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Richard Joseph Laver (20 October 1942–19 September 2012) was a set theorist of
remarkable breadth and depth, and his tragic death from Parkinson’s disease a month
shy of his 70th birthday occasions a commemorative and celebratory account of his
mathematical work, work of an individual stamp having considerable significance,
worth, and impact. Laver established substantial results over a broad range in set theory
from those having the gravitas of resolving classical conjectures through those about an
algebra of elementary embeddings that opened up a new subject. There would be crisp
observations as well, like the one, toward the end of his life, that the ground model is
actually definable in any generic extension. Not only have many of his results as facts
become central and pivotal for set theory, but they have often featured penetrating
methods or conceptualizations with potentialities that were quickly recognized and
exploited in the development of the subject as a field of mathematics.

In what follows, we discuss Laver’s work in chronological order, bringing out
the historical contexts, the mathematical significance, and the impact on set theory.
Because of his breadth, this account can also be construed as a mountain hike across
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heights of set theory in the period of his professional life. There is depth as well, as
we detail with references the earlier, concurrent, and succeeding work.

Laver became a graduate student at the University of California at Berkeley in the
mid-1960s, just when Cohen’s forcing was becoming known, elaborated and applied.
This was an expansive period for set theory with a new generation of mathematicians
entering the field, and Berkeley particularly was a hotbed of activity. Laver and fellow
graduate students James Baumgartner and WilliamMitchell, in their salad days, ener-
getically assimilated a great deal of forcing and its possibilities for engaging problems
new and old, all later to become prominent mathematicians. Particularly influential
was Fred Galvin, who as a post-doctoral fellow there brought in issues about order
types and combinatorics. In this milieu, the young Laver in his 1969 thesis, written
under the supervision of Ralph McKenzie, exhibited a deep historical and mathemat-
ical understanding when he affirmed a longstanding combinatorial conjecture with
penetrating argumentation. Section 1 discusses Laver’s work on Fraïssé’s Conjecture
and subsequent developments, both in his and others’ hands.

For the two academic years 1969–1971, Laver was a post-doctoral fellow at the
University of Bristol, and there he quickly developed further interests, e.g. on con-
sistency results about partition relations from the then au courant Martin’s Axiom.
Section 3 at the beginning discusses this, as well as his pursuit in the next several years
of saturated ideals and their partition relation consequences.

For the two academic years 1971–1973, Laver was an acting assistant professor at
the University of California at Los Angeles; for Fall 1973 he was a research associate
there; and then for Spring 1973 he was a research associate back at Berkeley. During
this time, fully engaged with forcing, Laver established the consistency of another
classical conjecture, again revitalizing a subject but also stimulating a considerable
development of forcing as method. Section 2 discusses Laver’s work on the Borel
Conjecture as well as the new methods and results in its wake.

By 1974, Laver was comfortably ensconced at the University of Colorado at Boul-
der, there to pursue set theory, as well as his passion for mountain climbing, across a
broad range. He was Assistant Professor 1974–1977, Associate Professor 1977–1980,
and Professor from 1980 on; and there was prominent faculty in mathematical logic,
consisting of Jerome Malitz, Donald Monk, Jan Mycielski, William Reinhardt, and
Walter Taylor. Laver not only developed his theory of saturated ideals as set out in
Sect. 3, but into the 1980s established a series of pivotal or consolidating results in
diverse directions. Section 4 describes this work: indestructibility of supercompact
cardinals; functions ω → ω under eventual dominance; the ℵ2-Suslin Hypothesis;
nonregular ultrafilters; and products of infinitely many trees.

In the mid-1980s, Laver initiated a distinctive investigation of elementary embed-
dings as given by very strong large cardinal hypotheses. Remarkably, this led to the
freeness of an algebra of embeddings and the solvability of its word problem, and
stimulated a veritable cottage industry at this intersection of set theory and algebra.
Moving on, Laver clarified the situation with even stronger embedding hypotheses,
eventually coming full circle to something basic to be seen anew, that the ground
model is definable in any generic extension. This is described in the last, Sect. 5.

In the preparation of this account, several chapters ofKanamori et al. [45], especially
Jean Larson’s, proved to be helpful, as well as her compiled presentation of Laver’s
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work at Luminy, September 2012. Just to appropriately fix some recurring terminology,
a tree is a partially ordered set with a minimum element such that the predecessors
of any element are well-ordered; the αth level of a tree is the set of elements whose
predecessors have order type α; and the height of a tree is the least α such that the
αth level is empty. A forcing poset has the κ-c.c. (κ-chain condition) when every
antichain (subset consisting of pairwise incompatible elements) has size less than κ ,
and a forcing poset has the c.c.c. (countable chain condition) if it has the ℵ1-c.c.

1 Fraïssé’s conjecture

Laver [54,55] in his doctoral work famously established Fraïssé’s Conjecture, a basic-
sounding statement about countable linear orderings that turned out to require a
substantial proof. We here first reach back to recover the historical roots, then de-
scribe how the proof put its methods at center stage, and finally, recount how the proof
itself became a focus for analysis and for further application.

Cantor at the beginnings of set theory had developed the ordinal numbers [Anzalen],
later taking them as order types of well-orderings, and in his mature Beiträge presenta-
tion [11] also broached the order types of linear orderings. He (§§9–11) characterized
the order types θ of the real numbers and η of the rational numbers, the latter as the
type of the countable dense linear ordering without endpoints. With this as a begin-
ning, while the transfinite numbers became incorporated into set theory as the (von
Neumann) ordinals, there remained an indifference to identification for linear order
types as primordial constructs about order, as one moved variously from canonical
representatives to equivalence classes according to order isomorphism or just taking
them as une façon de parler about orderings.

The first to elaborate the transfinite after Cantor was Hausdorff, and in a series
of articles he enveloped Cantor’s ordinal and cardinal numbers in a rich structure
festooned with linear orderings. Well-known today are the “Hausdorff gaps”, but also
salient is that he had characterized the scattered [zerstreut] linear order types, those that
do not have embedded in them the dense order type η. Hausdorff [40, §§10–11] showed
that for regular ℵα , the scattered types of cardinality < ℵα are generated by starting
with 2 and regularωξ and their converse order typesω∗

ξ for ξ < α, and closing off under
the taking of sums�i∈ϕϕi , the order type resulting from replacing each i in its place in
ϕ by ϕi . With this understanding, scattered order types can be ranked into a hierarchy.

The study of linear order types under order-preserving embeddings would seem a
basic and accessible undertaking, but there was little scrutiny until the 1940s. Osten-
sibly unaware of Hausdorff’s work, Dushnik and Miller [25] and Wacław Sierpiński
[113,114], in new groundbreaking work, exploited order completeness to develop un-
countable types embedded in the real numbers that exhibit various structural properties.

Then in 1947 Roland Fraïssé, now best known for the Ehrenfeucht-Fraïssé games
and Fraïssé limits, pointed to basic issues for countable order types in four conjectures.
For types ϕ and ψ , write ϕ ≤ ψ iff there is an (injective) order-preserving embedding
of ϕ into ψ and ϕ < ψ iff ϕ ≤ ψ yet ψ �≤ ϕ. Fraïssé’s [31] first conjecture, at first
surprising, was that there is no infinite <-descending sequence of countable types.
Laver would affirm this, but in a strong sense as brought out by the emerging theory
and the eventual method of proof.
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A general notion applicable to classes ordered by embeddability, Q with a ≤Q

understood is quasi-ordered if ≤Q is a reflexive, transitive relation on Q. Reducing
with the equivalence relation q ≡ r iff q ≤Q r and r ≤Q q, one would get a
corresponding relation on the equivalence classes which is anti-symmetric and hence
a partial ordering; the preference however is to develop a theory doing without this, so
as to be able to work directly with members of Q.1 Q is well-quasi-ordered (wqo) if
for any f : ω → Q, there are i < j < ω such that f (i) ≤Q f ( j). Higman [41] came
to the concept of wqo via a finite basis property and made the observation, simple
with Ramsey’s Theorem, that Q is wqo iff (a) Q is well-founded, i.e. there are no
infinite <Q-descending sequences (where q <Q r iff q ≤Q r yet r �≤Q q), and (b)
there are no infinite antichains, i.e. sets of pairwise ≤Q-incomparable elements. For
a Q quasi-ordered by ≤Q , the subsets of Q can be correspondingly quasi-ordered by:
X ≤ Y iff ∀x ∈ X∃y ∈ Y (x ≤Q y). With this, Higman established that if Q is wqo,
then so are the finite subsets of Q. In his 1954 dissertation Kruskal [51] also came to
well-quasi-ordering, coining the term, and settled a conjecture about trees: For trees
T1 and T2, T1 ≤ T2 iff T1 is homeomorphically embeddable into T2, i.e. there is an
injective f : T1 → T2 satisfying f (x ∧ y) = f (x) ∧ f (y), where ∧ indicates the
greatest lower bound. Kruskal established that the finite trees are wqo.

Pondering the delimitations to thefinite, particularly that there had emerged a simple
example of a wqo Q whose full power set P(Q) is not wqo, Nash-Williams [102]
came up with what soon became a pivotal notion. Identifying subsets of ω with their
increasing enumerations, say that a set B of non-empty finite subsets of ω is a block
if every infinite subset of ω has an initial segment in B. For non-empty finite subsets
s, t of ω, write s � t iff there is a k < min(t) such that s is a proper initial segment of
{k}∪t . Finally, Q with≤Q is better-quasi-ordered (bqo) if for any block B and function
f : B → Q, there are s � t both in B such that f (s) ≤Q f (t). bqo implies wqo, since
{{i} | i ∈ ω} is a block and {i} � { j} iff i < j , and this already points to how bqo might
be a useful strengthening in structured situations. Nash-Williams observed that if Q is
bqo then so isP(Q), and established that the infinite trees of height at most ω are bqo.

With this past as prologue, Laver [54,55] in 1968 dramatically established Fraïssé’s
Conjecture in the strong form: the countable linear order types are bqo. Of course,
it suffices to consider only the scattered countable types, since any countable type is
embeddable into the dense type η. In a remarkably synthetic proof, Laver worked up
a hierarchical analysis building on the Hausdorff characterization of scattered types;
develop a labeled tree version of Nash-Williams’s tree theorem; and established a
main preservation theorem, Q bqo −→ QM bqo, the latter consisting of Q-labeled
ordered types in a classM. Actually, Laver established his result for the large classM
of σ -scattered order types, countable unions of scattered types, working up a specific
hierarchy for these devised by Fred Galvin.

