
Cantor and Continuity

Akihiro Kanamori

May 1, 2018

Georg Cantor (1845-1919), with his seminal work on sets and number, brought
forth a new field of inquiry, set theory, and ushered in a way of proceeding in
mathematics, one at base infinitary, topological, and combinatorial. While this
was the thrust, his work at the beginning was embedded in issues and concerns
of real analysis and contributed fundamentally to its 19th Century rigorization,
a development turning on limits and continuity. And a continuing engagement
with limits and continuity would be very much part of Cantor’s mathematical
journey, even as dramatically new conceptualizations emerged. Evolutionary
accounts of Cantor’s work mostly underscore his progressive ascent through set-
theoretic constructs to transfinite number, this as the storied beginnings of set
theory. In this article, we consider Cantor’s work with a steady focus on con-
tinuity, putting it first into the context of rigorization and then pursuing the
increasingly set-theoretic constructs leading to its further elucidations.

Beyond providing a narrative through the historical record about Cantor’s
progress, we will bring out three aspectual motifs bearing on the history and na-
ture of mathematics. First, with Cantor the first mathematician to be engaged
with limits and continuity through progressive activity over many years, one
can see how incipiently metaphysical conceptualizations can become systemati-
cally transmuted through mathematical formulations and results so that one can
chart progress on the understanding of concepts. Second, with counterweight
put on Cantor’s early career, one can see the drive of mathematical necessity
pressing through Cantor’s work toward extensional mathematics, the increasing
objectification of concepts compelled, and compelled only by, his mathematical
investigation of aspects of continuity and culminating in the transfinite numbers
and set theory. And third, while Cantor’s constructions and formulations may
seem simple, even jejune, to us now with our familiarity with set theory and
topology, one has to strive, for a hermeneutic interpretation, to see how difficult
it once would have been to achieve basic, especially founding, conceptualizations
and results.

This article has a pyramidal structure which exhibits first a mathematical
and historical basis for Cantor’s initial work on limits and continuity and then
his narrowing ascent from early conceptualizations to new, from interactive
research to solo advance. There is successive tapering since continuity has wide
antecedence out of which Cantor proceeds to more and more specific results,
just as he is developing more and more set theory.
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§1 has as a central pivot Cantor’s construction of the real numbers. Lead-
ing up to it, we draw in the relevant aspects of real analysis, much having
to do with continuity and convergence, and following it, we set out aspects
and consequences of constructions of the real numbers that establish a larger
ground for mathematics in set theory and topology. §2 gets to Cantor’s work
on uncountability and dimension, seminal for set theory while also of broad
significance—and this is the emphasis here—for the topological investigation of
continuity and continua. Finally, §3 finishes up with point-sets and in particular
perfect sets, which is a culmination of sorts for Cantor’s work on the integrated
front of continuity and set theory.

In several ways we follow well-trodden paths; it is through a particular ar-
rangement and emphasis that we bring out the import and significance of Can-
tor’s work on continuity. The books [Ferreirós, 2007] and [Dauben, 1979] proved
to be particularly valuable for information and orientation.

1 The Real Numbers

In his earliest researches that anticipated his development of set theory and the
transfinite, Cantor provided a construction—or theory—of the real numbers
out of the rational numbers. Seen in terms of his overall accomplishments, this
construction can be said to be basic and straightforward, an initial stone laid
presaging remarkable advances. Nonetheless, it is worth dwelling on the con-
struction and its role in Cantor’s research, especially as they have a larger signif-
icance when set in a broad context of ponderings about continua and continuity.
This section is much longer than the others, being given over to establishing and
working that context.

