r]E | r ∈ W },
though an instance of the Replacement motif, can be shown to be a set by
Separation and Power Set, separating from P(W ), and < can be defined to
complete the rendition in Zermelo’s system without Choice.
But how is the equivalence relation E to be formulated? Here’s the rub.
Hartogs noted (p. 438): “The task of checking all notions and theorems . . . is
made somewhat difficult since the axiomatic presentation [Durcharbeitung]
of set theory given by Zermelo does not yet extend to the theory of ordered
and well-ordered sets.” In particular, the move beyond Cantor’s ordinal
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numbers as type to the concept of order-isomorphism between well-ordered
sets, necessary to formulate E, had yet not been made in the axiomatic pre-
sentation. It is here, the situation elaborative of indifference to identification,
that Replacement can serve. Indeed, in some modern accounts of Hartogs’
theorem one simply uses Replacement to associate with each member ofW
the corresponding (von Neumann) ordinal and then takes the supremum to
complete the argument. However, this would be how one would proceed on
the other side of this historical cusp for Replacement, which is not actually
necessary for the proof. Without an ordered pair and a theory of relations,
Zermelo [1908b] did develop a “theory of equivalence” sufficient for render-
ing the Cantorian theory of cardinality; this theory was based on getting
disjoint copies of two sets and in the union of the copies using the unordered
pair to render one-to-one correspondence. Such a theory can be developed
for rendering the Cantorian theory of ordinality with order-isomorphisms
between Hessenberg-style well-ordered sets, thereby effecting a formaliza-
tion of Hartogs’ theorem and thus establishing that Cardinal Comparability
implies Choice. Hartogs did not see his argument through to the end, but
the techniques were available to do so at the time, techniques that did not
require Replacement.
The set-theoretic work of Dimitry Mirimanoff [1917a], [1917b] sits in-
terestingly intermediate between that of Cantor and of von Neumann. As
with Hartogs, Mirimanoff was publishing at a time when Zermelo’s ax-
iomatization was not widely called upon and the reduction of ordered pair
and function to sets was only beginning. His work goes in and out of the
modern theory, but in any case led to a published appearance of a form of
Replacement, one like Cantor’s based on equivalence.
In connection with Russell’s Paradox, Mirimanoff [1917a] formulated the
ordinary sets as those sets x for which every descending ∈-chain . . . x2 ∈
x1 ∈ x is finite. These mediated by the Axiom of Choice are, of course,
what we now call the well-founded sets. In connection with the Burali-Forti
Paradox, Mirimanoff formulated what can be seen to be the (von Neumann)
ordinals.15 He specifically started with an urelement16 e, getting at what we
here call the e-ordinals, and pictured the first three as:

(e); (e, (e)); (e, (e), (e, (e))).

He (pp. 45–46) motivated these by considering a well-ordering, replacing
its members by initial segments, then replacing these by the set of their

15Zermelo was most probably the first chronologically to have formulated the concept of
(von Neumann) ordinal, and this by 1915; the rudiments of the theory appear in hisNachlass
(cf. Hallett [1984, pp. 277ff]) and indications are there of collaboration with Paul Bernays
(cf. Ebbinghaus [2007, 3.4.3.]).
16Urelements, also called atoms or individuals, are objects distinct from the empty set

yet having no member. Zermelo allowed for urelements in his “domain” for his [1908b]
axiomatization. Mirimanoff used the term node [noyau].
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initial segments, and so forth. Although he thus took every well-ordering to
be order-isomorphic to an e-ordinal, the envisioned, repeated replacement
process can only get to an e-ordinal for finite well-orderings. In [1917b],
Mirimanoff more assuredly described how to correlate a well-ordering with
an e-ordinal by progressively replacing the ordering relation by membership
from the front. But even then, the pivotal von Neumann result that every
well-ordering is order-isomorphic to a (von Neumann) ordinal can only be
rigorously proved by a recursion requiring Replacement. On the other hand,
Mirimanoff [1917a, p. 47] offered a characterization of e-ordinal as those
ordinary sets with e that are transitive and linearly ordered by membership.
Such a characterization for ordinals does not appear in von Neumann’s
work, and has been attributed much later to Raphael Robinson [1937] as a
simplification.17 In [1917b], Mirimanoff elegantly developed the theory of
ordinals much as it is done today. In Mirimanoff’s terms, a set [ensemble]
can exist or not; the set of all “ordinal numbers of Cantor” does not exist
because of the Burali-Forti Paradox, but no decision is made on whether
non-ordinary [extraordinary] sets exist or not.
Mirimanoff [1917a] proceeded to his solution of the “fundamental prob-
lem” of when sets exist for the case of ordinary sets. To this end he stated
three “postulates” corresponding to Union, Power Set, and Replacement.
While the first two stated that the ordinary sets are closed under the taking
of unions and power sets respectively, the latter stated that if any set exists,
then so does any (cardinally) equivalent ordinary set. The first ‘set’ is not qual-
ified, and how he initially applied this principle brings out the conceptual
distance from how we now work with Replacement. With his formulation
Mirimanoff concluded forthwith that for each ordinal number of Cantor
the corresponding e-ordinal exists, and with this he established as a prelim-
inary result that a set of e-ordinals exists exactly when their corresponding
ordinal numbers are bounded. Mirimanoff’s Replacement thus served as a
trans-species bridge between “the ordinal numbers of Cantor” and their set
representations as e-ordinals, numbers and sets being regarded as of differ-
ent species. This is interestingly alien to the present sense of Replacement as
an axiom within set theory proper but is also consonant with Replacement’s
role in shifting between tokens and types and Cantor’s original use.
For the solution of the “fundamental problem” for ordinary sets in general,
Mirimanoff briefly described what can be seen as the cumulative hierarchy
indexed by the ordinal numbers, and showed that an ordinary set exists
exactly when it has a rank in this hierarchy. In his argument his several uses
of Replacement are resonant with how it now serves to affirm the recursive
definition of the cumulative hierarchy; however, there is steady coordination,

17Bernays in a letter of 3 May 1931 to Gödel actually provided the first direct definition of
ordinal, as a transitive set each of whose members is transitive. This letter will be discussed
in some detail in §3.
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trans-species, with the “ordinal numbers of Cantor”. The extent and details
of Mirimanoff’s work were presumably not fully appreciated in the next,
formative years for set theory, and one can only speculate as to why.18

Replacement as an axiom henceforth to be reckoned with for the axioma-
tization of set theory first emerged in 1921 correspondence between Zermelo
and Abraham Fraenkel.19 Fraenkel was the first to investigate Zermelo’s
1908 axioms with respect to possible independences, and their first exchange
had to do with this. In a letter of early May 1921, Fraenkel astutely raised
what would be a pivotal issue: With Z0 = {∅, {∅}, {{∅}}, . . . } being the
infinite set given by Zermelo’s axiom of infinity and Z1 = P(Z0) the power
set, Z2 = P(Z1), and so forth, how can Zermelo’s axioms establish that
{Z0, Z1, Z2, . . . } is a set? Without the union of this set, the existence of sets
of cardinality ℵù would not be provable.
Zermelo wrote back forthwith on 9 May (cf. Ebbinghaus [2007, p.137]):

Your remark concerning Z∗ = Z0 + Z1 + Z2 + · · · seems to be
justified, and I missed this point when writing my [axiomatization
paper [1908b]]. Indeed, a new axiom is necessary here, but which
axiom? One could try to formulate it as follows: If the objects
A,B,C, . . . are assigned to the objects a, b, c, . . . by a one-to-
one relation, and the latter objects form a set, then A,B,C, . . .
are also elements of a set M . Then one only needed to assign
Z0, Z1, Z2 . . . to the elements of the set Z0, thus getting the set
Θ = {Z0, Z1, Z2, . . . } and Z

∗ =
⋃
Θ. However, I do not like this

solution. The abstract notion of assignment it employs seems to
be not “definite” enough. Precisely this was the reason for trying
to replace it by my “theory of equivalence” [from [1908b]]. As
you see, this difficulty is still unsolved. Anyway, I appreciate your
having brought it to my attention.