Laver’s result, both in affirming that the countable linear order types have the
basic wqo connecting property and being affirmed with a structurally synthetic and
penetrating proof, would stand as a monument, not the least because of a clear and

1 A quasi-order is also termed a pre-order, and in iterated forcing, to the theory of which Laver would
make an important contribution (cf. Sect. 2), one also prefers to work with pre-orders of conditions rather
than equivalence classes of conditions.
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mature presentation in [55].wqo andbqowere brought to the foreground; the resultwas
applied and analyzed; and aspects and adaptations of both statement and proof would
be investigated. Laver himself [56,59,64] developed the theory in several directions.

In [56], Laver proceeded to a decomposition theorem for order types. As with ordi-
nals, an order type ϕ is additively indecomposable (AI) iff whenever it is construed as
a sum ψ + θ , then ϕ ≤ ψ or ϕ ≤ θ . Work in [55] had shown that any scattered order
type is a finite sum of AI types and that the AI scattered types can be generated via
“regular unbounded sums”. Generalizing homeomorphic embedding to a many-one
version, Laver established a tree representation for AI scattered types as a decompo-
sition theorem, and then drew the striking conclusion that for σ -scattered ϕ, there is
an n ∈ ω such that for any finite partition of ϕ, ϕ is embeddable into a union of at
most n parts. In [59], Laver furthered the wqo theory of finite trees; work there was
later applied by Kozen [50] to establish a notable finite model property. Finally in
[64], early in submission but late in appearance, Laver made his ultimate statement
on bqo. He first provided a lucid, self-contained account of bqo theory through to
Nash-Williams’s subtle “forerunning” technique. A tree is scattered if the complete
binary tree is not embeddable into it, and it is σ -scattered if it is a countable union
of scattered, downward-closed subtrees. As a consequence of a general preservation
result about labeled trees, Laver established: the σ -scattered trees are bqo. Evidently
stimulated by this work, Shelah [110] investigated a bqo theory for uncountable car-
dinals based on whenever f : κ → Q there are i < j < κ such that f (i) ≤Q f ( j),
discovering new parametrized concepts and a large cardinal connection.

“Fraïssé’s Conjecture”, taken to be the (proven) proposition that countable linear
orders are wqo, would newly become a focus in the 1990s with respect to the reverse
mathematics of provability in subsystems of second-order arithmetic.2 Shore [112] es-
tablished that the countablewell-orderings beingwqo already entails the systemATR0.
Since the latter implies that any two countable well-orderings are comparable, there is
thus an equivalence. Montalbán [99] proved that every hyperarithmetic linear order is
mutually embeddable with a recursive one and [100] showed that Fraïssé’s Conjecture
is equivalent (over the weak theory RCA0) to various propositions about linear orders
under embeddability, making it a “robust” theory. However, whether Fraïssé’s Conjec-
ture is actually equivalent to ATR0 is a longstanding problem of reverse mathematics,
with e.g. Marcone and Montalbán [91] providing a partial result. The proposition, ba-
sic and under new scrutiny, still has the one proof that has proved resilient, the proof of
Laver [55] going through the hierarchy of scattered countable order types and actually
establishing bqo through a preservation theorem for labeled order types.

Into the 21st Century, there would finally be progress about possibilities for extend-
ing Laver’s result into non-σ -scattered order types and trees. Laver [64] hadmentioned
that Aronszajn trees (cf. Sect. 4.3) are not wqo assuming Ronald Jensen’s principle ♦
and raised the possibility of a relative consistency result. This speculation would stand
for decades until in 2000 Todorcevic [120] showed that no, there are 2ℵ1 Aronszajn
trees pairwise incomparable under (just) injective order-preserving embeddability.
Recently, on the other hand, Martinez-Ranero [94] established that under the Proper

2 See [92] for a survey of the reverse mathematics of wqo and bqo theory.
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Forcing Axiom (PFA), Aronszajn lines are bqo. Aronszajn lines are just the lineariza-
tions of Aronszajn trees, so this is a contradistinctive result. Under PFA, Moore [101]
showed that there is a universal Aronszajn line, a line into which every Aronszajn line
is embeddable, and starting with this analogue of the dense type η, Martinez-Canero
proceeded to adapt the Laver proof. Generally speaking, a range of recent results have
shown PFA to provide an appropriately rich context for the investigation of general,
uncountable linear order types; Ishiu and Moore [42] even discussed the possibility
that the Laver result about σ -scattered order types, newly apprehended as prescient as
to how far one can go, is sharp in the sense that it cannot be reasonably extended to a
larger class of order types.

2 Borel conjecture

Following on his Fraïssé’s Conjecture success, Laver [57,60] by 1973, while at the
University of California at Los Angeles, had established another pivotal result with
an even earlier classical provenance and more methodological significance, the con-
sistency of “the Borel Conjecture”. A subset X of the unit interval of reals has strong
measure zero (Laver’s term) iff for any sequence 〈εn | n ∈ ω〉 of positive reals there is a
sequence 〈In | n ∈ ω〉 of intervals with the length of In atmost εn such that X ⊆ ⋃

n In .
Laver established with iterated forcing the relative consistency of 2ℵ0 = ℵ2 + “Every
strong measure zero set is countable”. We again reach back to recover the historical
roots and describe how the proof put its methods at center stage, and then how both
result and method stimulated further developments.

At the turn of the 20th Century, Borel axiomatically developed his notion of mea-
sure, getting at those sets obtainable by starting with the intervals and closing off
under complementation and countable union and assigning corresponding measures.
Lebesgue then developed his extension of Borel measure, which in retrospect can be
formulated in simple set-theoretic terms: A set of reals if null iff it is a subset of a
Borel set of measure zero, and a set is Lebesgue measurable iff it has a null symmetric
difference with some Borel set, in which case its Borel measure is assigned. With null
sets having an amorphous feel, Borel [10] studied them constructively in terms of rates
of convergence of decreasing measures of open covers, getting to the strong measure
zero sets. Actually, he only mentioned them elliptically, writing that they would have
to be countable but that he did not possess an “entirely satisfactory proof”.3 Borel
would have seen that no uncountable closed set of reals can have strong measure zero,
and so, that no uncountable Borel set can have strong measure zero. More broadly, a
perfect set (a non-empty closed set with no isolated points), though it can be null,4 is
seen not to have strong measure zero. So, it could have been deduced by then that no
uncountable analytic set, having a perfect subset, can have strong measure zero.While
all this might have lent an air of plausibility to strong measure zero sets having to be
countable, it was also known by then that the Continuum Hypothesis (CH) implies

3 Borel [10, p. 123]: “Un ensemble énumérable a unemesure asymptotique inférieure à toute série donnée a
l’avance; la réciproquemeparaît exacte,mai je n’enpossèdepas dedémonstration entièrement satisfaisante.”
4 The Cantor ternary set, defined by Cantor in 1883, is of course an example.
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the existence of a Luzin set, an uncountable set having countable intersection with any
meager set. A Luzin set can be straightforwardly seen to have strong measure zero,
and so Borel presumably could not have possessed a “satisfactory proof”.

In the 1930s strong measure zero sets, termed Wacław Sierpiński’s “sets with
Property C”, were newly considered among various special sets of reals formulated
topologically.5 Abram Besicovitch came to strong measure zero sets in a characteri-
zation result, and he provided, in terms of his “concentrated sets”, a further articulated
version of CH implying the existence of an uncountable strong measure zero set.
Then Sierpiński and Fritz Rothberger, both in 1939 papers, articulated the first of the
now many cardinal invariants of the continuum, the bounding number. (A family F
of functions: ω → ω is unbounded if for any g : ω → ω there is an f in F such
that {n | g(n) ≤ f (n)} is infinite, and the bounding number b is the least cardinality
of such a family.) Their results about special sets established that (without CH but
just) b = ℵ1 implies the existence of an uncountable strong measure zero set. Strong
measure zero sets having emerged as a focal notion, there was however little further
progress, with Rothberger [107] retrospectively declaring “the principal problem” to
be whether there are uncountable such sets.6

Whatever the historical imperatives, two decades later Laver [57,60] duly estab-
lished the relative consistency of “the Borel Conjecture”, that all strong measure zero
sets can be countable. Cohen, of course, had transformed set theory in 1963 by in-
troducing forcing, and in the succeeding decades there were broad advances made
through the new method involving the development both of different forcings and of
forcing techniques. Laver’s result featured both a new forcing, for adding a Laver real,
and a new technique, adding reals at each stage in a countable support iteration.

For adding a Laver real, a condition is a tree of natural numbers with a finite trunk
and all subsequent nodes having infinitely many immediate successors. A condition
is stronger than another if the former is a subtree, and the longer and longer trunks
union to a new, generic real: ω → ω. Thus a Laver condition is a structured version
of the basic Cohen condition, which corresponds to just having the trunk, and that
structuring revises the Sacks condition, in which one requires that every node has an
eventual successor with two immediate successors. Already, a Laver real is seen to
be a dominating real, i.e. for any given ground model g : ω → ω a Laver condition
beyond the trunk can be pruned to always take on values larger than those given by g.
Thus, the necessity of making the bounding number b large is addressed. More subtly,
Laver conditions exert enough infinitary control to assure that for any uncountable set
X of reals in the ground model and with f being the Laver real, there is no sequence
〈In | n ∈ ω〉 of intervals in the extension with length In < 1

f (n)
such that X ⊆ ⋃

n In .
Laver proceeded from a model of CH and adjoined Laver reals iteratively in an

iteration of length ω2. The iteration was with countable support, i.e. a condition at the
αth stage is a vector of condition names at earlier stages, with at most countably many
of thembeing non-trivial. This allowed for a tree “fusion” argument across the iteration
that determined more and more of the names as actual conditions and so showed that

5 cf. Steprāns [116, pp. 92–102] for a historical account.
6 Rothberger [107, p. 111] “…the principal problem, viz., to prove with the axiom of choice only (without
any other hypothesis) the existence of a non-denumerable set of property C, this problem remains open.”
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e.g. for any countable subset of the ground model in the extension, there is a countable
set in the groundmodel that covers it. Consequently,ω1 is preserved in the iteration and
so also the ℵ2-c.c., so that all cardinals are preserved and 2ℵ0 = ℵ2 in the extension.
Specifically for the adjoining of Laver reals, Laver crowned the argument as follows:

Suppose that X is an ℵ1 size set of reals in the extension. Then it had already
occurred at an earlier stage by the chain condition, and so at that stage the next Laver
real provides a counterexample to X having strong measure zero. But then, there is
enough control through the subsequent iteration with the “fusion” apparatus to ensure
that X still will not have strong measure zero.

