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Abstract. We revisit Putnam’s constructivization argument from his Models and Real-

ity, part of his model-theoretic argument against metaphysical realism. We set out how it

was initially put, the commentary and criticisms, and how it can be specifically seen and

cast, respecting its underlying logic and in light of Putnam’s contributions to mathematical

logic.
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Hilary Putnam’s constructivization argument, involving the axiom of
constructibility V = L of set theory, is at the cusp of mathematics and phi-
losophy, being the most mathematically pronounced argument that he has
put in the service of philosophical advocacy. In his shift in the mid-1970’s
to his internal realism, the argument appeared in his 1980 Models and Re-
ality [14], as a “digression”. Nonetheless, with subsequent commentary and
criticisms it became considered a substantive piece of what has come to be
called Putnam’s “model-theoretic argument against metaphysical realism”.
What follows is a mainly mathematical meditation on the constructivization
argument: how it was initially put, the commentary and criticisms, and how
it can be specifically seen and cast respecting its underlying logic and in
light of Putnam’s mathematical work.

Putnam’s contributions to mathematical logic—his work in recursion the-
ory, on Hilbert’s 10th Problem, on constructible reals and the ramified an-
alytic hierarchy—are mainly from his early years. Whether mathematical
results can or should be deployed to support philosophical positions at all,
Putnam’s subsequent deployment of model-theoretic arguments against an
uncompromising realism was a novel and remarkable move.

At the outset, it should be said that we will not directly illuminate how
the constructivization argument integrates with Putnam’s broad philosophi-
cal stance at the time. For one thing, it argues only against a realist concept
of set. Rather, we will bring out the flow of Putnam’s thinking as he put his
mathematical experience to work and how in its byways the constructiviza-
tion argument actually worked.

In what follows, §1 reviews the constructivization argument, as presented
in [14]. §2 describes the to and fro of commentary and criticisms of it in
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the literature. §3 takes a deeper look at the constructivization argument—
the mathematical context, the inner logic, and the specific ways in which
it can be taken. §4 coordinates the various criticisms, and in the process,
consolidates the mathematical issues about the constructivization argument.

1. The Constructivization Argument

Putnam began his [14] with introductory remarks and then paragraphs head-
lined “The philosophical problem”. He briefly recalled the Skolem-paradox
argument about having unintended interpretations of set theory in which
nondenumerable sets are “in reality” denumerable. He then specifically
recalled the Downward Löwenheim-Skolem Theorem, according to which
models can have countable elementary submodels. He pointed out that
by the Skolem-paradox argument, “even a formalization of total science (if
one could construct such a thing), or even a formalization of all our beliefs
(whether they count as ‘science’ or not), could not rule out denumerable
interpretations.” With this showing that “theoretical constraints” “cannot
fix the interpretation of the notion set in the ‘intended’ way”, he proceeded
to argue that even “operational constraints” cannot either. With the Down-
ward Löwenheim-Skolem Theorem, “we can find a countable submodel of
the ‘standard model’ (if there is such a thing)” that also preserves all the
information the operational constraints provide. The philosophical problem
that then emerges is that if axiomatic set theory does not capture the intu-
itive notion of set, then “understanding” might; but “understanding” cannot
come to more than “the way we use our language”; yet even “the total use of
the language (operational plus theoretical constraints) does not fix a unique
interpretation.”

In the next paragraphs of [14], headlined “An epistemological/logical
digression”, Putnam presented his constructivization argument, which am-
plifies the above argument with respect to constructibility. He briefly dis-
cussed Gödel’s axiom V = L, that the set-theoretic universe V coincides
with Gödel’s universe L of constructible sets, and soon continued:

[Gödel’s] later view was that ‘V = L’ is really false, even though it is
consistent with set theory, if set theory itself is consistent.

Gödel’s intuition is widely shared among working set theorists.
But does this ‘intuition’ make sense?

Let MAG be a countable set of physical magnitudes which in-
cludes all magnitudes that sentient beings in this physical universe
can actually measure (it certainly seems plausible that we cannot
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hope to measure more than a countable number of physical magni-
tudes). Let OP be the ‘correct’ assignment of values; that is, the
assignment which assigns to each member of MAG the value that
that magnitude actually has at each rational space-time point. Then
all the information ‘operational constraints’ might give us (and in
fact, infinitely more) is coded into OP .