Thus, almost immediately after being confronted with Fraenkel’s example
Zermelo had formulated Replacement as Cantor had earlier in correspon-
dence, in terms of cardinal equivalence. Zermelo’s expressed skepticism
about the “abstract notion of assignment” not being “ ‘definite’ enough”
has to do with his definite property for the Separation Axiom, perhaps be-
cause of the recursive aspect of {Z0, Z1, Z2, . . . }. The “abstract notion of
assignment” has a resonance in Fraenkel’s letter of 19 May, in which he os-
tensibly argued that the newaxiom implies theAxiomofChoice, by replacing
each set of a system of non-empty, pairwise disjoint sets by a member. This

18There seems to have been only two citations of his work, in Fraenkel [1922, p. 233]
and Neumann [1925, p. 230], and these only in connection with the extraordinary sets.
Mirimanoff had published in the French Swiss journal, L’EnseignementMathématique, which
may not have been readily seen in Germany in the difficult period after the war.
19See Ebbinghaus [2007, 3.5] for this correspondence and aboutReplacement; what follows

draws substantially from this source.
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first unpracticed reaction brings out the conceptual difficulties at the time
about what should go for functional correlation.
Soon afterward, in a paper [1922] completed 10 July 1921, Fraenkel de-
scribed the shortcoming he had found in Zermelo’s axioms and introduced:
“Axiom of Replacement. IfM is a set and each element ofM is replaced by
‘a thing in the domain’, thenM turns into a set again.” By a “thing in the
domain” Fraenkel was referring to either a set or urelement in Zermelo’s do-
main for his axioms. This is the first occasionwhen injectivity for “replacing”
is no longer assumed, but on the other hand what the process of “replacing”
is is left undeveloped. On 22 September, at the 1921 meeting of the Deutsche
Mathematiker-Vereinigung at Jena, Fraenkel [1921] announced his results,
and it was reported that Zermelo at the meeting accepted the axiom but
voiced reservations about its scope.
On 6 July 1922, at the Fifth Congress of Scandinavian Mathematicians at
Helsinki, Skolem [1923b] delivered an address on the axiomatization of set
theory. Skolem actually sought to devalue axiomatic set theory, considering
his most important result, as he remarked at the end, to be that set-theoretic
notions are relative. However, his analysis not only featured the now well-
known “Skolem’s paradox” but was remarkably prescient and far-ranging
about how to proceed in set theory. Skolem argued that Zermelo’s system
should be formalized in first-order logic, so that in particular his Axiom of
Separation becomes a schema with first-order formulas rendering Zermelo’s
“definite” property. Skolem (in 4.) also pointed out the same deficiency
that Fraenkel had, that {Z0, P(Z0), P(P(Z0)), . . . } cannot be proved to be
a set, but moreover provided a semantic argument, which in modern terms
amounts to the argument that the rankVù+ù is a model of Zermelo’s axioms
without the set in question. Skolem thenwrote (cf.Heijenoort [1967, p. 297]):
“In order to remove this deficiency of the axiom system, we could introduce
the following axiom: Let U be a definite proposition that holds for certain
pairs (a, b) in the domain B; assume, further, that for every a there exists
at most one b such that U is true. Then, as a ranges over the elements of a
setMa , b ranges over all elements of a setMb .” Taken in Skolem’s context as
describing a first-order schema of propositions about the domain of all sets,
this is the first substantively accurate statement of themodern axiom schema
of Replacement.20 In a succeeding footnote, Skolem sketched how the new
axiom actually establishes that {Z0, P(Z0), P(P(Z0)), . . . } is a set, going
through a proof for this instance of (Dedekind’s) Recursion Theorem. One
sees here the first clear account of Replacement and its role in a recursion.

20Actually, there is a slight variance. Modern Replacement would have “exactly one b”
instead of Skolem’s “at most one b”. Skolem’s stronger formulation can differ from Replace-
ment for restricted versions of the schemas. For this, seeMathias [2001b, sect. 9, peroration];
its 9.32 also translates the Fraenkel–Skolem observation into an algebraic one nearer to the
interests of many mathematicians.
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Reviewing Skolem’s paper, Fraenkel21 simply stated that Skolem’s con-
siderations about Replacement correspond to his own, though evidently,
Fraenkel’s initial formulation conveyed only a loose idea of replacing. Later
Fraenkel [1925, p. 271] did attempt a more formal account specifying the
applicable replacing procedures but did not pursue this, opining that Re-
placement was too strong an axiom for “general set theory”. Fraenkel’s
reservation now seems quite remarkable, and it is also to be noted that
Skolem only wrote that “we could introduce” Replacement (in the above
quotation). Whatever is the case, Fraenkel’s name is now, of course, firmly
entwined with Replacement, and this presumably has to do with the thrust
of his publications on the axiomatics of set theory as well as the acknowl-
edgments of those engaged with Replacement, von Neumann and Zermelo.
The first reference to “Fraenkel’s Axiom” appears inNeumann [1923, p. 347]
and the first to “Zermelo–Fraenkel” as the axioms of Zermelo augmented
with Replacement appears in von Neumann [1928a, p. 374], soon to be fol-
lowed by Zermelo [1930b, p. 30]. It would be the work of von Neumann
which would firmly establish Replacement as an important and needed ax-
iom and orient set theory toward the first-order formulation first advocated
by Skolem.

§3. Middle history of Replacement. Von Neumann effected a counter-
reformation of sorts for ordinal numbers. The ordinal numbers had been
focal to Cantor as separate entities from sets but peripheral to Zermelo with
his emphasis on set-theoretic reductionism; von Neumann reconstrued then
as bona fide sets, the (vonNeumann) ordinals. In connection, vonNeumann
formalized transfinite recursion, this as he worked out a new axiomatization
of set theory. Von Neumann’s axiomatization was the first, via his I-objects
and II-objects, to allow proper classes, as we would now say, together with
sets; the paradoxes were systemically avoided by having only sets bemembers
of classes. In all this work Replacement was a crucial feature from the first.
To briefly set the stage for transfinite recursion, emergent from Cantor’s
work with transfinite numbers are transfinite induction and transfinite re-
cursion, the first a mode of proof and the second a mode of definition.
Transfinite induction on a well-ordering is essentially just a contraposition
of the main, least element property of well-ordering. Transfinite recursion,
on the other hand, depends on having sufficient resources. InWhitehead and
Russell’s Principia Mathematica, volume 3 [1913], transfinite induction and
transfinite recursion were articulated to the authors’ specific purposes, the
second workable in the theory of types context. In Hausdorff’s Grundzuge
der Mengenlehre [1914], V§5, transfinite induction and transfinite recursion
were just presented as working principles. It would be the axiomatic formal-
ization of transfinite recursion in set theory that draws in Replacement.

21Jahrbuch über die Fortschritte der Mathematik vol. 49 (1922), pp. 138–139.
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Now to progressively describe von Neumann’s work, he in [1923] pro-
ceeded informally, in part to bring out the lack of dependence on any partic-
ular axiomatic system, to set out the concept of ordinal, working the basic
idea of taking precedence in a well-ordering just to be membership.22 A
Cantorian ordinal number had often been construed as the order type of
the set of its predecessors, and von Neumann just forestalled the abstrac-
tion to order type. With this in hand, he set out the fundamental result
that every well-ordering is order-isomorphic to an ordinal. In [1928b], von
Neumann duly formalized the proof, making use of Replacement, and one
sees here the first and basic use of Replacement to articulate canonical token
representing type. With Replacement he moreover established the funda-
mental Transfinite Recursion Theorem, that given any class function F in
two variables, there is a unique class function G on the ordinals such that
G(α) = F (α,G↾α). As with Dedekind’s Recursion Theorem (cf. §1) one
pieces together initial segments; one proves by transfinite induction that for
each ordinal â , there is exactly one function gâ with domain â and satisfying
for all α < â that gâ(α) = F (α, gâ↾α). The shift from Dedekind to von
Neumann is the shift from the finite to the transfinite, and Replacement is
just what is needed to establish the inductive existence of gâ for limit or-
dinals â > 0, in the same way that for Dedekind’s Recursion Theorem the
existence of the desired function on the natural numbers is secured. The
bootstrapping would have been subtle then but is straightforward now, and
again it is the infinite in actuality that draws in the Replacement motif. Von
Neumann moreover applied transfinite recursion to define (proper) classes,
proceeding forthwith as Dedekind had done for the natural numbers to the
definition of the ordinal arithmetical operations. The keymethod ofmodern
set theory is transfinite recursion, and von Neumann thus established the
intrinsic necessity of Replacement.23