Aristotle, in Physics, famously argued (III.5) that “infinity cannot exist as
an actual thing” but only has a “potential existence”, and, related to this, main-
tained (VI.1) that “anything continuous” cannot be made up of “indivisibles”,
e.g. “a line cannot be made up of points”. Cantor, with others like Riemann
and Dedekind who developed continua, decidedly opted for the actual infinite in
mathematics, and, as he formulated the real numbers, he identified them with
points, conceiving the continuum as consisting extensionally of points. Can-
tor’s construction, together with Weierstrass’ and Dedekind’s, completed the
“arithmetization” of real analysis. No longer would number be the account of
quantity, reckoning and measuring; number becomes inherent and autonomous,
given by arithmetic and order relations and completed by extension. This arith-
metization was in the wake of an incisive 19th Century mathematical inquiry
about continuity and convergence of series of functions. Of this, we give a brief,
if necessarily potted, history:

What has been called the 19th Century “rigorization” of real analysis could
fairly be said to have been initiated by Cauchy’s classic 1821 text Cours d’analyse,
in which he set out formulations of function, limit, and continuity and encour-
aged the careful investigation of series (infinite sums) and convergence. He es-
tablished [note III] inter alia a “pure existence” proposition, The Intermediate
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Value Theorem. Cauchy’s initiative promoted norms and procedures for working
with continuous functions, but also a Leibnizian “ideal of continuity” whereby
properties are to persist through limits. Fourier’s remarkable 1822 Théorie
analytique de la chaleur brought “Fourier series”—certain series of sines and
cosines—to the fore, and, with some leading to discontinuous functions, would
exert conceptual pressure on the new initiative. Indeed, Abel, in an incisive
1826 paper on the binomial series, specified at one point that an appeal to the
“Cauchy sum theorem”—that a (convergent, infinite) sum of continuous func-
tions is again a continuous function—would have been unwarranted as it “suffers
exceptions”, one being a simple sine series. It was left to Dirichlet in a penetrat-
ing 1829 paper to provide broad sufficient conditions, the “Dirichlet conditions”,
for a (possibly discontinuous) function to be representable as a Fourier series.
In the face of such developments, various mathematicians in the 1840’s reaf-
firmed a new “ideal of continuity” by formulating the appropriately articulated
concept of uniform convergence, so that e.g. a uniformly convergent sequence of
continuous functions does converge to a continuous function. In 1861 lectures
at Berlin, Weierstrass carefully set out continuity and convergence in terms of
the now familiar ε–δ language, the “epsilontics”.

A plateau was reached by Riemann in his 1854 Habilitation. In 1868, after
his untimely death, his colleague Dedekind published the lecture [1868b] and the
dissertation [1868a]. From the first emanated Riemann’s far-reaching concept of
a continuous manifold, cast in terms of extensional, set-theoretic conceptualiza-
tions and now fundamental to differential geometry. From the second we have
the now familiar Riemann integral for the assimilation of arbitrary continuous
functions, and, with it, Riemann’s magisterial extension of Dirichlet’s 1829 work
to general trigonometric series—arbitrary series of sines and cosines—arriving
at necessary and sufficient conditions for a function to be representable by such
a series.

However one may impart significance to Cantor’s construction of the real
numbers, it is best seen in light of this past as prologue, from both mathematical
and conceptual perspectives. Cantor too worked on trigonometric series, getting
to the next stage, the uniqueness of representation, and, for the articulation,
it became necessary to have a construction of the real numbers in hand for
conceptual grounding. Historically, uniform convergence had been similarly
worked in, for better articulation of results on representability by Fourier series.

A side question might be raised here as to why constructions of the real
numbers, being conceptually simple to modern eyes, appeared so relatively late.
First, there was still a tradition persisting, going back to the Greek notion of
magnitude (megelos), that based number on quantity. Rational numbers were
given by ratio, and proportion—the equality of ratios—led to further, piecemeal
development of parameters. Occam’s razor is a hallmark in the development of
mathematics, with mathematicians proceeding steadily with the fewest ontolog-
ical assumptions, and it seems that only by Cantor’s time did having a construc-
tion of the real numbers as such became necessary, to have a ground for defining
collections of real numbers based on taking arbitrary limits. Second, as for con-
ceptual simplicity, basic conceptualizations simply formulated lend themselves
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to generalization, and we today in axiomatizations of complete metric spaces
and the like tend to take what Cantor and others did with the constructions of
the real numbers as jejune, underestimating the initial difficulty of a communal
carrying out of a regressive analysis.

