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Paul Erdős (26 March 1913 - 20 September 1996) was a mathematician par
excellence whose results and initiatives have had a large impact and made a
strong imprint on the doing of and thinking about mathematics. A mathemati-
cian of alacrity, detail, and collaboration, Erdős in his six decades of work moved
and thought quickly, entertained increasingly many parameters, and wrote over
1500 articles, the majority with others. His modus operandi was to drive mathe-
matics through cycles of problem, proof, and conjecture, ceaselessly progressing
and ever reaching, and his modus vivendi was to be itinerant in the world,
stimulating and interacting about mathematics at every port and capital.

Erdős’ main mathematical incentives were to count, to estimate, to bound,
to interpolate, and to get at the extremal or delimiting, and his main em-
phases were on elementary and random methods. These had a broad reach
across mathematics but was particularly synergistic with the fields that Erdős
worked in and developed. His mainstays were formerly additive and multiplica-
tive number theory and latterly combinatorics and graph theory, but he ranged
across and brought in probability and ergodic theory, the constructive theory
of functions and series, combinatorial geometry, and set theory. He had a prin-
cipal role in establishing probabilistic number theory, extremal combinatorics,
random graphs, and the partition calculus for infinite cardinals.

Against this backdrop, this article provides an account of Erdős’ work and
initiatives in set theory with stress put on their impact on the subject. Erdős
importantly contributed to set theory as it became a broad, sophisticated field
of mathematics in two dynamic ways. In the early years, he established results
and pressed themes that would figure pivotally in formative advances. Later
and throughout, he followed up on combinatorial initiatives that became part
and parcel of set theory. Emergent from combinatorial thinking, Erdős’ results
and initiatives in set theory had the feel of being simple and basic yet rich and
pivotal, and so accrued into the subject as seminal at first, then formative, and
finally central. Proceeding chronologically, we work to draw all this out as well
as make connections with Erdős’ larger work and thinking, to bring out how it
is all of a piece.

Paul Erdős and His Mathematics, in two volumes [Halász et al., 2002a] and
[Halász et al., 2002b], emanated from a 1999 celebratory conference, and it
surveys Erdős’ work, provides reminiscences, and contains research articles.
The Mathematics of Paul Erdős, in two volumes [Graham et al., 2013a] and
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[Graham et al., 2013b], is the second edition of a 1997 compendium brought
out soon after his “leaving”, and it provides reminiscences and extended expos-
itory articles. And Erdős Centennial [Lovász et al., 2013], on the occasion of
the 100th anniversary of his birth, provides summary expository articles em-
phasizing impact and late developments. This present account of Erdős’ work
in set theory and its impact bears an evident debt to the two previous accounts,
[Hajnal, 1997] and [Kunen, 2013], as well as to the history [Larson, 2012] of infi-
nite combinatorics. The details herein about Erdős’ life, which are not otherwise
documented, can be found in the biography by Béla Bollobás [2013].

We do proceed chronologically in general, taking up topics according to
when the main thrusts for them occurred. On the other hand, within a section
later developments and ramifications may be pursued, this to bring out the rele-
vance and impact of the work. §1 recapitulates Erdős’ mathematical beginnings,
emphasizing anticipations of his later set-theoretic work. §2 describes Erdős’ pi-
oneering work on transfinite Ramsey theory. §3 sets out the Erdős-Tarski work
on inaccessible cardinals, work of considerable import for the development of set
theory. §4 follows through on a persistent theme in Erdős’ early work, free sets
for set mappings, a topic to become of broad reach. §5 takes up Erdős’ work with
Rado on the partition calculus, which will become a large part of set theory and
be Erdős’ main imprint on the subject. §6 focuses on Erdős’ first joint work with
Hajnal and the emergent Ramsey and Erdős cardinals. §7 is devoted to a basic,
property B for families of sets, and works through the details of the joint article
with Hajnal on the subject. §8 takes up the 1960s Erdős-Hajnal development of
the partition calculus, the most consequential topic being square-brackets par-
tition relations. §9 attends to early appeals to Erdős’ work in model theory. §10
describes how close Erdős et al. came to Silver’s Theorem on singular cardinal
arithmetic. §11 charts out how the compactness of chromatic number of infinite
graphs became much addressed in set theory. And finally, §12 quickly reviews
the set-theoretic work of his later years and ventures some panoptic remarks.
A list of Erdős’ 121 publications in set theory is presented at the end, not only
to be able to cite extensively from his body of work as we proceed, but also to
provide a visual, quantitative sense of its extent.

To fix some terminology, a tree is to be a partially ordered set with a min-
imum element such that the predecessors of any element are well-ordered; the
αth level of a tree is the set of elements whose predecessors have order type α;
and the height of a tree is the least α such that the αth level is empty. A chain
is a linearly ordered subset.

κ, λ, . . . denote infinite cardinals and cf(κ) the cofinality of κ, so that κ is
singular iff cf(κ) < κ. In his problems and results parametrized with cardinals
Erdős would generally proceed with the ℵα’s, this in the Cantorian tradition of
taking the infinite cardinals as autonomous numbers. With his investigations
extending to ordered sets and order types, it became fitting to make the iden-
tification of ℵα with the initial (von Neumann) ordinal ωα. We proceed in the
modern vein of taking the ordinals as given and emphasizing the cardinal aspect
of ωα with ℵα, this being coherent with Erdős’ original intent of parametrizing
counting with cardinal numbers.
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1 Salad Days

Erdős was a child prodigy in mathematics, quick at calculations and enthusiastic
about properties of numbers and proofs, and notably, he learned about Cantor
and set theory from his father, a high school teacher.1

In 1930 Erdős at the age of 17 entered Pámány Péter Tudományegyetem,
the scientific university of Budapest; wrote his doctoral dissertation when he
was a second-year undergraduate; and received his Ph.D. in 1934. During this
period, Erdős interacted with many other students; began his long collaboration
with Paul Turán, and assimilated a great deal of mathematics from his teachers,
particularly Lipót Fejér and Dénes Kőnig, and especially from László Kalmár.2

Kőnig is now remembered for his tree, or “infinity”, lemma, the first result about
infinite graphs, and Kalmár was then the Hungarian principal in mathematical
logic, best known today for the Kalmár hierarchy of number-theoretic functions.

Erdős quickly established results and fostered approaches during this period
that would anticipate his long-standing initiatives and preoccupations. In his
first year, he found a remarkably simple proof of Chebyshev’s 1850 result that
between any n > 1 and 2n there is a prime, “Bertrand’s postulate”.3 Kalmár
wrote up the result for Erdős’ first publication [1932].4 Erdős in later years
would talk about The Book, in which God keeps the perfect proofs of theorems,
and this proof entered in an earthly rendition.5 Starting with his dissertation
of a year later clarifying issues raised by Isaai Schur of Berlin, Erdős would not
only come up with many simple proofs in number theory,6 but also elementary
proofs where only analytic proofs had existed, and in the late 1940s he and
Atle Selberg would famously provide an elementary proof of the Prime Number
Theorem itself, the circumstances prompting a well-known priority dispute.

Also during his first year, Erdős observed that the recently proved Menger’s

1[Hajnal, 1997, p.352]: “Paul told me that he learned the basics of set theory from his
father, a well educated high-school teacher, and he soon became fascinated with ‘Cantor’s
paradise’.”

[Vazsonyi, 1996, p.1], describing the first encounter with Erdős, when the author was 14
and Erdős 17:

My father had one of the top shoe shops in Budapest and I was sitting at
the back of the shop. Erdos knocked at the door and entered. “Give me a four
digit number,” he said. “2532,” I replied.

“The square of it is 6, 411, 024. Sorry, I am getting old and cannot tell you
the cube,” said he. (During his entire life, even in youth, he referred to his old
age, his old bones.)

“How many proofs of the Pythagorean Theorem do you know?” “One,” I
said. “I know 37. Did you know that the points of a straight line do not form
a denumerable set?” He proceeded to show me Cantor’s proof of using the
diagonal. “I must run,” and he left.

2Erdős said in an interview ([Sós, 2002, p.87]): “I learned a lot from Lipót Fejer and very
probably, I learned the most from László Kalmár.”

3[Turán, 2002, p.57].
4[Vazsonyi, 1996, p.2].
5cf. [Aigner and Ziegler, 2013].
6[Turán, 2002, p.57].
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theorem on connectivity in graphs also holds for infinite graphs. Kőnig had
raised the issue in his graph theory course, and he published Erdős’ argument
as the very last in his monograph [1936]. A few years later, Erdős [1][2] with
Tibor Gallai and Endre Vázsonyi provided a criterion for having an Euler path
for infinite graphs; this of course extended to the infinite the original, “seven
bridges of Königsberg” result of graph theory.

In his final university year 1934, Erdős with György Szekeres proved: For
any positive n, there is a integer N(n) such that in any set of N(n) points in
the plane, no three of which are collinear, there are n points that form a con-
vex polygon.7 In an article [1935] seminal for several reasons, they provided
two proofs, one involving the (finite) Ramsey Theorem and the other, the “or-
dered pigeon-hole principle”.8 For both of these propositions, they provided
paradigmatic proofs, these to spawn subjects in the emergent field of combi-
natorics. With the second proof, they conjectured that the least possibility
for N(n) is

(
2n−4
n−2

)
+ 1, thus initiating the study of extremal possibilities. At

the end of [1935], they pointed out that Kőnig’s “infinity” lemma provides a
“pure existence-proof” of the existence of the N(n)’s—an adumbration of later
compactness arguments in graph theory.

In these early years Cantor was Erdős’ hero, and his letters to friends ended
with “let the spirit of Cantor be with you”, soon shortened to “C with you”.9

Erdős’ enthusiasm for Cantor had a substantive correlative, in that the infi-
nite for Erdős was of a piece with the finite, particularly with propositions
parametrized according to cardinality to be entertained when those parameters
are transfinite. The seamless transition from the finite to the transfinite was
very much a part of the “spirit of Cantor”,10 and Erdős was the first promi-
nent mathematician to engage counting and mathematical concepts over a broad
range as intrinsically involving the infinite. Set theory was thus an inherent part
of Erdős’ field of play, not only the transfinite cardinals but infinite structures
generally.11 In this operative engagement, there was no particular difference

7Eszter Klein, wife-to-be of Szekeres, had originally come up with a neat argument to show
that N(4) can be taken to be 5 and conjectured the general situation.

8For positive integers i, k, any sequence of (i− 1)(k− 1) + 1 distinct integers has either an
increasing sequence of i elements or a decreasing sequence of k elements.

9See [Sós, 2002] with letters from Erdős to Turán, specifically p.100,109,114: “. . . only the
spirit of Cantor knows whether the theorem remains true or not”; “The spirit of Cantor
was with me for some time during the last few days, the results of our encounters are the
following:”; “. . . sad news, the spirit of Cantor took Landau . . . The spirit of Cantor avoids
me, yesterday I was thinking of number theory a lot, besides a few conjectures I had no
success”.

Nicolaas de Bruijn [2002] in reminisciences wrote: “Once, during a walk in 1954, I said that
I wondered why he [Erdős] was such an excellent discoverer and solver of problems, and not
a builder of theories. In a way it hit him, and he said that he would have liked so much to
have been the first to discover Cantor’s set theory.”

10Michael Hallett [1984] emphasized this, as Cantor’s “finitism”.
11Paul Bateman [2002] in reminiscences wrote, ingenuously: “Another early paper of mine

which owes a lot to Erdős is ‘A remark on finite groups,’ Amer. Math. Monthly, 57 (1950),
623-624; after I had obtained the assertion of the paper for a denumerable group, Erdős
pointed out to me that my proof worked for an infinite group if I merely used the concept of
a limit ordinal.”
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in “ontological commitment” between the finite and the infinite. Moreover, set
theory was enriched and influenced in its development by Erdős’ initiatives from
the finite. Infinite parametrization appeared early in Erdős’ work, starting with
the Menger-theorem and Euler-path results. Both propositions applied in the
two proofs of Erdős-Szekeres [1935] would soon be extended into the transfinite.

By 1934, Erdős was in correspondence with mathematicians in England, the
prominent Louis Mordell and the young Harold Davenport and Richard Rado.12

On finishing university, Erdős took up research fellowships for four years ar-
ranged by Mordell at Manchester, where he was bringing in many emigré math-
ematicians. During this period, Erdős established his modus operandi of driving
mathematics through cycles of problem, proof, and conjecture, ever punctuat-
ing and parametrizing mathematical concepts and procedures, and drawing in
collaborators through increasing travel and interaction. He started to generate
articles, almost all on number theory then, at a prodigious rate, a rate that
would only double in the decades to come.

In 1938, Erdős took up a fellowship at the recently established Institute for
Advanced Study at Princeton in the United States, and with the war in Europe
he would not return for the next decade. During this period, Erdős settled into
his modus vivendi of itinerant travel, having no fixed residence but traveling to
do mathematics with an ever increasing array of collaborators. He continued to
generate many articles in number theory, but now some in the constructive and
interpolation theory of polynomials, and soon, in set theory.

2 Transfinite Ramsey Theory

In the 1940s, Erdős began in earnest to consider infinite parametrizations, this
naturally in the open-ended framework of graph theory. After securing initial
footholds, he increasingly took on the transfinite landscape as the setting for
intrinsically interesting problems. As a result, the transfinite became newly
elaborated and articulated, infinite sets and cardinals becoming differentiated
by combinatorial features.

Erdős was involved in the first avowedly transfinite result of graph theory.
Ben Dushnik and Edwin Miller [1941] broke ground with: For an infinite car-
dinal κ, every graph on κ vertices without an independent (i.e. pairwise non-
adjacent) set of vertices of cardinality κ has a complete (i.e. all vertices adjacent)
infinite subgraph. As acknowledged [1941, n.6], Erdős provided the discerning
argument for singular κ, this setting the precedent for his attention to singular
cardinals.