One technical term: an ω-model for a set theory is a model in
which the natural numbers are ordered as they are ‘supposed to
be’; that is, the sequence of ‘natural’ numbers of the model is an
ω-sequence.

Now for a small theorem.2 [2 Barwise has proved the much stronger

theorem that every countable model of ZF has a proper end extension which is

a model of ZF + V = L (in Infinitary methods in the model theory of set theory,

published in Logic Colloquium ’69 ). The theorem in the text was proved by

me before 1963.]
THEOREM: ZF plus V = L has an ω-model which contains any

given countable set of real numbers.

Taking a countable set of reals as routinely coded by a single real, Putnam
proceeded to provide an informal proof of his theorem using the Downward
Löwenheim-Skolem Theorem to get a countable elementary submodel of L
and then applying the Shoenfield Absoluteness Lemma. He noted in passing
that “What makes [his] theorem startling” is that while a nonconstructible
real cannot be in a β-model of V = L, it can be in an ω-model.

Putnam continued:

Now, suppose we formalize the entire language of science within
the set theory ZF + V = L. Any model for ZF which contains
an abstract set isomorphic to OP can be extended to a model for
this formalized language of science which is standard with respect to
OP—hence, even if OP is nonconstructible ‘in reality’, we can find a
model for the entire language of science which satisfies everything is
constructible and which assigns the correct values to all the physical
magnitudes in MAG at all rational space-time points.

The claim Gödel makes is that ‘V = L’ is false ‘in reality’. But
what on earth can this mean? It must mean, at the very least, that
in the case just envisaged, the model we have described in which
‘V = L’ holds would not be the intended model. But why not? It
satisfies all theoretical constraints; and we have gone to great length
to make sure it satisfies all operational constraints as well.



4 Akihiro Kanamori

Putnam concluded this section:

What the above argument shows is that if the ‘intended interpre-
tation’ is fixed only by theoretical plus operational constraints, then
if ‘V 6= L’ does not follow from those theoretical constraints—if we
do not decide to make V = L true or to make V = L false—then
there will be ‘intended models’ in which V = L is true. If I am right,
then ‘the relativity of set-theoretic notions’ extends to a relativity of
the truth value of ‘V = L’ (and, by similar augments, of the axiom
of choice and the continuum hypothesis as well).

2. Commentary and Criticisms

Putnam’s advocacy of internal realism through articles starting in the later
1970s generated a philosophical literature both extensive and sundry. A
focus was on his “model-theoretic argument against metaphysical realism”,
and eventually the most mathematically pronounced argument, the con-
structivization argument, itself came under sustained scrutiny in the litera-
ture, starting in the later 1990s. What is of particular interest is the extent
to which a mathematically-based argument for a philosophical stance has
elicited a range of responses about the mathematics and its applicability. In
what follows, we review in chronological order the to and fro of commentary
and criticisms.

Shapiro [15], on second-order logic and mathematical practice, briefly
attended (p.724) to the constructivization argument. From a standard fact
that he cites, if the set isomorphic to OP is nonconstructible then Putnam’s
final model of ZF + V = L containing the set would not have a (really) well-
founded membership relation. But for Shapiro, “one can surely claim that
the well-foundedness of the membership relation is a ‘theoretical constraint’
on (intended) models of set theory.”

Levin [12] mounted a detailed critique of the constructivization argu-
ment, in terms of the semantics of first-order logic. On its face a response
to Putnam on reference and constructibility, it seems a tissue of conflations
about constants and terms and their interpretations model to model. The
argument devolves to what OP is, its role, its coding as a real number,
and whether that real is constructible—all this riddled with confusions and
missing the thrust of Putnam’s argument.

Velleman [17] reviewed Levin [12] and vetted it along the lines above. At
the beginning, Velleman pointed out that Putnam’s theorem (as stated in
the first quoted passage of §1) cannot be provable in ZFC as it implies the
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consistency of ZFC. (By Gödel’s Second Incompleteness Theorem, no theory,
unless inconsistent, can establish its own consistency.) “[T]here must be a
mistake in Putnam’s proof”; the mistake is that “the Löwenheim-Skolem
theorem is only applicable to sets, not to proper classes such as L”; and: “For
example, the proof can be fixed by adding the hypothesis that there is an
inaccessible cardinal κ, and then applying the Löwenheim-Skolem theorem
to the set Lκ rather that to L.”