In what follows, we briefly describe in §1.1 Cantor’s early work on trigono-
metric series, set in its historical context, and describe in §1.2 the [Cantor, 1872]
construction of the real numbers and move into limit points and point-sets. In
that year, there also appeared constructions of the real numbers in [Heine, 1872]
and in [Dedekind, 1872]. The construction in [Heine, 1872] is Cantorian, with
acknowledgement, and it is deployed there to establish governing results on func-
tions and continuity. §1.3 sets this out and, embedding it into our narrative,
serves to draw out the relevance of the Cantorian construction for functions and
continuity. [Dedekind, 1872] provided a thematically different construction of
the real numbers which would gain comparable standing. §1.4 makes compar-
isons, and serves to bring the Cantorian construction into sharper relief as well
as raise issues about extensionalism.

1.1 Uniqueness of Trigonometric Series

After his studies and some teaching at Berlin, Cantor in 1869 took up a position
to teach as Privatdozent at the university at Halle, and upon arrival presented
the faculty with a Habilitationsschrift in number theory. Eduard Heine was
an elder colleague there who decades before had been a student of Dirichlet at
Berlin. Working with him, Cantor soon made a consequential change of research
direction, to real analysis and the study of trigonometric series.

In his [1870], Heine had pointed out the role of uniform convergence in the
work of Abel and Dirichlet and how the significance attributed to the repre-
sentability of a function as a trigonometric series depended in large part on
the uniqueness of the representation. He then built on Dirichlet’s 1829 work to
establish the following, where by “generally” he meant except at finitely many
points.

Theorem 1 ([Heine, 1870, p.355]): “A generally continuous but not necessarily
finite function f(x) can be expanded as a trigonometric series of the form

f(x) = 1
2a0 + Σ(an sinnx+ bn cosnx)

in at most one way, if the series is subject to the condition that it is generally
uniformly convergent. The series generally represents the function from −π to
π.”

Heine mentioned that it was not known that a trigonometric series repre-
senting a continuous function must be uniformly convergent. Cantor set out to
eliminate the “uniformly” from the theorem, in itself a significant move since
uniform convergence had become so woven into the representability by trigono-
metric series. Working as Heine had done with Riemann’s [1868a] key function
F (x), the formal double integration of the trigonometric series, Cantor was able
to establish:
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Theorem 2 ([Cantor, 1870, p.142]): “When a function f(x) of a real variable x
is given by a trigonometric series convergent for every value of x, then there is
no other series of the same form which likewise converges for every value of x
and represents the function f(x).”

The next step forward, to a further generalization, would be momentous.
Heine [1870, p.355] had acknowledged Cantor for proposing for uniqueness of
representation that, as in Dirichlet’s work on Fourier series, there could be a
finite number of exceptional points at which the convergence of the trigono-
metric series fails—so the “generally” in Theorem 1. Cantor, having reduced
uniform convergence to just convergence with Theorem 2, worked the nice prop-
erties of Riemann’s F (x) to allow finitely many exceptional points, effectively
incorporating “generally” into Theorem 2. Cantor then realized that a further
elaboration with F (x) involving limits would allow infinitely many exceptional
points in a systematic way. With this central insight about possibility, Cantor
developed dramatically new conceptualizations to accommodate his arguments
and results, particularly “point-sets” and “derived” such sets in a hierarchy of
“kinds”. In these terms, he generalized Theorem 2 to the following uniqueness
theorem (the theorem is about the zero function, but of course, uniqueness of
representation ensues by subtraction of two possible representations of the same
function).