12Rado, a student of Schur at Berlin, had emigrated to England. Erdős [110], on his joint
work with Rado, wrote: “In one of my first letters to Richard early in 1934, I posed the
following question: Let S be an infinite set of power m. Split the countable subsets of S into
two classes. Is it true that there always exists an infinite subset S1 of S all of whose countable
subsets are in the same class? This, if true, would be a far reaching generalization of Ramsey’s
theorem. Almost by return mail, Rado found the now well-known counterexample using the
axiom of choice.” See §5.
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Soon afterwards, Erdős in a seminal 1942 article [3] established formative re-
sults for transfinite Ramsey theory. For stating coming propositions succinctly,
we affirm the “arrow” notation of the later, 1950s partition calculus.

For a set X of ordinals, [X]γ = {y ⊆ X | y has order type γ}. The “ordi-
nary” partition relation

β −→ (α)γδ

asserts that for any partition f : [β]γ → δ, there is an H ∈ [β]α homogeneous for
f , i.e. |f“[H]γ | ≤ 1. Colorfully put, for any coloring of the order type γ subsets
of β with δ colors there is an H ⊆ β of order type α all of whose order type γ
subsets are of the same color. For the case δ = 2, the elaborated, “unbalanced”
relation

β −→ (α0, α1)γ

asserts that for any f : [β]γ → 2, there is an i < 2 and an H ∈ [β]αi such that
f“[H]γ = {i}. Negations of such relations are indicated with a −→/ replacing
the −→.

The finite Ramsey Theorem asserts that for any 0 < r, k,m < ω, there is an
n < ω such that

n −→ (m)rk ,

with the least possibility for n, the extremal Ramsey number Rr(m; k), still
unknown in general. The infinite Ramsey Theorem asserts that for 0 < r, k < ω,

ℵ0 −→ (ℵ0)rk .

Finally, the Dushnik-Miller Theorem, translated from graphs, was the first,
unbalanced extension of the infinite Ramsey Theorem: For infinite cardinals κ,

κ −→ (κ,ℵ0)2 .

Erdős [3] newly established for infinite cardinals κ:

(a) (2κ)+ −→ (κ+)2κ, and

(b) If 2κ = κ+, then (κ++) −→ (κ++, κ+)2,

(a) decisively incorporated cardinal exponentiation, and (b) modulated it to
establish a sharpening of Dushnik-Miller. Erdős’ argument for (b) actually
showed

(2κ)+ −→ ((2κ)+, κ+)2

outright, a sharpening of (a) in the case of two colors.
(a) is the best possible in the sense that both 2κ−→/ (3)2κ and 2κ−→/ (κ+)22.13

Consequently, it is readily seen that in the transfinite the extremal possibilities,

132κ−→/ (3)2κ was pointed out by Erdős in [3] and actually accredited by him to Kurt Gödel
in [5]; the quickly seen counterexample is F : [κ2]2 → κ given by F ({f, g}) = the least α
such that f(α) 6= g(α). 2κ−→/ (κ+)22 is attributable to Sierpiński [1933]; the simply put,
straightforward counterexample is G : [κ2]2 → 2 given by G({f, g}) = 0 iff for the least α such
that f(α) 6= g(α), f(α) < g(α).
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what the Ramsey numbers are, for superscript 2 has been solved with one swoop.
The later “Erdős-Rado Theorem” would provide the extremal possibilities for
all superscripts r; often, however, the term is often used to refer just to (a), the
case that became basic to set theory through its many applications.

For both [3] results Erdős made inaugural use of the ramification, or tree,
argument, an argument to become the signature method for getting homoge-
neous sets in the next several decades. In brief, suppose that f : [X]2 → δ.
Choose an “anchor” a0 ∈ X; the sets Qξ = {b | f({a0, b}) = ξ} partition the

rest of X into δ parts. Next, for each ξ < δ choose an anchor aξ1 ∈ Qξ, and
again partition the rest of Qξ according to what f does. At limit stages, take
intersections of ⊃-chains of sets, and if non-empty, continue again starting with
an anchor in there. By this means, one generates a tree of sets under ⊃. Note
that the anchors corresponding to any ⊃-chain form an end-homogeneous set, in
that for anchors a, b, c appearing in that order, f({a, b}) = f({a, c}). One can
check that the αth level of the tree has size at most |δ||α|, so that a sufficiently
large |X| ensures a substantial ⊃-chain through the tree. Finally, with |δ| less
than the size of the ⊃-chain, the corresponding anchors can be thinned out to
get a genuinely homogeneous set for f .

This is in the manner of a “pure existence proof”, in that cardinality con-
siderations alone provide for a homogeneous set which otherwise has no par-
ticular definition. Through his results and initiatives, and especially with his
“probabilistic method” in number theory and graph theory, Erdős would make
non-constructive existence arguments conspicuous in mathematics as a matter
of style and procedure, and this resonated in set theory through infinite cardi-
nality.

It is a notable historical happenstance that Duro Kurepa was one contextual
step away from earlier establishing the Erdős [3] results for two colors.14 As part
of his penetrating work on partial orders, Kurepa [1939] had established a pivotal
cardinal inequality for partial orders, his “fundamental relation”. In 1950, he
[1953] recast this relation for graphs, showing in effect: (µν)+ −→ (µ+, ν+)2

for infinite cardinals µ and ν. With µ = 2κ and ν = κ, one has the Erdős
(2κ)+ −→ ((2κ)+, κ+)2.

The deliberate appeal in (b) to 2κ = κ+ was the first of Erdős’ many to
instances of the Generalized Continuum Hypothesis (GCH) in his theorems. For
Erdős it would be less about what is true, but what can be proved, how enough
structuring would lead to neat theorems. For GCH itself, there was actually a
direct antecedent at its provenance: Hausdorff [1908] had first formulated GCH,
and assumed it to establish that for every infinite cardinal κ there is a universal
linear order, a linear order of size κ into which every linear order of size κ embeds.
For CH, Wac law Sierpiński had recently brought out a monograph [1934a] on
the Continuum Hypothesis (CH), and Kurt Gödel had recently established the
relative consistency of GCH. Mathematical investigation had transmuted CH
from a primordial hypothesis about cardinality to an enumeration principle for

14cf. the commentary by Stevo Todorcevic in [Kurepa, 1996, §C], from which the following
remarks are derived.
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the reals. Continuing the conversation, Erdős readily used CH and GCH, come
what may. In this Erdős anticipated and contributed to the predisposition to
assume set-theoretic hypotheses to prove theorems, whether Martin’s Axiom or
large cardinals.

Also in 1942, Erdős with Shizuo Kakutani [5] provided a characterization of
ℵ1 in terms of graphs, and used this to show that CH is equivalent to the reals
having a partition into countably many sets each consisting of rationally inde-
pendent reals. And extending a result of [Sierpiński, 1934b], Erdős established
the now well-acknowledged Erdős-Sierpiński Duality: Assuming CH, there is a
bijection of the reals into itself that interchanges the (Lebesgue) null sets with
the (Baire) meager sets. This appeared in the 1943 article “Some remarks on
set theory” [6], the first of eventually eleven articles of that title, mostly co-
authored, which recorded Erdős’ ongoing set-theoretic problems, proofs, and
conjectures (§4). It is still open whether having such a duality is consistent
with ¬CH.

3 Inaccessible Cardinals

Erdős’ work most salient for the early development of set theory appeared in the
concluding section of his 1943 joint article [4] with Alfred Tarski and was later
elaborated in their 1961 article [32]. Tarski in set theory had done considerable
work on cardinal numbers vis-à-vis the Axiom of Choice; was becoming known
for his set-theoretic definition of truth; and in [Sierpiński and Tarski, 1930] and
[Tarski, 1938] had studied the (strongly) inaccessible cardinals. Like Erdős, with
the war Tarski had been itinerant in the United States.15 In their [4] they first
brought forth the inaccessible numbers as part of a fabric of wider set-theoretic
issues, and this would foster the integration of large cardinal hypotheses into
set theory.

A cardinal κ is weakly inaccessible iff it is a regular, uncountable limit cardi-
nal, and is (strongly) inaccessible iff it is a regular, uncountable cardinal which
is a strong limit: If λ < κ, then 2λ < κ. The concluding section of [4] dealt
with inaccessible cardinals, but most of the paper had to do with fields of sets
in which weakly inaccessible cardinals figured in a result notable for its modern
resonance.

Proceeding in present parlance, for a partially ordered set 〈P,≤〉, an A ⊆ P
is an antichain iff it consists of pairwise incompatible elements, i.e. for distinct
p, q ∈ A, there is no r such that r ≤ p and r ≤ q. The Suslin number S(P ) is
the least cardinal κ such that there is no antichain of size κ. Erdős and Tarski,
in different terms, characterized the Suslin numbers as follows: A cardinal κ
is regular and uncountable iff κ = S(P ) for some partially ordered 〈P,<〉. In
modern forcing, the Levy collapse of κ (to ω1) is a canonical, universal example
of such a partially ordered set, and Erdős and Tarski essentially gave this ex-

15In a letter of 23 September 1940 to Turán ([Sós, 2002, p.133]), Erdős’ father wrote about
Erdős: “He travelled together with a Pole called Tarski, whose wife and children stayed still
in Warsaw.”
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ample two decades before the advent of forcing! This would surely be the first
appearance of the Levy collapse, which in the substantive case of κ being weakly
inaccessible is now standard fare for getting relative consistency results.16 This
illustrates the kind of prescient thinking involved in asking the “right questions”
that became a hallmark of Erdős’ initiatives.

The concluding section of [4], “General Remarks on Inaccessible Numbers”,
presented six problems involving inaccessible cardinals, some problems stating
properties for the first time that would become enduring in the theory of large
cardinals. The first three problems, related to investigations of Tarski, stated
properties equivalent to either the now well-known strong compactness or mea-
surability of cardinals. For the latter, the now-standard formulation emanating
from the thesis of Stans law Ulam [1930] is that κ is measurable iff κ is un-
countable and there is an ultrafilter over κ which is non-principal (contains no
singletons) and is κ-complete (closed under intersections of fewer than κ sets).

The last three problems, evidently arising from Erdős’ work, stated the prop-
erties:

(a) κ −→ (κ)22.

(b) Every linearly ordered set of size κ has a subset of size κ which is ei-
ther well-ordered by the ordering or well-ordered by the converse of the
ordering.

(c) Every tree of height κ each of whose levels has size less than κ has a chain
of size κ.

These several properties hold for κ = ℵ0, and are evidently extensions to the
transfinite of propositions from Erdős’ earliest days. The Erdős-Szekeres article
[1935] had the Ramsey Theorem and the ordered pigeon-hole principle of which
(b) is a transfinite extension, and (c) is the direct generalization of Kőnig’s
infinity lemma. In 1934 Nathan Aronszajn had shown that there is a counterex-
ample to (c) for κ = ℵ1, and generally a counterexample at κ is now called a
κ-Aronszajn tree.

(a) quickly implies (b), and by Erdős’ ramification argument from his [3],
(c) with κ already inaccessible implies (a). Also, that ramification argument
can be effected assuming the measurability of κ, and so, the measurability of κ
implies (a) and hence also (b) and (c). One sees here how Erdős was pursuing
direct combinatorial generalizations from the finite and ℵ0, the proofs being the
engine.

Despite the various connections made, Erdős and Tarski could not ascertain
the extent of these properties. They all, except for (c), imply the inaccessibility
of κ, but could the inaccessibility of κ actually imply any of them? In considering
their problems Erdős and Tarski took an open-ended, empirical approach to
ostensibly strong propositions about sets and cardinals. They wrote (p.428ff):

16[Kanamori, 2009, p.126ff]
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The difficulties which we meet in attempting to solve the problems
under consideration do not seem to depend essentially on the na-
ture of inaccessible numbers. In most cases the difficulties seem to
arise from lack of devices which enables us to construct maximal sets
which are closed under certain infinite operations. It is quite pos-
sible that a complete solution of these problems would require new
axioms which would differ considerably in their character not only
from the usual axioms of set theory, but also from those hypotheses
whose inclusion among the axioms has previously been discussed in
the literature and mentioned previously in this paper (e.g., the ex-
istential axioms which secure the existence of inaccessible numbers,
or from hypotheses like that of Cantor which establish arithmetical
relations between the cardinal numbers).

In the years hence, Tarski, ensconced at the University of California at Berke-
ley, worked broadly across mathematical logic, and Erdős, ever itinerant, pur-
sued mathematics across a broad range, mostly number theory but also the
development of the partition calculus in set theory. Erdős for his part would
incorporate inaccessible cardinals and measure into his problems and proofs,
this in ways that stimulated important developments. In some articles (§§6,7),
he simply took on a central question of [4] as a hypothesis (∗∗), that all inac-
cessible cardinals are measurable (!), to push induction through such cardinals,
and this led to significant results about measurability. In his second “Some re-
marks on set theory” article [11], he addressed a question raised by Ulam (“oral
communication”) by presenting a joint observation with Leonidas Alaoglu: If
κ is less than the least inaccessible cardinal, then one cannot have a family of
ℵ0 countably additive {0, 1}-valued measures defined for the subsets of κ (with
singletons measured 0 and κ itself measured 1) such that every subset of κ is
measured by at least one of the measures. The Erdős-Alaoglu Theorem would
be seminal for a wide range of developments in set theory about such weaken-
ings of having a measurable cardinal.17 In a prominent investigation of rings of
continuous functions with Leonard Gillman and Melvin Hendriksen [16], Erdős
developed a useful characterization of certain real-closed fields of size less than
the least measurable cardinal.18

Latterly in 1958-9, the issues in that concluding section of [4], set aside for so
many years, were revisited and elaborated in a seminar conducted at Berkeley by
Tarski with his first student from Poland, Andrzej Mostowski. The propositions
corresponding to the six problems were elaborated, and implications among
them, only announced in a footnote to [4], were worked out, all this soon to
appear in a new joint Erdős-Tarski article [32].