Laver’s result and paper [60] proved to be a turning point for iterated forcing as
method. Initially, the concrete presentation of iteration as a quasi-order of conditions
that are vectors of forcing names for local conditions was itself revelatory. Previous
multiple forcing results like the consistency of Martin’s Axiom had been cast in the
formidable setting of Boolean algebras. Henceforth, there would be a grateful return
to Cohen’s original heuristic of conditions approximating a generic object, with the
particular advantage in iterated forcing of seeing the dynamic interaction with forc-
ing names, specifically names for later conditions. More centrally, Laver’s structural
results about countable support iteration established a scaffolding for proceeding that
would become standard fare. While the consistency of Martin’s Axiom had been es-
tablished with the finite support iteration of c.c.c. forcings, the new regimen admitted
other forcings and yet preservedmuch of the underlying structure of the groundmodel.

Several years later Baumgartner and Laver [67] elaborated the countable support
iteration of Sacks forcing, and with it established consistency results about selective
ultrafilters as well as about higher Aronszajn trees (cf. Sect. 4.3). They established:
If κ is weakly compact and κ Sacks reals are adjoined iteratively with countable sup-
port, then in the resulting forcing extension κ = ω2 and there are no ℵ2-Aronszajn
trees. Groundbreaking for higher Aronszajn trees, that they could be no ℵ2-Aronszajn
trees had first been pointed out by Jack Silver as a consequence of forcing developed
by Mitchell (cf. Mitchell [98, p. 41]) and significantly, that forcing was the initial
instance of a countable support iteration. However, it worked in a more involved way
with forcing names, and the Baumgartner–Laver approach with the Laver scaffolding
made the result more accessible.

By 1978 Baumgartner had axiomatically generalized the iterative addition of reals
with countable support with his “Axiom A” forcing, and in an influential account [7]
set out iterated forcing and Axiom A in an incisive manner. Moreover, he specifically
worked through the consistency of the Borel Conjecture by iteratively adjoiningMath-
ias reals with countable support, a possible alternate approach to the result pointed out
by Laver [60, p. 168]. All this would retrospectively have a precursory air, as Shelah
in 1978 established a general, subsuming framework with his proper forcing. With
its schematic approach based on countable elementary substructures, proper forcing
realized the potentialities of Laver’s initial work and brought forcing to a new plateau.
Notably, a combinatorial property of Laver forcing, “the Laver property”, was shown
to be of importance and preserved through the iteration of proper forcings.7

7 cf. Bartoszyński and Judah [4, 6.3.E].
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As for Laver reals and Laver’s specific [60] model, Arnold Miller [96] showed
that in that model there are no q-point ultrafilters, answering a question of the author.
Later, in the emerging investigation of cardinal invariants, Laver forcingwould become
the forcing “associated” with the bounding number b,8 in that it is the forcing that
increases bwhile fixing the cardinal invariants not immediately dependent on it. Judah
and Shelah [43] exhibited this with the Laver [60] model.

And as for the Borel Conjecture itself, the young Hugh Woodin showed in 1981
that adjoining any number of random reals to Laver’s model preserves the Borel
Conjecture, thereby establishing the consistency of the conjecture with the continuum
being arbitrarily large. The sort of consistency result that Laver had achieved has
become seen to have a limitative aspect in that countable support iteration precludes
values for the continuum being larger than ℵ2, and at least for the Borel Conjecture
a way was found to further increase the size of the continuum. Judah et al. [44]
provided systematic iterated forcing ways for establishing the Borel Conjecture with
the continuum arbitrarily large.

3 Partition relations and saturated ideals

Before he established the consistency of Borel’s conjecture, Laver, while at the Uni-
versity of Bristol (1969–1971), had established [58] relative consistency results about
partition relations low in the cumulative hierarchy. Through the decade to follow, he
enriched the theory of saturated ideals in substantial part to get at further partition
properties. This work is of considerable significance, in that large cardinal hypotheses
and infinite combinatorics were first brought together in a sustained manner.

In the well-known Erdős–Rado partition calculus, the simplest case of the ordinal
partition relation is α −→ (β)22, the proposition that for any partition [α]2 = P0 ∪ P1
of the 2-element subsets of α into two cells P0 and P1, there is a subset of α of order
type β all of whose 2-element subsets are in the same cell. The unbalanced relation
α −→ (β, γ )2 is the proposition that for any partition [α]2 = P0 ∪ P1, either there is
a subset of α order type β all of whose 2-element subsets are in P0 or there is a subset
of α of order type γ all of whose 2-elements subsets are in P1. Ramsey’s seminal 1930
theorem amounts to ω −→ (ω)22, and sufficiently strong large cardinal properties for
a cardinal κ imply κ −→ (κ)22, which characterizes the weak compactness of κ . Laver
early on focused on the possibilities of getting the just weaker κ −→ (κ, α)2 for small,
accessible κ and a range of α < κ .

In groundbreaking work, Laver [58] showed that Martin’s Axiom (MA) has conse-
quences for partition relations of this sort for κ ≤ 2ℵ0 . Laver was the first to establish
relative consistency results, rather than outright theorems of ZFC, about partition re-
lations for accessible cardinals. Granted, Prikry’s [105] work was important in this
direction in establishing a negation of a partition relation consistent, particularly as he
did this by forcing a significant combinatorial principle that would subsequently be
shown to hold in L . Notably, Erdős bemoaned how the partition calculus would now
have to acknowledge relative consistency results. Laver’s work, in first applying MA,

8 cf. Bartoszyński and Judah [4, 7.3.D].
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was also pioneering in adumbration of arguments for the central theorem of Baum-
gartner and András Hajnal [5], that ω1 −→ (α)22 for every α < ω1, a ZFC theorem
whose proof involved appeal to MA and absoluteness. As for the stronger, unbalanced
relation, the young Todorcevic [118] by 1981 established the consistency of MA +
2ℵ0 = ℵ2 together with ω1 −→ (ω1, α)2 for every α < ω1.

By 1976, Laver saw how saturated ideals in a strong form can drive the argumen-
tation to establish unbalanced partition relations for cardinals. Briefly, I is a κ-ideal
iff it is an ideal over κ (a family of subsets of κ closed under the taking of subsets and
unions) which is non-trivial (it contains {α} for every α < κ but not κ) and κ-complete
(it is closed under the taking of unions of fewer than κ of its members). Members of
a κ-ideal are “small” in the sense given by I , and mindful of this, such an ideal is
λ-saturated iff for any λ subsets of κ not in I there are two whose intersection is still
not in I . Following the founding work of Robert Solovay on saturated ideals in the
1960s, they have become central to the theory of large cardinals primarily because
they can carry strong consistency strength yet appear low in the cumulative hierarchy.
κ is a measurable cardinal, as usually formulated, just in case there is a 2-saturated
κ-ideal, and e.g. if κ Cohen reals are adjoined, then in the resulting forcing extension:
κ = 2ℵ0 and there is an ℵ1-saturated κ-ideal. Conversely, if there is a κ+-saturated
κ-ideal for some κ , then in the inner model relatively constructed from such an ideal,
κ is a measurable cardinal.

In a first, parametric elaboration of saturation, Laver formulated the following
property: A κ-ideal I is (λ, μ, ν)-saturated iff every family of λ subsets of κ not in I
has a subfamily of size μ such that any ν of its members has still has intersection not
in I . In particular, a κ-ideal is λ-saturated iff it is (λ, 2, 2)-saturated. In the abstract
[65], for a 1976 meeting, Laver announced results subsequently detailed in [62] and
[69].

In [62] Laver established that if γ < κ and there is a (κ, κ, γ )-saturated κ-ideal
(which entails that κ must be a regular limit cardinal) andβγ < κ for everyβ < κ , then
κ −→ (κ, α)2 holds for every α < γ +. He then showed, starting with a measurable
cardinal κ , how to cleverly augment the forcing for adding many Cohen subsets of
a γ < κ to retain such κ-ideals with κ newly accessible, a paradigmatic instance
being a (2ℵ1 , 2ℵ1 ,ℵ1)-saturated 2ℵ1 -ideal with β < 2ℵ1 implying βℵ0 < 2ℵ1 . From
this one has the consistency of 2ℵ1 −→ (2ℵ1 , α)2 for every α < ω2, and this is
sharp in two senses, indicative of what Laver was getting at: A classical Sierpiński
observation is that 2ℵ1 −→ (ω2)

2 fails, and the well-known Erdős–Rado Theorem
implies that (2ℵ1)+ −→ ((2ℵ1)+, ω2)

2 holds.Years later, Todorcevic [119] established
the consistency, relative only to the existence of aweakly compact cardinal, of 2ℵ0 −→
(2ℵ0 , α)2 for every α < ω1, as well as of 2ℵ1 −→ (2ℵ1 , α)2 for every α < ω2.

In [69] Laver established the consistency of a substantial version of his saturation
property holding for a κ-ideal with κ a successor cardinal, thereby establishing the
consistency of a partition property for such κ . In the late 1960s, while having a κ+-
saturated κ-ideal for some κ had been seen to be equi-consistent to having ameasurable
cardinal, Kunen had shown that the consistency strength, were κ posited to be a
successor cardinal, was far stronger. In a tour de force, Kunen [52] in 1972 established:
If κ is a huge cardinal, then in a forcing extension κ = ω1 and there is an ℵ2-saturated
ω1-ideal. In the large cardinal hierarchy huge cardinals are consistency-wise much
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stronger than the better known supercompact cardinals, and Kunen had unabashedly
appealed to the strongest embedding hypothesis to date for carrying out a forcing
construction. From the latter 1970s on, Kunen’s argument, as variously elaborated and
amended,would become and remain a prominent tool for producing strong phenomena
at successor cardinals, though dramatic developments in the 1980s would show how
weaker large cardinal hypotheses suffice to get ℵ2-saturated ω1-ideals themselves.
Laver in 1976 was first to amend Kunen’s argument, getting [69]: If κ is a huge
cardinal, then in a forcing extension κ = ω1 and there is an (ℵ2,ℵ2,ℵ0)-saturated ω1-
ideal. Not only had Laver mastered Kunen’s sophisticated argument with elementary
embedding, but he had managed to augment it, introducing “Easton supports”.