Theorem 3 ([Cantor, 1872, p.130]): “If an equation is of the form

0 = C0 + C1 + C2 + . . .+ Cn + . . . ,

where C0 = 1
2d0, Cn = cn sinnx + dn cosnx for all values of x with the exception

of those corresponding to the points of a given point-set P of the νth kind in
the interval (0, 2π), where ν denotes an integer, then d0 = 0 and cn = dn = 0.”

1.2 Cantor [1872]

It is at the beginning of his [1872] that Cantor presented his construction of
the real numbers. The necessity for Cantor was that for Theorem 3 he had
newly developed the topological notion “point-set of νth kind” with respect to
the linear continuum, and, heading toward a rigorously presented proof about a
real function, he had to be able to apprehend the real numbers “corresponding to
the points” in such sets. On this, one can say, again, that the late construction
of the real numbers had to do with its only becoming incumbent for proceeding
further, and this, appropriately enough, at a next stage in the investigation of
trigonometric series, a subject that was interwoven with conceptualizations of
continuity and convergence.

Cantor’s construction of the real numbers was not sui generis. Weierstrass,
in Berlin lectures from the early 1860’s, based his theory of analytic functions
on a construction of the real numbers.1 He began with the natural numbers as
collections of units—much like the Greek arithmos—and fractions as collections

1A general reference here is [Dugac, 1973].
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of aliquot parts 1/n—as did the Egyptians—to develop real numbers as series
(infinite sums)—his Zahlengrößen. Thus, in a rather prolix way, the actual
infinite could be said to have surfaced here, as well as elemental set-theoretic
conceptualizations. There is evidence that Cantor lectured on his own construc-
tion of the real numbers in 1870,2 his second year at the university at Halle.
What distinguishes Cantor’s construction is its simplicity at a higher level and
how it was deployed in the development of new mathematics.

Starting with the rational numbers as given, Cantor [1872] specified (p.123f):

When I speak of a numerical magnitude in a further sense [Zahlen-
größe im weiteren Sinne], it happens above all in the case that there
is present an infinite series [Reihe], given by means of a law, of ra-
tional numbers

(1) a1, a2, a3, . . .

which has the property that the difference an+m − an becomes in-
finitely small with increasing n, whatever the positive integer m may
be; or in other words, that given an arbitrary (positive, rational) ε
one can find an integer nl such that |an+m − an| < ε, if n ≥ nl and
m is an arbitrary positive integer.

This property of the series (1) I will express by means of the
words “The series (1) has a definite limit [bestimmte Grenze] b.”

“series” here is evidently in the sense we now specify by “sequence”; we refer to
a sequence as above, as Cantor subsequently did, as a fundamental sequence.3

Cantor went on to emphasize that “has a definite limit b” is to have no fur-
ther sense than as set out, with b a “symbol [Zeichen]” and different symbols
b, b′, b′′, . . . to be associated with different sequences. He then defined, in terms
of associated sequences, b = b′ if for any positive rational ε, |an − a′n| < ε for
n sufficiently large, and similarly, b > b′ and b < b′. Finally, he stipulated that
b ∗ b′ = b′′ for ∗ any of +,−,×, / according to lim(an ∗ a′n − a′′n) = 0 in the ex-
pected sense, that for any positive rational ε the value for sufficiently large n is
within ε of 0. These definitions conform to the Leibnizian “ideal of continuity”
of properties persisting through limits.

These order relations and arithmetical operations as defined can be regarded
as extending those for the rational numbers, if e.g. we construe a rational number
a as the definite limit of the constant sequence of a’s. In particular, that a
sequence a1, a2, a3, . . . “has a definite limit b” has an a posteriori justification
in lim(b−an) = 0. Cantor considered that the domain A of rational numbers has
been extended, by the introduction of definite limits, to a domain B. However
circumspect Cantor had initially been about “definite limit”, he thence referred
to the members of B as Zahlengrößen—and we have a construction of the real
numbers.