Dümont [9] undertook a “detailed reconstruction” of Putnam’s “model-
theoretic argument(s)”, and ultimately concluded that he “fails to give
convincing arguments for rejecting mathematical or metaphysical realism”.
While mainly concentrating on Putnam’s Skolemization argument, Dümont
did attend, briefly, to the constructivization argument. Following his over-
all tack, he took Putnam to have failed to give a convincing answer to the
realist who replies (p.348-9) to “the fact that V = L does not follow from
the theoretical and operational constraints”: “After all the theoretical and
operational constraints have their source in our theoretical and empirical
investigations and of course our faculties are limited. So our inability to fix
one intended model only reflects our restricted access to the independently
existing set-theoretical universe.”

Bays [3] mounted a broad critique of the constructivization argument,
both its mathematics and its philosophy. He argued first that “a key step in
Putnam’s argument rests on a mathematical mistake”, discussing its philo-
sophical ramifications; second, that “even if Putnam could get his mathemat-
ics to work, his argument would still fail on purely philosophical grounds”,
and third, that “Putnam’s mathematical mistakes and his philosophical mis-
takes are surprisingly closely related”.

As Velleman [17] had done, Bays indicated (p.366f) that Putnam’s proof
of his theorem (as stated in the first quoted passage of §1) is mistaken, as the
Downward Löwenheim-Skolem Theorem cannot be applied to L, a proper
class, and that the proof can be patched up e.g. by assuming that there is an
inaccessible cardinal. Bays, however, argued (p.339f) that such patch-ups
involving additional assumptions “do very little toward salvaging [Putnam’s]
overall philosophical argument”. If in ZFC + XYZ one establishes that there
is a model of ZFC + V = L, then XYZ would be part of the theoretical
constraints yet would not hold in the model. The problem is “intrinsic”
(because of Gödel’s Second Incompleteness Theorem).

After criticizing Putnam’s argument on philosophical grounds, Bays at
the end made a connection between the mathematical and the philosophical.
Putnam is not being fair to the realist, as (p.349):
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When the realist tries to ‘stand back’ from his set theory to talk
about that theory’s interpretation—to specify, for instance, that this
interpretation must be transitive, or well founded, or satisfy second-
order ZFC—Putnam accuses him of ‘begging the question.’ Although
Putnam’s own model-theoretic talk should be viewed as talk about
set theory, the realist’s talk must be viewed as talk within set theory.

Gaifman [10], on non-standard models in a broader perspective, brought
up the constructivization argument, pointing out that “Putnam’s proof con-
tains a mathematical error” and that one needs an “additional assumption”
to be believed by the realist. With this granted, Gaifman went on, favorably:
“if s [coding OP ] is not in L, the [final] model is not well-founded, but this
makes no difference; we can carry out all our physical measurements, while
assuming that V = L”.

Gaifman proceeded to point out how a realist can appreciate the inves-
tigation of various structures, e.g. in which “false” propositions hold. He
objected to Putnam’s approach of treating “the problem as one that should
be decided by appeal to general pragmatic criteria [operational constraints]
and some blurry ideal of rationality [theoretical constraints]”.

Bellotti [5] examined the constructivization argument and critiques thus
far. Getting to Bays [3], Bellotti opined (p.404-5) that his charge that Put-
nam made a mathematical mistake “seems unfair, since Putnam is not clear
about the theory in which he is working”. Contra Bays, Bellotti argued that
effecting Putnam’s argument with an additional assumption, e.g. having an
inaccessible cardinal, does not weaken Putnam’s philosophical point. Such
an additional assumption can be taken to be part of “our best theory of
the world”, and “Putnam can obtain a final model which satisfies the nec-
essary assumption”. On the other hand, Bellotti agreed with what Bays [3]
had at the end (quoted above), that Putnam is not fair to his opponents,
in that “he does not allow them what he allows himself”, e.g. arbitrating
what is an intended model. Following Shapiro [15], Bellotti focused on the
ill-foundedness of the final model (p.408):

. . . Putnam’s models for nonconstructible reals are so definitely unin-
tended (they are not well-founded, although they ‘believe’ themselves
to be such) to lose much of their disquieting character for any philo-
sophical reflection on unintended models of set theory.

