
 In broad strokes, mathematics is a vast yet multifarious edifice and mode of 
reasoning based on networks of  conceptual constructions.  With its richness, 
variety and complexity, any discussion of the nature of mathematics cannot 
but account for these networks through its evolution in history and practice. 
What is of most import is the emergence of knowledge, and the carriers of 
mathematical knowledge are  proofs , more generally arguments and proce-
dures, as embedded in larger contexts. One does not really get to  know  a 
proposition but, rather, a proof, the complex of argument taken together as 
a conceptual construction. Propositions, or rather their prose statements, 
gain or absorb their sense from the proofs made on their behalf, yet proofs 
can achieve an autonomous status beyond their initial contexts. Proofs are 
not merely stratagems or strategies; they, and thus their evolution, are what 
carry forth mathematical knowledge. 

 Especially with this emphasis on proofs, aspect-perception— seeing  an 
aspect, seeing something  as  something, seeing something  in  something—
emerges as a schematic for or approach to what and how we know, and this 
for quite substantial mathematics. There are sometimes many proofs for a 
single statement, and a proof argument can cover many statements. Proofs 
can have a commonality, itself a proof; proofs can be seen as the same under 
a new light; and disparate proofs can be correlated, this correlation itself 
amounting to a proof. Less malleably, statements themselves can be seen as 
the same in one way and different in another, this bolstered by their proofs. 

 With this, aspect-perception counsels the history of mathematics, taken in 
two neighboring senses. There is the history, the patient accounting of people 
and their mathematical accomplishments over time, and there is the math-
ematics, evolutionary analysis of results and proofs over various contexts. 
In both, there would seem to be the novel or the surprising. Whether or not 
there is creativity involved, according to one measure or another, analysis 
through aspects fosters understanding of the byways of mathematics. 

 In what follows, the first section briefly describes and elaborates aspect-
perception with an eye to mathematics. Then in each of the succeeding two 
sections, substantial topics are presented that particularly draw out and 
show aspect-perception at work. 

 Aspect-Perception and the History 
of Mathematics 

 Akihiro Kanamori 

 5 
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 1. Aspect-Perception 

 Aspect-perception is a sort of meta-concept, one collecting a range of very 
different experiences mediating between seeing and thinking. Outwardly 
simple to instantiate, but inwardly of intrinsic difficulty, it defies easy reck-
oning, but, once seen, it invites extension, application, and articulation. For 
the discussion and scrutiny of mathematics, it serves to elaborate and to 
focus aspect-perception in certain directions and with certain emphases. And 
for this, it serves to proceed through a deliberate arrangement of some  loci 
classici  for aspect-perception in the writings of Ludwig Wittgenstein. 

 Aspect-perception was a recurring motif for Wittgenstein in his discus-
sions of perception, language, and mathematics. His later writings especially 
are filled with remarks, some ambitious and others elliptical, gnawing on a 
variety of phenomena of aspect-perception. It was already at work in his 
 Notebooks 1914-16  and his 1921  Tractatus , with its  Bildhaftigkeit , has at 
5.5423 the Necker cube: 

 The figure can be seen in two ways as a cube, the left square in the front 
or the right square in the front. ‘For we really see two different facts’ (Witt-
genstein 1921). Among the points that were made here: a symbol, serving 
to articulate a truth, involves a projection by us into a space of possibility, 
hence multifarious relationships, not merely the interpretation of a sign. This 
early juncture in Wittgenstein correlates with aspects of symbolization in 
mathematics: as explicit in succeeding sections, different modes of organiza-
tion to be brought out for purposes of proof can be carried by one geometric 
diagram or one algebraic equation. 

 In his 1934  Brown Book  (cf. 1958: II,§16), Wittgenstein discusses ‘seeing 
it  as a face ’ in the ‘picture-face’, a circular figure with four dashes inside, 

Figure 5.1
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and in a picture puzzle, where ‘what at first sight appears as “mere dashes” 
later appears as a face’. ‘And in this way “seeing dashes as a face” does not 
involve a comparison between a group of dashes and a real human face.’ We 
are taking or interpreting the dashes as a face. This middle juncture in Witt-
genstein, at an aspect more conceptual than visual, correlates with aspects 
of contextual imposition in mathematics: as exhibited by the ‘commonal-
ity’ (**) in §2, there can be a structure or a proof, logical yet lean, whose 
‘physiognomy’ can be newly seen by being placed in a rich conceptual or 
historical context. 

 In Wittgenstein’s mature  Philosophical Investigations  (1953) aspect-
perception comes to the fore in Part II, Section xi. 1  ‘I contemplate a face, and 
then suddenly notice its likeness to another. I  see  that it has not changed; and 
yet I see it differently. I call this experience [ Erfahrung ] “noticing an aspect”’ 
(p. 193c). Wittgenstein works through an investigation of various schematic 
figures, particularly the Jastrow duck–rabbit (p. 194e), a figure which can 
be seen either as a duck with its beak to the left or a rabbit with its ears to 
the left. With this, he draws out the distinction between ‘the “continuous 
seeing” of an aspect’ (seeing, with immediacy; later, ‘regarding-as’), and ‘the 
“dawning” of an aspect’ (sudden recognition). With ‘continuous seeing’ he 
navigates a subtle middle road between being caused by the figure to per-
ceive and the imposition of a subjective, private inner experience, undermin-
ing both as explanations of the phenomenon of seeing-as. Here follows a 
sequential arrangement of quotations, citing page and paragraph: 

 198c: The concept of a representation of what is seen, like that of a copy, 
is very elastic, and so  together with it  the concept of what is seen. The two 
are intimately connected. (Which is  not  to say that they are alike.) 

 199b: If you search in a figure (1) for another figure (2), and then find 
it, you see (1) in a new way. Not only can you give a new kind of descrip-
tion of it, but noticing the second figure was a new visual experience. 

 200f: When it looks as if there were no room for such a form between 
other ones you have to look for it in another dimension. If there is no 
room here, there  is  room in another dimension. [An example of imagi-
nary numbers for the real numbers follows.] 

 201b: . . . the aspects in a change of aspects are those ones which the 
figure might sometimes have  permanently  in a picture. 

 203e: ‘The phenomenon is at first surprising, but a physiological 
explanation of it will certainly be found.’—Our problem is not a causal 
one but a conceptual one. 

 204g: Here it is  difficult  to see that what is at issue is the fixing of 
concepts. A  concept  forces itself on one. 