17With forcing, [Prikry, 1972] established the relative consistency of the above proposition
with both ℵ0 and κ replaced by ℵ1. See [Taylor, 1980] for subsequent developments under
the rubric of “Ulam’s problem”.

18For X a completely regular space, C(X) the ring of continuous real-valued functions on
X, and M a maximal ideal over C(X), C(X)/M is a real-closed field. For discrete X of
size less than the least measurable cardinal, Erdős (p.550) characterized those M such that
C(X)/M properly contains the reals.
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By the mid-1960s, it would become well-known that properties (a), (b), and
(c) together with inaccessibility each characterize the large cardinal property of
the weak compactness of κ, and (c) would become very well-known as the tree
property for κ, that there are no κ-Aronszajn trees, a substantial large cardinal
property that could consistently hold at accessible cardinals. There are many
weakly compact cardinals below a measurable cardinal, and there are many
inaccessible cardinals below a weakly compact cardinal.19 It is remarkable that
propositions from Erdős’ earliest days pursued by him into the transfinite would
become such prominent large cardinal hypotheses.

4 Free Sets for Set Mappings

With free sets for set mappings, Erdős developed a particular set-theoretic
theme, through cycles of problem, proof, and conjecture, that would become
substantive in itself and in connection with the later partition calculus. His
work in this direction started in 1940; eventually continued with his set-theoretic
collaborator András Hajnal, and set the ground for later work of set theorists
with and without forcing. Free sets for set mappings have since become in and
of themselves a significant part of combinatorial set theory. In what follows, we
chronicle Erdős’ work on set mappings and subsequent developments, particu-
larly to illustrate his dynamic engagement with a theme through several articles
and ramifications.

A function f : X → P(X) from some set X into its power set is a set mapping
iff x /∈ f(x) for every x ∈ X. Such a function is of order λ iff |f(x)| < λ for every
x ∈ X. In terms of graphs, a set mapping of order λ amounts to a loop-free
directed graph having out-degrees all less than λ. Finally, S ⊆ X is free (or
“independent” in the early articles) for f iff for any x, y ∈ S, y /∈ f(x). Turán
in 1935 originally asked, in interpolation theory, whether there are infinite sets
free for set mappings on the unit interval of order ℵ0. After it was shown that
there are in fact size 2ℵ0 such free sets, Stanis law Ruziewicz in 1936 conjectured:
For cardinals λ < κ with κ infinite, any set mapping : κ→ P(κ) of order λ has
a free subset of size κ.

After several partial results by others, Erdős in 1940 established this under
GCH.20 The appeal to GCH was a typically blanket one; only the case of κ being
singular had been left, and Erdős established it with the assumption λcf(κ) < κ.
Erdős mentioned his result at the end of his 1942 article [3] and his proof was
collected into his 1950, 2nd “Some remarks on set theory” article [11].

In [11], Erdős also considered (p.137) set mappings of finite order. He ob-
served that if a set mapping is on a finite set X and has order k ∈ ω, then (with
|X| ≥ 2k − 1) X is the disjoint union of 2k − 1 free sets. He astutely noted
that this then holds for countable X by the Kőnig infinity lemma and that he
had conjectured that it would hold for all X as a consequence of a compactness

19See [Kanamori, 2009, §§4,7] for the foregoing large cardinal theory.
20cf. [Sós, 2002, p.133f]. Erdős’ father wrote to Turán that Erdős proved this on 25 August

1940, and that “[i]t won Gödel’s highest appreciation.”
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assertion, one then proved by Nicolaas de Bruijn. A set mapping on a set X
rendering it a disjoint union of r free sets corresponds to a graph on X having an
r-coloring, i.e. a labeling of its vertices by r colors so that no adjacent vertices
get the same color. de Bruijn proved: If every finite subgraph of a graph G has
an r-coloring, then so does G itself. In their joint [12], these various results were
described.

Compactness arguments soon became common fare in graph theory as a
bridge from the finite to the infinite, very much in the spirit of Erdős’ initia-
tives toward the infinite. Today, the de Bruijn theorem is viewed as a simple
consequence of the Compactness Theorem for Propositional Logic. Be that as
it may, it is notable that a specific problem about set mappings stimulated a
compactness strategy, and that there seems no way to get to the specific result
about 2k−1 free sets other than by passing from the finite through compactness.

Erdős continued in his “Some remarks on set theory” series with free sets for
set mappings. In the 3rd “remarks” article [15], Erdős returned to the original
Turán context and initiated a new direction by considering measure and cate-
gory. Erdős showed e.g. that if f is a set mapping on the reals such that f(x) is
always nowhere dense, then there is an infinite free set, and leadingly mentioned
that he was “unable to establish a stronger conclusion.” In the 5th “remarks”
[20], with Géza Fodor, Erdős considered set-theoretic, parametrized variations.
In the 6th “remarks” [21], also with Fodor, Erdős continued with measure and
category, weaving in weakly inaccessible cardinals. The last theorem therein ex-
tended Erdős’ GCH result on Ruziewicz’s conjecture, and notably the singular
case is attributed to Hajnal.

Erdős visited Hungary for the first time after the war in 1955-6, and at
the University of Szeged he met Fodor and Hajnal, the latter then a student
there of Kalmár. Hajnal would soon become Erdős’ main collaborator in set
theory, with the second largest number of joint papers with him.21 With more
to be said about their early collaboration below (§6), we mention here that
the 8th “remarks” article [29], joint with Hajnal, continued with set mappings
involving measure and category. Soon afterwards in 1960, Hajnal [1961] proved
Ruziewicz’s conjecture outright, not conditional on GCH, so that it is now the
Hajnal Set Mapping Theorem. This theorem would stand as a landmark and
find significant applications e.g. in a proof of the Galvin-Hajnal extension [1975,
p.497] of Silver’s Theorem on singular cardinals (§10).

Over a decade later, nowhere-dense set mappings, i.e. set mappings f on the
reals such that f(x) is always nowhere dense, would again be taken up, with
Erdős’ [15] result that they have infinite free sets the benchmark. Frederick
Bagemihl [1973] showed that they have everywhere dense free sets. The 8th
“remarks” [29] had raised the question of whether they have uncountable free
sets. Stephen Hechler [1972] observed that assuming CH, there is a set mapping
f on the reals with no uncountable free sets such that f(x) is an ω-sequence
converging to x (so quite nowhere dense). Later Uri Abraham [1981] showed
that Martin’s Axiom MAω1

is consistent with all nowhere-dense set mappings

21Hajnal had 56 joint papers with Erdős, and András Sárközy, 62.
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having uncountable free sets.
In his ceaseless questing, Erdős himself with collaborators would take up

the motif of set mappings in the later light of forcing and large cardinals. In
the 1973 [71], with Hajnal and Attila Máté, structural restrictions are imposed
on the range of set mappings, in a way typical for Erdős, and various results
are thereby achieved, e.g. with Martin’s Axiom, as well as a characterization of
weak compactness under V = L. In the 1974, 11th and last “remarks” article
[77], with Hajnal, it is shown that for uncountable κ, κ is weakly compact iff
whenever F ⊆ [κ]<κ with |F | = κ and x 6⊆ y for distinct x, y ∈ F , there is a
G ⊆ F with |G| = κ such that |κ−

⋃
G| = κ.

Still later, Chris Freiling [1986] in the mid-1980s considered “axioms of sym-
metry” based on intuitions “about throwing darts at the real number line”.
Whether couched in new terms and philosophical rationales, these axioms were
but propositions once again about set mappings and free sets. For example,
his first axiom Aℵ0 amounts to: Every set mapping on the reals of order ℵ1
has a free set of size two. Freiling showed that Aℵ0 is equivalent to ¬CH, but
the simple arguments had been traversed long before by Erdős e.g. in his [15].22

One sees in Freiling’s further axioms and arguments more opaque interplay with
Erdős’ early work. Such eternal returns corroborate the significance of astutely
formulated mathematical concepts.

5 Erdős-Rado Partition Calculus

The partition calculus, an extension of Erdős’ initial work on transfinite Ram-
sey theory (§2), is the most conspicuous and significant subject in set theory
to result from his initiatives. Rado was Erdős’ main collaborator in this direc-
tion in the 1950s, and Hajnal, in the 1960s. As in the finite, Erdős pursued
increasingly parametrized problems in the direction of transfinite partitions and
homogeneous sets, and this led for quite some time to self-fueling developments.
When these gained a new significance in connection with strong hypotheses
broached in the 1943 Erdős-Tarski work (§3), the partition calculus achieved a
permanent place of prominence in set theory. In what follows, relatively few
results, details, and ramifications are given in favor of imparting the historical
thrust, and this necessarily belies the extent of the theory developed.

Already in his final university year 1934, Erdős had asked about the possibil-
ity, in the later arrow notation, of κ −→ (ℵ0)ω2 as a “far reaching generalization
of Ramsey’s theorem”, and Rado had responded forthwith with a counterexam-
ple using the Axiom of Choice (AC).23 This would delimit their further work on

22If 〈rα | α < ω1〉 well-orders the reals, then the set mapping f on the reals given by
f(rα) = {rβ | β < α} has no free set of size two. (cf. [15, thm.1].) Conversely, suppose that
CH fails and f is a set mapping on the reals of order ℵ1. Let A be a set of reals of size ℵ1.
Then

⋃
f“A is a set of size at most ℵ1, so let r be a real not in this set. Since f(r) is at most

countable, there is an s ∈ A such that s /∈ f(r). Hence, {r, s} is a free set of size two. (cf. [15,
thm.4].)

23See the last footnote of §1. Rado’s argument:
Let ≺ well-order [κ]ω and define f : [κ]ω → 2 by f(s) = 0 iff every t ∈ [sω ] − {s} satisfies
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the partition calculus. Also, as with several AC constructions, much would be
done getting positive such relations if one restricts to e.g. Borel functions. Fi-
nally, strong extensions would become pivotal in the investigation of the Axiom
of Determinacy.24

Erdős and Rado started their collaborative work in earnest in 1950, when
they coincided in London.25 They would ultimately be involved in 18 joint
articles, and the first [10] was on an extension of Ramsey’s Theorem ℵ0 −→
(ℵ0)rk. Allowing the number of colors k to be infinite, they established a self-
refinement, the Canonical Ramsey Theorem, which would foreshadow a wide
range of such Ramsey-type results.26

In their 1952, broad-ranging [13], Erdős and Rado articulated and expanded
the emerging Ramsey theory with better bounds for the (finite) Ramsey num-
bers, consideration of real and rational order types, and, at the end, delimita-
tions to possible transfinite generalizations. After presenting the 1934 κ−→/ (ℵ0)ω2 ,
they presciently considered the still possible relations for partitions of all finite
subsets. For a set X of ordinals, [X]<ω =

⋃
r∈ω[X]r, the set of finite subsets of

X. The arrow notation
β −→ (α)<ωδ

asserts that for any partition f : [β]<ω → δ, there is an H ∈ [β]α homogeneous
for f , i.e. for every r ∈ ω, |f“[H]r| ≤ 1. Erdős and Rado (p.418) asked whether
for infinite κ, κ−→/ (ℵ0)<ω2 , and observed (p.435f) that this holds for κ = ℵ0 and
κ = 2ℵ0 . Within a decade, partitions of all finite subsets would figure centrally
in set theory when it became infused with emerging model-theoretic techniques.

In their succeeding [14], Erdős and Rado first broached the arrow notation
that we have been using with “a −→ (b1, b2)2” as a “convenient abbreviation”,
this for application to a positive result about linearly ordered sets having large
sets well-ordered by the ordering or by the converse of the ordering. This can be
seen as an accessible version of the ordering problem of the 1943 Erdős-Tarski
article (cf. (b) of §3), one ultimately having finite provenance in the seminal
Erdős-Szekeres [1935].

The past to be prologue, Erdős and Rado in their 1956, 60-page “A parti-
tion calculus in set theory” [19] comprehensively set out the emergent theory
in the broad context of order types and with their arrow notation now in full
parametrization. After incorporating the previous results and establishing basic
connections among the elaborated partition relations, they settled first into the

s ≺ t. Then no x ∈ [κ]ω can be homogeneous for f : If y is the ≺-least member of [x]ω , then
f(y) = 0. However, for any infinite ⊂-increasing chain x0 ⊂ x1 ⊂ x2 . . . in [x]ω , f(xn) = 0
for every n ∈ ω would imply that . . . x2 ≺ x1 ≺ x0, contrary to ≺ being a well-ordering.

24cf. [Kanamori, 2009, p.382,432ff].
25Rado was at King’s College London, and Erdős spent the year at University College

London.
26The Canonical Ramsey Theorem asserts that for any 0 < r < ω and f : [ω]r → k with k

possibly infinite, there is an infinite H ⊆ ω and a v ⊆ r such that whenever x0 < x1 < . . . <
xr−1 and y0 < y1 < . . . < yr−1 are all in H, f({x0, x1, . . . , xr−1}) = f({y0, y1, . . . , yr−1})
iff xi = yi for i ∈ v. It is evident that if k is finite, then v must be empty so that H is
homogeneous for f , and so one does indeed have a self-refinement.
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study of countable order types and then of the real order type. The investiga-
tions initiated here, especially of countable ordinals, would stimulate a cottage
industry of work to the present day.