22Von Neumann became aware of Zermelo’s anticipation of the theory of ordinals; see
Hallett [1984, p. 280] and Ebbinghaus [2007, p. 134].
23There is a local version of transfinite recursion provable without Replacement: If â is an

ordinal, A is a set, and f: P(A)→ A, then there is a unique function g : â → A satisfying
g(α) = f(g“α). With a formalization of function as a set of ordered pairs one can apply
Separation to the power set P(â × A) to get the set of approximating functions and then
take the union. This approach is indeed analogous to Zermelo’s first, [1904] proof of the
Well-Ordering Theorem. With this local transfinite recursion, the attempt to define ordinal
addition ã + α to a fixed ã and for α up to a specified â encounters the difficulty that ã + α
may surpass â.
Notably, Potter [2004, p.183] presents this local version of transfinite recursion in his

setting without Replacement. But his proof slides into an implicit appeal to Replacement
even though the Power Set, Separation, Union approachwas available to him. Moreover,with
his theory of ordinal numbers based on equivalence classes of well-orderings he subsequently
defines ordinal addition, not recursively because of the abovementioneddifficulty, but directly
by putting well-orderings in series. But then, he gives (p. 194) the recursion equations as
if they were immediate consequences. However, the very formulation of the limit case
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Many years later Fraenkel retrospectively acknowledged the importance
of Replacement as brought out by von Neumann. Writing about his [1922],
Fraenkel [1967, pp. 149ff] wrote: “I did not immediately recognize or take
advantage of the full significance of my new axiom. Rather, this was done by
von Neumann . . . ” Fraenkel subsequently wrote (p. 169): “The importance
of this axiom was now shown in a wholly unexpected way: von Neumann
based the theory of transfinite numbers on my axiom in a way which showed
that it is indispensable for this purpose.”
Von Neumann’s axiomatization of set theory, completed by 1923 for his
eventual Budapest thesis and aired in [1925] and in full detail in [1928a], has
several interactions with Replacement. He actually axiomatized the notion
of function rather than the notion of set, noting [1925] (§2) that “every
axiomatization uses the notion of function” and citing Replacement. Con-
sidering a rigorization of Zermelo’s concept of “definite” property to be one
of the accomplishments of his axiomatization, von Neumann proceeded to
present his axioms for generating classes sufficient so that all definite proper-
ties can be correlated with classes according to his Reduction Theorem (§3),
essentially the predicative comprehension schema, asserting that extensions
of formulas without class quantifiers are classes. This has as a consequence
a rigorization of Replacement as put forth by Fraenkel, which vonNeumann
took (§2, last footnote) in the class form: If F is a (class) function and a is
a set, then the image F “a is a set.
Replacement however is not actually an axiom of von Neumann’s axiom-
atization. Rather, the taking of function as primitive was in part to the
purpose of formulating his focal axiom IV 2, stated here in terms of sets and
classes with V the class of all sets: A class A is not (represented) by a set ex-
actly when there is a surjection ofA onto V . Von Neumann thus transformed
the negative concept of proper class, which had appeared in various guises,
e.g., Cantor’s inconsistent multiplicities, into the positive concept of having
a surjection onto V . In fact, von Neumann had formalized a dichotomy
based on possibilities for well-ordering that had been broached by Cantor in
his letter of 3 August 1899 to Dedekind (cf. §2). IV 2 is an existence princi-
ple that plays the role of regularizing proper classes, much as the Axiom of
Choice does for sets, by extending the Cantorian canopy of functional corre-
spondence. IV 2 appropriately implies bothReplacement andChoice in class
forms, the latter asserting the existence of a global choice function on V .24

requires justification, ordinarily given with Replacement, but here possible with Power Set,
Separation, and Union. It is hard to sublimate Replacement.
24ForReplacement, ifF is a class functionwhose range is not a set, then there is a surjection

G of that range onto V ; but then F composed with G is a surjection of the domain of F
onto V , and consequently the domain is not a set. For Choice, since the class of all ordinals
cannot be a set by the Burali-Forti argument, there is a surjection of the class onto V , and
an inversion according to least preimages induces a well-ordering of V itself, and so there is
a global choice function.
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Both in his development of the ordinals and with his axiomatization, von
Neumann rigorized and provided for the full extent of Cantor’s later vision
of set theory as set out in correspondence with Hilbert and Dedekind at the
turn of the century, and Replacement was a basic underpinning for this.
In his last paper on axiomatization von Neumann [1929] provided an
incisive analysis of his system by providing as a model the class of well-
founded sets, an analysis that showed his axiom IV 2 to have a concrete
plausibility. In modern terms, he in effect defined by transfinite recursion
the cumulative hierarchy of well-founded sets through their stratification into
cumulative “ranks” Vα , where

V0 = ∅; Vα+1 = P(Vα); and Vä =
⋃
α<äVα for limit ordinals ä.

Mirimanoff [1917a, pp. 51ff] had been first to study the well-founded sets,
and the cumulative hierarchy is distinctly anticipated in his work (cf. §2). In
the axiomatic tradition Fraenkel [1922], Skolem [1923b], and von Neumann
[1925] had considered the salutary effects of restricting the universe of sets
to the well-founded sets. Von Neumann [1929] formulated in his functional
terms the Axiom of Foundation, asserting that every non-empty class has
a ∈-minimal element, and observed that it is equivalent to the assertion
that the cumulative hierarchy is the universe, V =

⋃
α Vα . Moreover, he

observed that in the presence of Foundation, Replacement and Choice (in
class forms) are together actually equivalent to IV 2.25, 26 This result has
the notable thematic effect of localizing the thrust of IV 2 to asserting the
existence of just one class, a choice function on the universe. To conclude,
von Neumann established that his axioms hold in the class of well-founded
sets, thereby establishing the relative consistency of Foundation. The result
is cited now as the first relative consistency result via “inner models” and
about Foundation, but for von Neumann a major incentive was to affirm the
plausibility of his axiom IV 2.
As for the underlying logic, von Neumann’s work is evidently formaliz-
able in a two-sorted first-order logic with variables for sets and variables for
classes. However, as with his Reduction Theorem ([1925] §3), i.e., the pred-
icative comprehension schema, quantification over classes is delimited and
the full potency of second-order logic for sets is never invoked. As subse-
quently emended by Bernays andGödel, this first-order aspect promoted the
move toward Skolem’s [1923b] suggestion of basing set theory on first-order

25To get IV 2, for any class A, A is the union of the layers A∩ (Vα+1−Vα) by Foundation.
If A is not represented by a set, then these layers are nonempty for arbitrarily large α by
Replacement. But each such layer has a well-ordering by Choice, and these well-orderings
can be put together to well-order all of A, again by Choice. Hence, there is a one-to-one
correspondence between A and the class of all ordinals.
26Levy [1968] latterly showed by a clever argument that the Union Axiom for sets also

follows from von Neumann’s IV 2, so that IV 2 is equivalent to Replacement and Choice (in
class forms) and Union (for sets) in the presence of the other axioms.
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logic, and in particular, on regarding Replacement as a first-order schema
of axioms.
Zermelo in his remarkable [1930b] offered his final axiomatization of set
theory as well as a striking, synthetic view of a procession of natural mod-
els. This axiomatization incorporated for the first time both Replacement
and Foundation (Zermelo’s term), and thus the now-standard ZFC axiom-
atization is recognizable. However, Zermelo worked in a full second-order
context, proceeding in effect with proper classes but not distinguishing a con-
cept of class. Zermelo was actually presenting a dramatically new view of set
theory as applicable through processions of models, each having a “basis” of
urelements for some specific application and a cumulative hierarchy built on
the basis, up to a height given by the “characteristic”. He established these
“Grenzzahlen” to be either the (von Neumann) ù or a strongly inaccessible
cardinal and moreover established a second-order categoricity of sorts for
his models as determined up to isomorphism by the cardinal numbers of the
basis and of the characteristic. Significantly, Zermelo pointed out (p. 38)
that those models starting with one urelement satisfy von Neumann’s axiom
IV 2. However, in Zermelo’s approach IV 2 would not always hold, this
depending on the cardinality of the basis of urelements.27

Whatever the relationship to von Neumann’s IV 2 and work on Founda-
tion, Zermelo’s adoption of both Replacement and Foundation promoted
the modern mathematical approach to set theory. In modern, first-order set
theory, Replacement and Foundation focus the notion of set, with the first
making possible the means of transfinite recursion, and the second making
possible the application of those means to get results about all sets, they now
appearing in the cumulative hierarchy.
Zermelo himself, however, was haphazard on the methodological role of
Replacement. First, like Mirimanoff [1917a] Zermelo worked with ordinals
starting from an urelement; did not make the vonNeumann identification of
the Cantorian ordinal numbers with ordinals; and just stated (p. 33) the von
Neumann result that every well-ordering is isomorphic to an ordinal without
mention of the role of Replacement. Then in his characterization (p. 34) of
the characteristics of his models as the inaccessible cardinals, Zermelo did
not explicitly associate his ordinals with the subsets of a set, and when finally
he appealed explicitly to Replacement it is to a limit case made redundant by
a previous assertion. For Zermelo, the importance of Replacement resided
in its role in cofinality, as attested to by his mention of Hausdorff’s work
(pp. 33,34). Getting to his categoricity results, Zermelo established (p. 41)
his first isomorphism result, that two models with the same characteristic
and bases of the same cardinality are isomorphic, by extending a one-to-one
correspondence between the bases through the two cumulative hierarchies.
Unbridled second-order Replacement is crucial here, this time to establish

27See Kanamori [2004, p. 525] and generally for Zermelo’s work in set theory.
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that the cumulative ranks of the two models are level-by-level extensionally
correlative, and this from one perspective requires a trans-species correlation
across models. However, Zermelo did not mention Replacement at all
here, nor indeed does he ever point out how Replacement is implicated
in definitions by transfinite recursion. As mentioned above (cf. §1) there
is a historical resonance with Dedekind [1888] who had established the
categoricity of his second-order axioms for arithmetic. A final involvement
of Replacement is in Zermelo’s postulation of an “unlimited sequence of
Grenzzahlen” and how one model “can also be conceived of as a ‘set’ ” in
a further model (p. 46). This entails a “reflection principle” which can be
seen in terms of later developments (cf. §4) as amounting to a strong form
of Replacement.28