 208d: One  kind  of aspect might be called ‘aspects of organization’. 
When the aspect changes parts of the picture go together which before 
did not. 
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 212a: . . . what I perceive in the dawning of an aspect is not a property 
of the object, but an internal relation between it and other objects. 

 For a visual context of some complexity pointing us towards the appre-
ciation of aspects in mathematics, one can consider the Cubist paintings of 
Pablo Picasso and Georges Braque. These elicit aspects of aspect-perception 
emphasized by Wittgenstein like seeing faces and objects from various per-
spectives; continuous seeing; dawning of an aspect; aspects there to be seen; 
possible blindness to an aspect for a fully competent person and making 
sense of bringing such a person to see the aspect. Moreover, there is a shift-
ing of aspects beyond complementary pairs, as several aspects can be kept 
in play at once, some superposing on others, some internal to others, some 
at an intersection of others, and, with the painters’ willful obstructionism, 
some petering out at borders and some incompatible with others in varying 
degrees. 

 With an eye to mathematics, we can locate aspect-perception among 
broad philosophical abstractions in the following ways: 

 1. Aspect-perception is not (merely)  psychological  or  empirical,  but sub-
stantially  logical , in working in spaces of logical possibility. 

 2. Aspect-perception is not in the service of  conventionalism  and is not 
(only) about  language.  

 3. Aspect-perception, while having to do with  fact  and  truth , is orthogonal 
to  value.  

 4. Aspect-perception can figure as a mode of  analysis  of concepts and 
states of affairs. 

 5. Aspect-perception maintains  objectivity,  as aspects are there to be seen, 
but through a multifarious conception involving  modality.  

 What, then, is the place and import of aspect-perception in mathematics 
and its history? The above points situate aspect-perception between seeing 
and thinking as logical—and so having to do with truth and objectivity—
and not about convention or value and as possibly participating in analysis. 
In these various ways, aspect-perception can be seen to be fitting and indeed 
inherent in mathematical activity. At the very least, aspect-perception pro-
vides language, and so a way of thinking, for discussing and analyzing con-
cepts, proofs, and procedures—how they are different or the same and how 
they can be compared or correlated. More substantially, since mathematics 
is a multifarious edifice of conceptual constructions, attention to aspects 
itself promotes seeing, seeing anew, and gaining insights. This is particularly 
so in connection with how we gauge  simplicity , how we account for  surprise , 
and how we come to  understand  mathematics. 

 On these last points, earlier remarks circa 1939 of Wittgenstein from 
 Remarks on the Foundations of Mathematics  have particular resonance. 
Part III starts with a discussion of proof, beginning: ‘“A mathematical proof 
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must be surveyable [ übersichtlich ].” Only a structure whose reproduction 
is an easy task is called a “proof”.’ Aspect-perception casts light here, since 
seeing an argument organized in a specific way, for example, through the 
projection of another or as figuring in a larger context, can lead to (the 
dawning of) a perception of simplicity and thereby newly found perspicu-
ity. In this way, aspect-perception shows the limits of logic conceived to be 
(merely) a sequence of local implications. 

 In Part I, Appendix II, Wittgenstein discusses the surprising in mathe-
matics. The first specific situation he considered is when a long algebraic 
expression is seen shrunk into a compact form and where being surprised 
shows (§2) ‘a phenomenon of failure to command a clear view [ übersehen ] 
and of the change of aspect of a seen complex.’ 

 For one surely has this surprise only when one does not yet know the 
way. Not when one has the whole of it before one’s eyes. . . . The surprise 
and the interest, then come, so to speak, from the outside. 

 After the dawning of the aspect, there is no surprise, and what then remains 
of the surprise is the idea of seeing the logical space of possibilities. Wittgen-
stein subsequently wrote (§4), 

 ‘There’s no mystery here!’—but then how can we have so much as 
believed that there was one?—Well, I have retraced the path over and 
over again and over and over again been surprised; and I never had the 
idea that here one can  understand  something.—So ‘There’s no mystery 
here!’ means ‘Just look about you!’ 

 Though only elliptical, Wittgenstein here is suggesting that understanding, 
especially of novelty, as coming into play with the seeing and taking in of 
aspects. 

 Aspect-perception and mathematics have further useful involvements. 
Aspect-perception is an intrinsically difficult meta-concept in and through 
which to find one’s way, and by going into the precise, structured setting of 
mathematics one can better gauge and reflect on its shades and shadows. 
One can draw out aspects and deploy them to make deliberate conceptual 
arrangements for communicating mathematics. And aspect-perception pro-
vides an opportunity to bring in large historical and mathematical issues 
of context and method and to widen the interpretive portal to ancient 
mathematics. 

 In the succeeding sections, we show aspect-perception at work in math-
ematics by going successively through two topics, chosen in part for their 
differing features to illuminate the breadth of aspects. Section 2 takes up the 
classical and conceptual issue of the irrationality of square roots, bringing 
out aspects geometric and algebraic, ancient and modern. Section 3 sets 
out a circularity in the development of the calculus having to do with the 
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derivative of the sine function, retraces features of the concept in ancient 
mathematics, and considers possible ways out of the circularity, thus draw-
ing out new aspects. A substantial point to keep in mind is that these topics 
are conceptually complex; aspect-perception can work and, indeed, is of 
considerable interest at higher levels of mathematics. 2  In each of the sections 
is presented a ‘new’ result ‘found’ by the author, but one sees that creativity 
is belied to a substantial extent by context. 

 2. Irrationality of Square Roots 

 For a whole number  n  which is not a square number (4   2 2 , 9   3 2 , 
16   4 2 ,  .  .  .), its square root n  is irrational, that is, not a ratio of two 
whole numbers. This section attends to this irrationality; we shall see that its 
various aspects are far-ranging over time and mathematical context but, per-
haps surprisingly, have a commonality. The irrationality can itself be viewed 
as an aspect of n  separate from the seeing of it as or for its calculation 
as in Old Babylonian mathematics circa 1800  bce , an aspect embedded in 
conceptualizations about the nature of number and of mathematical proof 
as first seen in Greek mathematics. In particular, the irrationality of 2  
was a pivotal result of Greek geometry established in the later 5th century 
 bce . This result played an important role in expanding Greek concepts of 
quantity, and for contextually discussing 2  as well as the general n , it 
is worth setting out, however briefly, aspects of quantity as then and now 
conceived. 