Laver [69] (see also [48]) established that the newly parametrized saturation prop-
erty has a partition consequence: If κ<κ = κ and there is a (κ+, κ+,<κ)-saturated
(with the expected meaning) κ-ideal, then κ+ −→ (κ + κ + 1, α) for every α < κ+.
This partition relation is thus satisfied at measurable cardinals κ , and with CH holding
in Laver’s [69] model it satisfies

ω2 −→ (ω1 + ω1 + 1, α) for every α < ω2.

This result stood for decades as best possible for successor cardinals larger than ω1.
ThenMatthew Foreman andHajnal in [27] extended the ideas to a stronger conclusion,
albeit from a stronger ideal hypothesis. A κ-ideal I is λ-dense iff there is a family D
of λ subsets of κ not in I such that for any subset X of κ not in I , there is a Y ∈ D
almost contained in X , i.e. Y − X is in I . This is a natural notion of density for the
Boolean algebra P(κ)/I , and evidently a κ-dense κ-ideal is (κ+, κ+,<κ)-saturated.
Foreman and Hajnal managed to prove that if κ<κ = κ and there is a κ-dense κ-ideal,
then κ+ −→ (κ2 +1, α) for every α < κ+. Central work byWoodin in the late 1980s
had established the existence of an ω1-dense ω1-ideal relative to large cardinals, and
so one had the corresponding improvement, ω2 −→ (ω2

1 + 1, α) for every α < ω2,
of the Laver [69] result and the best possible to date for ω2.

4 Consolidations

In the later 1970s and early 1980s Laver, by then established at the University of
Colorado at Boulder, went from strength to strength in exhibiting capability and will-
ingness to engage with au courant concepts and questions over a broad range. In
addition to the saturated ideals work, Laver established pivotal, consolidating results,
each in a single incisive paper, and in what follows we deal with these and frame their
significance.

4.1 Indestructibility

In a move that exhibited an exceptional insight into what might be proved about
supercompact cardinals, Laver in 1976 established their possible “indestructibility”
under certain forcings. This seminal result, presented in a short 4-page paper [63],
would not only become part and parcel of method about supercompact cardinals but
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would become a concept to be investigated in its own right for large cardinals in
general.

In 1968, Robert Solovay and William Reinhardt (cf. [115]) formulated the large
cardinal concept of supercompactness as a generalization of the classical concept of
measurability once its elementary embedding characterization was attained. A car-
dinal κ is supercompact iff for every λ ≥ κ , κ is λ-supercompact, where in turn κ

is λ-supercompact iff there is an elementary embedding j : V → M such that the
least ordinal moved by j is κ and moreover M is closed under arbitrary sequences
of length λ. That there is such a j is equivalent to having a normal ultrafilter over
Pκλ = {x ⊆ λ | |x | < κ}; from such a j such a normal ultrafilter can be de-
fined, and conversely, from such a normal ultrafilter U a corresponding elementary
embedding jU can be defined having the requsite properties. κ is κ-supercompact
exactly when κ is measurable, as quickly seen from the embedding formulation of the
latter.

In 1971, Silver established the relative consistency of having a measurable car-
dinal κ satisfying κ+ < 2κ . That this would require strong hypotheses had been
known, and for Silver’s argument having an elementary embedding j as given by
the κ++-supercompactness of κ suffices. Silver introduced two motifs that would
become central to establishing consistency results from strong hypotheses. First, he
forced the necessary structure of the model below κ , but iteratively, proceeding up-
ward to κ . Second, in considering the j-image of the process he developed a master
condition so that forcing through it would lead to an extension of j in the forcing
extension, thereby preserving the measurability (in fact the κ++-supercompactness)
of κ .

Upon seeing Silver’s argument as given e.g. in Menas [95] and implementing
the partial order approach from the Borel Conjecture work, Laver saw through to a
generalizing synthesis, first establishing a means of universal anticipation below a su-
percompact cardinal and then applying it to render the supercompactness robust under
further forcing. The first result exemplifies what reflection is possible at a supercom-
pact cardinal: Suppose that κ is supercompact. Then there is one function f : κ → Vκ

such that for all λ ≥ κ and all sets x hereditarily of cardinality at most λ, there is
a normal ultrafilter U over Pκλ such that jU ( f )(κ) = x. Such a function has been
called a “Laver function” or “Laver diamond”; indeed, the proof is an elegant variant
of the proof of the diamond principle ♦ in L which exploits elementary embeddings
and definability of least counterexamples.

With this, Laver [63] established his “indestructibility” result. A notion of forcing
P is κ-directed closed iff whenever D ⊆ P has size less that κ and is directed (i.e. any
two members of D have a lower bound in D), D has a lower bound. Then: Suppose
that κ is supercompact. Then in a forcing extension κ is supercompact and remains
so in any further extension via a κ-directed closed notion of forcing. The forcing done
is an iteration of forcings along a Laver function. To show that any further κ-directed
closed forcing preserves supercompactness, master conditions are exploited to extend
elementary embeddings.

For relative consistency results involving supercompact cardinals, Laver indestruc-
tibility leads to technical strengthenings as well as simplifications of proofs, increasing
their perspicuity. At the outset as pointed out by Laver himself, while [95] had shown
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that for κ supercompact and λ ≥ κ there is a forcing extension in which κ remains
supercompact and 2κ ≥ λ, once a supercompact cardinal is “Laverized”, from that
single model 2κ can be made arbitrarily large while preserving supercompactness.
Much more substantially and particularly in arguments involving several large cardi-
nals, Laver indestructibility was seen to set the stage after which one can proceed with
iterations that preserve supercompactness without bothering with specific prepara-
tory forcings. Laver indestructibility was thus applied in the immediately subsequent,
central papers for large cardinal theory, Magidor [89], Foreman et al. [28,29].

The Laver function itself soon played a crucial role in a central relative consistency
result. Taking on Shelah’s proper forcing, the Proper Forcing Axiom (already men-
tioned at the end of Sect. 1) asserts that for any proper notion of forcing P and
sequence 〈Dα | α < ω1〉 of dense subsets of P , there is a filter F over P that
meets every Dα . Early in 1979 Baumgartner (cf. [22]) established: Suppose that
κ is supercompact. Then in a forcing extension κ = ω2 = 2ℵ0 and PFA holds.
Unlike for Martin’s Axiom, to establish the consistency of PFA requires handling
a proper class of forcings, and it sufficed to iterate proper forcings given along a
Laver function, these anticipating all proper forcings through elementary embeddings.
PFA is known to have strong consistency strength, and to this day Baumgartner’s
result, with its crucial use of a Laver function, stands as the bulwark for consis-
tency.

Laver functions have continued to be specifically used in consistency proofs (e.g.
Cummings and Foreman [15, 2.6]) and have themselves become the subject of in-
vestigation for a range of large cardinal hypotheses (e.g. Corazza [14]). As for the
indestructibility of large cardinals, the concept has become part of the mainstream
of large cardinals not only through application but through concerted investigation.
Gitik and Shelah [33] established a form of indestructibility for strong cardinals
to answer a question about cardinal powers. Apter and Hamkins [1] showed how
to achieve universal indestructibility, indestructibility simultaneously for the broad
range of large cardinals from weakly compact to supercompact cardinals. Hamkins
[37] developed a general kind of Laver function for any large cardinal and, with
it, a general kind of Laver preparation forcing to achieve a broad range of new
indestructibilities. Starting with [2], Arthur Apter has pursued the indestructibility
particularly of partially supercompact and strongly compact cardinals through over
20 articles. Recently, Bagaria and Hamkins [3] showed that very large cardinals,
superstrong and above, are never Laver indestructible, so that there is a ceiling to
indestructibility.

In retrospect, it is quite striking that Laver’s modest 4-page paper should have had
such an impact.

4.2 Eventual dominance

Hugh Woodin in 1976, while still an undergraduate, made a remarkable reduction of
a proposition (“Kaplansky’s Conjecture”) of functional analysis about the continuity
of homomorphisms of Banach algebras to a set-theoretic asserton about embeddabil-
ity into 〈ωω,<∗〉, the family of functions: ω → ω ordered by eventual dominance
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(i.e. f <∗ g iff f (n) < g(n) for sufficiently large n). Solovay, the seasoned veteran,
soon established the consistency of the set-theoretic assertion, and thereby, the rela-
tive consistency of the proposition.9 In the process, Solovay raised a question, which
Laver [66] by 1978 answered affirmatively by establishing the relative consistency of:
ℵ1 < 2ℵ0 and every linear ordering of size ≤ 2ℵ0 is embeddable into 〈ωω,<∗〉.

Linear orderings of size ≤ ℵ1 are in any case embeddable into 〈ωω,<∗〉, yet if to
a model of CH one e.g. adjoins many Cohen reals then ω2 is still not embeddable into
〈ωω,<∗〉. Martin’s Axiom (MA) implies that every well-ordering of size < 2ℵ0 is
embeddable into 〈ωω,<∗〉, yet Kunen in incisive 1975 work had shown that MA is
consistent with the existence of a linear ordering of size 2ℵ0 not being embeddable
into 〈ωω,<∗〉. Schematically proceeding as for the consistency of MA itself, Laver
[66] in fact operatively showed: For any cardinal κ satisfying κ<κ = κ , there is a
c.c.c. forcing extension in which 2ℵ0 = κ and the saturated linear order of size 2ℵ0

(i.e. the extant size 2ℵ0 linear order into which every other linear order of size ≤ 2ℵ0

embeds) is embeddable into 〈ωω,<∗〉.
Laver’s construction would have to dowith the classical work of Hausdorff on order

types and gaps at the beginnings of set theory. For a linear order 〈L ,<〉 and A, B ⊆ L ,
〈A, B〉 is a gap iff every element of A is< any element of B yet there is no member of
L <-between A and B. Such a gap is a (κ, λ∗)-gap iff A has <-increasing order type
κ and B has <-decreasing order type λ. Hausdorff famously constructed what is now
well-known as a “Hausdorff gap”, an (ω1, ω

∗
1)-gap in 〈ωω,<∗〉 which is not fillable

in any forcing extension preserving ℵ1.
To establish his theorem Laver proceeded, in an iterative way with finite support, to

adjoin fα ∈ ωω so that 〈{ fα | α < κ},<∗〉 will be the requisite saturated linear order.
At stageβ, if there is a gap 〈A, B〉with A∪B = { fα |α < β}, Laver adjoined a generic
fβ to fill the gap. As Laver astutely pointed out, his construction would have to avoid
prematurely creating a Hausdorff gap, and it does so by iteratively creating a saturated
linear order generically with finite support. Although Laver does not mention it, his
construction affirmatively answered, consistency-wise, the first question of Hausdorff
[39, §6]: Is there a pantachie with no (ω1, ω

∗
1) gaps? (For Hausdorff a panachie is a

maximal linear sub-ordering of 〈ωR,<∗〉, i.e. with the functions being real-valued,
but Laver’s construction can be adapted.) Historically, Hausdorff’s question was the
first in ongoing mathematics whose positive answer entailed 2ℵ0 = 2ℵ1 and hence the
failure of the Continuum Hypothesis.