In a note “On the set-theoretic model” [1930a] found in hisNachlass, Zer-
melo provided an analysis of set theory and amotivation for its axioms based
on an “iterative conception”.29 Hefirst set out his “set-theoretic model”, and
it is the cumulative hierarchy based on a totality of urelements. With this as
a schematic picture he proceeded to motivate and justify his [1930b] axioms.
This note reveals Zermelo to be actually the first who would retroactively
motivate the axioms of set theory in terms of an iterative conception of sets
as built up through stages of construction. For Replacement, Zermelo sim-
ply argued that, in modern terms, if a set’s elements are replaced bymembers
of a Vâ , then the result would appear in Vâ+1. Of this evidently circular
argument, one of course bypassing any modern concern about definability,
Zermelo wrote: “Of course, the assumption that the replacing elements be-
long to a segment of the development [i.e., a Vâ ], while being essential here,
constitutes no real restriction.” With this he was presumably importing his
[1930b] picture of always having Grenzzahlen beyond, but circularity is still
there at this further remove.
As set theory would develop, Replacement, Foundation, and the cumu-
lative hierarchy picture would provide the setting for a developing high
tradition that had its first milestone in Kurt Gödel’s development of the
constructible universeL. Zermelo [1930b] would be peripheral to this devel-
opment, presumably because of its second-order lens and lack of rigorous
detail. Gödel’s work newly confirmed Replacement as a central axiom of set
theory, and it was featured in a formal presentation of this work for which
Gödel adapted an axiomatization of set theory due to Bernays, which itself
was a transmutation of von Neumann’s axiomatization.

§4. Later history of Replacement. Gödel’s advances in set theory can be
seen as part of a steady intellectual development from his fundamental

28The reflection aspect of Zermelo [1930b] was emphasized by William Tait [1998].
29For more on this note and its significance, see the author’s introductory note appearing

in Zermelo [2010].
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work on completeness and incompleteness. In the well-known, prescient
footnote 48a to his celebrated incompleteness paper [1931], Gödel had
pointed out that the formation of ever higher types over the Russellian
theory of types can be continued into the transfinite and that his unde-
cidable propositions become decided if the type ù is added. Matters in a
footnote, perhaps an afterthought then, took up fully one-third of a sum-
mary (cf. Gödel [1932, pp. 234ff]) dated 22 January 1931. Gödel pointed out
that the enlargement of Z, first-order Peano arithmetic, with higher-order
variables and corresponding comprehension axioms leads not only to the
decidability of his undecidable propositions but also to new, undecidable
propositions, all expressible in Z. He continued:

In case we adopt a type-free construction of mathematics, as is
done in the axiom system of set theory, axioms of cardinality
(that is, axioms postulating the existence of sets of ever higher
cardinality) take the place of type extensions, and it follows that
certain arithmetic propositions that are undecidable in Z become
decidable by axioms of cardinality, for example, by the axiom that
there exist sets whose cardinality is greater than every αn, where
α0 = ℵ0, αn+1 = 2

αn .

This is Gödel’s first remark on set theory of substance, and significantly,
his example of an “axiom of cardinality” is evidently closely connected to
the existence of the set that both Fraenkel [1922] and Skolem [1923b] had
pointed to as the one to be secured by adding Replacement to Zermelo’s
1908 axiomatization.
In an incisive lecture [1933o] Gödel expanded on his theme of higher
types. He propounded the view that the axiomatic set theory “as presented
by Zermelo, Fraenkel and von Neumann . . . is nothing else but a natural
generalization of the [simple] theory of types, or rather, it is what becomes
of the theory of types if certain superfluous restrictions are removed.” First,
instead of having separate types with sets of type n + 1 consisting purely of
sets of type n, sets can be cumulative in the sense that sets of type n can
consist of sets of all lower types. That is, with Sn to consist of the sets of
type n newly construed, S0 consists of the “individuals”, and recursively,
Sn+1 = Sn ∪ {X | X ⊆ Sn}. Second, the process can be continued into the
transfinite, starting with the cumulation Sù =

⋃
n Sn , proceeding through

successor stages as before, and taking unions at limit stages. Gödel is
seen here as promoting the cumulative hierarchy picture, which had been
advocated for set theory by Zermelo [1930b], [1930a], as an extension of the
simple theory of types.
As for how far this cumulative hierarchy of sets is to continue, Gödel
[1933o, p. 47] wrote:

The first two or three [transfinite] types already suffice to define
very large ordinals. So you can begin by setting up axioms for these
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first types, for which purpose no ordinal whatsoever is needed,
then define a transfinite ordinal α in terms of these first few types
and by means of it state the axioms for the system, including all
classes of type less than α. (Call it Sα .) To the system Sα you can
apply the same process again, i.e., take an ordinal â greater than
α which can be defined in terms of the system Sα and by means
of it state the axioms for Sâ including all types less than â , and
so on.

Gödel thus envisioned an “autonomous progression”, in later terminology,
with large ordinals definable in low types leading to higher types.
Gödel, according to Hao Wang [1981, p. 128] reporting on conversations
with Gödel in 1976, had already been working on the continuum problem for
some time and had devised what he considered to be a transfinite extension
of Russell’s ramified theory of types. He in effect had started working up
the constructible hierarchy, where in modern terms, for any set x, def(x) is
the collection of subsets of x definable over 〈x,∈〉 via a first-order formula
allowing parameters from x, and:

L0 = ∅; Lα+1 = def(Lα); and Lä =
⋃
α<äLα for limit ordinals ä.

There is evidence however that Gödel could not get far pursuing his en-
visioned autonomous progression. Wang [1981, p. 129] reported how in
Gödel’s efforts to go up the constructible hierarchy he “spoke of experiment-
ing with more and more complex constructions [of ordinals for indexing] for
some extended period somewhere between 1930 and 1935.” More pointedly,
Georg Kreisel in his memoir [1980] of Gödel wrote (p. 193): “As early as
1931, Gödel alluded to some reservations [about Replacement].” Kreisel
continued (p. 196, with Cù+ù his notation for Vù+ù): “In keeping with
his reservations, mentioned on p. 193, Gödel first tried to do without the
replacement property, and to describe the constructible hierarchy Lα only
for α < card Cù+ù; in particular, without using von Neumann’s canoni-
cal well-ordering [i.e., ordinals]. Instead, well-orderings had to be defined
(painfully) in Cù+ù . . . ”
The full embrace of Replacement led to a dramatic development. Set
theory reached a new plateau with Gödel’s formulation of the class L =⋃
α Lα of constructible sets with which he established the relative consistency
of the Axiom of Choice inmid-1935 and of the ContinuumHypothesis (CH)
in mid-1937.30 Gödel had continued the indexing of his hierarchy through
all the ordinals as given beforehand to get a class model L of set theory and
thereby to achieve relative consistency results, by showing that L satisfies
Choice and CH. His early idea of using large ordinals defined in low types in
a bootstrapping process would not suffice. Von Neumann’s ordinals would

30See Dawson [1997, pp. 108,122]; in one of Gödel’s Arbeitshefte there is an indication
that he established the relative consistency of CH in the night of 14–15 June 1937.
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be the spine for a thin hierarchy of sets, and this would be the key to both
the Choice and CH results.
In his monograph [1940], based on 1938 lectures, Gödel provided a spe-
cific, formal presentation of L which made evident the methodological im-
portance of Replacement. Gödel relied on an axiomatization of a class-set
theory which, save for an economy of presentation, was the one detailed
to him in a letter from Bernays of 3 May 1931.31 Bernays’ axiomatization
itself was a transmutation of von Neumann’s axiomatization which differed
from it in two respects. First, while von Neumann had taken function as a
primitive notion with his I-objects and II-objects being functions, Bernays
reverted to collections, sets and classes. More importantly, Bernays like Zer-
melo [1930b] adopted Foundation, and with von Neumann’s [1929] analysis
of his characteristic axiom IV 2 as being equivalent under Foundation to the
conjunction of Replacement and Choice in class forms, Bernays adopted the
latter two instead. Bernays’s approach thus had the effect of bringing von
Neumann’s axiomatization more in line with Zermelo [1930b]. But unlike in
Zermelo’s approach, there were no urelements, and as Bernays wrote in that
May 1931 letter, “A complete formalization, and in fact in a first-order [ersten
Stufe] framework, can be carried out without difficulty.” To summarize, the
features of Bernays’ axiomatization that would commend its further use and
influence were that it recast von Neumann’s work to present a viable theory
starting with sets and classes as primitive notions, and it incorporated Re-
placement and Foundation, as did Zermelo’s later axiomatization, but in a
first-order context and without the relativism of having urelements. Gödel
had thus become aware of Replacement early on; his full espousal of the
axiom in a first-order context affirmed its importance.
Gödel in his monograph carried out a careful development of “abstract”
set theory through the ordinals and cardinals with features that have now
become common fare. Gödel then used eight binary operations, producing
new classes from old, to generate L set by set via transfinite recursion. This
veritable “Gödel numbering” with ordinals bypassed the formalization of
the def(x) operation and made evident certain aspects of L. Since there is
a direct, definable well-ordering of L, choice functions abound in L, and
Choice holds there.
Gödel’s proof that L satisfies CH consisted of two separate parts, both
depending on Replacement and both to become paradigmatic for inner
model theory, that large part ofmodern set theory with beginnings inGödel’s
work. Gödel established the implication V = L implies CH and, in order
to apply this implication within L, the absoluteness LL = L—that the
construction of L in L again gives L—to establish CH within L.