In a reply to Bellotti [5], Bays [4] mainly reaffirmed his [3] position.
Going on at considerable length, he nuanced and finessed, one specific point
contra Bellotti: Putnam is working and needs to work in a fixed theory. Bays
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newly opined (p.133f), taking account of recent criticism, that “the issues
involved in the other parts of [Putnam’s] argument are more fundamental”,
with “the big conceptual questions ” being “intended” vs. “unintended”
models, “standard” vs. “non-standard” models, and the role of second-order
logic. At the end, Bays concluded:

. . . I think it’s still important to focus some of our attention on the
purely mathematical problems in Putnam’s argument. It’s not that
they are the only problems in this argument or even that they’re
the deepest problems in this argument; it’s that they’re the prob-
lems which are most closely connected to the things which make this
argument philosophically interesting.”

Finally, Button [7], in an account framed by Bays’ criticisms, set out
the details and imperatives of the “metamathematics of Putnam’s model-
theoretic arguments”. Button discussed at length what he took to be some
related mathematics, e.g. the Completeness Theorem and weak set theories,
anticipating concerns and reactions of the metaphysical realist. He did for-
ward a simple overall line of argument, that although “Bays’ challenge poses
considerable problems for the constructivization argument”, “it has no im-
pact at all on the Skolemization or the permutation arguments”.∗ For these
two arguments, only a conditional is needed: ‘if there is a model at all, there
is an unintended one”.

3. Constructivization Revisited

Spurred by the commentary and criticisms, we here take a deeper look at
Putnam’s constructivization argument—the text, the mathematical context,
the underlying logic, and the specific ways, in the end, in which it can be
taken. Putnam’s footnote just before his theorem (cf. in the first quoted
passage of §1), though not discussed by any of the commentators, provides
textual evidence, with its two items each serving as points of beginning in
what follows.

How did Putnam actually conceive of and render his argument? In the
footnote, he wrote that he had proved the theorem to be deployed before
1963. We look at the historical context here to get an appropriate construal
of his theorem.
∗The permutation argument is another model-theoretic argument from Putnam [14];

any theory with a model has multiple distinct yet isomorphic models given by permuting
elements, and so there is a fundamental semantic indeterminacy.
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Putnam’s 1963 [13] was a short yet seminal paper on constructible sets
of integers.† In it, Putnam established, with ωL1 being the least uncountable
ordinal in the sense of L:

(∗) There is an ordinal α < ωL1 such that
there is no set of integers in Lα+1 − Lα.

Gödel, of course, had established that LωL
1

=
⋃
α<ωL

1
Lα contains every con-

structible set of integers, thereby establishing the relative consistency of the
Continuum Hypothesis. Putnam’s theorem revealed that sets of integers are
not steadily constructed up the Lα hierarchy, with his proof of (∗) actually
showing that there are arbitrarily large α < ωL1 such that there is no set
of integers in Lα+1 − Lα. Putnam [13] also showed that by the Shoenfield
Absoluteness Lemma, which had just appeared in Shoenfield [16], for any
∆1

2 ordinal γ, there is an α < ωL1 such that there is no set of integers in
Lα+γ − Lα.‡ This early and astute use of the Lemma is consonant with its
use in Putnam’s proof of his theorem for his constructivization argument.

Putnam’s (∗) stimulated the dissertation work of his student Boolos on
the recursion-theoretic analysis of the constructible sets of integers, this
leading to their [6]. According to Jensen in his classic [11], p.230: “To my
knowledge, the first to study the fine structure of L for its own sake was
Hilary Put[nam] who, together with his pupil George Bool[o]s first proved
some of the results in §3.”

How Putnam [13] proceeded with the proof of (∗) anticipated his later
constructivization argument. At the outset, he credited Cohen with the
method; on his way to forcing, Cohen [8] had shown that there is a mini-
mal ∈-model of set theory, and to do this he closed off {0, 1, 2, . . . , ω} un-
der set-theoretic operations and most crucially, under the instances of the
Replacement Schema, assuming that this is possible and appealing to the
Löwenheim-Skolem Theorem to get the countability of the resulting model.