 For the Greeks, a  number  is a collection of  units,  what we denote today by 
2, 3, 4, . . . with less a connotation of order than of cardinality. Numbers can 
be added and multiplied. A  magnitude  is a line, a (planar) region, a surface, 
a solid, or an angle. Magnitudes of the same kind can be added (e.g. region 
to region) and multiplied to get magnitudes of another kind (e.g. line to 
line to get a region). Respecting this understanding, we will deploy modern 
notation with its algebraic aspect, this itself partly to communicate further 
mathematical sense. For example, Proposition I 47 of Euclid’s  Elements,  the 
Pythagorean Theorem, states rhetorically that ‘[i]n right-angled triangles the 
square on the side opposite the right angle equals the sum of the squares 
on the sides containing the right angle’ with a ‘square’  qua  region. We will 
simply write the arithmetical  a  2  +  b  2     c  2  where  a  and  b  are (the lengths of) 
the legs of a right triangle and  c  (the length of) the hypotenuse. 

 A  ratio  is a comparison between two numbers or two magnitudes of the 
same kind (e.g. region to region). Having ratio 2 to 3 we might today write 
as a relation 2:3 or a quantity 2

3 , with the first being closer to the Greek con-
cept. There is a careful historiographical tradition promoting the first, but we 
will nonetheless deliberately deploy the latter in what follows. There are sev-
eral aspects to be understood here: the fractional notation itself can be read 
as the Greek ratio; it can be read as part of a modern numerical-algebraic 
construal; and finally, the two faces are assertively to be seen as coherent. 
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A  proportion  is an equality of two ratios. We deploy the modern   as if for 
numerical quantities, this again having several aspects to be understood: it 
can be read as the Greek proportion, it can be read as an identity of two 
numerical quantities, and finally, the two faces are assertively to be seen as 
coherent. In what follows, the notation itself is thus to convey a breadth of 
aspect as well as a change of aspect, something not always made explicit. 

 Two magnitudes are  incommensurable  if there is no ‘unit’ magnitude of 
which both are multiples. While we today objectify n  as a (real) number, 
that n  is irrational is also to convey, in what follows, a Greek geometric 
sense: a square containing  n  square units has a side which is incommensura-
ble with the unit. The pivotal result that 2  is irrational was for the Greeks 
that the side  s  and diagonal  d  of a square are incommensurable:  d  2     s  2  + 
 s  2    2 s  2  by the Pythagorean Theorem, and the ratio ( 2)d

s   is not a ratio 
of numbers. To say that this result triggered a  Grundlagenkrise  would be an 
exaggeration, but it undoubtedly stimulated both the development of ratio 
and proportion for general magnitudes in geometry and a rigorization of the 
elements and means of proof. 

 One of the compelling results of the broader context was just the gener-
alization that n  for non-square numbers  n  is irrational, sometimes called 
Theaetetus’s Theorem.  Theaetetus  (ca. 369  bce ) is, of course, the great 
Platonic dialogue on epistemology. Socrates takes young Theaetetus (ca. 
417–369  bce ) on a journey from knowledge as perception, to knowledge 
as true judgement, to knowledge as true judgement with  logos  (an account), 
and, in a remarkable circle, returns to perception: How can there even be 
knowledge of the first syllable  SO  of “Socrates”—is it a simple or a com-
plex? Early in the dialogue (147c–148d), Theaetetus suggested conceptual 
clarification vis-à-vis square roots. He first noted that the elder geometer 
Theodorus (of Cyrene, ca. 465–398  bce ) had proved by diagrams the irra-
tionality of n  for non-square  n  up to 17. Then dividing the numbers into 
the ‘square’ and the ‘oblong’, he observed that they can be distinguished 
according to whether their square roots are numbers or irrational. In view 
of this and derivative commentary, Theaetetus has in varying degrees been 
credited with much of the content of the arithmetical Book VII of Euclid’s 
 Elements  and of Book X, the meditation on incommensurability and by far 
the longest book. 

 The avenues and byways of the Theodorus result and the Theaetetus gen-
eralization have been much discussed from both the historical and math-
ematical perspectives. 3  In what follows we point out aspects there to be 
seen that coordinate across time and technique, and to this purpose we first 
review proofs for the irrationality of 2 . 

 The argument most often given today is algebraic, about 2 . Assume that 
 2 a

b  for (whole) numbers  a  and  b  so that, squaring,  a  2    2 b  2 ·   a  2  is thus 
even and so, consequently, is  a , say,  a    2 c.  But then, 4 c  2    2 b  2 , and so 2 c  2    
 b  2  ·  b  2  is thus even and so, consequently, is  b , say,  b    2 d.  But then,  a c

b d . 
Now this reduction to a ratio of smaller numbers cannot be repeated forever 
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(infinite regress), or had we started with the least possibility for  b , we would 
have a contradiction ( reductio ad absurdum ). 

 Cast geometrically in terms of the side and the diagonal of squares within 
squares, this is plausibly the earliest proof, found by the “Pythagoreans” in 
the first deductive theory, the even versus the odd (even times even is even, 
odd times odd is odd, and so forth). The proof is diagrammatically suggested 
in Plato’s  Meno  82b–85b, and, as an example of reasoning  per impossible,  
in Aristotle’s  Prior Analytics  I 23. 

 Another proof proceeds directly on a square, the features conveyable in 
the diagram showing half a square with side  s  and diagonal  d.  

 On the diagonal, a length  s  is laid off, getting  AB , and then a perpendic-
ular  BD  is constructed. The three  s cs consequently indicate equal line seg-
ments, as can be seen using a series of what can be deduced to be isosceles 
triangles: the triangle  ABE  (formed by introducing line segment  BE ), the 
triangle  BDE,  and the triangle  BCD.  Now triangle  BCD  is also half of a 
square, with side  s c and diagonal  d c, given in terms  s  and  d  as above. So, if  s  
and  d  were commensurable, then so would be  s c and  d c. But this reduction 
cannot be repeated forever (infinite regress), or had we started out with com-
mensurability with  s  and  d  being the smallest possible multiples of a unit, we 
would have a contradiction ( reductio ). 