31See Gödel [2003, pp. 105ff]. Gödel in [1940] routinely acknowledged Bernays by citing
his later, published account [1937], but it is clear from their correspondence that Gödel had
assimilated Bernays’ axiomatization through the letter from 1931.
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The absoluteness of L depends inherently, albeit subtly, on Replacement.
Replacement, affirming the interplay of token and type, bolsters the (von
Neumann) ordinals as tokens for all well-orderings. Being an ordinal is
absolute for transitive sets, i.e., being an ordinal in the sense of a set closed
under membership is really to be an ordinal. With this, one can construct L,
e.g., through Gödel’s eight binary operations, in the sense of L and again get
L. A basic reasonwhyGödel’s early efforts with general well-orderings could
not have succeeded is that one needs this absoluteness; one cannot just work
with well-orderings or even equivalence classes of these. The absoluteness of
ordinals as canonical for well-orderings is a pre-condition for the substantive
arguments in L and now, in all inner model theory.
As for Gödel’s argument forV = L implies CH, it rests on what he termed
an “axiom of reducibility”—which properly can be thought of as the fact
that for any α the constructible subsets of Lα all belong to some Lâ—and
what is nowknown as a Skolem hull argument—bywhich that â can be taken
to have the same cardinality as α when α is infinite. Replacement is crucial
for the “axiom of reducibility”. In referring to Russell’s ill-fated axiom in
his ramified theory of types, Gödel took his version to be a rectification. In
his first announcement [1938] he wrote:

[The] ‘constructible’ sets are defined to be those sets which can be
obtained by Russell’s ramified hierarchy of types, if extended to
include transfinite orders. The extension to transfinite orders has
the consequence that the model satisfies the impredicative axioms
of set theory, because an axiom of reducibility can be proved for
sufficiently high orders.

In his analysis of Russell’s mathematical logic Gödel [1944, p. 147] again
wrote about how with L he had proved an axiom of reducibility, empha-
sizing: “ . . . all impredicativities are reduced to one special kind, namely
the existence of certain large ordinal numbers (or well-ordered sets) and the
validity of recursive reasoning for them.” Decades later Gödel wrote in a
letter of 7 March 1968 to Wang [1974b, pp. 8–9]:

. . . there was a special obstacle which really made it practically
impossible for constructivists to discover my consistency [of the
ContinuumHypothesis] proof. It is the fact that the ramified hier-
archy, which had been invented expressly for constructive purposes,
had to be used in an entirely nonconstructive way.

This nonconstructive way was to prolong the ramified hierarchy using arbi-
trary ordinals for the indexing, and for this their extent had to be sustained
by Replacement.
In late conversations, Gödel justifiedReplacement as follows (Wang [1996,
p. 259]; see also Wang [1974a, p. 186]):
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8.2.15. From the very idea of the iterative concept of set it follows
that, if an ordinal number a has been obtained, the operation P of
power set iterated a times from any set y leads to a setPa(y). But,
for the same reason, it would seem to follow that, if instead of P,
one takes some larger jump in the hierarchy of types, for example,
the transition Q from x to the set obtained from x by iterating as
many times as the smallest ordinal [not] of the well-orderings of
x,Qa(y) likewise is a set. Now, to assume this for any conceivable
jumpoperation—even for those that are defined by reference to the
universe of all sets or by use of the choice operation—is equivalent
to the axiom of replacement.

Gödel recalled here the lesson learned about the need for impredicative
reference to the universe of all sets. Technically speaking, all that is needed
to get Replacement is Gödel’s Pa(y)’s together with the assertion that the
class of all ordinals is regular with respect to (definable) class functions.32

With the “axiom of reducibility” Gödel had broached a new aspect of
Replacement, that of reflection. Recalling Cantor’s Absolute but cast in
terms of the cumulative hierarchy, the heuristic of reflection surrounds the
idea that the universe V =

⋃
α Vα cannot be characterized uniquely by a

formula so that any particular property ascribable to it must already be
ascribable to some rank Vα . In oral, necessarily brief remarks [1946] at a
conference, Gödel voiced what would become a prominent way to motivate
and formulate “strong axioms of infinity”, now called large cardinal axioms,
by reflection: “Any proof for a set-theoretic theorem in the next higher
system above set theory”, i.e., if the satisfaction relation for V itself were
available, “is replaceable by a proof from such an axiom of infinity.”
Gödel’sL stoodas ahighwatermark for set theory for quite a spanof years,
and during this period the Bernays–Gödel (BG) class-set theory maintained
an expository sway. There was then a shift toward the more parsimonious
ZFC set theory, especially after BG and ZFC were shown around 1950 to
have the same provable consequences for sets. Concomitantly, Replacement
became widely seen, as first envisioned by Skolem [1923b], as the first-order
schema that it is taken tobe today. Forthwith, newmodel-theoretic initiatives
led to the formalization of reflection properties that put Replacement in a
new light.
With the basic concepts and methods of model theory being developed by
Tarski and his students at Berkeley, Richard Montague [1961] in his 1957
Berkeley dissertation had studied reflection properties in set theory and had
shown that the axiom schema of Replacement is not finitely axiomatizable
over the other axioms in a strong sense. Levy [1960a], [1960b] then exploited
the model-theoretic methods to establish a broader significance for reflection

32That is, there is no such function with domain an ordinal and cofinal in the class of all
ordinals.
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principles. Sufficient for reflection is ZF, ZFC minus the Axiom of Choice.
The ZF Reflection Principle, drawn from Montague [1961, p. 99] and Levy
[1960a, p. 234], asserts that for any (first-order) formula ϕ(v1, . . . , vn) in the
free variables as displayed and any ordinal â , there is a limit ordinal α > â
such that for any x1, . . . , xn ∈ Vα ,

ϕ[x1, . . . , xn] iff ϕ
Vα [x1, . . . , xn],

where as usualϕM denotes the relativization of the formulaϕ toM . The idea
is to carry out a Skolem closure argument with the collection of subformulas
of ϕ. Montague showed that this schema holds in ZF, and Levy showed that
it is actually equivalent to the axiom schema of Replacement together with
the Axiom of Infinity in the presence of the other axioms of ZF. Through
this work the ZF Reflection Principle has become well-known as making
explicit how reflection is intrinsic to the ZF system and as a new face for
Replacement. Levy [1960a] cast the ZF Reflection Principle as motivation
for stronger reflection principles, with the first in his hierarchy being the ZF
principle but with “limit ordinal α” replaced by “inaccessible cardinal α”.
This motivated the strongly Mahlo cardinals, and, notably, was implicit in
Zermelo [1930b] (cf. §3).
Reflection, and thus Replacement, was seen in a further new light through
an axiomatic set theory proposed by Wilhelm Ackerman [1956]. His theory
A is a first-order theory that can be cast as follows: There is one binary
relation ∈ for membership and one constant V ; the objects of the theory are
to be referred to as classes, and members of V as sets. The axioms of A are
the universal closures of:

(1) Extensionality: ∀z(z ∈ x ←→ z ∈ y) −→ x = y.
(2) Comprehension: For each formula ø not involving t,

∃t∀z(z ∈ t ←→ z ∈ V ∧ ø).

(3) Heredity: x ∈ V ∧ (t ∈ x ∨ t ⊆ x) −→ t ∈ V .
(4) Ackermann’s Schema: For each formulaø in free variablesx1, . . . , xn, z
and having no occurrence of V ,

x1, . . . , xn ∈ V ∧ ∀z(ø −→ z ∈ V ) −→ ∃t ∈ V∀z(z ∈ t ←→ ø).