Taking on the parameter r of “r-tuples”, they [p.467f] with ramification
established the first instance of a “positive stepping up lemma”, which shows
how a positive partition relation for r-tuples leads to one for (r + 1)-tuples.
With this, they extended the Erdős [3] result (2κ)+ −→ (κ+)2κ from 2-tuples
to r-tuples. They formulated their result with a GCH-type hypothesis, but to
proceed without, let i0(κ) = κ, and in+1(κ) = 2in(κ). Then we have the
Erdős-Rado Theorem:

For infinite cardinals κ and r ∈ ω, ir(κ)+ −→ (κ+)r+1
κ .

This is extremal, in that ir(κ)+ cannot be replaced by any smaller cardinal.
This was subsequently shown by Hajnal in 1957, using “a negative stepping
up lemma” starting from 2κ−→/ (κ+)22.27 Erdős and Rado [19] (p.464ff) had
established the first instance of such a lemma, from which one can show the
optimality of ir(κ)+, but only assuming GCH. In any case, the Erdős-Rado
Theorem, definitive in providing the exact Ramsey numbers for the transfinite,
would henceforth become a mainstay of set theory.

Erdős and Rado at the end of their [19] introduced the polarized partition
relation. In a simple case, (

α
β

)
−→

(
α0 α1

β0 β1

)
asserts that for any partition f : α × β → 2, there is an i < 2 and sets A ⊆ α
and B ⊆ β with order types αi and βi respectively such that f“[A× B] = {i}.
In terms of graphs, this is an assertion about partitions of a complete bipartite
graph of a certain sort having a complete bipartite subgraph of specified sort in
one of the parts. Erdős and Rado showed that this is a distinctive relation of
separate interest. For example, they proved that(

ℵ0
ℵ1

)
−→

(
ℵ0 ℵ0
ℵ1 ℵ0

)
and noted that Sierpiński had in effect established with CH that(

ℵ0
ℵ1

)
−→/

(
ℵ0 ℵ0
ℵ1 ℵ1

)
.

With all these various results, Erdős and Rado’s [19] established the partition
calculus as a new combinatorics of the transfinite, a topic that newly informed
and variegated the Cantorian terrain of infinite cardinals and order types.

27[Hajnal, 1997, p.361]
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6 Free Sets, Ramsey and Erdős Cardinals

It would be Erdős’ first joint work with Hajnal, bearing on partitions of all
finite sets, that would veer closest to central developments of the 1960s in set
theory, these being in the investigation of large cardinal hypotheses. Erdős and
Hajnal provided the context, spurred the possibilities, and got enticingly close
to a transformative result. In what follows, we pursue an arc that begins at
their first joint article, goes through some subsequent mainstream set theory
results, and then drops back to the topic of that article, now newly seen.

As mentioned in §4, Hajnal collaborated with Erdős on set mappings. Actu-
ally, their first joint work was on set mappings of high “type”, a topic broached
by Hajnal in their first encounter.28 With [κ]<λ = {y ⊆ κ | |y| < λ}, a function
f : [κ]µ → [κ]<λ satisfying f(s) ∩ s = ∅ for every s ∈ [κ]µ is said to be a set
mapping of order λ and type µ, and a set S ⊆ κ is free for f iff f(s) ∩ S = ∅
for every s ∈ [S]µ. µ is thus a new “type” parameter, with µ = 1 correspond-
ing to the former set mappings. Erdős saw the applicability of the Erdős-Rado
Theorem to finite-type set mappings, and he and Hajnal in their [22] worked
out when there would be large free sets, freely invoking GCH to get orderly
results. Notable was that, working up to inaccessible cardinals, they invoked a
hypothesis (∗∗): inaccessible cardinals are measurable (!). With his experience
with measures, Erdős readily pushed through inaccessibility here by using a
two-valued measure as given by measurability.

A crucial connection was soon made to the Erdős-Rado [19] problem of
whether for infinite κ, κ−→/ (ℵ0)<ω2 . Set mappings of type less than ω were seen
to be closely connected to partitions of all finite sets, and Erdős and Hajnal
[22] got (theorem 9a), with underlying hypothesis (∗∗), a counterexample, one
that translates to: If κ is measurable, then κ −→ (κ)<ω2 . This was the first new
brick inserted into the edifice of “problems” erected by the 1943 Erdős-Tarski
article [4]. As a historical happenstance from this result, cardinals satisfying
κ −→ (κ)<ω2 are now known as Ramsey. On the other hand, for any ordinal α
the least κ satisfying κ −→ (α)<ω2 is the Erdős cardinal κ(α), so that the solecism
“κ(α) exists” amounts to asserting that there is some λ satisfying λ −→ (α)<ω2 .
Ramsey cardinals are just the fixed points of Erdős cardinals.

Soon after that 1958-9 Berkeley seminar on the Erdős-Tarski work (§3),
William Hanf, a student of Tarski, established a result transformative for the
theory. He showed that a weakly compact cardinal has below it, applying infini-
tary languages and their compactness (and hence the term), many inaccessible
cardinals in a strong hierarchical sense. At a 1960 conference, Tarski [1962]
pointed out the implications, e.g. that a fortiori the least measurable cardinal
has, after all, a wide class of inaccessible cardinals below it, and H. Jerome
Keisler [1962] sketched how the recently developed theory of ultraproducts can
be applied to get Hanf’s hierarchical results.

Within a year, having heard about these dramatic advances, Erdős and
Hajnal [36] themselves pointed out that the least inaccessible cardinal not being

28[Hajnal, 1997, §8,9] informatively discusses that encounter and their work then.
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measurable could have easily been seen by 1958, when they were using the
countervailing (∗∗): (1) measurable cardinals are Ramsey ([22], theorem 9a);
(2) the least inaccessible cardinal t1 is at most κ(ω) ([22], theorem 9b); and (3)
in general terms ω ≤ α < β implies that κ(α) < κ(β) by a simple argument ([36],
theorem 3). Quite a missed opportunity! Had they come to this in 1958, they
would have showcased Ramsey cardinals and contextually set out beforehand the
combinatorial underpinnings of coming results. As things transpired, once the
large cardinals “problems” from the 1943 Erdős-Tarski work were hierarchically
systematized, Ramsey and Erdős cardinals would nonetheless figure in central
advances made concerning Gödel’s constructible universe L. We summarize
these, in the briefest of terms, vis-à-vis the cardinals:29

Gödel’s construction of the inner model L through which he established
the relative consistency of GCH stood as a high watermark for set theory for
over two decades. In 1961, Dana Scott, taking an ultrapower of the universe
V , dramatically established that if there is a measurable cardinal, then V 6=
L. Then Frederick Rowbottom in his 1964 thesis established that partition
properties alone provide the model-theoretic means to establish that V and
L are locally far apart. For example, if κ is Ramsey, then for any infinite
λ < κ there are just λ many subsets of λ in L, and e.g. if κ(ω1) exists, then
there are just countably many subsets of ω in L. He also showed that with
Scott’s notion of a normal ultrafilter over a measurable cardinal, measurability
implies Ramseyness intrinsically in that homogeneous sets can always found in
the normal ultrafilter. This led in particular to the result that Ramseyness is
strictly weaker than measurability. In 1964, Hajnal lectured at Berkeley on the
partition calculus, including κ −→ (λ)<ω2 , with Jack Silver in the audience.30

In his 1966 thesis, Silver got to the essence of the transcendence over L by
showing that having κ(ω1) implies the existence of a closed unbounded class
of indiscernibles for L, i.e. any two increasing n-tuples from the class satisfy
the same n-free-variable formulas over L. The corresponding theory can be
coded by a set of integers, the Silver-Solovay set 0], the existence of which is
then tantamount to having a proper class of indiscernibles with which L can be
uniformly generated. With κ(ω1) thus enthroned, the Erdős cardinals gained in
importance vis-à-vis L, and Silver showed that if κ −→ (α)<ω2 and α < ωL1 (the
least uncountable cardinal in the sense of L), then κ has that same property in
the sense of L—so that ω1 is a sharp divide for transcendence over L. A decade
later, “generalized Erdős cardinals” sensitive to the corresponding theories of
indiscernibles were developed in Baumgartner-Galvin [1978] and contextually
sharp implications provided for 0] itself.

All in all, it is remarkable that Erdős’ early speculations about partitions of
all finite sets as a combinatorial problem became transmuted to central concerns
of set theory with the infusion of model-theoretic techniques. Notably, the
higher-type set mappings of that first Erdős-Hajnal paper themselves resurfaced
in the early 1970s, in the new light. James Baumgartner in his thesis [1970]

29See [Kanamori, 2009], mainly chapter 2, for details and references.
30[Hajnal, 1997, p.362]
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showed that if V = L, then every set mapping f : [κ]<ω → κ has an infinite free
set exactly when in fact κ −→ (ℵ0)<ω2 . Then Keith Devlin and Jeffrey Paris
[1973] showed that just having free subsets can provide indiscernibles, and in
particular that if every set mapping f : [κ]<ω → [κ]<ω has an uncountable free
set, then 0] exists.

A decade later, an arc was completed back to 1956. On the very first day
that they had met, Erdős and Hajnal had come up with their first joint problem,
the plausibility of: Every set mapping: [ℵω]<ω → ℵω has an infinite free set.31

Peter Koepke in his thesis (cf. [1984]) proved that this proposition is actually
equi-consistent with the existence of a measurable cardinal.

7 Property B
Erdős and Hajnal’s second major article [30] investigated a property of an infi-
nite family of sets, having a set “cut through” it, of evident significance. Their
contextualizing work established sharp results and raised basic issues; informed
on topological compactness and stimulated interest in combinatorial compact-
ness; and soon inspired a finite counterpart.

A family F of sets has the property B iff there is a set B such that F ∩B 6= ∅
and F 6⊆ B for every F ∈ F . By happenstance, Erdős took up an old paper
of Edwin Miller [1937] on this property, and stimulated by possibilities in the
transfinite, he and Hajnal made an incisive study.32 In a formulation essentially
as in their [30], for κ ≤ λ, M(λ, κ, µ) −→ B asserts that whenever F is a family
of λ sets each of size κ which is µ-almost disjoint (i.e. |X ∩ Y | < µ for distinct
X,Y ∈ F), F has the property B.

Miller had coined “Property B” in honor of Felix Bernstein, who in 1908 had
made conspicuous use of the Axiom of Choice to show that the family of perfect
sets of reals has the Property B, thus affirming that uncountable sets of reals do
not necessarily have perfect subsets. Bernstein enumerated the 2ℵ0 perfect sets
of reals and recursively chose from each both a real in and a real out. By this
argument, M(κ, κ, κ+) −→ B for any κ, the κ+ here signaling a vacuous almost-
disjointness condition. On the other hand, any F consisting of pairwise disjoint
sets each having at least two members trivially has the property B. Focusing on
the degree of almost disjointness, Miller proved that M(2ℵ0 ,ℵ0,ℵ0)−→/ B while
for any λ and n ∈ ω, M(λ,ℵ0, n) −→ B. For the latter result, Miller proceeded
by induction on the cardinality λ, constructing a cutting set B by what can be
now be seen as an elementary chain construction.

Erdős and Hajnal [30] generalized the Miller construction to get positive
results for families of uncountable sets, the next-level case being that under
CH, M(λ,ℵ1,ℵ0) −→ B for any λ ≤ ℵω, with the inductive argument relying on
ℵℵ0n = ℵn, which breaks down at ℵℵ0ω > ℵω. Again, the cycle of problem, proof,
and conjecture would kick in, here with modern set theory eventually taking
up the challenge. As set out by Hajnal, István Juhász and Saharon Shelah

31[Hajnal, 1997, p.378]
32[Hajnal, 1997, p.370f]
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in their [1986, 2000], a range of results clarified the situation and showed in
particular that if V = L, then M(λ,ℵ1,ℵ0) −→ B for every λ, yet if there is a
supercompact cardinal, then in a forcing extension M(ℵω+1,ℵ1,ℵ0)−→/ B. Very
recently, [Kojman, 2015], in light of Shelah’s celebrated pcf theory and revised
GCH, established strong ZFC theorems extending M(λ, κ, µ) −→ B in various
directions, particularly to all µ and sufficiently large κ relative to µ.

Ever parametrizing, Erdős further considered M(λ, κ, µ) −→ B(s), that the
requisite set B moreover satisfy 0 < |F ∩B| < s for every F ∈ F . Surprisingly,
Erdős and Hajnal [30] proved under GCH the sharp results that for r, n ∈ ω,
M(ℵα+n,ℵα, r) −→ B((r− 1)(n+ 1) + 2) yet M(ℵα+n,ℵα, r)−→/ B((r− 1)(n+
1)+1). With this they were able to inform on compactness in the just-developing
set-theoretic topology. A topological space is κ-compact iff every family of closed
sets with empty intersection has a subfamily of size less than κ with empty in-
tersection. In particular, the ℵ0-compact spaces are the compact spaces and the
ℵ1-compact spaces are the Lindelöf spaces. T (λ, ν) −→ κ asserts that the prod-
uct of λ discrete ν-compact spaces is κ-compact. In particular, Tychonoff’s The-
orem, equivalent to the Axiom of Choice, asserts that T (λ,ℵ0) −→ ℵ0 for every
λ. Erdős and Hajnal pointed out that under GCH, T (ℵα+n,ℵα+1)−→/ ℵα+n for
every α and n ∈ ω. In brief, they took a family F affirming M(ℵα+n,ℵα, r)−→/
B((r − 1)(n + 1) + 1) and used M(ℵα+n−1,ℵα, r) −→ B((r − 1)n + 2) to show
that the topological product of the members of F construed as discrete spaces
affirms T (ℵα+n,ℵα+1)−→/ ℵα+n.