 From the algebraic aspect, one sees that the components of a ratio have 
been made smaller: 

c �
  � � �

c �
 2

,  where 0 .
 

d d s d
d s s

s s d s

Figure 5.2
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 This proof correlates with the Greek process of  anthyphairesis , the Euclid-
ean algorithm for line segments, whereby one works towards a common 
unit for two magnitudes by iteratively subtracting off the smaller from the 
larger. Because of this, the proof or something similar has been thought by 
some historians to be the earliest proof of incommensurability. 4  The proof 
appeared as a simple approach to irrationality in the secondary literature 
as early as in (Rademacher and Toeplitz 1930: 23) and, recently, with the 
simple diagram as shown above, in Apostol (2000). 

 Proceeding to n , Knorr (1975, chap. VI) worked out various diagram-
matic versions of the 2  even–odd proof as possible reconstructions for 
Theodorus’s n  result  n  up to 17, and Fowler (1999: 10.3) provided var-
ious anthyphairetic proofs up to 19. The following proof of the general 
Theaetetus result appears to be new; at least it does not seem to appear put 
just so in the historical and mathematical literature. 

 Assume that  a
b n . Laying off copies of  b  on  a , the anthyphairetic ‘divi-

sion algorithm’, let  a   qb + r  in algebraic terms with ‘quotient’  q  and ‘remain-
der’  r , where 0 <  r  <  b  ( r    0 would imply that a

b  is a number and   n  a square). 
Consider the following diagram generalizing the previous one for  2 .

 On the hypotenuse of length  a , a length  qb  has been laid off, and so the 
two  e s are, in fact, the same as in the 2 case. This time, we appeal to  sim-
ilarity ; the two triangles are seen to have pairwise the same angles, and so 
we have the proportion 

� �
  

2

,  or .
a c e c ce

a
c r r

Figure 5.3

 There is a factor of  b  on both sides of the latter:  a b n ;  c  2     a  2  −  q  2  b  2    
 b  2  n  −  q  2  b  2  by the Pythagorean Theorem; and  ce   qbr,  since  qb e

c r  again by 
similarity. Reducing by  b , 
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� �
 � �

2

,  where 0 ,
bn q b qr

n r b
r

 so that the ratio  a
b n  has been reduced to a ratio of smaller numbers. But 

as before, this reduction cannot be repeated forever (infinite regress) or had 
we started out with commensurability with smallest possible multiples, we 
would have a contradiction ( reductio ). 

 Since  r   a − qb  and  qa   q  2  b + qr,  one sees again that from the algebraic 
aspect, the components of a ratio have been made smaller: 

� � �
 � � �

�
*              ,  where 0 .

bn qa
n a qb b

a qb

 The author found this proof, and there is an initial sense of surprise in 
that through all the centuries there seems no record of a proof put just so. Is 
this creative? Novel? One should be loath to speculate in general for math-
ematics, but this is not an atypical episode in its progress. Perhaps there is 
surprise at first, but there quickly comes understanding by viewing aspects 
that are really there to be seen. With the 2  anthyphairetic proof given 
above as precedent, one is led to such a proof in order to account for the 
 generality  of Theaetetus’s Theorem and his having been alleged to have had 
a proof. It could, in fact, have been the original proof; its use of the division 
algorithm and ratios is within the resources that were presumably available 
already to the elder Theodorus. One notices an aspect of generality emerging 
in context, like a face out of a picture puzzle. 

 Be that as it may, historians in their ruminations have attributed proofs 
to Theaetetus that can be drawn out from propositions in the arithmetical 
Books VII and VIII of  Elements , the first having been attributed to Theaete-
tus himself in his efforts to rigorize his theorem. 5  Scanning these books, there 
are several propositions that lead readily to Theaetetus’s Theorem. 

 According to Book VII, ‘a  number  is a multitude composed of units’ 
(Definition 2); ‘a number is  part  of [divides] a number, the less of the 
greater, when it measures the greater’ (Definition 3); and ‘numbers  rela-
tively prime  are those which are measured by a unit alone as a common 
measure’ (Definition  12). Assuming that  a

b n so that  a  2     nb  2 , each 
of the following propositions about numbers readily implies that  n  is a 
square: 

 1. (VII 27) If  r  and  s  are relatively prime, then  r  2  and  s  2  are relatively prime. 
(Assume that  a  and  b  are the least possible so that they are relatively 
prime. As  b  2  divides  a  2 , by the proposition  b  2  must be the unit. Hence,  b  
must be the unit, and so  n  is a square.) 
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 2. (VIII 14) If  r  2  divides  s  2 , then  r  divides  s.  (It follows that  b  divides  a , and 
so  n  is a square. This proposition is not used elsewhere in the  Elements  
and seems earmarked for Theaetetus’s Theorem.) 

 3. (VIII 22) If  r ,  s ,  t  are in continued proportion (i.e.  r s
s t ) and  r  is a 

square, then  t  is a square. (Since  
2a nb

nb n  and  a  2  is a square,  n  is a square.) 

 Having allowed the positive conclusion that  n , after all, could be a square, 
only the argument from VII 27 still depends on least choices for  a  and  b.  
However, all the propositions depend on the much-used VII 20, which is 
 about  least choices: 

 If 
a c
b d

 and  a  and  b  are  least  possibilities for this ratio, then  a  divides  c  and  b  divides  d.  
The proof of VII 20 given in the  Elements  seems roundabout, and we give 
a sequentially direct proof, for example, that  b  must divide  d : assume to the 
contrary that  d   qb + r  with the division algorithm, where 0 <  r  <  b.   qaa

b qb   
(VII 17), and this together with  a c

b d  implies �
� c qaa

b d qb  (VII 12). But this con-
tradicts the leastness assumption as  d  –  qb   r  <  b.  

 VII 20 itself leads quickly to Theaetetus’s Theorem: 

   Assume ,  so that .
a a n nb

n
b b an

 Then if  b  is the least possibility for this ratio, then  b  divides  a , and so  n  is 
square. 

 These proofs of Theaetetus’s Theorem drawn from the  Elements  are arith-
metical and veer towards  reductio  formulations, while the ‘new’ proof given 
earlier is diagrammatic and more suggestive of infinite regress. Is there, after 
all, a commonality of aspect? Yes, it is there to be seen but somewhat hidden. 
It is seen through a simple algebraic proof of Theaetetus’s Theorem using a 
scaling factor, which is mysterious at first: 

 If  a
b n and there is a number  q  such that � � �1q n q so that  qb  <  a  < 

( q  + 1) b,  we then have the algebraic reduction 

� �
� �
� �

� �
  � � �

��
**               ,  where 0 .

a n qa bn qa
a qb b

b a qbb n q

 This  q  is just the  q  of the division algorithm  a   qb + r  of the diagram-
matic proof, and (

) is a rendering of the (
) after that proof. As for the 
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arithmetical proof, the ratio reduction is there but only as part of the proof 
of VII 20 given above, at the use of VII 12. These aspects of various proposi-
tions and proofs are all there to be seen in a kind of whirl, the interconnec-
tions leading to understanding. 