This last, a comprehension schema for sets, is characteristic of Ackermann’s
system. It forestalls Russell’s Paradox, and its motivation was to allow set
formation through properties independent of the whole extension of the set
concept and thus to be considered sufficiently definite and delimited.
Ackermann [1956] himself argued that every axiom of ZF,when relativized
to V , can be proved in A. However, Levy [1959] found a mistake in Acker-
mann’s proof of Replacement, and whether the schema can be derived from
Ackermann’s Schema remained an issue. Toward a closer correlation with
ZF, Levy came to the idea of working with A∗: A together with the Axiom
of Foundation relativized to V . As for ZF, Foundation focuses the sets with
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a stratification into a cumulative hierarchy. Levy [1959] showed that, leav-
ing aside the question of Replacement, A∗ establishes substantial reflection
principles. On the other hand, he also showed through a sustained axiomatic
analysis that for a sentence ó of set theory (so without V ): If ó relativized
to V is provable in A∗, then ó is provable in ZF. The thrust of this work was
to show that Ackermann’s Schema can be assimilated into ZF—a somewhat
surprising result—and that ZF and A∗ have about the same theorems for
sets.
Levy and Robert Vaught in their [1961] later observed by an inner model
argument that, as for ZF and Foundation, if A is consistent, then so is A∗.
They then went on to confirm that the addition of Foundation to A was sub-
stantive; they showed that Ackermann’s Schema is equivalent to a reflection
principle in the presence of the other A∗ axioms, and that A∗ establishes the
existence of {V } and the power classes P(V ), P(P(V )), and so forth.
Years later, returning to the original issue about Replacement, William
Reinhardt [1970] in his 1967 Berkeley dissertation built on Levy–Vaught
[1961] to establish for A∗ what Ackermann could not establish for A: Every
axiom of ZF, when relativized to V , can be proved in A∗. Thus, A∗ and
ZF do have exactly the same theorems for sets. Replacement is the central
axiom schema to establish in order to get ZF, and once done, Ackermann’s
set theory exhibited it in a new light.

§5. Forms of Replacement. Replacement is central to ZFC, but it also has
a complicated form, and as befits the situation it has been analyzed in a
variety of ways. In this section we discuss various forms of Replacement,
starting from simple modulations and proceeding to more substantive ones.
To repeat, we take Replacement to be the following schema: For any formula
ϕ with free variables among a, x, y, z1, . . . , zn but not including b,

∀z1∀z2 . . . ∀zn∀a(∀x∃!yϕ −→ ∃b∀y(∃x(x ∈ a ∧ ϕ)←→ y ∈ b)), (Rep)

where ∃! abbreviates the formalizable “there exists exactly one”. The Re-
placement schema easily implies the Separation schema, but in modern
presentations of ZFC both are kept by convention, especially as in compar-
ative investigations of subsystems of ZFC one wants to retain versions of
Separation.
An initial observation with historical relevance is that Replacement is
equivalent to the form requiring the functional correlation to be one-to-one.
If F is a class function, then G defined via the ordered pair by G(x) =
〈x, F (x)〉 is one-to-one. So, for any set a, G“a = {〈x, F (x)〉 | x ∈ a} is
a set by “one-to-one Replacement”. But then, one can as usual appeal to
Union and Separation to get to the range of this set, i.e., {F (x) | x ∈ a}.33

33I do not know whether, without Separation, Replacement is derivable from “one-to-one
Replacement”.
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Asyntactic complication ofReplacement is that in its formal statement one
has to be attentive to passive parameters. Levy [1974] considered the elim-
ination of parameters. Let R0 (his notation) be the parameter-free version
of Replacement, in the sense that Rep is altered so that the only free vari-
ables occurring in ϕ are x, y and the universal quantification ∀z1∀z2 . . .∀zn
is deleted. Let P2 be the restriction of the Power Set Axiom asserting that for
any set x the totality of two-element subsets if x is a set. Levy established
that in the presence of Extensionality, Pairing, Union, and P2, R0 implies
Replacement. Hence, for a quick presentation of ZFC one can rightly give
only the parameter-free R0. Earlier, Harvey Friedman in his 1967 Ph.D. the-
sis (cf. [1971b]) had also shown that a restricted, “more explicit” group of
axioms including a parameter-free version of Replacement entails ZFC, but
indirectly in terms of consistency by going through the construction of the
constructible universe L.
Levy called R← another variant of Rep where the “←→” is relaxed to
“−→”. That is, for any set a one concludes only that there is a set b that
subsumes the image F “a under the class function. Of course, with Sepa-
ration, R← is equivalent to full Replacement. ZFC is sometimes presented
with R← instead of Replacement, giving Separation an independent sta-
tus. Levy showed that Extensionality, Empty Set, Pairing, Union, Power
Set, a parameter-free version of Separation, and R← together do not im-
ply Replacement. On the other hand, recently Mathias [2007] showed that
Extensionality, Empty Set, Pairing, Union, Power Set, ∆0-Separation, Foun-
dation, Transitive Containment (that every set is a member of a transitive
set), and R← do imply Replacement. Here, ∆0-Separation is the Separation
schema restricted to ∆0, or bounded, formulas in the Levy hierarchy, i.e.,
those formulas of set theory that can be rendered with quantifiers only of
form ∀v ∈ w and ∃v ∈ w.
A more substantive variant of Rep is Collection, where both the “←→” is
relaxed to−→” and the “∃!y” is relaxed to “∃y”. That is, one finally gives up
the historically given functionality ofϕ so that for any x there is somewitness
y and concludes for any set a that there is a set b containing witnesses for
every x ∈ a. Collection emerged in the late 1960s with Replacement having
become less explicitly a class function principle and more explicitly a schema
of formulas, suggestive of the relaxation of the ∀x∃!y to ∀x∃y. In any case,
Collection is equivalent over the other axioms to Replacement: To establish
Collection from Replacement, suppose that ∀x∃yϕ and a is a set. For each
x ∈ a, let αx be the least α such that ϕ holds for a y ∈ Vα+1. With
Replacement we can consider the ordinal â = sup{α + 1 | x ∈ a}, and Vâ
can serve as the set b to confirmCollection. Power Set is necessaryhere, in the
sense that Andrzej Zarach [1996] showed with a forcing argument that over
a base theory without Power Set, Replacement does not imply Collection.
Replacement and Collection are distinct in intuitionistic set theory IZF
and in constructive set theory CZF, theories based on intuitionistic logic in
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which the appeal to least ranks Vα (“Scott’s trick”) as above is not available.
Nicolas Goodman [1985] showed using Kripke models that if one adjoins
a class parameter (that is, a new predicate symbol) then intuitionistically
one cannot show that Replacement implies Collection. Inspired by this,
Harvey Friedman and Andrej Scedrov [1985] showed that intuitionistic set
theory as formulated with Replacement, IZFR, does not prove Collection,
which is used in IZF. It would remain open whether IZFR and IZF have the
same proof-theoretic strength. Michael Rathjen [2005] showed that for the
weaker CZF, Replacement and a strong form of Collection do have the same
proof-theoretic strength.
Refinements of the various schemas have to do with restricting them ac-
cording to complexity of formula, as with ∆0-Separation. For the formula-
tions, we briefly recall the standard Levy hierarchy of set-theoretic formulas:
Σ0 = Π0 = ∆0 are the bounded formulas, where again the quantifiers are
only of form ∀v ∈ w and ∃v ∈ w. Then a formula is Σn+1 if it is of the form
∃vϕ where ϕ is Πn, and Πn+1 if it is of the form ∀vϕ where ϕ is Σn. It is to be
pointed out that the very efficacy of concept classification according to this
hierarchy depends on Replacement, or more directly, Collection. Collection
amounts to having

∀v ∈ w∃v0ϕ ←→ ∃v1∀v ∈ w∃v0 ∈ v1ϕ,

and this shows how the bounded quantifier ∀v ∈ w can be inductively ab-
sorbed in the complexity analysis. As expected, Σn-Replacement refers to
the Replacement schema restricted to the Σn formulas, and so forth. Πn-
Collection implies Σn+1-Collection, for if ∃wϕ is Σn+1 where ϕ is Πn, then
in ∀x∃y∃wϕ for Collection one can pair y and w. Also, the simple argu-
ment getting fromReplacement to Separation shows that Σn+1-Replacement
implies Σn-Separation.
The prominent set theory with restricted schemas is Kripke–Platek (KP)
set theory: Extensionality, Empty Set, Pairing, Union, ∆0-Separation, and
∆0-Collection.

34 KP can carry the weight of substantive recursive pro-
cedures, and in particular the construction of Gödel’s L. On the other
hand, Σ1-Separation is needed over KP to establish the fundamental von
Neumann result that every well-ordering of a set is order-isomorphic to
an ordinal. Latterly, Mathias [2001b] showed that over KP + Power Set
+ Choice, Σ1-Separation is equivalent to every well-ordering of a set be-
ing order-isomorphic to an ordinal.35 Finally, over KP + Power Set, Σ2-
Replacement suffices to define recursively the cumulative hierarchy, as being
a Vα is Π1.

34Mathias [2001b] includes Π1-Foundation in KP.
35See Mathias [2001b, 3.18]; this paper has much more on restricted schemas of Replace-

ment and variants. See Mathias [2006] for such schemas in weaker set theories.
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Thework on restricted set theories and schemas have certainly brought out
the logical dependencies of the classical development surrounding Replace-
ment. In particular, theyhave brought out the crucial aspects ofReplacement
as functioning separately from Power Set and so from large cardinality sets.
At the same time, much of the work has focused attention on Replacement
as the principle of set theory to be reckoned with, especially in its providing
the basis for well-founded recursion, the importance of method coming to
the fore.