On topic, Woodin soon augmented Laver’s construction to incorporate MA as well.
This sharpened the situation, since as mentioned earlier Kunen had shown the con-
sistency of MA and the proposition that there is a linear ordering of size 2ℵ0 not
embeddable into 〈ωω,<∗〉. Baumgartner [8, 4.5] later pointed out that the Proper
Forcing Axiom directly implies this proposition.

A decade later Laver [80] pursued the study the space of functions : ω1 → ω1
under eventual dominance modulo finite sets.

9 See Dales andWoodin [17] for an account of Kaplansky’s Conjecture, Woodin’s reduction, andWoodin’s
own version of the relative consistency incorporating Martin’s Axiom.
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4.3 κ-Suslin trees

Laver and Shelah [68] showed: If κ is weakly compact, then in a forcing extension
κ = ω2, CH, and the ℵ2-Suslin Hypothesis holds. The proof establishes an analogous
result for the successor of any regular cardinal less than κ . Laver had first established
the result with “weakly compact” replaced by “measurable”, and then Shelah refined
the argument. This was the first result appropriately affirming a higher Suslin hypoth-
esis, and as such would play an important, demarcating role in the investigation of
generalized Martin’s axioms.

A κ-Aronszajn tree is a tree with height κ all of whose levels have size less that κ
yet there no chain (linearly ordered subset) of size κ; a κ-Suslin tree is an κ-Aronszajn
tree with no antichain (subset of pairwise incomparable elements) of size κ as well;
and the κ-Suslin Hypothesis asserts that there are no κ-Suslin trees. Without the “κ-”
it is to be understood that κ = ℵ1.

A classical 1920 question of Mikhail Suslin was shown to be equivalent to the
Suslin Hypothesis (SH), and Nathan Aronszajn observed in the early 1930s that in
any case there are Aronszajn trees. In the post-Cohen era the investigation of SH led
to formative developments in set theory: Stanley Tennenbaum showed how to force
¬SH, i.e. to adjoin a Suslin tree; he and Solovay showed how to force¬CH + SHwith
an inaugural multiple forcing argument, one that straightforwardly modified gives the
stronger¬CH +MA; Jensen showed that V = L implies that there is a Suslin tree, the
argument leading to the isolation of the diamond principle ♦; and Jensen established
the consistency of CH + SH, the argument motivating Shelah’s eventual formulation
of proper forcing.

With this esteemed, central work at κ = ℵ1, Laver one level up faced the ℵ2-Suslin
Hypothesis. A contextualizing counterpoint was Silver’s deduction through forcing
developed by Mitchell (cf. Mitchell [98, p. 41]) that if κ is weakly compact, then in a
forcing extension κ = ω2 and there are noℵ2-Aronszajn trees at all. But here CH fails,
and indeed CH implies that there is an ℵ2-Aronszajn tree. So, the indicated approach
would be to start with CH, do forcing that adjoins no new reals and yet destroys all
ℵ2-Suslin trees, perhaps using a large cardinal.

In the Solovay-Tennenbaum approach, Suslin trees were destroyed one at a time
by forcing through long chains; the conditions for a forcing were just the members of
a Suslin tree under the tree ordering, and so one has the c.c.c., which can be iterated
with finite support. One level up, one would have to have countably closed forcing (for
preseving CH) that, iterated with countable support, would maintain the ℵ2-c.c. (for
preserving e.g. the necessary cardinal structure). However, Laver [68, p. 412] saw
that there could be countably closed ℵ2-Suslin trees whose product may not have the
ℵ2-c.c.

Laver then turned to the clever idea of destroying an ℵ2-Suslin tree not by injecting
a long chain but a large antichain, simply forcing with antichains under inclusion. But
for this approach too, Laver astutely saw a problem. For a tree T , with its αth level
denoted Tα , a κ-ascent path is a sequence of functions 〈 fα | α ∈ A〉 where A is an
unbounded subset of {α | Tα �= ∅}, each fα : κ → Tα , and: if α < β are both in A, then
for sufficiently large ξ < κ , fα(ξ) precedes fβ(ξ) on the tree. Laver [68, p. 412] noted
that if an ℵ2-Suslin tree has an ω-ascent path, then the forcing for adjoining a large
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antichain does not satisfy theℵ2-c.c., and showed that it is relatively consistent to have
anℵ2-Suslin tree with anω-ascent path. In the subsequent elaboration of higher Suslin
trees, the properties and constructions of trees with ascent paths became a significant
topic in itself; cf. Cummings [16] from which the terminology is drawn.

Laver saw how, then, to proceed.With conceptually resonating precedents like [98],
Laver first (Levy) collapsed a large cardinal κ to render it ω2 and then carried out the
iterative injection of large antichains to destroy ℵ2-Suslin trees. The whole procedure
is countably closed so that 2ℵ0 = ℵ1 is preserved, and the initial collapse incorporates
the κ-c.c. throughout to preserve κ as a cardinal.

Especially with this result in hand, the question arises, analogous to MA implying
SH, whether there is a version of MA adapted to ℵ2 that implies the ℵ2-Suslin Hy-
pothesis. Laver in 1973 was actually the first to propose a generalized Martin’s axiom;
Baumgartner in 1975 proposed another; and then Shelah [109] did also (cf. Tall [117,
p. 216]). These various axioms are consistent (relative to ZFC) and can be incorporated
into the Laver-Shelah construction. However, none of them can imply the ℵ2-Suslin
Hypothesis, since [108] soon showed, as part of extensive work on forcing principles
and morasses, that 4CH + ℵ2-Suslin Hypothesis implies that the (real) ℵ2 is inac-
cessible in L . In particular, some large cardinal hypothesis is necessary to implement
Laver-Shelah.

The Laver idea of injecting large antichains rather than long chains stands resilient;
while generalized Martin’s axioms do not apply to such forcings, the ℵ2-Suslin Hy-
pothesis can be secured. It is still open whether, analogous to Jensen’s consistency of
CH + SH, it is consistent to have CH + 2ℵ1 = ℵ2 + ℵ2-Suslin Hypothesis.

With respect to (ℵ1-)Suslin trees, Shelah [111] in the early 1980s showed that
forcing to add a single Cohen real actually adjoins a Suslin tree. This was a surprising
result about the fragility of SH that naturally raised the question about other generic
reals. After working off and on for several years, Laver finally clarified the situation
with respect to Sacks and random reals.

As set out in Carlson–Laver [75], Laver showed that if CH, then adding a Sacks
real forces ♦, and hence that a Suslin tree exists, i.e. ¬SH. Tim Carlson specified a
strengthening of MA, which can be shown consistent, and then showed that if it holds,
then adding a Sacks real forces MAℵ1 , Martin’s Axiom for meeting ℵ1 dense sets, and
hence SH. Finally, Laver [73] showed that if MAℵ1 holds, then adding any number of
random reals does not adjoin a Suslin tree, i.e. SH is maintained.

4.4 Nonregular ultrafilters

With his experience with saturated ideals and continuing interest in strong properties
holding low in the cumulative hierarchy, Laver [70] in 1982 established substantial
results about the existence of nonregular ultrafilters overω1. This work became a pivot
point for possibility, as we emphasize by first describing the wake of emerging results,
including Laver [61] on constructibility, and then the related subsequent work, tucking
in a reference to the joint Foreman–Laver [74] on downwards transfer.

For present purposes, an ultrafilter U over κ which is uniform (i.e. every element
of U has size κ) is regular iff there are κ sets in U any infinitely many of which
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have empty intersection. Regular ultrafilters were considered at the beginnings of the
study of ultraproduct models in the early 1960s, in substantial part as they ensure
large ultrapowers, e.g. if U over κ is regular, then its ultrapower of ω must have size
2κ . With the expansion of set theory through the 1960s, the regularity of ultrafilters
became topical, and [104] astutely established by isolating a combinatorial principle
that holds in L that if V = L , then every ultrafilter over ω1 is regular.

Can there be, consistently, a uniform nonregular ultrafilter overω1? Given the expe-
rience of saturated ideals and large cardinals, perhaps one can similarly collapse a large
cardinal e.g. to ω1 while retaining the ultrafilter property and the weak completeness
property of nonregularity. This was initially stimulated by a result [46] of the author,
that if there were such a nonregular ultrafilter over ω1, then there would be one with
the large cardinal-like property of being weakly normal: If {α < ω1 | f (α) < α} ∈ U ,
then there is a β < ω1 such that {α < ω1 | f (α) < β} ∈ U . Using this, Ketonen [49]
showed in fact that if there were such an ultrafilter, then 0# exists. Magidor [90] was
first to establish the existence of a nonregular ultrafilter, showing that if there is a huge
cardinal, then e.g. in a forcing extension there is a uniform ultrafilter U over ω2 such
that its ultrapower of ω has size only ℵ2 and hence is nonregular.

Entering the fray, Laver first provided incisive commentary in a two-page paper
[61] on Prikry’s result [104] about regular ultrafilters in L . Jensen’s principle ♦∗ is a
strengthening of ♦ that he showed holds in L . Laver established: Assume ♦∗. Then
for every α < ω1, there is a partition {ξ | α < ξ < ω1} = Xα0 ∪ Xα1 such that for
any function h : ω1 → 2 there is an ℵ1 size subset of {Xαh(α) | α < ω1} such that any
countably many of these has empty intersection. Thus, while Prikry had come up with
a new combinatorial principle holding in L and used it to establish that every uniform
ultrafilter over ω1 is regular there, Laver showed that the combinatorial means had
already been isolated in L , one that led to a short, elegant proof! Laver’s proof, as does
Prikry’s, generalizes to get analogous results at all successor cardinals in L .

Laver [70] subsequently precluded the possibility that saturated ideals themselves
could account for nonregular ultrafilters. First he characterized those κ-c.c. forcings
that preserve κ+-saturated κ-ideals, a result rediscovered and exploited by Baum-
gartner and Taylor [6]. Laver then applied this to show that if there is an ℵ2-saturated
ω1-ideal, then in a forcing extension there is such an ideal andmoreover every uniform
ultrafilter over ω1 is regular.