On the topic of compactness, Erdős and Hajnal next made deductions no-
table for both approach and result. Invoking the hypothesis (∗∗) from their
[22], that inaccessible cardinals are measurable (!), they established for such κ
that T (κ, κ) −→ κ. Specifically, they used the inaccessibility of κ together with
the Erdős 1943 property of trees having long chains ((c) of §3). As with their
previous appeal to the false (∗∗), one sees the content, here that if κ is measur-
able then T (κ, κ) −→ κ. Jerzy  Loś [1959] had recently shown that if λ is less
than the least measurable cardinal, then T (λ+,ℵ1)−→/ λ. Hence, for any λ less
than the least measurable cardinal there are products of Lindelöf spaces which
are not λ-compact, while if κ is measurable, then every product of κ Lindelöf
spaces is κ-compact.

Erdős and Hajnal [30] offered up a wide range of problems. One was whether
T (ℵω,ℵ1) −→ ℵω, which they [34] soon showed to be false. Another had to do
with graphs of size ℵ2 and compactness of chromatic number, which they an-
swered in the negative (§11). The final problems of [30] had to do with the
possibilities for property B in the finite. Erdős himself would in subsequent pa-
pers [1963, 1964, 1969], initiate the finite theory, the focus being mainly on
the extremal function m(n) = the least m such that any family of m sets
each of size n does not have property B. A lingering question is whether
there is an asymptotic formula for m(n). With a substantial theory emerg-
ing, [Erdős and Lovász, 1975] recorded and extended the developments. The
study of Property B is a singular instance of one initially undertaken in infinite
parametrization reverberating into the finite.
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8 Erdős-Hajnal Partition Calculus

In the 1960s, Erdős continued with Hajnal to advance the partition calculus,
eventually to render it a full-fledged, broad-based subject of set theory. With
Hajnal having come to negative stepping up lemmas (§5), it was agreed around
1957-8 that he together with Erdős and Rado would engage in the next leap
forward for the subject, to write what Hajnal later termed the Giant Triple
Paper, or GTP.33 By 1960, the manuscript was almost complete, but the paper
[42], which amounted to 104 pages, only appeared in 1965. In what follows, we
pursue the progression of [42] while bringing in related and subsequent devel-
opments that particularly bear on the impact of this work. As to [42] itself,
relatively few of its results and details are imparted, and this inevitably belies
its impressive extent.

After setting out several partition relations in full parametrization, [42] fo-
cused on providing a far-reaching extremal analysis under GCH of the unbal-
anced partition relation κ −→ (λ, µ)r for cardinals. Positive stepping up lemmas
secured partition relations by induction on r, and negative stepping up lemmas
provided delimitations by induction on r.

For partition relations at singular strong limit cardinals κ, canonization, a
transfinite generalization of the Erdős-Rado [10] Canonical Ramsey Theorem,
was worked out and applied. Recall (§2) that Erdős had provided the singular
cardinal case for the seminal Dushnik-Miller Theorem κ −→ (κ,ℵ0)2; for the
next level, from ℵ0 to ℵ1, Erdős [3, p.366] had noted the simple ℵω −→/ (ℵω,ℵ1)2.
Erdős first come to canonization in the process of showing that ℵω1

−→/ (ℵω1
,ℵ1)2

and ℵω2
−→ (ℵω2

,ℵ1)2.34 Coming to the scene years later, Shelah [1975b, 1981]
would provide a new type of canonization from which further partition relations
for singular cardinals can be derived. What still remains is a characterization
of those singular κ such that κ −→ (κ,ℵ1)2.35

While on the topic of such unbalanced partition relations, we describe an
incisive Erdős-Hajnal elucidation for countable linear order types. In their [33],
they provided a complete analysis of such order types. A linear order type is
scattered iff it has no densely ordered subset. Erdős and Hajnal classified the
countable scattered order types into hierarchy: O0 consists of the empty and
one-element order types; Oα consists of sums Σi∈ϕϕi (the order type resulting
from replacing each i in its place in ϕ by ϕi) where each ϕi ∈

⋃
β<αOβ and

ϕ is either ω or its converse ω∗; and O =
⋃
α<ω1

Oα, shown to contain all
the countable scattered order types. Actually, this hierarchical analysis had

33[Hajnal, 1997, p.361,363], [110, p.53]
34cf. [Hajnal, 1997, p.364], also for subsequent remarks on canonization below.
35Late developments illustrate the immanence of partition relations in modern set theory:

Erdős and Hajnal came to a focal question that they could not answer for a long time: With
c = 2ℵ0 , does CH together with λℵ0 < ℵc+ for every λ < ℵc+ imply ℵc+ −→ (ℵc+ ,ℵ1)?
Shelah and Lee Stanley [1987] showed that this is consistently false. Erdős and Hajnal did
show that if ℵc+ is a strong limit cardinal, then the partition relation holds. Shelah and
Stanley [1993] eventually showed that if there are c+ measurable cardinals, then in a forcing
extension there is a canonization which entails the consistency of the partition property even
though ℵc+ is not a strong limit cardinal.
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appeared long ago in [Hausdorff, 1908, §§10,11], but Erdős and Hajnal were not
aware of this at the time.36 They then used this analysis to show that every
non-scattered countable order type is a sum Σi∈ϕϕi where ϕ is densely ordered
and each ϕi is non-empty and scattered.

Freestanding as this analysis is, Erdős and Hajnal [33] applied it to char-
acterize the possibilities for countable order types with respect to a partition
relation. Erdős and Rado [13, thm.4] had established that η −→ (η,ℵ0)2 for
the rational order type η. This implies forthwith that ϕ −→ (ϕ,ℵ0)2 for any
countable order type ϕ having a dense subset, since η is embedded in ϕ and ϕ
is embedded in η. Also, ω −→ (ω,ℵ0)2 and ω∗ −→ (ω∗,ℵ0)2 by Ramsey’s The-
orem. Erdős and Hajnal proceeded by induction up the hierarchy of countable
scattered order types to show that for any such order type other than ω or ω∗,
ϕ−→/ (ϕ,ℵ0)2.

[42, p.144] considered a new, “square-brackets” partition relation, the basic
case of which is

β −→ [α]γδ

asserting that for any partition f : [β]γ → δ, there is an H ∈ [β]α such that
f“[H]γ 6= δ. That is, f on [H]γ omits at least one value, a far weaker conclusion
than for the ordinary partition relation. Presciently, Erdős already in 1956 had
generalized Sierpiński’s 2ℵ0 −→/ (ℵ1)22 (§2) under CH to 2ℵ0 −→/ [ℵ1]23.37 With a
prominent incentive being the articulation of strong counterexamples to ordi-
nary partition relations, [42] presented a thorough-going analysis of the square-
brackets partition relation. The simplest instance of a nice result, proved with
canonization, is: If κ is a strong limit cardinal of cofinality ω, then κ −→ [κ]23.38

While the earlier partition relations had figured in the formative develop-
ments of large cardinals (§§3,6), the square-brackets partition relations would of
themselves be the subject of investigation in modern set theory. Stevo Todor-
cevic [1987] established in ZFC the remarkable and unexpected κ+−→/ [κ+]2κ+

for all regular κ, developing “minimal walks” for ordinals, which in his hands
would become a much elaborated and applied method of uncountable combi-
natorics.39 Building on this, Shelah [1988] established, nicely complementing
Erdős’ 1956 2ℵ0 −→/ [ℵ1]23 under CH, that if the ω1-Erdős cardinal exists, then
in a forcing extension 2ℵ0 −→ [ℵ1]23. In wide-ranging work, he [1992, 2000] sub-
sequently pursued this theme of large cardinals effecting such positive partition
relations for accessible cardinals. Venturing from exponent 2 to 3, Todorcevic
[1994] established, again surprisingly in ZFC, the best possible ℵ2−→/ [ℵ1]3ℵ1 .
In terms of the sophistication of methods brought to bear and range of results
established, the investigation of square-brackets partition relations, among all
of Erdős’ initiatives in set theory, has arguably been the most broad-ranging
and consequential.

With square-brackets partition relations one also gets to the version with

36[33, n.1]
37[Hajnal, 1997, p.365]
38[42, p.148]
39cf. the book [Todorcevic, 2007].
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partitions of infinite subsets and partitions of all finite subsets, but notably
the progression was in reverse order than for the ordinary partition relations.
When Hajnal was lecturing at Berkeley in 1964, he heard from Tarski of his
student Bjarni Jónsson’s problem: For a cardinal κ, is there a size κ algebra
with countable many finitary operations having no proper subalgebra of size
κ? Such an algebra is a Jónsson algebra, and a cardinal κ with no Jónsson
algebra of size κ is a Jónsson cardinal. Upon returning to Hungary, Hajnal and
Erdős quickly got results on Jónsson’s problem which appeared in their [43],
the first article on the subject.40 They showed that if 2κ = κ+, then κ+ is not
Jónsson, and that no ℵn is Jónsson for n < ω. In the decades to come Jónsson’s
problem would gain increasing prominence, and whether ℵω can be Jónsson
would remain a focal open problem in set theory about possible consistency low
in the cumulative hierarchy. In the 1990s, Jónsson cardinals became a testing
ground for Shelah [1994] in his development of his celebrated pcf theory; he
showed that the least regular Jónsson cardinal is highly inaccessible.

It is straightforward that κ is Jónsson iff κ −→ [κ]<ωκ , with the expected
meaning about partitions of all finite subsets. For partitions of infinite subsets,
the very early Rado result κ −→ (ℵ0)ω2 had precluded any substantive possibility
for ordinary partition relations. Erdős and Hajnal at the end of [43] established,
building on a [22] set mapping result and making conspicuous use of the Axiom
of Choice, that κ−→/ [κ]ωκ for any κ. Having proceeded lastly to partitions of
infinite subsets for square-brackets partition relations, reversing the order for
ordinary partition relations, Erdős and Hajnal had actually reached a pivotal
point as set theory would unfold.

In 1970, Kenneth Kunen [1971] dramatically applied κ−→/ [κ]ωκ to establish in
ZFC that there is no elementary embedding j : V → V of the universe into itself.
Stronger and stronger large cardinal hypotheses had been devised approaching
this possibility, and Kunen decisively delimited the emerging hierarchy. As
perhaps befits a result denying a proffered possibility, Kunen’s argument had a
simple, basic feel, and has not since been bettered in terms of getting a sharper
inconsistency. With that, the Erdős-Hajnal κ−→/ [κ]ωκ has become a conceptual
landmark about the fullness of partitions of infinite subsets even to the scrutiny
of the role of the Axiom of Choice.

The last major topic of [42] was the polarized partition relation, which was
given a substantial airing for the first time. The focus was on the simple case
described at the end of §5, and using set mappings a number of articulating
results were established under GCH. What is notable here is that one of the
basic problems raised inspired the first forcing consistency result for the partition
calculus.

Karel Prikry [1972] established the consistency of(
ℵ2
ℵ1

)
−→/

[
ℵ0
ℵ1

]
ℵ1
,

i.e. there is a function F : ω2×ω1 → ω1 such that for any countable S ⊆ ω2 and

40[Hajnal, 1997, p.366]

22



uncountable T ⊆ ω1, F“S × T = ω1. He actually established with forcing the
consistency of the following, Prikry’s Principle:

There is a family {fα | α < ω2} of functions ω1 → ω1 such that for
any countable S ⊆ ω2 and ψ : S → ω1, {ξ < ω1 | ∀α ∈ S(fα(ξ) 6=
ψ(α))} is countable.

F : ω2×ω1 → ω1 defined by F (α, ξ) = fα(ξ) gives the negative partition relation.
Prikry evidently educed his principle trying to forcing the negative partition
relation, the idea being to construct ω2 functions: ω1 → ω1 so that if any guesses
are made at values for countably many of them, then for sufficiently large ξ < ω1

at least one guess is attained at ξ. Jensen had devised his morasses in L to get at
such phenomena, and he soon established with a morass that Prikry’s Principle
holds in L. There would be several more “morass-level” propositions to arising
in combinatorial set theory, shown consistent first by forcing, and then seen to
hold in L.41 Several years later, Richard Laver [1978, 1982] showed that if a very
strong large cardinal hypothesis holds, then in a forcing extension the positive
polarized partition holds in a strong sense. Prikry’s result was one of the first
addressing a problem from a stimulating and influential list of problems:

In the summer of 1967, a three-week conference in set theory was held at the
University of California at Los Angeles. Set theory had newly been transformed,
largely by the advent of Cohen’s method of forcing, and this was by all accounts
one those rare, exhilarating conferences that summarized the recent progress
and focused the energy of a new field opening up. Erdős was asked to write
up all the difficult problems that had emerged in his set-theoretic work, and he
and Hajnal soon came up with a list of 82 problems.42 This list was distributed
at the conference, and appeared four years later in the proceedings [63]. While
Erdős had taken to publishing problems and bringing them up at conferences
in ongoing fields, the 1967 list was particularly timely both because a new
generation was being drawn into set theory and because of a mushrooming of
methods becoming available.

Most of the problems had to do with partition relations in all their vari-
ety, and the rest on set mappings, the property B, transversals, and infinite
graphs. For the partition relation problems, connections were soon made with
forcing, large cardinals, and V = L, and this was duly described in a follow-up
Erdős-Hajnal article [79] for a 1971 symposium commemorating Tarski’s 70th
birthday. On the topics of the rest of the problems, increasingly regarded as
in “infinite combinatorial analysis”, Erdős described the progress in [83], for a
1973 conference commemorating his 60th birthday.

Erdős, since the Prikry consistency result and the like, became less interested
and involved in problems and results that may have to do with consistency, via
forcing or large cardinals. The 1967 list did have a range of problems on ordinal
and order type partition relations that would have to be decidable. In an 1980
article [100,104], Erdős fully followed up on results and problems in “infinite

41See [Kanamori, 1983] for a systematic account.
42[Hajnal, 1997, p.378]
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combinatorial analysis”, this time including ordinal partition relations. With
such stimulations, even to the point of cash prizes offered, the study of ordinal
partition relations has continued to the present day.43

In the fullness of time, the four-authored book [106] came out on the parti-
tion calculus for cardinals. It presented the theory without GCH in Byzantine
detail, incorporating the later work of Shelah and others. It would be the only
monograph having Erdős as an author, this indicative of a particular importance
of the partition calculus in his corpus.