§6. Replacement vindicated. In this last, more freewheeling section, we
address issues that have invited skepticism, or at least hesitation, about Re-
placement based largely on grounds of ontological commitment and we
provide an affirmation on general grounds for Replacement’s central role in
set theory. The large mathematical and historical perspective and basis for
Replacement provided in the previous sections should already serve to ad-
dress issues having to dowith thematic importance and historical emergence,
and so it is that we here turn to the further issues.
As mentioned in §3, in the Nachlass note [1930a] Zermelo first motivated
the axioms of set theory in terms of the cumulative hierarchy picture. From
the late 1960s, what has come to be regarded as the iterative conception,
conceiving sets as built up through stages of construction, has become well-
known as a heuristic for motivating the axioms of set theory generally.36

This has opened the door to a metaphysical appropriation in the following
sense: It is as if there is some notion of set that is “there”, in terms of which
the axioms must find justification as being true or false. But set theory has
no particular obligations to mirror some “prior” notion of set, especially one
like the ultimately ontological iterative conception, arrived at after the fact.
WhenReplacement has been justified according to the iterative conception,
the reasoning has in fact been circular as it was in Zermelo [1930a], with
some feature of the cumulative hierarchy picture newly adduced solely for
this purpose. George Boolos [1971] argued that neither Replacement nor
Choice, in their providing for a store of sets, is evident from the iterative
conception. Subsequently, he [1989] observed that Replacement and Choice
do follow from a certain “limitation of size” conception of set that he called
FN; this is evident since FN amounts to an espousal of von Neumann’s
axiom IV 2 (cf. §3). With the two, the iterative and limitation of size
concepts, Boolos ends: “Perhaps one may conclude that there are at least
two thoughts ‘behind’ set theory.”
Another thought is that set theory is what it is, a historically given, au-
tonomous field of mathematics proceeding with its own self-fueling methods

36Joseph Shoenfield [1967, pp. 238ff] and [1977], Hao Wang [1974a], Dana Scott [1974],
and George Boolos [1971], [1989] motivate the axioms of set theory in terms of iterative
conceptions.



78 AKIHIRO KANAMORI

and procedures. We continue the dialectic with Boolos as the specificities of
his writings invite discussion as he intended and provide an opportunity to
raise important, general considerations.
In his late “Must we believe in set theory?” [2000], Boolos quite remark-
ably argued against the existence of the least fixed point κ = ℵκ of the aleph
function. According to Boolos,

The burden of proof should be, I think, on one who would adopt
a theory so removed from experience and the requirements of the
rest of science (including the rest of mathematics) as to claim that
there are κ objects.

Boolos was of course aware that the existence of κ is established with Re-
placement, and is inclined to jettison Replacement as not following from the
“natural” iterative conception.
First, “belief” is a vague notion, and there is little one can profitably
discuss about it as a concept, especially in mathematics and as concerns
ontology.
Second, there are varieties of “experience”. Though Boolos anticipates
the charge that asking whether κ exists from an external vantage point is to
fall into metaphysical error, this counterpoint is nonetheless quite relevant.
From an external vantage point κ could seem a magic mountain to the foot
soldier encumbered with dated provisions and determined to climb at some
previously ordained pace. For Henri Poincaré ℵ1 was inaccessible, and to
one who takes successive counting to be the overwhelming primal act, 2100 is
analogously inaccessible. But for Cantor, the new transfinite landscape was
set out with generating principles for which the climb to κ would have been
congenial. And Hausdorff subsumed κ in his schematic investigation of the
uncountable transfinite.
κ is approachable in set theory via κ0 = ℵ0, κn+1 = ℵκn , and κ = supκn.
Like 2100, κ is to be understood in terms of the operations and procedures
that went into its formulation. What there is to grasp of κ is its recursive
definition, legitimized by Replacement, together with the Cantorian notion
of the alephs and what further can be proved from these about κ. One works
schematically, in so far as one canwork, themathematical experience focused
by guidelines for proceeding, these amenable to axiomatic presentation.
Once the Cantorian theory of the transfinite is taken in, one sees that
κ = ℵκ could be less than 2

ℵ0 , the cardinality of the continuum, the sub-
ject of investigation of classical analysis. As mathematics was transmuting
to a complex edifice of conceptual constructions, Hilbert [1900] wrote in
connection with his axiomatization of the reals:

Under the conception described above [the axiomatic method],
the doubts which have been raised against the existence of the
totality of all real numbers (and against the existence of infinite
sets generally) lose all justification, for by the set of real numbers
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we do not have to imagine, say, the totality of all possible laws
according to which the elements of a fundamental sequence can
proceed, but rather—as just described—a system of things, whose
mutual relations are given by the finite and closed system of axioms
[for complete ordered fields], and about which new statements are
valid only if one can derive them from the axioms by means of a
finite number of logical inferences.

Third, and the most sweeping, of dialectical points vs. Boolos, which we
expand to be about Replacement generally, concerns the use and “require-
ments” for mathematics. For set theory itself, the previous sections have
provided ample evidence for the importance of Replacement in various di-
rections. To press the point, in ZF without Replacement neither the (von
Neumann) ordinal ù + ù nor the rank Vù nor Zermelo’s particular infi-
nite set {∅, {∅}, {{∅}}, . . . } can be shown to exist. Keeping in mind the
now-standard formulation of the Axiom of Infinity as the existence of the
(von Neumann) ordinal ù, one simple model of ZF minus Replacement
having none of these sets is 〈W,∈〉, where W0 = ù, Wn+1 = P(Wn), and
W =

⋃
{Wn | n ∈ ù}. This is a drastic failure vis-à-vis all of functional sub-

stitution, recursion, and indifference to identification.37 One can of course
just posit the existence of any particular Vα and allow for recursions up to
some fixed length â , but then analogous issues arise at the level of Vα+â .
Proceeding in the cumulative hierarchy, the ranks Vù+1 and Vù+2 corre-
spond via cardinality to reals and real functions, and this has advanced the
presumption contra Replacement that classical mathematics, at least, can
be accommodated at these low levels of the cumulative hierarchy. How-
ever, the roughest indifference to identification, that according to cardinal
equivalence, has to be acknowledged and then affirmed by considerable cod-
ing and dexterity. With ordered pairs and functions, one starts to move
from just ontological considerations to analysis and method, and these re-
quire in the set-theoretic context several iterations of the ‘set of’ operation,
which in terms of the cumulative hierarchy amounts to a climb of several
ranks.
Moving away from the iterative conception for such analyses of set-
theoretic representation, it is cardinally more parsimonious and theoreti-
cally more coherent to consider for a regular uncountable cardinal κ the sets
hereditarily of cardinality less than κ, i.e.,

Hκ = {x | |tc(x)| < κ},

37See Mathias [2001a] for constructions of models of ZF minus Replacement exhibiting
such weaknesses, but containing all the ordinals. Model 13 of Mathias [2006, section 7]
shows easily that rank cannot be defined in ZF minus Replacement. For an extreme failure
of Replacement, seeMathias [2010] for a model of Bourbaki’s 1949 version of set theory with
ordered pair treated as a primitive notion, in which some unordered pair fails to exist.
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where tc(x) is the transitive closure of x, informally tc(x) = x ∪
⋃
(x) ∪⋃⋃

(x) . . . . The existence of the Hκ cannot be established in ZF without
Replacement.38

The Hκ model ZFC
−, the ZFC axioms minus Power Set, whereas Vα for

limit α > ù model the ZFC axioms except Replacement. Set theorists from
the 1970s on have regularly andwidely appealed to theHκ as arbitrarily large
models of ZFC− approximating V , especially as Replacement has become
so intrinsic to all of set theory.39 A substantial point is that one can carry out
forcing over Hκ as a model of ZFC

−, getting forcing extensions of ZFC−;
without Replacement it becomes problematic to control the proliferation of
forcing terms.
It is the rendering of mathematical proof rather than of mathematical
objects which is substantive, and metamathematical investigations have es-
tablished the necessity of substantial resources. In an example that has
become widely cited for calibration with Replacement, H. Friedman [1971a]
showed in 1968 that to establish Borel Determinacy would require the use of
the cumulative hierarchy up to Vù1 , with a level-by-level analysis revealing
that determinacy at each new level of the ù1-level Borel hierarchy would
require one more iteration of the power set operation. Martin [1975] in
1974 duly established Borel Determinacy, later [1985] providing a purely
inductive proof that made more evident the correlation of the Borel and the
cumulative hierarchies. Borel Determinacy is thus an incisive example of the
methodological involvement of Replacement.
Years later H. Friedman [1981] considerably expanded his [1971a] work
to establish new independences for propositions about Borel sets, some re-
quiring the strength of large cardinals. In that part of the work closest to
[1971a], Friedman established Borel “diagonalization” and “selection” the-
orems that follow from Borel Determinacy and have a notable simplicity,
yet still require the use of the cumulative hierarchy up to Vù1 . With I the
unit interval of reals, one such proposition is: Every symmetric binary Borel
relation on I contains or is disjoint from a Borel function on I .
Martin’s Borel Determinacy result itself has through the years found wide-
ranging applications. In the latest, Jan Reimann and Theodore Slaman
[2010] established theMartin-Löf randomness of non-computable reals with
respect to continuous probability measures, with a necessary use of infinitely
many iterations of the power set operation. The original Fraenkel–Skolem