Laver [70] then answered the pivotal question by showing that, consistently, there
can be a uniform nonregular ultrafilter over ω1. Woodin had recently shown that
starting from strong determinacy hypotheses a ZFC model can be constructed which
satisfies: ♦ + “There is an ω1-dense ω1-ideal”.10 From this, Laver [70] established
that it follows that there is a uniform nonregular ultrafilter over ω1. In fact, he applied
♦ to show that the filter dual to such an ideal can be extended to an ultrafilter by just
adding ℵ1 sets and closing off. Such an ultrafilter must be nonregular, and in fact the
size of its ultrapower of ω is only ℵ1.

With this achievement establishing nonregular ultrafilters on the landscape, they
later figured in central work that reduced the strong hypotheses needed to get strong

10 In the 1990s Woodin would reduce the hypothesis to (just) the Axiom of Determinacy.
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properties to hold low in the cumulative hierarchy. Reorienting large cardinal theory,
Foreman et al. [28] reduced the sufficient hypothesis for getting the consistency of an
ℵ2-saturatedω1-ideal fromKunen’s initial huge cardinal to just having a supercompact
cardinal. Moreover, Foreman et al. [29] established that if there is a supercompact
cardinal, then in a forcing extension there is a nonregular ultrafilter over ω1, and that
analogous results hold for successors of regular cardinals. It was in noted [47] by the
author that both this and the Laver result could be refined to get ultrafilters with “finest
partitions”, which made evident that the size of their ultrapowers is small.

In extending work done by the summer of 1992, Foreman [30] showed that if there
is a huge cardinal, then in a forcing extension there is an ℵ1-dense ideal over ω2 in a
strong sense, from which it follows that there is a uniform ultrafilter over ω2 such that
its ultrapower of ω has size only ℵ1.

Earlier, Foreman and Laver [74] by 1988 had incisively refined Kunen’s original
argument for getting an ℵ2-saturated ω1-ideal from a huge cardinal by incorporating
Foreman’s thematic κ-centeredness into the forcing to further get strong downwards
transfer properties. A prominent such property was that every graph of size and chro-
matic number ℵ2 has a subgraph of size and chromatic number ℵ1. Foreman [30]
showed that having a nonregular ultrafilter over ω2 directly implies this graph down-
wards transfer property. This work still stands in terms of consistency strength in
need not just of supercompactness but hugeness to get strong propositions low in the
cumulative hierarchy.

4.5 Products of infinitely many trees

Laver [71] by 1983 established a striking partition theorem for infinite products of
trees which, separate from being of considerable combinatorial interest, answered a
specific question about possibilities for product forcing. The theorem is the infinite
generalization of the Halpern–Laüchli Theorem [34], a result to which Laver in 1969
had arrived at independently in a reformulation, in presumably his first substantive
result in set theory. He worked off and on for many years on the infinite possibility,
and so finally establishing it must have been a particularly satisfying achievement.

For present purposes, a perfect tree is a tree of height ω such that every element
has incomparable successors, and T (n) denotes the n-level of a tree T . For A ⊆ ω

and a sequence of trees 〈Ti | i < d〉, let ⊗A〈Ti | i < d〉 = ⋃
n∈A �i<d Ti (n), the set

of d-tuples across the trees at the levels indexed by A. Finally, for d ≤ ω let HLd be
the proposition:

If 〈Ti | i < d〉 is a sequence of perfect trees and ⊗ω〈Ti | i < d〉 = G0 ∪ G1,
then there are j < 2, infinite A ⊆ ω, and downwards closed perfect subtrees T ′

i

of Ti for i < d such that
⊗A〈T ′

i | i < d〉 ⊆ G j .

That HLd holds for d < ω is essentially the Halpern–Läuchli Theorem [34], which
was established and applied to get a model for the Boolean Prime Ideal Theorem
together with the failure of the Axiom of Choice.11 Laver in 1969 from different

11 cf. Halpern and Levy [35].

123



Laver and set theory

motivations (see below) and also David Pincus by 197412 arrived at a incisive “dense
set” formulation fromwhich HDd readily follows. For a sequence of trees 〈Ti | i < d〉,
〈Xi | i < d〉 is n-dense iff for some m ≥ n, Xi ⊆ Ti (m) for i < d, and moreover, for
i < d every member of Ti (n) is below some member of Xi . For

−→x = 〈xi | i < d〉 ∈⊗ω〈Ti | i < d〉, 〈Xi | i < d〉 is −→x -n-dense iff it is n-dense in 〈(Ti )xi | i < d〉, where
(Ti )xi is the subtree of Ti consisting of the elements comparable with xi . Let LPd be
the proposition:

If 〈Ti | i < d〉 is a sequence of perfect trees and ⊗ω〈Ti | i < d〉 = G0 ∪ G1,
then either (a) for all n < ω there is an n-dense 〈Xi | i < d〉 with ⊗ω〈Xi | i <

d〉 ⊆ G0, or (b) for some−→x = 〈xi | i < d〉 and all n < ω there is an−→x -n-dense
〈Xi | i < d〉 with ⊗ω〈Xi | i < d〉 ⊆ G1.

LPd and HDd for finite d are seen to be mutually derivable, but unaware of HDd

Laver in 1969 had astutely formulated and proved LPd for finite d in order to establish
a conjecture of Galvin. In the late 1960s at Berkeley, Galvin had proved that if the
rationals are partitioned into finitelymany cells, then there is a subset of the same order
type η whose members are in at most two of the cells. Galvin then conjectured that if
the r -element sequences of rationals are partitioned into finitely many cells, then there
are sets of rationals X0, X1, . . . , Xr−1 each of order type η such that the members of
�i<r Xi are in at most r ! of the cells. Laver while a graduate student affirmed this,
soon after he had established Fraïssé’s Conjecture.13 Notably, Keith Milliken [97], in
his UCLA thesis with Laver on the committee, applied LPd to derive a “pigeonhole
principle”, actually a partition theorem in terms of “strongly embedded trees” rather
than perfect subtrees.

Finally to Laver’s [71] result after all this set up, he after years of returning to
it finally established HLω, the infinite generalization of Halpern–Läuchli. With its
topicality, Tim Carlson (cf. [12]) also established HLω in a large context of “dual
Ramsey theorems”. HLω is seen as an infinitary Ramsey theorem, but in any case,
Laver had an explicit motivation from forcing, for Baumgartner had raised the issue
of HLω in the late 1970s. Extending the combinatorics for Sacks reals and HLd for
finite d, Baumgartner had observed that HLω implies that when adding κ Sacks reals
“side-by-side”, i.e. with product forcing, any subset of ω contains or is disjoint from
an infinite subset of ω in the ground model. This now became an impressive fact about
the stability of product Sacks forcing.

In retrospect, what slowed Laver’s progress to HLω was his inability to establish the
ostensibly stronger LPω despite numerous attempts. He finally saw that by patching
together a technical weakening of LPω, he could get to HLω. As he moved on to
further triumphs, the one problem he would bequeath to set theory is the infinitary
generalization of his earliest result in the combinatorics of the infinite: Does LPω hold?

12 cf. Pincus and Halpern [103].
13 All this is noted in Erdős andHajnal [26, p. 275]. Laver latterly published his proof of Galvin’s conjecture
from LPd as Theorem 2 in [71].
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5 Embeddings of rank into rank

Some time in the mid-1980s, Laver [72] began tinkering with elementary embeddings
j : Vδ → Vδ , combining them and looking at how they move the ordinals. On the
one hand, that there are such embeddings at all amounts to asserting a consistency-
wise very strong hypothesis, and on the other hand, there was an algebraic simplicity
in the play of endomorphisms and ordinals. Laver persisted through a proliferation
of embeddings and ordinals moved to get at patterns and issues about algebras of
embeddings. He [76] then made enormous strides in discerning a normal form, and,
with it, getting at the freeness of the algebras, as well as the solvability of their word
problems. Subsequently, Laver [78] was able to elaborate the structure of iterated
embeddings and formulate new finite algebras of intrinsic interest. Laver not only
brought in distinctively algebraic incentives into the study of strong hypotheses in set
theory, but opened up separate algebraic vistas that stimulated a new cottage industry
at this intersection of higher set theory and basic algebra. Moving on however, Laver
[81,83] considerably clarified the situation with respect to even stronger embedding
hypotheses, and eventually he [86] returned, remarkably, to something basic about
forcing, that the ground model is definable in any generic extension.

In what follows, we delve forthwith into strong elementary embeddings and suc-
cessively describe Laver’s work. There is less in the way of historical background and
less that can be said about the algebraic details, so the comparative brevity of this
section belies to some extent the significance and depth of this work. It is assumed
and to be implicit in the notation that elementary embeddings j are not the identity,
and so, as their domains satisfy enough set-theoretic axioms, they have a critical point
cr( j), a least ordinal α such that α < j (α).

5.1 Algebra of embeddings

Kunen in 1970 had famously delimited the large cardinal hypotheses by establishing
an outright inconsistency in ZFC, that there is no elementary embedding j : V → V
of the universe into itself. The existence of large cardinals as strong axioms of infinity
had turned on their being critical points of elementary embeddings j : V → M with
M being larger and larger inner models, and Kunen showed that there is a limit to
such formulations with M being V itself. Of course, it is all in the proof, and with
κ = cr( j) and λ the supremum of κ < j (κ) < j2(κ) < · · · , Kunen had actually
showed that having a certain combinatorial object in Vλ+2 leads to a contradiction.
Several hypotheses just skirting Kunen’s inconsistency were considered, the simplest
being that Eλ �= ∅ for some limit λ, where Eλ = { j | j : Vλ → Vλ is elementary}. The
λ here is taken anew, but from Kunen’s argument it is understood that if j ∈ Eλ and
κ = cr( j), the supremum of κ < j (κ) < j2(κ) < . . . would have to be λ.

Laver [72] in 1985 explored Eλ, initially addressing definability issues, under two
binary operations. Significantly, in this heworked a conceptual shift fromcritical points
as large cardinals to the embeddings themselves and their interactions. One operation
was composition: if j, k ∈ Eλ, then j ◦ k ∈ Eλ. The other, possible as embeddings are
sets of ordered pairs, was application: if j, k ∈ Eλ, then j ·k = ⋃

α<λ j (k ∩ Vα) ∈ Eλ
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with cr( j · k) = j (cr(k)). Application was first exploited by Martin [93], with these
laws easily checked:

(�) i ◦ ( j ◦ k) = (i ◦ j) ◦ k; (i ◦ j) · k = i · ( j · k);
i · ( j ◦ k) = (i · j) ◦ (i · k); and i ◦ j = (i · j) ◦ i.