Recasting this, Putnam argued for (∗) by initially appealing to the Down-
ward Löwenheim-Skolem Theorem to get a countable elementary submodel
of L, and proceeding to its transitive isomorph 〈M,∈〉, so that M = Lγ for
some countable γ. He then pointed out that there is no set of integers in
Lω1+1 − Lω1 by Gödel, and hence by elementarity that there is an ordinal
α ∈M such that there is no set of integers in Lα+1 − Lα.
†Sets of integers are routinely identifiable with, and called, reals, but we stick with the

thematic trajectory here for a while.
‡In fact, this holds, by a straightforward modification of his argument, for any γ < ωL

1 .
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With VB (von Neumann-Bernays) being his working set theory, Putnam
next pointed out: “. . . essentially the preceding argument can be formalized
in VB. Of course, we cannot construct a model of all of VB in VB and
also prove that it is a model.” He then described formalizing argument in
〈Lω1+2,∈〉 instead.

Finally, all this relativizes to L, and so there is an α < ωL1 such that
there is no set of integers in Lα+1 − Lα.

Now to Putnam’s theorem (as stated in the first quoted passage of §1)
for the constructivization argument, essentially:

(∗∗) For any real s, there is an ω-model of ZF + V = L containing s.

The first point is that this cannot be a theorem of ZF, simply because
of its asserting the existence of a model of ZF and hence the consistency
of ZF. This would have been clear to anyone versed in mathematical logic
as Putnam certainly was, and his [13] remarks on VB above bears this out.
Putnam did not make a mathematical mistake in stating the theorem, for
surely he did not intend to state a theorem of ZF.

Proceeding to Putnam’s proof of (∗∗) as given in [14], one next sees the
connection to his proof of (∗), described above. It is quite so, as commenta-
tors have observed, that using the Downward Löwenheim-Skolem Theorem
on L requires additional resources beyond ZFC. This could be said also of
Cohen’s [8] proof and of Putnam’s [13] argument. However, one sees in these
argumentations from the early 1960s that they were proceeding informally to
get at the fact of the matter. Putnam [13] understood that there is the Cohen
minimal model conditionally “if there is any well-founded model” (p.269),
and noted that his argument for (∗) with the Downward Löwenheim-Skolem
Theorem can be carried out in 〈Lω1+2,∈〉, as a model of full set theory is
not required.

Similarly, Putnam’s (∗∗) is a theorem of informal mathematics, stating
a fact of the matter to be accepted by the metaphysical realist. His proof,
getting quickly to the crucial use of Shoenfield Absoluteness, was meant, it
would seem, to provide sufficient deductive ballast to usher the realist to the
truth of (∗∗). If one does insist on a ZFC theorem, then the following is
appropriate for an appeal to Shoenfield Absoluteness:

(1) If for any real s there is an ∈-model of ZF containing s, then
for any real s there is an ω-model of ZF + V = L containing s.
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Given a constructible real s, there is by the hypothesis an ∈-model M
of ZF containing s and hence (by Cohen’s argument!) there is such a model
of form 〈Lγ ,∈〉. Hence, the Π1

2 statement formalizing “∀s∃ω-model of ZF +
V = L containing s” is satisfied in L, and the result follows by Shoenfield
Absoluteness.

That (1) is a conditional assertion in ZFC leads to a pivotal point about
Putnam’s model-theoretic arguments. Both his Skolemization and construc-
tivization arguments are rhetorically in the form of a reductio, and the un-
derlying logic can be carried by the conditional: if there is a model at all,
then there is an unintended one. This being said, one can see what Putnam
would have had in mind for the mathematics to be invoked by looking again
at his footnote just before his theorem (cf. the first quoted passage of §1).

Putnam began the footnote with “Barwise has proved the much stronger
theorem”, that:

(2) Every countable model of ZF has a proper end extension
which is a model of ZF + V = L.

If 〈M,E〉 and 〈N,E′〉 are models of ZF, then the second is an extension of
the first if M ⊆ N and the membership relation E′ extends the membership
relation E; moreover, it is an end extension if for any a ∈ M and b ∈ N ,
bE′ a implies that b ∈ M , i.e. elements of M have no new members in
N . Barwise’s theorem was a culmination of both the investigation of end
extensions of models of set theory and the application of infinitary logic to
the construction of models of set theory. His [1] proof can be described
as a complex application of the Barwise Compactness Theorem and the
Shoenfield Absoluteness Lemma; the proof, rendered in the elegant terms of
“admissible covers”, appears as the last in his book [2]. Barwise’s theorem
is evidently a strong “upward” Löweinheim-Skolem Theorem, in that one
gets an end extension that also satisfies V = L. The analogy extends to
having a sort of Skolem paradox for models of set theory, with any countable
model of ZF being extendible to a canonically slimmest kind of model. This
thematically suggests a role in the constructivization argument.