 Today, prime numbers and the Fundamental Theorem of Arithmetic, that 
every number has a unique factorization into prime numbers, are basic 
to number theory, and it is a simple exercise in counting prime factors to 
establish Theaetetus’s Theorem. However, for more than two millennia until 
Gauss the new simplicity afforded by the fundamental theorem was not 
readily attainable. There have recently been several accounts of the irratio-
nality of k n  ab initio  that exhibit a minimum of resources though without 
conveying historical resonance, and these ultimately turn on (

), what was 
there to be seen. 6  

 Richard Dedekind in his 1872  Stetigkeit und irrationale Zahlen,  the foun-
dational essay in which he formulated the real numbers in terms of Dede-
kind cuts, provided (IV), what has been considered a short and interesting 
proof of the irrationality of n for non-square  n : assume that  a

b n  with 
 b  the least possibility and � � �1q n q . Then algebraically 

� � � � � � � �� �� � �  � �2 2 2 2 2***            bn qa n a qb q n a nb

 However,  a  2  −  nb  2  is zero by assumption and so is the left side, and hence, 

� � � �� � � � � �� �� � � �  � � � � .N q n a b n N q n N a b n

 contrary to the leastness of  b.  
 Again the scaling ratio of (

) has emerged, but how had Dedekind got-

ten to it? During this time, Dedekind was steeped in algebraic number the-
ory, particularly with his introduction of ideals. The  ring  ª º

¬ ¼Z n  consists 
of �x y n , where  x  and  y  are integers and the ring has a  norm  given 
by � � � �� ��  � �  �2 2N x y n x y n x y n x ny . The norm of a product 
is the product of the norms—Brahmagupta’s identity, first discovered by 
the 7th century  ce  Indian mathematician. In these terms, (


) above is just 
expressing 

where 0 ,
bn qa

n a qb b
a qb
�

 � � �
�

 The appearance of the scaling factor �n q  of (

) is motivated here in 
terms of norm reconstruing distance. Also, in this wider context of algebraic 
structures, it is well known that unique factorization into ‘prime’ elements 
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may not hold, and so there is a  logical  reason to favor the Dedekind approach 
to the irrationality. 

 That (

) emerges as a commonality in proofs of Theaetetus’s Theorem is 
itself a notable aspect. Although indicating a proof on its own, (

) remains 
thin and mysterious in juxtaposition with the ostensible significance of the 
result, both historical and mathematical. One sees more sides and angles, 
whether about number, discovery or proof, in the other proofs—embedded 
as they are in larger ways of thinking—and these aspects garner a mathemat-
ical understanding of the proofs and related propositions. 

 3. Derivative of Sine 

 In this section, a basic circularity in textbook developments of calculus is 
brought to the fore, and this logical node is related to the ancient deter-
mination of the area of the circle. How to progressively get past this node 
is considered, the several ways bringing out different aspects of analysis, 
parametrization, and conceptualization. There is quite a lot of mathemati-
cal and historical complexity here, but this is requisite for bringing out the 
subtleties of aspect-perception in this case, especially of seeing something  as  
something and  in  something. 

 The calculus of Newton and Leibniz revolutionized mathematics in the 
17th century, with dramatically new methods and procedures that solved 
age-old problems and stimulated remarkable scientific advances. At the 
heart is a bifurcation into the differential calculus, which investigated instan-
taneous rates of change, like velocity and acceleration, and the integral cal-
culus, which systematized total size or value, like areas and volumes. And 
the Fundamental Theorem of Calculus brought the two together as opposite 
sides of the same coin. 

 In modern standardized accounts, the differential calculus is developed 
with the notion of limit. Functions working on the real numbers are differen-
tiated, that is, corresponding functions, their derivatives, are determined that 
are to characterize their rates of change. The differentiation of the trigono-
metric functions is a consequential part of elementary differential calculus. 
The process can be reduced to determining that the derivative of the sine 
function is the cosine function, and this devolves, fortunately, to the deter-
mination of the derivative of the sine function evaluated at 0. This amounts 
to showing 

� �
T

T
To

 
0

sin
*           lim 1,

 that the limit as  θ  approaches 0 of the ratio of sin  θ  (the sine of  θ ) to  θ  
is 1. This is the first interesting limit presented in calculus courses, bringing 
together angles and lengths. How is it proved? 
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 is established, pursuing the algebraic aspect and dividing through by sin  θ  
and then taking reciprocals yields 

 In all textbooks of calculus save for a vanishing few, a geometric argument 
is invoked with the following accompanying diagram: 

 Consider the arc  AB  subtended by (a small) angle  θ  on the unit circle, the 
circle of radius 1, with center  O.  The altitude dropped from  A  has length sin   θ , 
‘opposite over hypotenuse’, for the angle  θ ; the length of the circular arc  AB  
is  θ , the (radian) measure of the angle (with 2 π  for one complete revolution); 
and the length of  AcB  is tan  θ  (the tangent of  θ ), ‘opposite over adjacent’. Once 

� � T T T� �**           sin tan

T T T
T T

! �  
sin sin

1 cos ,
tan

 and since cos  θ  (the cosine of  θ ), ‘adjacent over hypotenuse’, approaches 1 
as  θ  approaches 0, (
) follows. 

 In geometric aspect, the first inequality of (

) as a comparison of lengths 
is visually evident, but the second is less so. One can, however, proceed with 
areas: The area of triangle  OAB  (formed by introducing line segment  AB ) 
is T1

2 sin , ‘half the base times the height’; the area of circular sector  OAB  is 
T
2 , since the ratio of this area to the area  π  of the unit circle is proportional 
to the ratio of  θ  to the circumference 2 π ; and T1

2 tan  is the area of triangle 
 OAcB.  With the figures subsumed one to the next, (

) follows by compar-
ison of areas. 