From these follows the left distributive law for application: i · ( j · k) = (i · j) · (i · k).

A basic question soon emerged as to whether these are the only laws, and Laver a few
years later in 1989 showed this. For j ∈ Eλ, Let A j be the closure of { j} in 〈Eλ, · 〉,
and let P j be the closure of { j} in 〈Eλ, · , ◦ 〉. Laver [76] established: A j is the free
algebra A with one generator satisfying the left distributive law, and P j is the free
algebra P with one generator satisfying �.

Freeness here has the standard meaning. For P j and P , let W be the set of terms in
one constant a in the language of · and ◦ . Define an equivalence relation ≡ on W by
stipulating that u ≡ v iff there is a sequence u = u0, u1, . . . , un = v with each ui+1
obtained from ui by replacing a subterm of ui by a term equivalent to it according
to one of the laws of �. Then · and ◦ are well-defined for equivalence classes, and
Laver’s result asserts that the resulting structure on W/≡ and P j are isomorphic via
the map induced by sending the equivalence class of a to j .

For u, v ∈ W , define u <L v iff u is an iterated left divisor of v, in the sense that
for some w1, . . . , wn+1 ∈ W ,

v ≡ ((· · · (u · w1) · w2) · · · · wn) · wn+1 , or

v ≡ ((· · · (u · w1) · w2) · · · · wn) ◦ wn+1 .

When in the mid-1980s Laver was trying to understand the proliferation of critical
points of members of A j , he had worked with equivalence relations on embeddings
based on partial agreement and had shown that if Eλ �= ∅ for some λ, then <L is
irreflexive, i.e. u <L u always fails. Assuming, then, the irreflexivity of <L , Laver
[76] showed that every equivalence class in W/≡ has a unique member in a certain
normal form; that the lexicographic ordering of these normal forms is a linear ordering;
that this lexicographic ordering then agrees with <L ; and hence that <L on W is a
linear ordering. This structuring of the freeness leads to the solvability of the word
problem for W/≡, i.e. there is an effective procedure for deciding whether or not
u ≡ v for arbitrary u, v ∈ W . ForA, with just one operation, there is no normal form,
but Laver showed that P is conservative over A in that two terms in the language of
· are equivalent as per the laws � exactly when they are equivalent as per just the
left distributive law. Considerable interest was generated by a hypothesis bordering
on the limits of consistency entailing solvability in finitary mathematics, particularly
because of the peculiar and enticing possibility that some strong hypothesis may be
necessary. By 1990 Laver [77] had extended his normal form result systematically to
get, for any p <L q ∈ P , a unique, recursively defined “p-division form” equivalent
to q, so that there is a <L -largest p0 with p · p0 ≤L q, and one can conceptualize the
process as a division algorithm.
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Patrick Dehornoy, having been pursuing similar initiatives, made important contri-
butions.14 He first provided in some 1989work an alternative proof [18] of Laver’s [76]
freeness and solvability results, one that does with less than the irreflexivity of <L at
the cost of foregoing normal forms. Then in 1991, he [19,20] established that irreflex-
ivity outright in ZFC by following algebraic incentives and bringing out a realization
ofA within the Artin braid group B∞ with infinitely many strands. Consequently, the
various structure results obtained about W/≡ by Laver [76] became theorems of ZFC.

The braid group connection was soon seen explicitly. The braid group Bn , with
2 ≤ n ≤ ∞, is generated by elements {σi | 0 < i < n} satisfying σiσ j = σ jσi

for |i − j | > 1 and σiσi+1σi = σi+1σiσi+1. Define the “Dehornoy bracket” on
B∞ by: g[h] = g sh(h) σ1 (sh(g))−1, where sh is the shift homomorphism given by
sh(σi ) = σi+1. The Dehornoy bracket is left distributive, and one can assign to each
u ∈ A a u ∈ B∞ by assigning the generator of A to σ1, and recursively, uv = u[v]. For
the irreflexivity of <L , assume that u <L u. Then the corresponding assertion about
u leads to a “σ1-positive” element, an element with an occurrence of σ1 but none of
σ−1
1 , which represents the identity of B∞. But one argues that this cannot happen, that

B∞ is torsion-free. Laver’s student Larue [53] provided a straightforward argument
of this last, and so a shorter, more direct proof of the irreflexivity of <L .

The investigation of elementary embeddings continued full throttle, and this led
strikingly to new connections and problems in finitary mathematics. Dougherty [24],
coming forthwith to the scene, persisted with a detailed investigation of the prolifera-
tion of critical points. Fixing a j ∈ Eλ with κ = cr( j), define a corresponding function
f on ω by:

f (n) = |{cr(k) | k ∈ A j ∧ jn(κ) < cr(k) < jn+1(κ)}| .

Laver had seen that f (0) = 0, f (1) = 0, and f (2) = 1, but that f (3) is suddenly large
because of application. Dougherty [24] established a large lower bound for f (3) and
showed moreover that f eventually dominates the Ackermann function, and hence
cannot be primitive recursive.

In tandem, with the f (n)’s not even evidently finite, Laver [78] duly established
that f (n) is finite for all n. Let j[1] = j , and j[n+1] = j[n] · j . Then Laver showed
that the sequence 〈cr( j[n]) | n ∈ ω〉 enumerates, increasingly with repetitions, the first
ω critical points of embeddings in A j . A general result of John Steel implies that the
supremum of this sequence is λ = supn jn(κ), so that the sequence must have all the
critical points. Hence the Laver-Steel conclusion is that indeed the f (n)’s are finite.

Toward his result about the critical points of the j[n]’s, Laver [78] worked with
finite left distributive algebras, algebras which can be presented without reference to
elementary embeddings. For k ∈ ω, let Ak = {1, 2, . . . , 2k}with the operation∗k given
by the cycling a ∗k 1 = a + 1 for 1 ≤ a < 2k and 2k ∗k 1 = 1, and the left distributive
a ∗k (b ∗k 1) = (a ∗k b) ∗k (a ∗k 1). Then the 〈Ak, ∗k〉 turn out to be the finite algebras
satisfying the left distributive law aswell as the cycling laws a∗k 1 = a+1 for 1 ≤ a <

2k and 2k ∗k 1 = 1. The multiplication table or “Laver table” for k = 3 is as follows:

14 See Dehornoy [21] for an expository account of the eventually developed theory from his perspective,
one from which material in what follows is drawn.
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A3 1 2 3 4 5 6 7 8

1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8

Each element in Ak is periodic with period a power of 2. Laver in his asymptotic
analysis ofA j showed that for each a ∈ ω, the period of a in Ak tends to infinity with
k, and e.g. for every k the period of 2 in Ak is at least that of 1.

Remarkably, such observations about these finite algebras are not known to hold
just in ZFC. Appealing to the former’s earlier work, Dougherty and Jech [23] did show
that the number of computations needed to guarantee that the period of 1 in Ak grows
faster in k than the Ackermann function. While Dehornoy’s work had established the
irreflexivity of <L and so the solvability the word problem in ZFC, it is a striking
circumstance that Laver’s arguments using a strong large cardinal hypothesis still
stand for establishing some seemingly basic properties of the finite algebras Ak .

In [79] Laver impressively followed the trail into braid group actions. Dehornoy
[20] had shown that the ordering <L naturally induces linear orderings of the braid
groups. With the positive braids being those not having any inverses of the strands
appearing, Laver applied his structural analysis of<L to show that for the braid groups
Bn with n finite the Dehornoy ordering actually well-orders the positive braids. This
would stand as a remarkable fact that would frame the emerging order theory of braid
groups, andwith a context set, e.g. Carlucci et al. [13] investigated unprovability results
according to the order type of long descending sequences in the Dehornoy order.

Laver’s last papers [85,87,88] were to be on left-distributivity. With John Moody,
Laver [85] stated conjectures about the free left distributive algebras A(k) extending
A by having k generators. These conjectures, about how a comparison process must
terminate, would establish the following, still open forA = A(1): Ifw ∈ A(k) , the set
{u ∈ A(k) | ∃v(u · v = w)} of (direct) left divisors of w is well-ordered by <L . With
his student Sheila Miller, Laver [87] applied his division algorithm [77] to get at the
possibility of comparisons and well-orderings, establishing that in A, if ab = cd and
a and b have no common left divisors and c and d have no common left divisors, the
a = c and b = d. Laver and Miller [88] further simplify the division algorithm and
provide a mature account of the theory of left distributive algebras.

5.2 Implications between very large cardinals

In the later 1990s Laver [81,83,86], moving on to higher pastures, developed the
definability theory of elementary embedding hypotheses even stronger than Eλ �= ∅,
getting into the upper reaches near Kunen’s inconsistency, reaches first substantially
broached by Woodin for consistency strength in the 1980s.
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Kunen’s inconsistency argument showed in a sharp form that in ZFC there is no
elementary embedding j : Vλ+2 → Vλ+2. Early on, the following “strongest hypothe-
ses” approaching the known inconsistency were considered, the last setting the stage
for Laver’s investigation of the corresponding algebra of embeddings.

Eω(λ): There is an elementary j : Vλ+1 → Vλ+1.
E1(λ): There is an elementary j : V → M with cr( j) < λ = j (λ)

and Vλ ⊆ M .
E0(λ): There is an elementary j : Vλ → Vλ. (Eλ �= ∅.)

In all of these it is understood that, with cr( j) = κ the corresponding large cardinal,
λ must be the supremum of κ < j (κ) < j2(κ) < · · · by Kunen’s argument. Thrown
up ad hoc for stepping back from inconsistency, these strong hypotheses were not
much investigated except in connection with a substantial application by Martin [93]
to determinacy.

In work dating back to his first abstract [72] on embeddings, Laver [81] established
a hierarchy up through Eω(λ)with definability. In the language for second-order logic
with ∈, a formula is �1

0 if it contains no second-order quantifiers and is �1
n if it is

of the form ∃X1∀X2 · · · Qn Xn� with second-order variables Xi and � being �1
0 . A

j : Vλ → Vλ is �1
n elementary if for any �1

n � in one free second-order variable and
A ⊆ Vλ, Vλ |� �(A) ↔ �( j (A)).

It turns out that E1(λ) above is equivalent to having an elementary j : Vλ → Vλ

which is �1
1 . Also, if there is an elementary j : Vλ → Vλ which is �1

n for every n,
then j witnesses Eω(λ). Incorporating these notational anticipations, define:

En(λ) : There is a�1
nelementary j : Vλ → Vλ.