With Putnam in the footnote writing of Barwise’s theorem as “much
stronger” than his, we take the tack of deploying Barwise’s theorem itself,
rather than Putnam’s, to effect a specification of the constructivization ar-
gument:

Both the Downward Löweinheim-Skolem Theorem and Barwise’s theo-
rem are conditional theorems of ZFC. With the former, having a (set) model
of ZF that contains an abstract set isomorphic to OP amounts to having
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a countable such model. With the latter, having a countable model of ZF
having an abstract set isomorphic to OP amounts to having such a model
that also satisfies V = L. Thus, we have a ZFC rendition of Putnam’s “Any
model of ZF which contains an abstract set isomorphic to OP can be ex-
tended to a model for this formalized language of science which is standard
with respect to OP” (cf. the second quoted passage of §1). Of course, the
theorems used provide a close relationship between the resulting models and
the initial one.

Putnam’s Skolemization argument really turns on assuming that there
is some model of set theory compatible with theoretical and operational
constraints, and then showing that there is a countable one. Its logical
structure analogous, his constructivization argument turns on assuming that
there is some model of set theory compatible with theoretical and operational
constraints, and then showing that there is one satisfying V = L. The first
implication deployed the Downward Löweinheim-Skolem Theorem, and the
second can be effected with Barwise’s “upward” theorem.

Putnam [14] had deployed ω-models in order to preserve the sense of OP
coded as a real. For a specification of his argument just turning on ω-models,
one can argue as above with the following immediate corollary of Barwise’s
theorem:

(3) If there is a countable ∈-model of ZF containing a real s, then
there is an ω-model of ZF + V = L containing s.

With (1) schematized as ∀sϕ −→ ∀sψ, (3) is seen as the stronger version
∀x(ϕ −→ ψ).

In summary, Putnam’s constructivization argument was directed against
a realist concept of set. An “epistemological/logical digression” as he put
it, it has the rhetorical form of his Skolemization argument, that if there is
a model at all, then there is an unintended one. Putnam simply pointed to
a mathematical fact of the matter (∗∗) for his argument, but if the realist
insists, one can present a conditional ZFC theorem (1) to him. In fact,
there are stronger ZFC results, e.g. (2) and (3), that can be invoked. The
constructivization argument has various aspects, various ways of putting
it and of taking it. However, its overall philosophical thrust and import
would not seem to depend on its underlying mathematics. Several results
and theorems can be cited or invoked, each perhaps toning the argument in
different directions, but not affecting its overall philosophical arc.
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4. Critical Coordination

In this final section, we coordinate various criticisms (§2) that have been
made in the literature of the constructivization argument, and in the pro-
cess, consolidate mathematical issues about the argument beyond what was
brought out in §3. In the broad, Putnam famously attempted to use model
theory, i.e. mathematics, to draw metaphysical conclusions. The particu-
lar, constructivization argument, depending on a mathematical contingency
new at the time, became surprisingly pivotal in the philosophical literature
decades later. Mathematics having a precision, there were specifics that
could be aired and argued, and with some more confident than others about
the mathematics, commentators generated a fine-grained mesh of interpre-
tation and assessment. While adjudication is often not be the order of the
day for philosophical arguments, those involving mathematical results can
arguably be illuminated by seeing how they turn on or can be taken ac-
cording to the mathematics. In what follows, we initially follow a simplified
dialectical arc.

Bays [3, 4] has been the most persistent and uncompromising in his
criticism of Putnam’s constructivization argument. Caught up in the math-
ematics, Bays urged repeatedly that Putnam’s proof of his theorem is “mis-
taken” and maintained that there is an “intrinsic” problem here because of
the Second Incompleteness Theorem, and then that the overall argument, in
rhetorically pursuing such paths, is compromised.

Taken to an extreme, if no theorems asserting the existence of models
are to be allowed at all, then Putnam’s argument would collapse through
vacuity. This simple reductio could not be what Bays was pursuing; he
did acknowledge, for both Putnam’s Skolemization and constructivization
arguments, that one is assuming first that there is a model and then getting
an unintended one. However, there is an ostensible asymmetry in how Bays
proceeded:

Putnam had buttressed his Skolemization argument with the Downward
Löwenheim-Skolem Theorem applied to “the standard model (if there is
one)” which could formally be the proper class V of all sets, to get at a
fact of the matter for the realist. If one insists on a ZFC theorem, then one
can appeal to the Downward Löwenheim-Skolem Theorem for sets, start-
ing from a set model and getting a countable one. Bays acknowledged the
Skolemization argument in passing, this conditional avenue to getting an un-
intended model from a given model presumably being operative in Putnam’s
argument.