 But this is a circular argument! It relies on the area of the unit circle being 
 π , where 2 π  is the circumference, but the proof of this would have to entail 
taking a limit like (
), or at least the comparison of lengths (

) as in the 

Figure 5.4
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diagram. And underlying this, what after all  is  the length of a curve, like an 
arc? We can elaborate on, and better see, this issue by looking at the deter-
mination of the area of a circle in Greek mathematics. 7  

 Archimedes in his treatise  Measurement of a Circle  famously established 
that the area of a circle of radius  r  is equal to the area of a right triangle 
with sides  r  and the circumference. With this latter area being S� �1

2 (2 )r r , 
we today pursue the algebraic aspect and state the area as  πr  2 . Archimedes 
briefly sketched the argument in  Measurement  in terms of the right triangle; 
it is more directly articulated through Propositions 3 through 6 of his  On 
the Sphere and Cylinder I . 

 The method was to inscribe regular  n -gons (polygons with  n  equal sides) 
in the circle of radius  r , to circumscribe with such, and then to take a limit 
as  n  gets larger and larger via the Eudoxan method of exhaustion. The fol-
lowing diagram taken from  On the Sphere  pictures a sliver of the argument: 

 The triangle  OAC  is one of the  n  triangles making up an inscribing  n -gon, 
the circular arc  AC  is 1

n  of the circumference, and the triangle  OAcCc  is one 
of the  n  triangles making up a circumscribing  n -gon. This figure is just a 
coupling of the previous figure scaled to radius  r  with its mirror image, and 
so in (modern, radian) measure we would have: 

 The angle  AOC  is S2
n , and so with half of this as the angle ST  n  of the pre-

vious figure, the line segment  AC  has length twice Ssin nr , or S2 sin nr . Similarly, 
the line segment  AcCc  has length S2 tan nr . Finally, the arc  AC  has length S2 r

n , 
based on the circumference being 2 πr.  

 Archimedes in effect used the version 

Figure 5.5

S S S
� �

2
2 sin 2 tan

r
r r

n n n
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 of (

) to show, for the Eudoxan exhaustion—we would now say for the 
taking of a limit—that the perimeter of the inscribing and circumscribing 
polygons approximate the circumference from below and from above. This 
appeal to (

) is not itself justified in  Measure , but the first two “assump-
tions” in the preface to  On the Sphere  serve: (1) the shortest distance 
between two points is that of the straight line connecting them (so sin  θ  
<  θ ), and (2) for two curves convex in the same direction and joining the 
same points, the one that contains the other has the greater length (so 8   θ  < 
tan  θ ). 

 With such assumptions, Archimedes had set out the conditions for how 
his early predecessors had constructed arc length. Archimedes’ work evi-
dently built on a pre-Euclidean tradition of geometric constructions, 9  in 
which an important motif had been how to  rectify  a curve, that is, render 
it as a straight line. Indeed, Archimedes stated and conceptualized his area 
theorem as one sublimating the circumference as a straight line, the side of a 
triangle; he  could not  in any case have stated the area as  πr  2 , the Greek geo-
metric multiplication having to do with areas of rectangles and not generally 
allowed for magnitudes. 

 These aspects of area and length are illuminated by Euclid’s  Elements  
XII 2:  Circles are to one another as the squares on their diameters.  This 
had been applied over a century before by Hippocrates of Chios in his 
‘quadrature of the lunes’, and Euclid managed a proof in his system with 
a paradigmatic use of the method of exhaustion that borders on Archi-
medes’ later use. Commentators have pointed out how XII 2 falls short 
of getting to the actual ratio  π,  but in thinking through the aspects here, 
Euclid  could not  have gone further. In his rigorization over his predeces-
sors, Euclid had famously restricted geometric constructions to straight-
edge and compass, and he had no way of rectifying a curve and so of 
formulating the ratio  π.  For Euclid, and Greek theoretical mathematics, 
area was an essentially simpler concept, from the point of view of proof, 
than length (for curves); area could be worked through congruent figures, 
and there were no beginning, ‘common notions’ for length. Comparison 
of areas with one figure subsumed in another is simpler than a compari-
son of length (of curves), and XII 2 epitomizes how far one can go with 
the first. Archimedes went further to the actual ratio  π,  for 20 centuries 
called ‘Archimedes’ constant’, but this depended on his assumptions 
(1) and (2). 

 Especially with this historical background uncovering aspects of length 
and area for the circle, one can arguably take (

) as logically immediate 
as part of the concept of length. We today have a mathematical concept 
of rectifiable curves, a concept based on small straight chords approxi-
mating small arcs so that polygonal paths approximate curves. Seeing the 
concept of length from this aspect, Archimedes’ assumptions (1) and (2) 
are more complicated in theory than (

) itself. Moreover, there is little 
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explanatory value in proving (
), as it is presupposed in the definition of 
arc length. 

 The logical question remains whether we can avoid the theft of assuming 
what we want and move forward to the derivative of the sine with honest 
toil. There are several ways, each illuminating further aspects of how we are 
to take analysis and definition, from arc length to the sine function itself. 

 (a) Taking area as basic,  define  the measure of an angle itself in terms 
of the area of the subtended sector. To scale for radian measure,  define the 
measure of an angle to be twice the area of the sector it subtends in the unit 
circle.  Then by comparison of areas, T T T� �1 1 1

2 2 2sin tan , and (

) is imme-
diate. With this, one could deduce à la Archimedes that the area of the unit 
circle is  π , where 2 π  is the circumference, so the measure for one complete 
revolution is 2 π , confirming that we do, indeed, have the standard radian 
measure. Defining angle measure in this way may be a pedagogical or cur-
ricular shortcoming, but the shift in logical aspect is quickly re-coordinated 
and, moreover, resonates with how the conceptualization of area is simpler 
than that of length. 

 G. H. Hardy’s classic  A Course in Pure Mathematics  (1908: §§158, 217) 
and Tom Apostol’s calculus textbook (1961: §1.38) are singular in point-
ing out the logical difficulty of defining the measure of an angle in terms 
of an unrigorized notion of arc length, and in advocating the definition of 
the measure of an angle in terms of area. Hardy (1908) advocated several 
approaches to the development of the trigonometric functions, two of 
which are conglomerated in (c) below. Apostol’s 1961 work is the rare 
calculus textbook of recent memory that does not proceed circularly; it 
develops the integral calculus prior to the differential calculus, defines 
area as a definite integral, and only later defines length for rectifiable 
curves. 10  

 (b) First define the length of a rectifiable curve in the usual way as an 
integral. Then, get the derivative of sine using methods of calculus: 

 Let  x    sin  θ  and  y    cos  θ  so that with Pythagorean relation  � 21y x , 

 Anticipating the use of the length integral, note that 

§ ·�  �  ¨ ¸ �© ¹ �

2 2

2 2

1
1 1 .