9 In Model Theory

Two of Erdős’ results about sets were applied in the 1960s in model theory,
when it was developing into a modern, sophisticated subject interacting with
set theory, particularly in the hands of Tarski and his students at Berkeley.
Although straightforward, we briefly describe these applications to illustrate
the broad reach of Erdős’ combinatorics.

In 1962, Michael Morley famously established his Categoricity Theorem
[1965a]. A theory is κ-categorical if all models of size κ are isomorphic. Mor-
ley established: If a theory in a countable first-order language is κ-categorical
for some uncountable κ, then it is λ-categorical for every uncountable λ. In the
process, Morley drew in Ramsey’s Theorem via its role of providing sets of indis-
cernibles, which actually was how Ramsey originally applied his theorem to “a
problem of formal logic”. For a structureM for a language L, a subset of the do-
main linearly ordered by a relation < (not necessarily interpreting an L symbol)
is a set of indiscernibles for M iff for each n ∈ ω all increasing n-tuples satisfy
the same n-free-variable L formulas in M. [Ehenfeucht and Mostowski, 1956]
established, with Ramsey’s Theorem and the Compactness Theorem, that if T
is a theory in a countable first-order language with infinite models and 〈X,<〉
is a linearly ordered set, then there is a model of T for which X is a set of
indiscernibles. This result was underlying Silver’s work on 0] (§6); while the
result provides models with indiscernibles, Silver saw that having an Erdős car-
dinal implies that any model of that size already has in it a set of indiscernibles.
With Ehrenfeucht-Mostowski, Morley established, toward his theorem, that if a
theory T is κ-categorical for some uncountable κ then it is totally transcendental
(or equivalently, ω-stable) in terms of what is now known as Morley rank.

Morley’s next, 1963 result [1965b] was an omitting types theorem which
has as a corollary that the Hanf number of Lω1ω is iω1

.44 Morley used the
Erdős-Rado Theorem to construct uncountable models omitting a type. This
was presumably the first use of the theorem outside of Erdős’ circle, and it was
in a basic role of generating sets of indiscernibles.

43cf. [Hajnal and Larson, 2010, §§9,10].
44The Hanf number of a language is the least cardinal such that if a sentence of the language

has a model of that cardinality, then it has models of arbitrarily large cardinality; Lω1ω is
like first-order logic except that conjunctions of countably many formulas are allowed; and
the Beth numbers are defined by: i0 = ℵ0, iα+1 = 2iα , and iγ = supα<γ iα for limit γ.
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Morley’s work inspired a large subject in model theory, Classification Theory
and Stability Theory, which means to classify models up to isomorphism accord-
ing to invariants like Morley rank. See e.g. [Shelah, 1990a]; with set-theoretic
constructions of models a primary concern, the Erdős-Rado Theorem is a basic
ingredient.

Erdős’ penultimate “remarks” article [46], with Michael Makkai and consist-
ing of just three pages, introduced a combinatorial property of sets that would
play a significant role in the new Stability Theory. For a set A, G a family of
subsets of A, and f : ω → A, G is strongly cut by f iff there are Xn ∈ G for
n ∈ ω such that for every i ∈ ω, f(i) ∈ Xn iff i < n. That is, X0 has none of
the f(i)s, X1 has just f(0), X2 has just f(0), f(1), and so forth. [46] established
that if A is infinite and G a set of subsets of A with |G| > |A|, then there is an
f : ω → A such that either G or {A−X | X ∈ G} is strongly cut by f .

Shelah [1971] settled questions from [46], which also appeared on the 1967
problem list, as well as generalized formulations. With this, he provided char-
acterizations of unstable theories in infinitary languages in terms their models
having n-tuples with a strongly-cut, order property contradistinctive to being in-
discernible. Shelah subsequently established [1974] a generalization of Morley’s
Categoricity Theorem to uncountable first-order theories and provided [1972] a
first broad development of stability theory. In this work, the Erdős-Rado theo-
rem and a strongly cut property were part of the combinatorial underpinnings.
The Erdős-Makkai [46] result itself was used by Shelah to study the possibilities
of the stability function; Keisler [1976] used it a second time to establish that
there are exactly six possibilities for the stability function.

10 To Silver’s Theorem

Silver’s 1974 result on singular cardinal arithmetic veritably reoriented set the-
ory with new incentives and goals. Remarkably, Erdős et al. already in 1965 were
but one step away in their ongoing combinatorial work. We describe this near
miss, not only to bring out again the general relevance of Erdős’ combinatorial
work but its potency in its relative simplicity.

Silver’s result is about singular cardinals of uncountable cofinality, for which
it is still substantive to consider whether or not a subset is stationary, i.e. meets
every closed unbounded subset. Silver established [1975]: If ℵ0 < cf(κ) < κ
and {α < κ | 2α = α+} is stationary, then 2κ = κ+. This result starkly and
unexpectedly brought on how at such cardinals there is a strong constraint on
the power set. Previously, it was presumed that one can render 2κ large even
for singular κ without disturbing power set cardinalities below, and there had
been some progress about countable cofinality κ depending on large cardinals.
Silver was able to illuminate the “singular cardinals problem” because of possi-
bilities afforded at uncountable cofinalities, specifically the well-ordered ranking
of functions in a “generic ultrapower”. This set in motion in the ensuing years
a wide range of results about delimiting power set cardinalities for singular car-
dinals. Shelah would latterly take up this theme, eventually developing his pcf
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theory subsuming countable cofinalities.45 Most striking in terms of alacrity
with depth, Ronald Jensen was spurred to establish, within a year, the Cover-
ing Theorem for L about 0] and the distance between V and L, easily the most
prominent advance in set theory in the 1970s and the beginning of core model
theory.

Through its proof Silver’s Theorem was seen to have higher emanations, the
2nd case being: If ℵ0 < cf(κ) < κ and {α < κ | 2α ≤ α++} is stationary,
then 2κ ≤ κ++. What is remarkable is that there was a 0th case established a
decade earlier, when the singular cardinals problem was first being entertained
with the advent of forcing. In 1965, Erdős and Hajnal, working with Eric Milner
on transversals of sets, established:46

Suppose that ℵ0 < cf(κ) < κ and λcf(κ) < κ+ for λ < κ; S ⊆ κ
is stationary; and F is a family of functions: S → κ satisfying (a)
f ∈ F implies that f(α) < α for α ∈ S, and (b) for distinct f, g ∈ F ,
|{α ∈ S | f(α) = g(α)}| < κ. Then |F| ≤ κ.

This is indeed the 0th case! Suppose that ℵ0 < cf(κ) < κ and S ⊆ κ is
stationary with τα : P(α) → α+ a bijection for every α ∈ S. Then for any
X ⊆ κ, fX : S → κ given by fX(α) = τα(X ∩ α) < α+ satisfies that for distinct
X,Y ⊆ κ, |{α ∈ S | fX(α) = fY (α)}| < κ. So one has the hypotheses of Erdős-
Hajnal-Milner with α in its (a) replaced by α+, and the Silver conclusion will be
that 2κ = |{fX | X ⊆ κ}| ≤ κ+. Just as the Silver argument can proceed from
the 1st to the 2nd case, so also from the 0th to the 1st case. As soon as Silver’s
result appeared, [Baumgartner and Prikry, 1976] contextualized it in just this
manner, providing a direct combinatorial proof.

With their focus on transversals, Erdős, Hajnal and Milner did not take
the straightforward step from α to α+ and hence from their result to Silver’s.
Had they done so in 1965, it would have been a fitting correlative to Erdős’
attention to and interest in singular cardinals. The impact would have been
dramatic, even more so than the near miss by two years in connection with
inaccessibility vs. measurability (§6). Presumably, the very next move after Sil-
ver’s would have been made then: Fred Galvin and Hajnal independently, using
the idea of linearly ranking functions and Hajnal his Set Mapping Theorem,
established [Galvin and Hajnal, 1975]: If ℵα is a singular strong limit cardinal
of uncountable cofinality, then 2ℵα < ℵ(2|α|)+ .

11 Compactness of Chromatic Number

In a continuing study of infinite graphs, Erdős and Hajnal in their [50] estab-
lished focal results about compactness of chromatic number. This theme so
forwarded as having an immediacy about the transfinite, [50] would have the
distinction of raising questions that would be addressed the most extensively

45cf. [Shelah, 1994].
46cf. [Hajnal, 1997, p.374] and [52, thm.6].

26



and with methods of the most depth, not only of the theory of infinite graphs,
but of all Erdős’ work in combinatorial analysis.

Erdős considered infinite graphs from the beginning (§1) and engaged with
the basic concept of graph coloring through compactness (§4). In his 1961 article
[22] with Hajnal (§7), he came to transfinitely parametrized graph compactness.
A graph has chromatic number κ iff κ is the least number of colors with which
its vertices can labeled so that no adjacent vertices get the same color. In this
language, if r < ω and every subgraph of a graph has chromatic number at most
r, then so does the entire graph (§4). [22, p.118] asked about countably many
colors: If a graph has size ℵ2 and every subgraph of smaller size has chromatic
number at most ℵ0, then does the entire graph?47

In 1966, building on previous work Erdős and Hajnal [50] answered this in the
negative if one assumes CH: There is a size (2ℵ0)+ graph with chromatic number
at least ℵ1 all of whose subgraphs of smaller size have chromatic number at most
ℵ0. They asked forthwith in [50], and in the 1967 problem list and elsewhere,
whether with GCH there is a size ℵ2 graph with chromatic number ℵ2 such that
every graph of smaller size has chromatic number at most ℵ0.

In the fullness of time, Baumgartner [1984] established that this proposition
is consistent with forcing. On the other hand, Matthew Foreman and Laver
[1988] showed that if there is a huge cardinal, a strong large cardinal hypoth-
esis, then in a forcing extension GCH holds and there is no ℵ2 size graph as
above. Then Shelah [1990b] effected the Baumgartner consistency direction
with combinatorial principles instead of forcing to establish: If V = L, then for
regular, non-weakly compact κ, there is a κ size graph with chromatic number
κ all of whose subgraphs of smaller size had chromatic number at most ℵ0.
Very recently, Shelah [2013] provided general constructions, under combinato-
rial assumptions, of graphs with uncountable chromatic number all of whose
subgraphs have chromatic number at most ℵ0.

Erdős and Hajnal in [50] also offered a compelling universal graph for chro-
matic consideration. In the first significant case, the Erdős-Hajnal graphG(ω2, ω)
consists of the functions ω2 → ω with f and g connected iff |{α < ω2 | f(α) =
g(α)}| < ℵ2. They proved two simple yet striking results: (a) G(ω2, ω) has
the property that every subgraph of size ℵ1 has chromatic number at most ℵ0,
and (b) any graph of size ℵ2 with this property is embeddable into G(ω2, ω).
What is the chromatic number of G(ω2, ω)? The answer with CH is that it is
at least ℵ1 because of the first graph construction in [50], and the results of
Baumgartner and Shelah above consistently got the chromatic number to be
ℵ2. Nevertheless, the situation remained mysterious for three decades.

Into the 1990s, Péter Komjáth [1991] observed that 2ℵ0 ≤ ℵ2 still implies
that the chromatic number of G(ω2, ω) is at least ℵ1 and showed that it is
consistent with GCH that it is the largest possible value ℵ3. Then Foreman
[1998] established that if there is a huge cardinal, then in a forcing extension
ultrapowers of form ωω2/U can have size ℵ1 and so the chromatic number of

47It is immediate that if ℵ2 is replaced by ℵ1 here, then the complete graph on ℵ1 vertices
is a counterexample.
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G(ω2, ω) is (exactly) ℵ1. (In particular, the Foreman-Laver result above is
subsumed.) Finally, any lingering speculations about the chromatic number
being possibly ℵ0 were put to rest by Todorcevic [1997, prop.4], who showed
that even if 2ℵ0 > ℵ2, the chromatic number of G(ω2, ω) is at least ℵ1.

12 Envoi

Having cast a net far and wide across Erdős’ work of significance for and having
impact on modern set theory and its development, we bring matters to a close
here as well as venture a few panoptic remarks. Into the 1970s and beyond,
Erdős continued to work across a broad range of “combinatorial analysis”, ad-
dressing both new and old issues and problems. It would be that Erdős’ last
work with reverberations into modern set theory would notably be kindred to
his early successes with singular cardinals.

Erdős and Hechler [81] considered maximal almost disjoint (MAD) families
of sets at κ, i.e. families F of κ size subsets of κ such that for distinct X,Y ∈ F ,
|X∩Y | < κ and moreover for any κ size subset A of κ there is a Z ∈ F such that
|A∩Z| = κ. With the simple observation that no MAD family at κ can have size
cf(κ) because of a diagonalization argument, let MAD(κ) be the set of cardinals
µ > cf(κ) such that µ is the size of a MAD family at κ. With arguments akin to
Erdős’ from his early days, [81] showed that MAD(κ) is closed under singular
limits, i.e. if µα ∈ MAD(κ) for α < ν and ν < µ0, then supα µα ∈ MAD(κ), and
with this, that if κ is singular and λ < κ implies λcfκ < κ, then κ ∈ MAD(κ).
κ itself can be the size of a MAD family at κ! But then [81] could not come up
with a singular κ not in MAD(κ), and even conjectured that 2ℵ0 > ℵω together
with Martin’s Axiom would imply ℵω /∈ MAD(ℵω).