Next, say that for parametrized large cardinal hypotheses, �1(λ) strongly implies
�2(λ) if for every λ, �1(λ) implies �2(λ) and moreover there is a λ′ < λ such that
�2(λ

′).
Taking compositions and inverse limits of embeddings, Laver [72,81] established

that in the sequence,

E0(λ), E3(λ), E5(λ), . . . , Eω(λ)

each hypothesis strongly implies the previous ones, each En+2(λ) in fact providing for
many λ′ < λ such that En(λ′) as happens in the hierarchy of large cardinals. Martin
had essentially shown that any �1

2n+1 elementary j : Vλ → Vλ is �1
2n+2, so Laver’s

results complete the hierarchical analysis for second-order definability.
In [81] Laver reached a bit higher in his analysis, and in [83] he went up to a very

strong hypothesis formulated by Woodin:

W (λ): There is an elementary j : L(Vλ+1) → L(Vλ+1)

with cr( j) < λ.

That W (λ) holds for some λ, just at the edge of the Kunen inconsistency, was formu-
lated by Woodin in 1984, and, in the first result securing a mooring for the Axiom
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of Determinacy (AD) in the large cardinals, shown by him to imply that the axiom
holds in the inner model L(R), R the reals. Just to detail, L(R) and L(Vλ+1) are
constructible closures, where the constructible closure of a set A is the class L(A)

given by L0(A) = A; Lα+1(A) = def(Lα(A)), the first-order definable subsets
of Lα(A); and L(A) = ⋃

α Lα(A). Woodin, in original work, developed and pur-
sued an analogy between L(R) and L(Vλ+1) taking Vλ to be the analogue of ω and
Vλ+1 to be analogue of R and established AD-like consequences for L(Vλ+1) from
W (λ).15

Consider an elaboration of W (λ) according to the constructible hierarchy L(Vλ+1)

= ⋃
Lα(Vλ+1):

Wα(λ): There is an elementary j : Lα(Vλ+1) → Lα(Vλ+1)

with cr( j) < λ.

Laver in his [81] topped his hierarchical analysis there by showing that W1(λ) strongly
implies Eω(λ), again in a strong sense. In [83] Laver impressively engaged with
some of Woodin’s work with W (λ) to extend hierarchical analysis into the transfinite,
showing that Wλ++ω+1(λ) strongly implies Wλ+(λ) and analogous results with the
“λ+” replaced e.g. by the supremum of all second-order definable prewellorderings
of Vλ+1.

In the summarizing [84], Laver from his perspective set out the landmarks of the
workon elementary embeddings aswell as provided anoutline ofWoodin’sworkon the
AD-like consequences of W (λ), and stated open problems for channeling the further
work. Notably, Laver’s speculations reached quite high, beyond W (λ); Woodin [123,
p. 117]mentioned “Laver’s Axiom”, an axiom providing for an elementary embedding
to provide an analogy with the strong determinacy axiom ADR.

In what turned out to be his last paper in these directions, Laver [86] in 2004
established results about the large cardinal propositions En(λ) for n ≤ ω and forc-
ing. For each n ≤ ω, let En(κ, λ) be En(λ) further parametrized by specifying the
large cardinal κ = cr( j). Laver established: If V [G] is a forcing extension of V
via a forcing poset of size less than κ and n ≤ ω, then V [G] |� ∃λEn(κ, λ) im-
plies V |� ∃λEn(κ, λ). The converse direction follows by well-known arguments
about small forcings preserving large cardinals. The Laver direction is not surpris-
ing, on general grounds that consistency strength should not be created by forcing.
However, as Laver notes by counterexamples, a λ satisfying En(κ, λ) in V [G] need
not satisfy En(κ, λ) in V , and a j witnessing En(κ, λ) in V [G] need not satisfy
j � Vλ ∈ V .
Laver established his result by induction on n deploying work from [81], and what

he needed at the basis and first proved is the lemma: If V [G] is a forcing extension of
V via a forcing poset of size less than κ and j witnesses E0(κ, λ), then j � Vα ∈ V
for every α < λ. Laver came up with a proof of this using a result (∗∗) he proved
about models of ZFC that does not involve large cardinals, and this led to a singular
development.

15 This work would remain unpublished byWoodin. On the other hand, in his latest work [123] on suitable
extenders Woodin considerably developed and expanded the L(Vλ+1) theory with W (λ) in his quest for an
ultimate inner model.
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As Laver [81] described it, Joel Hamkins pointed out how the methods of his [38],
also on extensions not creating large cardinals, can establish (∗∗) in a generalized
form, and Laver wrote this out as a preferred approach. Motivated by Hamkins [38],
Laver, and Woodin independently and in his scheme of things, established ground
model definability: Suppose that V is a model of ZFC, P ∈ V , and V [G] is a generic
extension of V via P. Then in V [G], V is definable from a parameter. (With care, the
parameter could be made PV [G](P) through Hamkins’ work.)

The ground model is definable in any generic extension! Although a parameter is
necessary, this is an illuminating result about forcing as method. Was this issue raised
decades earlier at the inception of forcing? In truth, for a particular forcing a term V̇
can be introduced into the forcing language for assertions about the ground model,
so there may not have been an earlier incentive. The argumentation for ground model
definability provided one formula that defines the ground model in any generic exten-
sion in terms of a corresponding parameter. Like Laver indestructibility, this available
uniformity stimulated renewed investigations and conceptualizations involving forc-
ing.

Motivated by ground model definability, Hamkins and Jonas Reitz formulated the
Ground Axiom: The universe of sets is not the forcing extension of any inner model
W by a (nontrivial) forcing P ∈ W . Reitz [106] investigated this axiom, and [36]
established its consistency with V �= HOD. [32] then extended the investigations into
“set-theoretic geology”, digging into the remains of a model of set theory once the
layers created by forcing are removed. On his side, Woodin [122, §8] used ground
model definability to formalize a conception of the “generic-multiverse”; the analysis
here dates back to 2004. The definability is a basic ingredient in his latest work [121]
toward an ultimate inner model.

Ground model definability serves as an apt and worthy capstone to a remarkable
career. It encapsulates the several features of Laver’s major results that made them
particularly compelling and potent: it has a succinct basic-sounding statement, it
nonetheless requires a proof of substance, and it gets to a new plateau of possibil-
ities. With it, Laver circled back to his salad days.

6 Envoi

Let me indulge in a few personal reminiscences, especially to bring out more about
Rich Laver.

A long, long time ago, I was an aspiring teenage chess master in the local San
Francisco chess scene. It was a time fraught with excitement and inventiveness, as
well as encounters with eclectic, quirky personalities. In one tournament, I had a
gangly opponent who came to the table with shirt untucked and opened 1.g4, yet I
still managed to lose. He let on that he was a graduate student in mathematics, which
mystified me at the time (what’s new in subtraction?).

During my Caltech years, I got wind that Rich Laver was on the UC Berkeley team
that won the national collegiate chess championship that year. I eventually saw a 1968
game he lost to grandmaster Pal Benko when the latter was trotting out his gambit, a
game later anthologized in [9]. A mutual chess buddy mentioned that Laver had told
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him that his thesis result could be explained to a horse—only years later did I take in
that he had solved Fraïssé’s Conjecture.16

In 1971 when Rich was a post-doc at Bristol and heard that I was up at King’s
College, Cambridge, he started sending me postcards. In one he suggested meeting
up at the big Islington chess tourney (too complicated) and in others he mentioned his
results and problems about partition relation consequences of MA. I was just getting
up to speed, and still could not take it in.

A fewyears later, Iwas finally up and running, andwhen I sent himmy least function
result [46] for nonregular ultrafilters, he was very complementary and I understood
then that we were on par. When soon later I was writing up the Solovay-Reinhardt
work on large cardinals, Laver pointedly counseled me against the use of the awkward
“n-hypercompact” for “n-huge”, and I forthwith used the Kunen term.

By then at Boulder, Rich would gently suggest going mountain climbing, but I
would hint at a constitutional reluctance. He did mention how he was a member of
a party that took Paul Erdős up a Flatiron (mountain) near Boulder and how Erdős
came in his usual light beige clothes and sandals. In truth, our paths rarely crossed as
I remained on the East Coast. Through the 1980s Rich would occasionally send me
preprints, sometimes with pencil scribblings. One time, he sent me his early thinking
about embeddings of rank into rank. Regrettably, I did not follow up.

The decades went by with our correspondence turning more and more to chess,
especially fanciful problems and extraordinary grandmaster games. In a final email
to me, which I can now time as well after the onset of Parkinson’s, Rich posed the
following chess problem: Start with the initial position and play a sequence of legal
moves until Black plays 5 . . .N×Rmate. I eventually figured out that the White king
would have to be at f2, and so sent him: 1. f3, Nf6 2. Kf2, Nh5 3. d3, Ng3 4. Be3, a6
5. Qe1, N×R mate. But then, Rich wrote back, now do it with an intervening check!
This new problem kicked around in my mental attic for over a year, and one bright
day I saw: 1. f3, Nf6 2. e4, N× e4 3. Qe2, Ng3 4. Q× e7ch, Q×Qch 5. Kf2, N×R
mate. But by then it was too late to write him.

7 Doctoral students of Richard Laver

Stephen Grantham, An analysis of Galvin’s tree game, 1982.
Carl Darby, Countable Ramsey games and partition relations, 1990.
Janet Barnett, Cohen reals, random reals and variants of Martin’s Axiom, 1990.
Emanuel Knill, Generalized degrees and densities for families of sets, 1991.
David Larue, Left-distributive algebras and left-distributive idempotent algebras,
1994.
Rene Schipperus, Countable partition ordinals, 1999.
Sheila Miller, Free left distributive algebras, 2007.

16 According to artsandsciences.colorado.edu/magazine/2012/12/by-several-calculations-a-life-well-
lived/ the crucial point came to Laver in an epiphanous moment while he, mountain climbing, was stranded
for a night “on a ledge in darkness” at Yosemite.
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In addition to having these doctoral students at Boulder, Laver was on the thesis
committees of, among many: Keith Devlin (Bristol), Maurice Pouzet (Lyon), Keith
Milliken (UCLA), Joseph Rebholz (UCLA), Carl Morgenstern (Boulder), Stewart
Baldwin (Boulder), Steven Leth (Boulder), Kai Hauser (Caltech),MohammedBekkali
(Boulder), and Serge Burckel (Caen).
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