38Replacement is needed to proceed generally from regular uncountable cardinals κ to
their Hκ, but there is the issue of having regular uncountable cardinals at all without Re-
placement. One can readily observe though that, e.g., in the model 〈W,∈〉 above of ZFC
minus Replacement, there are certainly uncountable well-orderings but not the setHù1 con-
sisting of the hereditarily countable sets.
39See Foreman and Kanamori [2010]; All three of its volumes exhibit extensive use of

the Hκ.
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motivation for Replacement in the first place was thus called upon for getting
randomness for reals.
We next consider set theory not so much in its foundational role but as of a
piece with modern mathematics. Since set theory emerged as a sophisticated
field of mathematics in the early 1960s with the creation of forcing, both the
conceptual space it provides and the methods that it engages have become
more and more integrated into the broad fabric of modern mathematics.
In this regard the Replacement motif {ti | i ∈ I }, when unrestricted in
colonizing new domains, implicates Replacement.
The conceptual space provided by the set-theoretic universe as buttressed
by Replacement has been increasingly brought into play in modern math-
ematics to generate examples and counterexamples from analysis to topol-
ogy. General topology particularly has become imbued with set-theoretic
constructions involving large cardinalities, to the extent that set theory and
topology have here a large intersection ofmethods and procedures. Two con-
spicuous examples are Mary Ellen Rudin’s construction [1971] of a Dowker

space of cardinality ℵℵ0ù and Peter Nyikos’s [1980] derivation of the normal
Moore space conjecture from ameasure extension “axiom”, one proved con-
sistent relative to a strongly compact cardinal by Kenneth Kunen. The first
result refuted a conjecture posed in 1951, and the second confirmed a con-
jecture, relative to large cardinals, posed in 1962. Natural questions about
general topological spaces had thus been posed early on, and substantive
elucidations only emerged as set theory itself became common coin.
The growth of category theory from the middle of the 20th Century has
brought to the fore the Replacement motif {ti | i ∈ I }, and in so far as
this development is to be formalized in axiomatic set theory, it evidently
implicates Replacement as immanent.40 Of course, if one aspires to a cat-
egorical foundation for mathematics then a reduction to set theory is not
a primary concern. However, it is notable that the converse reduction of
set theory to category theory seems to run afoul of the problem of how
to handle the axiom schema of Replacement. Replacement is what mainly
needs to be accommodated, and category theory seems unable to meet the
challenge.
Categorical imperatives have become particularly topical of late because
of the involvement of Grothendieck universes in Andrew Wiles’s proof of
the Shimura–Taniyama modularity for elliptic curves, establishing Fermat’s
Last Theorem. In terms of set-theoretic resources, the straightforward re-
casting of the proof in set theory initially set the bar for establishing the
famous statement of classical number theory at ZFC plus having many
inaccessible cardinals (cf. McLarty [2010]). Recently, Mark Kisin [2009]
provided a conceptually simpler proof of the modularity, one avoiding the

40The (Dedekind) Recursion Theorem is directly implicated in the common construction
for a functor F : Set → Set of the colimit 0→ F 0→ FF 0→ · · · .
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Grothendieck apparatus and straightforwardly renderable in ZFC. In a con-
tinuing reduction, McLarty [∞] has avowed (January 2011) that both the
Wiles and Kisin proofs of Fermat’s Last Theorem can be formalized in ZFC
without Replacement and with only ∆0-Separation.
The issue of “purity of method” emerges here in significant fashion. The
classic example is the PrimeNumber Theoremhaving been first proved using
sophisticated methods of complex analysis and then decades later having
been given an elementary proof formalizable in Peano Arithmetic. One
looks similarly for an elementary proof of Fermat’s Last Theorem. It would
be very interesting and quite significant to find an elementary proof, and one
would think this to be a definite new conjecture of ongoing mathematics.
Whatever purity of method would outwardly dictate however, it is also
very interesting and quite significant that there are proofs at all of Fermat’s
Last Theorem and that these can be rendered in ZFC or restricted systems.
Replacement in particular is seen to play a conspicuous role both in allowing
for the straightforward rendition of proofs and for providing the conceptual
space for the comparative and complexity analysis of proofs. The refining
or transformation of a proof to one depending on weaker resources is itself
a proof process. If for Fermat’s Last Theorem a proof is found evidently
formalizable in Peano Arithmetic, it would be part of a historical process in
which Replacement has played a substantive role. In any case, Replacement
was seen to underpin a proof, and transcending specific statements, like the
Fermat or the larger Kimura–Taniyana modularity for arithmetic algebraic
geometry, proofs as arguments evolving to methods are free-standing and
autonomous in modern mathematics.

Modern mathematics is, to my mind, a historically given, complex edifice
based on conceptual constructions. With its richness, variety, and complex-
ity any discussion of the nature of mathematics cannot but accede to the
primacy of its history and practice. Mathematics is in a broad sense self-
generating and self-authenticating, and alone competent to address issues of
its correctness and authority.
What brings us mathematical knowledge? The carriers of mathemati-
cal knowledge are proofs, more generally arguments and constructions, as
embedded in larger contexts. Mathematical knowledge does not consist
of theorem statements and does not consist of more and more “epistemic
access”, somehow, to “abstract objects” and their workings. Moreover,
mathematical knowledge extends not so much into the statements, but back
into the means, methods and definitions of mathematics, sometimes even to
its axioms. Statements gain or absorb their senses from the proofs made on
their behalf. A statement may have several different proofs each investing
the statement with a different sense, the sense reinforced by different refined
versions of the statement and different corollaries from the proofs. The
movement from one proof to another is itself a proof, and generally the
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analysis of proofs is an activity of proof and argument. In modern math-
ematics, proofs and arguments have often achieved an independent status
beyond their initial contexts, with new spaces of mathematical objects for-
mulated and investigated because certain proofs can be carried out. Proofs
are not merely stratagems or strategies; they and thus their evolution are
what carries forth modern mathematics.
What about existence inmathematics? Questions like “What is a number?”
and “What is a set?”’ are notmathematical questions, and any answers would
have no operational significance in mathematics. Within mathematics, an
existence assertionmay be an axiom, a goal of a proof, or one of the junctures
of aproof. Existence is then submerged into context, and it is atmost amatter
of whether one regards themanner inwhich an existence assertion is deduced
or incorporated as coherent with the context. An existence axiom, like the
Axiom of Infinity, simply sets the stage with a means for proof. An existence
proof, especially one that depends on the law of the excluded middle and is
not constructive, may call for a different proof, but it is still a proof of some
kind.
As for theAxiomofReplacement, it is a central axiom of set theory, indeed
the one to reckonwith in verifications of the axioms. Replacement is the gen-
erative existence principle that legitimizes functional substitution, recursion,
and through it, the means for proving results about all sets. Replacement
is intrinsic to inner model theory, starting with the work of Gödel, as the
theory depends on the absolute and canonical nature of the ordinals and
the fine details of the many transfinite recursions that define inner models.
Replacement is essential for forcing, in both the range of transfinite recur-
sions necessary to build forcing extensions and the ability to control the
proliferation of forcing terms. Through functional correlation Replacement
gives expression to an expansive indifference to identification, allowing for
various canonical tokens to stand for types and articulates the interaction
and identification of type and token. In this bolstering of the concept of set
through functional substitution, recursion, and indifference to identification,
Replacement has become part of the sense of set in modern set theory.
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[1944] Russell’s mathematical logic, The philosophy of Bertrand Russell (Paul A. Schilpp,

editor), Library of Living Philosophers, vol. 5, Northwestern University, Evanston, IL,
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[1929] Über eine Widerspruchfreiheitsfrage in der axiomatischen Mengenlehre, Journal für

die Reine und Angewandte Mathematik, vol. 160, pp. 227–241, reprinted in von Neumann
[1961, pp. 494–508].
[1961] Collected works, vol. 1, Pergamon Press, New York, edited by Abraham H. Taub.

Hao Wang

[1974a]The concept of set, From mathematics to philosophy, Humanities Press, NewYork,
reprinted in Benacerraf and Putnam [1983, 530–570], pp. 181–223.



90 AKIHIRO KANAMORI

[1974b] From mathematics to philosophy, Humanities Press, New York.
[1981] Popular lectures on mathematical logic, Van Nostrand Reinhold, New York.
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