Three decades later, Menachem Kojman, Wies law Kubís and Shelah in their
[2004] newly approached MAD(κ) in light of the latter’s pcf theory. They af-
firmed the [81] conjecture above; generalized its closure result to show that if κ
is singular and (just) 2cf(κ) < κ, then κ ∈ MAD(κ); and with pcf showed that
for singular κ, all the cardinals from the minimum element of MAD(κ) up to
a “bounding” cardinal larger than κ belong to MAD(κ). Erdős and Hechler’s
[81] was a fitting coda to Erdős’ study of singular cardinal phenomena, and the
Kojman-Kubís-Shelah [2004], a fitting response invoking pcf theory to extend
the analysis.

In the last two decades of his life, Erdős published fully one-third of his
articles with collaborators that would make up his set-theoretic corpus. There
was episodic elaboration of themes from earlier years, but also a substantial de-
velopment of structural Ramsey theory, a partition calculus for infinite graphs.
While this work certainly falls under the umbrella of set theory, it would remain
self-fueling and autonomously internal. [Komjáth, 2013] provides a detailed ac-
count of Erdős’ work on infinite graphs, to which we defer. During this period,
the main initiatives of modern set theory would be elsewhere, in the direc-
tion of the investigation of strong large cardinal hypotheses, inner models, and
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advanced forcing techniques, axioms, and results. While there would be contin-
uing attention to issues emerging from “combinatorial analysis”, the increasing
preoccupation has been on consistency results and models of set theory.

For putting Erdős’ set-theoretic work and initiatives into a large perspec-
tive, it is worth looking to Felix Hausdorff, rather than Cantor himself, for
historical antecedence and affinity. Hausdorff was the first developer of the
transfinite after Cantor, the one whose work first suggested the rich possibilities
for a mathematical investigation of the higher transfinite. He first formulated
the distinction between regular and singular cardinals, and even considered the
possibility of a regular limit cardinal. He routinely carried out transfinite recur-
sion and induction both with ordinal numbers and cardinal numbers. And he
first formulated the Generalized Continuum Hypothesis (GCH), and assumed it
to get uniform existence results for all infinite cardinals. With all this to become
integral and conspicuous in Erdős’ work, one sees “the spirit of Hausdorff” very
much at work, with a particular hallmark being Erdős’ attention to and grasp
of singular cardinals in inductive arguments. Moreover, with Hausdorff’s broad
context including linear ordering and order types, the Erdős-Hajnal study [33] of
countable scattered order types was actually a point of intersection with studies
of the old master (§8).

Particular to Erdős would be his modus operandi of proceeding through cy-
cles of problem, proof, and conjecture with collaborators, and particular to his
work in set theory would be his combinatorial attitude, of sets providing an ex-
pansive playing field for raising and solving problems about infinite complexes
and counting. In all this Erdős evinced an anti-foundationalist attitude about
set theory, much as Hausdorff did. Erdős’ work on inaccessible cardinals (§§3,6)
turned out to be important for theory of large cardinals and questions of the
consistency, but for Erdős it was evident that he was considering direct gener-
alizations of properties of ℵ0 and the play of possible implications.

Erdős’ work the most consequential for and having the most impact on set
theory occurred in the late 1950s and through the 1960s, all in collaboration
with András Hajnal. There was the work leading to Ramsey and Erdős cardi-
nals, including the near miss on inaccessibility vs. measurability (§6); the work
on Property B (§7); the development of square brackets partition relations, in-
cluding Jónsson’s problem and the κ−→/ [κ]ωκ pivotal for large cardinals (§8);
and the near miss for Silver’s Theorem (§10). In all this the hand of Hajnal is
evident, and they would continue their collaboration for two more decades.

When set theory was transformed in the mid-1960s by the advent of forc-
ing, Erdős’ cycles of problem, proof, and conjecture were newly modulated by
the possibility of consistency. A range of propositions which for Erdős had
remained as problems were “solved”, as we have documented, by establishing
their consistency in forcing extensions in interesting ways. In thus inspiring new
mathematical activity of a high order, the work achieved a new prominence for
richly populating the landscape of set theory.

For Erdős himself, however, the new consistency results were antithetical to
his combinatorial incentives and initiatives. When Prikry in the early 1970s
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established the consistency of a negative partition relation with forcing (§8),
Erdős rued the situation. A basic, simple question about the transfinite cannot
be directly decided? Especially with so much more to do in number theory
and combinatorics, Erdős would not follow the new set-theoretic work involving
forcing, and remain on the firmament of “combinatorial analysis”.

In several ways, the baton would pass to Saharon Shelah for modern set
theory. Starting in model theory, Shelah saw the importance and applicability
of a couple of Erdős’ combinatorial results (§9). His joint paper [68] with Erdős
on some combinatorics of Property B was a direct handshake, and his notable
work on singular cardinal compactness [1975a] had inspirations from Erdős’
questions about compactness of chromatic number. Subsequently, as we have
partially documented, Shelah variously appealed to large cardinal hypotheses or
used forcing to establish the relative consistency of a range of propositions put
forth by Erdős. Finally, Shelah’s pcf theory has resonances with Erdős’ early
attention to singular cardinals and can be seen as a vast combinatorial edifice
that emerged on the fertile ground that Erdős first broke and tilled.

Returning to Erdős, his contributions to and impact on set theory had to do
mainly with a fortunate timeliness, an engaging concreteness, and an accessible
simplicity. Early in his long career, Erdős lifted into set theory themes and
results that would play important roles at a formative stage. Variegating the
transfinite, Erdős’ concrete approach with problems and proofs set in motion a
continuing engagement with the specifics of the backdrop. And increasingly, the
relative simplicity of his conceptualizations allowed for their easy assimilation
to become part of the basic furniture of set theory. As across mathematics,
Erdős brought in a certain way of doing and thinking about set theory.

Publications of Paul Erdős in Set Theory

Set theory is rather arbitrarily construed here as having to do with the interac-
tions of various infinite sets, e.g. in the study of infinite graphs. A list of Erdős’
publications appears in [Graham et al., 2013b, p.497-604]. Almost all of Erdős’
papers to 1989 are available at http://www.renyi.hu/˜p erdos/Erdos.html , and
for such papers listed below, their labels at the website are provided in square
brackets.

[1] (with Tibor Grünwald (Gallai) and Endre Weiszfeld (Vázsonyi)) Végtelen
gráfok Euler-vonalairól. Matematikai és Fizikai Lapok, 43:129-140, 1936.
[1936-11]

[2] (with Tibor Grünwald (Gallai) and Endre Vázsonyi) Über Euler-Linen un-
endlicher Graphen. Journal of Mathematics and Physics, 17:59-75, 1938.
German translation of [1]. [1938-15]

[3] Some set-theoretical properties of graphs. Revista, Universidad Nacional de
Tucumán, Serie A, 3:363-367, 1942. [1942-06]
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[4] (with Alfred Tarski) On families of mutually exclusive sets. Annals of Math-
ematics, 44:315-329, 1943. [1943-04]

[5] (with Shizuo Kakutani) On non-denumerable graphs. Bulletin of the Amer-
ican Mathematical Society, 49:457-461, 1943. [1943-05]

[6] Some remarks on set theory. Annals of Mathematics, 44:643-646, 1943.
[1943-08]

[7] Some remarks on connected sets. Bulletin of the American Mathematical
Society, 50:442-446, 1944. [1944-06]

[8] On the Hausdorff dimension of some sets in Euclidean space. Bulletin of the
American Mathematical Society, 52:107-109, 1946. [1946-07]

[9] (with Nicolaas G. de Bruijn) On a combinatorial problem. Koninklijke Ned-
erlandse Akademie van Wetenschappen, 51:1277-1279, 1948. [1948-01]

[10] (with Richard Rado) A combinatorial theorem. Journal of the London Math-
ematical Society, 25:249-255, 1950. [1950-01]

[11] Some remarks on set theory. Proceedings of the American Mathematical
Society, 1:127-151, 1950. [1950-13]

[12] (with Nicolaas G. de Bruijn) A colour problem for infinite graphs and a
problem in the theory of relations. Koninklijke Nederlandse Akademie van
Wetenschappen, 54:369-373, 1951. [1951-01]

[13] (with Richard Rado) Combinatorial theorems on classifications of subsets
of a given set. Proceedings of the London Mathematical Society, 2:417-439,
1952. [1952-02]

[14] (with Richard Rado) A problem on ordered sets. Journal of the London
Mathematical Society, 28:426-438, 1953. [1953-01]

[15] Some remarks on set theory, III. Michigan Mathematical Journal, 2:51-57,
1954. [1954-08]

[16] (with Leonard Gillman and Melvin Henriksen) An isomorphism theorem for
real-closed fields. Annals of Mathematics, 61:542-554, 1955. [1955-01]

[17] (with John C. Oxtoby) Partitions of the plane into sets having positive mea-
sure in every non-null measurable product set. Transactions of the American
Mathematical Society, 79:91-102, 1955. [1955-10]

[18] Some remarks on set theory, IV. Michigan Mathematical Journal, 2:169-173,
1955. [1955-14]

[19] (with Richard Rado) A partition calculus in set theory. Bulletin of the
American Mathematical Society, 62:427-489, 1956. [1956–02]
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[20] (with Géza Fodor) Some remarks on set theory, V. Acta Scientiarum Math-
ematicarum (Szeged), 17:250-260, 1956. [1956-18]

[21] (with Géza Fodor) Some remarks on set theory, VI. Acta Scientiarum Math-
ematicarum (Szeged), 18:243-260, 1957. [1957-12]

[22] (with András Hajnal) On the structure of set-mappings. Acta Mathematica
Academiae Scientiarum Hungaricae, 9:111-131, 1958. [1958-12]

[23] (with Richard Rado) A theorem on partial well-ordering of sets of vectors.
Journal of the London Mathematical Society, 34:222-224, 1959. [1959-02]

[24] (with Géza Fodor and András Hajnal) On the structure of inner set map-
pings. Acta Scientiarum Mathematicarum (Szeged), 20:81-90, 1959. [1959-
18]

[25] (with Richard Rado) Partition relations connected with the chromatic num-
ber of graphs. Journal of the London Mathematical Society, 34:63-72, 1959.
[1959-19]

[26] (with Richard Rado) A construction of graphs without triangles having pre-
assigned order and chromatic number. Journal of the London Mathematical
Society, 35:445-448, 1960. [1960-01]

[27] (with Richard Rado) Intersection theorems for systems of sets. Journal of
the London Mathematical Society, 35:85-90, 1960. [1960-04]

[28] (with András Hajnal) Some remarks on set theory, VII. Acta Scientiarum
Mathematicarum (Szeged), 21:154-163, 1960. [1960-18]

[29] (with András Hajnal) Some remarks on set theory, VIII. Michigan Mathe-
matical Journal, 7:187-191, 1960. [1960-19]

[30] (with András Hajnal) On a property of families of sets. Acta Mathematica
Academiae Scientiarum Hungaricae, 12:87-123, 1961. [1961-11]

[31] (with Ernst Specker) On a theorem in the theory of relations and a solution
of a problem of Knaster. Colloquium Mathematicum, 8:19-21, 1961. [1961-
12]

[32] (with Alfred Tarski) On some problems involving inaccessible cardinals. In
Bar-Hillel et al., editors, Essays on the Foundations of Mathematics, pages
50-82. Magnes Press, Jerusalem, 1961. [1961-14]

[33] (with András Hajnal) On a classification of denumerable order types and
an application to the partition calculus. Fundamenta Mathematicae, 51:117-
129, 1962. [1962-06]

[34] (with András Hajnal) On the topological product of discrete λ-compact
spaces. In Josef Novák, editor, General Topology and its Relations to Mod-
ern Analysis and Algebra (Prague, 1961), pages 148-151. Academic Press,
New York, 1962. [1962-15]
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[35] (with János Czipszer and András Hajnal) Some extremal problems on in-
finite graphs. Publications of the Mathematical Institute of the Hungarian
Academy of Sciences, 7:441-457, 1962. [1962-19]

[36] (with András Hajnal) Some remarks concerning our paper “On the structure
of set-mappings”. Non-existence of a two-valued σ-measure for the first un-
countable inaccessible cardinal. Acta Mathematica Academiae Scientiarum
Hungaricae, 13:223-226, 1962. [1962-20]

[37] On some properties of Hamel bases. Colloquium Mathematicum, 10:267-269,
1963. [1963-09]

[38] (with Samuel J. Taylor) The Hausdorff measure of the intersection of sets of
positive Lebesgue measure. Mathematika 10:1-9, 1963. [1963-19]

[39] An interpolation problem associated with the continuum hypothesis. Michi-
gan Mathematical Journal, 11:9-10, 1964. [1964-04]

[40] (with András Hajnal) On complete topological subgraphs of certain graphs.
Annales Universitatis Scientiarum Budapestinensis Eötvös, Sectio Mathe-
matica 7:143-149, 1964. [1964-12]

[41] (with András Hajnal) Some remarks on set theory, IX. Michigan Mathemat-
ical Journal, 11:107-127, 1964. [1964-28]

[42] (with András Hajnal and Richard Rado) Partition relations for cardinal
numbers. Acta Mathematica Academiae Scientiarum Hungaricae, 16:93-196,
1965. [1965-14]

[43] (with András Hajnal) On a problem of B. Jónsson. Bulletin de l’Académie
Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques
et Physiques, 14:19-23, 1966. [1966-05]

[44] (with András Hajnal) On chromatic number of graphs and set-systems. Acta
Mathematica Academiae Scientiarum Hungaricae, 17:61-99, 1966. [1966-07]

[45] (with András Hajnal and Eric C. Milner) On the complete subgraphs of
graphs defined by systems of sets. Acta Mathematica Academiae Scientiarum
Hungaricae, 17:159-229, 1966. [1966-12]

[46] (with Michael Makkai) Some remarks on set theory, X. Studia Scientiarum
Mathematicarum Hungarica 1:157-159, 1966. [1966-19]