1 1

dy x
dx x x

 Since, according to the parametrization,  θ  is the length of the arc from 0 to  x , 

2
.

1

dy x
dx x

�
 

�
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T  
�

³0 2

1
.

1

x
dt

t

 By the Fundamental Theorem of Calculus, 

T
 

� 2

1
,

1

d
dx x

 so that by the Inverse Function (or Chain) Rule, 

TT
  � 21

1 ,
dx

x
dd
dx

 or in terms of  θ , 

T T
T

 sin cos .
d

d

 One can similarly get  T T T cos sin .d
d

 This approach underscores how length can be readily comprehended with 
infinitesimal analysis and how the derivative of the sine being cosine can be 
rigorously established by a judicious ordering of the development of cal-
culus. Importantly, the approach depends on the Fundamental Theorem, 
which, in turn, depends on the conceptualization of area as a definite inte-
gral. In this logical aspect, too, area is thus to be conceptually subsumed 
first. There would be a pedagogical or curricular shortcoming here as well, 
this time with the derivative of the sine popping out somewhat mysteriously. 

 The author found this non-circular proof that the derivative of the sine is 
the cosine and could not find this approach in the literature. Is this a new 
theorem? Is it creative? Novel? Here, a logical gap was filled with familiar 
methods. The proof can be given as a student exercise, once a direction is set 
and markers laid. The task set would be to outline, with an astute ordering 
of the topics, a logical development of the calculus through to the trigono-
metric functions. If the Fundamental Theorem and the length of a rectifiable 
curve as an integral are put first, then the above route becomes available 
to the derivatives of the trigonometric functions. This logical aspect of the 
derivative of sine was there to be found, emerging with enough structure. 

 (c) Taking seriously the study of the trigonometric functions as part 
of  mathematical analysis —the rigorous investigation of functions on the 
real and complex numbers through limits, differentiation, integration, and 
infinite series— define  the sine function as an infinite series. One can follow 
a historical track as in the following. 
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 Let  f ( x ) by a function defined by the integral in (b): 

� �
0 2

1

1

x
f x dt

t
 

�
³

 Newton knew this to be, as in (b), the  inverse  of the sine function:  f ( x )    θ  
exactly when sin  θ   x.  He had come early on to the general binomial series, 
and so in his 1669  De analysi  (cf. Newton 1968: 233ff.) he expanded the 
integrand � 2

1

1 t as an infinite series, integrated it term by term, and then, 
applying a key technique for inverting series term by term, determined the 
infinite series for sine: 

� �
3 5 7

...
3! 5! 7!
x x x

S x x � � � �

 One can, however, take this  ab initio  as simply a function to investigate. 
Term-by-term differentiation yields 

� �
2 4 6

1 ...
2! 4! 6!
x x x

C x  � � � �

 Hence, by series manipulation,  S  2 ( x ) +  C  2 ( x )   1, which sets the stage as the 
Pythagorean Theorem for the unit circle. Next, define  π  as a parameter, the 
least positive  x , such that  S ( x )   0. 

 With these, one works out that as  x  goes from 0 to  π,  the point ( S ( x ),  C ( x )) 
in the coordinate plane traverses half the unit circle and, through the length 
formula, that the circumference of the unit circle is 2 π.  Hence, taking sin  x   
S ( x ) and cos  x   C ( x ) retrieves the familiar trigonometric functions and their 
properties, as well as the derivative of the sine being cosine. 11  

 This approach draws out how the trigonometric functions can be devel-
oped separately and autonomously in the framework of mathematical analy-
sis. The coordination with the classical study of the circle and its measurement 
then has a considerable aspectual variance: one can take the geometry of the 
circle as the main motivation, one can bring out interactions between the 
geometric and the analytic, or one can even avoid geometric ‘intuitions’, a 
thematic feature of analysis into the 19th century. 

 Lest the analytic approach to the trigonometric functions still seems arcane 
or historically Whiggish, consider the function � �

�
 ³ 4

1

0 1

x

t
g x dt , where the 

‘2’ of the previous integral has been replaced by ‘4’. This ‘lemniscatic inte-
gral’ arose as the length of the ‘lemniscate of Bernoulli’ at the end of the 17th 
century, and it was the first integral which defied the Leibnizian program 
of finding equivalent expressions in terms of ‘known’ functions (algebraic, 
trigonometric, or exponential functions and their inverses). At the end of the 
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18th century, the young Gauss focused on the  inverse  of the function  g ( x ) 
and found its crucial property of  double periodicity.  By 1827 the young Abel 
had also studied the inverse function, and in 1829 Jacobi wrote a treatise on 
the subject, from which such functions came to be known as  elliptic func-
tions , the integrals  elliptic integrals , and the curves they parametrize  elliptic 
curves.  Thence, elliptic functions have played a large, unifying role in num-
ber theory, algebra, and geometry as they were extended into the complex 
plane. On that score, by 1857 Riemann had shown that the complex param-
etrizations are on a  torus , a ‘doughnut’, with double periodicity an intrinsic 
feature. This is how the geometric figure of the torus came to be of central 
import in modern mathematics—the arc of discovery going in the opposite 
direction from the circle to the integral � �

�
 ³ 2

1

0 1

x

t
f x dt . 

 There is a broad matter of aspect to be reckoned with here, and, as a 
matter of fact, throughout this topic, as well as the previous. Taking mathe-
matics as based on networks of conceptual constructions, one sees through 
aspects various historical and logical progressions. Simply seeing a cer-
tain ‘face’ on a topic in mathematics is to make connections with familiar 
contexts and modes of thinking, and this leads to the sometimes sudden 
dawning of logical connections. That aspects are logical thus has a further 
dimension in mathematics, that there are webs of logical connections. We 
can be provoked to seeing logical sequencings of results and themes, all 
there to be found. As we look and see, we can develop and reconstruct 
mathematics. In this, aspect-perception counsels the history of mathematics 
and draws forth an understanding of it, that is, its truths as embedded in 
its proofs. 