For the constructivization argument, Putnam had used the Downward
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Löwenheim-Skolem Theorem on L to get at a fact of the matter. Bays
objected to this as such and did not pursue the underlying conditionality.
However, if one insists on a ZFC theorem, (1) or (2), explicit in Putnam’s
footnote, could have been invoked, as discussed in §3.

Putnam’s constructivization argument, it would seem, has a certain sense
and an overall thrust. Its components can be addressed and debated vari-
ously, with its mathematical underpinnings renderable, e.g. with (2). Bays,
in focusing on Putnam’s “mathematical mistake”—and moreover treating
it as symptomatic of Putnam’s philosophical mistakes in general—seems to
have fastened onto a relatively inconsequential eddy and distorted the overall
flow of argumentation.

Bellotti [5], in arguing against Bays’ [3] contention that Putnam had
made a mathematical mistake in ZFC, first pointed out that Putnam had
not specified his working theory. Belotti then became focused on possible
extensions that could serve as that theory, to be part of “our best theory of
the world”. One additional assumption beyond ZFC sufficient for Putnam’s
theorem that Bellotti mentioned is akin to the antecedent of (1) (cf. §3).
Taking the conditional (1), one can stay in ZFC as the working theory while
advancing the constructivization argument rhetorically against the realist.

At the end, Bellotti [5] affirmed (p.407) his “most serious objection to
Putnam”, that the final models for nonconstructible reals are “definitely
unintended”, having an ill-founded membership relation. On this Bellotti
followed Shapiro [15], who had approached the issue from the perspective
of second-order logic. The set-theoretic Axiom of Foundation asserts that
the membership relation is well-founded, and if one is working in second-
order logic, the axiom would indeed require any model to have a (really)
well-founded membership relation. Contra Shapiro, one sees, however, that
Putnam was working in first-order logic. Indeed, his Skolemization argument
would not even get off the ground in second-order logic, as the Löwenheim-
Skolem Theorem would not hold. One can pursue this sort of reductio to
vacuity of course, but it would be by changing the very ground of the argu-
ment. Contra Bellotti, if one stays in first-order logic but requires intended
models to be well-founded, this imposition of a second-order condition still
goes against the very tenor of the constructivization argument. Theoretical
and operational constraints are to be seen at work inside the final model, and
(real) well-foundedness is something one only sees from outside the model.

Button [7] did point out, contra Bays, that Putnam’s Skolemization ar-
gument turned on the conditional: if there is a model at all, then there is
an unintended one. Button also pointed out how the Completeness Theo-
rem, provable in a weak set theory, can carry this conditional, while Putnam
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had appealed to the Downward Löwenheim-Skolem Theorem. As part of his
extended analysis, he could have seen Putnam’s footnote in his construc-
tivization argument, from which it becomes evident how it too turns on the
conditional, which can be carried by Barwise’s theorem (2).

Separate from this to and fro, Gaifman [10] interestingly waded through
the mathematics of the constructivization argument, landing on a different
shore. After acknowledging that Putnam’s theorem can be based on some
additional assumption(s) to be granted by the realist, Gaifman also pointed
out that whether the final model is well-founded or not makes no difference—
only what holds in the model, like V = L, is substantive to the argument.
After this however, Gaifman took basic issue with ever launching such an
argument, in view of the viability of non-standard models for the realist.

Stepping back, one sees that the mathematics of Putnam’s construc-
tivization argument has been chewed over variously, with the §3 articulation
very much possible to hold up as a conditional challenge to the realist. Look-
ing past the mathematics, the commentators, including Bays, went on to
address substantive issues about how further to put and take the construc-
tivization argument and determine the extent to which it is philosophically
effective. These turn mainly on possible skeptical responses and where the
realist stands dialectically in relation to the argument’s components and
what and how its moves are to be accepted. Be that as it may, however, the
mathematics does stand as an interesting and robust part of the argument
that Putnam put into play.
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