[47] (with András Hajnal) On decomposition of graphs. Acta Mathematica Aca-
demiae Scientiarum Hungaricae, 18:359-377, 1967. [1967-11]

[48] (with Richard Rado) Partition relations and transitivity domains of binary
relations. Journal of the London Mathematical Society, 42:624-633, 1967.
[1967-19]
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[49] Hilbert térben levõ ponthalmazok néhány geometriai és halmazelméleti tu-
lajdonságárol. Matematikai Lapok, 19:255-258, 1968. [1968-2]

[50] (with András Hajnal) On chromatic number of infinite graphs. In Paul Erdős
and Gyula Katona, editors, Theory of Graphs, Proceedings of the Colloquium
held at Tihany, Hungary, September 1966, pages 83-98. Academic Press,
New York, 1968. [1968-04]

[51] (with Stanislaw Ulam) On equations with sets as unknowns. Proceedings of
the National Academy of Sciences U.S.A., 60:1189-1195, 1968. [1968-06]

[52] (with András Hajnal and Eric C. Milner) On sets of almost disjoint subsets
of a set. Acta Mathematica Academiae Scientiarum Hungaricae, 19:209-218,
1968. [1968-08]

[53] (with András Hajnal and Eric C. Milner) A problem on well ordered sets.
Acta Mathematica Academiae Scientiarum Hungaricae, 20:323-329, 1969.
[1969-01]

[54] (with Richard Rado) Intersection theorems for systems of sets (II). Journal
of the London Mathematical Society, 44:467-479, 1969. [1969-02]

[55] (with Arthur H. Stone) On the sum of two Borel sets. Proceedings of the
American Mathematical Society, 25:304-306, 1970. [1970-15]

[56] (with András Hajnal) Problems and results in finite and infinite combina-
torial analysis. Annals of the New York Academy of Sciences, 175:115-124,
1970. [1970-16]

[57] Problems in combinatorial set theory. In Richard Guy et al., editors, Com-
binatorial Structures and their Applications. Proceedings of the Calgary In-
ternational Conference, pages 97-100. Gordon and Breach, New York, 1970.
[1970-17]

[58] (with András Hajnal and Eric C. Milner) Set mappings and polarized par-
tition relations. In Paul Erdős, Alfred Rényi, and Vera T. Sós, editors,
Combinatorial Theory and its Applications, Balatonfüred, 1969, volume 4
of Colloquia Mathematica Societatis János Bolyai, pages 327-363. North-
Holland, Amsterdam, 1970. [1970-19]

[59] (with András Hajnal) Some results and problems on certain polarized par-
titions. Acta Mathematica Academiae Scientiarum Hungaricae, 21:369-392,
1970. [1970-25]

[60] (with András Hajnal) Ordinary partition relations for ordinal numbers. Pe-
riodica Mathematica Hungarica, 1:171-185, 1971. [1971-15]

[61] (with András Hajnal and Eric C. Milner) Polarized partition relations for
ordinal numbers. In Leon Mirsky, editor, Studies in Pure Mathematics (Pre-
sented to Richard Rado), pages 63-87. Academic Press, London, 1971. [1971-
17]
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[62] (with András Hajnal and Eric C. Milner) Partition relations for ηα sets.
Journal of the London Mathematical Society, 3:193-204, 1971. [1971-16]

[63] (with András Hajnal) Unsolved problems in set theory. In Dana S. Scott,
editor, Axiomatic Set Theory, volume 13, part 1 of Proceedings of Symposia
in Pure Mathematics, pages 17-48. American Mathematical Society, Provi-
dence, 1971. [1971-28]

[64] (with Eric C. Milner) A theorem in the partition calculus. Canadian Math-
ematical Bulletin, 15:501-505, 1972. [1972-03]

[65] (with Saharon Shelah) On problems of Moser and Hanson. In Yousef Alavi,
Don R. Lick, and Alexander T. White, editors, Graph Theory and Appli-
cations (Western Michigan University, Kalamazoo, 1971), volume 303 of
Lecture Notes in Mathematics, pages 75-79. Springer, Berlin, 1972. [1972-
09]

[66] (with András Hajnal) On Ramsey like theorems, problems and results. In
Dominic J.A. Welsh and Douglas R. Woodall, editors, Combinatorics: Being
the Proceedings of the Conference on Combinatorial Mathematics held at the
Mathematical Institute, Oxford, pages 123-140. Institute of Mathematics and
Its Applications, Southend-on-Sea, 1972. [1972-10]

[67] (with András Hajnal and Eric C. Milner) Partition relations for ηα and
for ℵα-saturated models. In Günter Asser, Jürgen Flachsmeyer and Willi
Rinow, editors, Theory of Sets and Topology: In Honor of Felix Hausdorff,
1868-1942, pages 95-108. VEB Deutscher Verlag, Berlin, 1972. [1972-19]

[68] (with Saharon Shelah) Separability properties of almost-disjoint families of
sets. Israel Journal of Mathematics, 12:207-214, 1972. [1972-21]

[69] (with András Hajnal and Eric C. Milner) Simple one-point extensions of
tournaments. Mathematika, 19:57-62, 1972. [1972-22]

[70] (with Ervin Fried, András Hajnal and Eric C. Milner) Some remarks on
simple tournaments. Algebra Universalis, 2:238-245, 1972. [1972-24]

[71] (with András Hajnal and Attila Máté) Chain conditions on set mappings
and free sets. Acta Scientiarum Mathematicarum (Szeged), 34:69-79, 1973.
[1973-03]

[72] (with András Hajnal and Bruce L. Rothschild) On chromatic number of
graphs and set systems. In Adrian R.D. Mathias, editor, Cambridge Summer
School in Mathematical Logic, volume 337 of Lecture Notes in Mathematics,
pages 531-538. Springer, Berlin, 1973. [1973-13]

[73] (with Eric C. Milner) A theorem in the partition calculus. Corrigendum.
Canadian Mathematical Bulletin, 17:305, 1974. [1974-07]
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[74] (with Eric C. Milner and Richard Rado) Intersection theorems for systems
of sets (III). Journal of the Australian Mathematical Society, 18:22-40, 1974.
[1974-11]

[75] (with András Hajnal and Saharon Shelah) On some general properties of
chromatic numbers. In Ákos Császár, editor, Topics in Topology, Keszthely
(Hungary), 1972, volume 8 of Colloquia Mathematica Societatis János Bolyai,
pages 243-255. North-Holland, Amsterdam, 1974. [1974-17]

[76] Remark on a theorem of Lindström. Journal of Combinatorial Theory, Se-
ries A, 17:129-130, 1974. [1974-26]

[77] (with András Hajnal) Some remarks on set theory XI. Fundamenta Mathe-
maticae, 81:261-265, 1974. [1974-33]

[78] (with Robert Bonnet) The chromatic index of an infinite complete hyper-
graph: A partition theorem. In Claude Berge and Dijen Ray-Chaudhuri,
editors, Hypergraph Seminar (Ohio State University, 1972), volume 411 of
Lecture Notes in Mathematics, pages 54-60. Springer, Berlin, 1974. [1974-35]

[79] (with András Hajnal) Unsolved and solved problems in set theory. In Leon
Henkin, editor, Proceedings of the Tarski Symposium, volume 25 of Proceed-
ings of Symposia in Pure Mathematics, pages 269-287. American Mathe-
matical Society, Providence, 1974. [1974-36]

[80] (with Mary Ellen Rudin) A non-normal box product. In András Hajnal,
Richard Rado, and Vera T. Sós , editors, Infinite and Finite Sets, Keszthely
(Hungary), 1973, volume II, volume 10 of Colloquia Mathematica Societatis
János Bolyai, pages 629-631. North-Holland, Amsterdam, 1975. [1975-01]

[81] (with Stephen H. Hechler) On maximal almost-disjoint families over singu-
lar cardinals. In András Hajnal, Richard Rado, and Vera T. Sós, editors,
Infinite and Finite Sets, Keszthely (Hungary), 1973, volume I, volume 10
of Colloquia Mathematica Societatis János Bolyai, pages 597-604. North-
Holland, Amsterdam, 1975. [1975-21]

[82] (with Fred Galvin and András Hajnal) On set-systems having large chro-
matic number and not containing prescribed subsystems. In András Hajnal,
Richard Rado, and Vera T. Sós, editors, Infinite and Finite Sets, Keszthely
(Hungary), 1973, volume I, volume 10 of Colloquia Mathematica Societatis
János Bolyai, pages 425-513. North-Holland, Amsterdam, 1975. [1975-24]

[83] Problems and results on finite and infinite combinatorial analysis. In András
Hajnal, Richard Rado, and Vera T. Sós, editors, Infinite and Finite Sets,
Keszthely (Hungary), 1973, volume I, volume 10 of Colloquia Mathematica
Societatis János Bolyai, pages 403-424. North-Holland, Amsterdam, 1975.
[1975-32]
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[84] Problems and results on finite and infinite graphs. In Miroslav Fiedler, edi-
tor, Recent Advances in Graph Theory, Proceedings of the Second Czechoslo-
vak Symposium, 1974, pages 183-192. Academia, Prague, 1975. [1975-33]

[85] (with András Hajnal and Lajos Pósa) Strong embeddings of graphs into
colored graphs. In András Hajnal, Richard Rado, and Vera T. Sós, editors,
Infinite and Finite Sets, Keszthely (Hungary), 1973, volume I, volume 10
of Colloquia Mathematica Societatis János Bolyai, pages 585-595. North-
Holland, Amsterdam, 1975. [1975-44]

[86] (with Menachem Magidor) A note on regular methods of summability and
the Banach-Saks property. Proceedings of the American Mathematical Soci-
ety, 59:232-234, 1976. [1976-01]

[87] (with David Preiss) Decomposition of spheres in Hilbert spaces. Commen-
tationes Mathematicae Universitatis Carolinae, 17:791-795, 1976. [1976-08]

[88] (with Eric C. Milner and Richard Rado) Families of sets whose pairwise
intersections have prescribed cardinals or order types. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 80:215-221, 1976. [1976-14]

[89] (with Marshall L. Cates, Neil Hindman, and Bruce L. Rothschild) Partition
theorems for subsets of vector spaces. Journal of Combinatorial Theory,
Series A, 20:279-291, 1976. [1976-31]

[90] (with R. Daniel Mauldin) The nonexistence of certain invariant measures.
Proceedings of the American Mathematical Society, 59:321-322, 1976. [1976-
47]

[91] (with Eric C. Milner and Richard Rado) Families of sets whose pairwise
intersections have prescribed cardinals or order types. Corrigenda. Math-
ematical Proceedings of the Cambridge Philosophical Society, 81:523, 1997.
[1977-07]

[92] (with András Hajnal) Embeddings theorems for graphs establishing nega-
tive partition relations. Periodica Mathematica Hungarica, 9:205-230, 1978.
[1978-09]

[93] (with András Hajnal and Eric C. Milner), On set systems having paradoxical
covering properties. Acta Mathematica Academiae Scientiarum Hungaricae,
31:89-124, 1978. [1978-25]

[94] (with György Elekes and András Hajnal) On some partition properties of
families of sets. Studia Scientiarum Mathematicarum Hungarica, 13:151-155,
1978.

[95] (with Frank S. Cater and Fred Galvin) On the density of λ-box products.
General Topology and its Applications, 9:307-312, 1978. [1978-27]
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[96] Set-theoretic, measure-theoretic, combinatorial, and number-theoretic prob-
lems concerning point sets in Euclidean space. Real Analysis Exchange,
4:113-138, 1978. [1978-40]

[97] (with James E. Baumgartner, Fred Galvin and Jean A. Larson) Colorful
partitions of cardinal numbers. Canadian Journal of Mathematics, 31:524-
541, 1979. [1979-03]

[98] Some remarks on subgroups of real numbers. Colloquium Mathematicum,
42:119-120, 1979. [1979-20]

[99] (with Fred Galvin and Richard Rado) Transversals and multitransversals.
Journal of the London Mathematical Society, 20:387-395, 1979. [1979-28]

[100] Problems and results on finite and infinite combinatorial analysis II, l’En-
seignement Mathématique, 27:163-176, 1981. [1981-22]

[101] (with Vance Faber and Jean A. Larson) Sets of natural numbers of positive
density and cylindric set algebras of dimension 2. Algebra Universalis, 12:81-
92, 1981. [1981-26]

[102] (with Kenneth Kunen and R. Daniel Mauldin) Some additive properties of
sets of real numbers. Fundamenta Mathematicae, 113:187-199, 1981. [1981-
28]

[103] (with András Hajnal and Endre Szemerédi) On almost bipartite large chro-
matic graphs. In Alexander Rosa, Gert Sabidussi and Jean Turgeon, edi-
tors, Theory and Practice of Combinatorics, volume 12 of Annals of Discrete
Mathematics, pages 117-123. North-Holland, Amsterdam, 1982. [1982-11]

[104] Problems and results on finite and infinite combinatorial analysis II. In Logic
and Algorithmic (Zurich, 1980), volume 30 of Monographies de l’Enseignement
Mathématique, pages 131-144. Université de Genève, Genève, 1982. A
reprint of [100]. [1982-24]

[105] (with James E. Baumgartner and Denis A. Higgs) Cross-cuts in the power
set of an infinite set. Order, 1:139-145, 1984. [1984-03]

[106] (with András Hajnal, Attila Máté, and Richard Rado), Combinatorial Set
Theory: Partition Relations for Cardinals, volume 106 of Studies in Logic
and the Foundations of Mathematics, North-Holland, Amsterdam, 1984.
[1984-25]

[107] (with András Hajnal) Chromatic number of finite and infinite graphs and
hypergraphs. Discrete Mathematics, 53:281-285, 1985. [1985-08]

[108] Problems and results on chromatic numbers in finite and infinite graphs. In
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