 Stepping back further from the two topics presented in this chapter, one 
may surmise that many pieces of mathematics can be so presented as pictures 
at an exhibition of mathematics, with aspects and aspect-perception helping 
to get one about. Between seeing and thinking, aspect-perception is logical 
and can participate in the analysis of concepts. In the discussion of the 
irrationality of n , we saw conceptions of number themselves at play, the 
diagrammatic geometry of the Greeks stimulating a remarkable advance, 
various arithmetical manipulations of number domesticating the irratio-
nality, and the play of recent systematizations reinforcing a commonality. 
In the discussion of the derivative of the sine function, we saw a basic limit 
issue of calculus swirling with the ancient determination of the area of a 
circle, the involvement of Greeks conceptualizations of area and length, 
different approaches to establishing a rigorous progression, and how older 
concepts can be transmuted in a broad new context. Venturing some gen-
eralizing remarks, across mathematics there are many angles, faces, and 
views and the noticing, continuous seeing, and dawning of many aspects. 
Especially in mathematics, however, aspect-perception is not just about 
conventions or language. Rather, aspects get at objectivity from a range of 
perspectives and, thus, collectively track and convey necessity, generality, 
and truth. 
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 Notes 
 Aspects of this chapter were presented at 2013 seminars at Carnegie Mellon 
University and at the University of Helsinki; many thanks to the organizers for hav-
ing provided the opportunity. The chapter has greatly benefitted from discussions 
with Juliet Floyd. 

   1.  Part II is renamed  Philosophy of Psychology—a Fragment  in the recent edition 
(2009) of  Philosophical Investigations.  

   2.  This belies objections at times lodged against Wittgenstein that he only raised 
philosophical issues of pertinence to very simple mathematics. 

   3 . See Knorr (1975) and Fowler (1999) for extended historical reconstructions 
based on different approaches, and see Conway and Shipman (2013) for the 
most recent mathematical tour. 

   4.  See Knorr (1975, chap. II, sect. II) for a critical analysis. Knorr (1998) late in his 
life maintained, however, that a specific diagrammatic rendition of the proof was 
the original one. 

   5 . Cf. Knorr (1975, chap. VII). 
   6 . See Beigel (1991) and references therein. Conway and Guy (1996: 185) conveys 

a proof in terms of fractional parts, which again amounts to (

). 
   7.  This circularity was pointed by Richman (1993) and, in the context of ancient 

mathematics, by Seidenberg (1972). Both pursue the trail in ancient mathematics 
at some length. 

   8 . For this, one imagines in the first diagram a mirror image of the figure put atop 
it, say with a new point  C  corresponding to the old  B.  Comparing the arc  CAB  
to the path  CAcB  with (2), one gets 2 θ  < 2 tan  θ.  

   9 . Cf. Knorr (1986). 
   10 . The calculus textbook by Spivak (2008, III.15) defines the sine and cosine 

functions as does Apostol (1961) and is not circular, but, on the other hand, 
it also (problem 27) gives the circular approach to the derivative of the sine as 
‘traditional’. 

   11 . See the classics Landau (1934, chap. 16) and Knopp (1921: §24) for details on 
this development. 

 References 
 Apostol, Tom M. (1961).  Calculus , Vol. 1. New York: Blaisdell. 
 Apostol, Tom M. (2000). Irrationality of the square root of two—A geometric proof. 

 The American Mathematical Monthly  107: 841–842. 
 Beigel, Richard. (1991). Irrationality without number theory.  The American Mathe-

matical Monthly  98: 332–335. 
 Conway, John H. and Guy, Richard K. (1996).  The Book of Numbers.  New York: 

Springer-Verlag. 
 Conway, John H. and Shipman, Joseph. (2013). Extreme proofs I: The irrationality 

of 2 .  Mathematical Intelligencer  35(3): 2–7. 
 Fowler, David H. (1999).  The Mathematics of Plato’s Academy: A New Reconstruc-

tion , 2nd edition. Oxford: Clarendon Press. 
 Hardy, G. H. (1908).  A Course in Pure Mathematics.  Cambridge: Cambridge at the 

University Press. 
 Knopp, Konrad. (1921).  Theorie und Awendung der unendlichen Reihen.  Berlin: 

Julius Springer. Translated as  The Theory and Applications of Infinite Series . 
Dover Publications, 1990. 



130 Akihiro Kanamori

 Knorr, Wilbur R. (1975).  The Evolution of the Euclidean Elements.  Dordrecht: D. 
Reidel Publishing Company. 

 Knorr, Wilbur R. (1986).  The Ancient Tradition of Geometric Problems.  Boston: 
Birkhäuser. 

 Knorr, Wilbur R. (1998). ‘Rational diameters’ and the discovery of incommensura-
bility.  American Mathematical Monthly  105(5): 421–429. 

 Landau, Edmund. (1934).  Einführung in die Differentialrechnung und Integralrech-
nung.  Groningen: Nordhoff. Translated as  Differential and Integral Calculus . New 
York: Chelsea Publishing Company, 1951. 

 Newton, Isaac. (1968). De analysi per aequationes numero terminorum infinitas. 
In D. T. Whiteside (ed.),  The Mathematical Papers of Isaac Newton, Volume II 
1667–1670 . Cambridge: Cambridge University Press, 206–276. 

 Rademacher, Hans and Toeplitz, Otto. (1930).  Von Zahlen und Figuren: Proben 
mathematischen Denkens für Liebhaber der Mathematik.  Berlin: Julius Springer. 
Latest version in English translation  The Enjoyment of Mathematics: Selections 
From Mathematics for the Amateur . Dover, 1990. 

 Richman, Fred. (1993). A circular argument.  The College Mathematics Journal  24: 
160–162. 

 Seidenberg, Abraham. (1972). On the area of a semi-circle.  Archive for History of 
Exact Sciences  9: 171–211. 

 Spivak, Michael. (2008).  Calculus , 4th edition. Houston: Publish-or-Perish Press. 
 Wittgenstein, Ludwig. (1953).  Philosophical Investigations  (trans. G. E. M. Ans-

combe) .  Oxford: Basil Blackwell. 
 Wittgenstein, Ludwig. (1958).  The Blue and Brown Books.  Oxford: Basil Blackwell. 
 Wittgenstein, Ludwig. (2009).  Philosophical Investigations  (trans. G. E. M. Ans-

combe, P. M. S. Hacker and Joachim Schulte) .  Oxford: Wiley-Blackwell. 