2[Purkert and Ilgauds, 1987, p.37].
3See [Cantor, 1883a]. Such a sequence came to be known as a “Cauchy sequence” in the

20th Century, there being an an antecedence in [Cauchy, 1821, p.125].
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Cantor then entertained the extension of the domain B to a domain C by
analogously introducing as “definite limits” fundamental sequences of members
of B. However, he pointed out that whereas there are members of B that do
not correspond to any rational number, every member of C “can be set equal
[gleichgesetzt werden kann]” to a member of B. Nonetheless (p.126)

. . . it is . . . essential to maintain the conceptual distinction between
the domains B and C, just as the identification of two numerical
magnitudes b, b′ from B does not include their identity, but only
expresses a certain relation which takes place between the series to
which they refer.

This remark is revealing about Cantor at this juncture vis-à-vis number and
identity: With process paramount, C is to be regarded as conceptually differ-
ent from B; B itself is not quite the domain of real numbers as b = b′ does
not entail their identity; and yet, there is commitment to number as given by
ratio and order relations. Cantor is interestingly at a cusp of the intensional
vs. extensional distinction here; he insists on a meaningful distinction between
members of C and B, yet subscribes to how they “can be set equal” on the way
to identification.

Maintaining the conceptual distinction and regarding B as consisting of
Zahlengrößen “of the first kind”, Cantor proceeded to iterate the process of
going from B to C to get from C to a domain D and so on, getting generally to
Zahlengrößen of the νth kind. With respect to the intensional vs. the extensional
distinction, this iteration as carried out with general collections of numbers (see
below) would foster an increasingly extensional approach, at the very least be-
cause of the need to have simplicity through making identifications—and one
has the naissance of Cantor’s extensional set theory.

Cantor next went about correlating his Zahlengrößen with points on the
straight line—so yes, he was inherently committed to the continuum as con-
sisting extensionally of points. Once an origin o and a unit distance have been
specified, the rational numbers correlate to points according to ratio. Then, any
point is approached arbitrarily closely by a sequence of points corresponding to
rational numbers in a fundamental sequence a1, a2, a3, . . . . So, (p.127) “The
distance of the point to be determined from o is equal to b, where b is the nu-
merical magnitude [Zahlengröße] corresponding to the sequence.” How about
the converse? Cantor astutely saw (p.128) the need to postulate an axiom to
complete the correlation:

. . . to every numerical magnitude [Zahlengröße] there corresponds a
definite point of the line, whose coordinate is equal to that numerical
magnitude.

I call this proposition an axiom, since it is in the nature of this
statement that it cannot be proven.

Through it the numerical magnitudes also gain a certain objec-
tivity, from which they are, however, quite independent.
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We today so readily identify real numbers with points on the straight line,
that Cantor’s initial identification may seem jejune or at best a dutiful corre-
lation. However, one can try to approach hermeneutic interpretation by seeing
how Cantor in his day is taking the straight line qua linear continuum in a prior
sense, one through which his Zahlengrößen are to gain “a certain objectivity”.
A plausible way of thinking is that Cantor’s axiom is analogous to Church’s
Thesis, correlating an informal notion with a formal one. It will be that Cantor
would continue to be invested in the investigation of the continuum, enabled in
this—through his identification—with what he would increasingly call “arith-
metic” means.

With Zahlengrößen identified with points on the line and collections of points
being “point-sets [Punktmengen]”, Cantor formulated (p.129) some concepts
that would become basic for topology as well as crucial for his uniqueness the-
orem:

By a limit point of a point-set P I understand a point of the
line whose position is such that in any neighborhood [Umgebung ],
infinitely many points of P are found, whereby it can happen that
the same point itself also belongs to the set. By a neighborhood of
a point one should understand here any interval which contains the
point in its interior. Accordingly, it is easy to prove that a point-set
consisting of an infinite number of points always has at least one
limit point.

This last proposition, with the presumption of the point-set being bounded, is
recognizably the Bolzano-Weierstrass theorem, and it is indeed easy to prove
given Cantor’s context of sets and real numbers. Weierstrass, in his lectures
at Berlin, had the concepts of concepts of neighborhood and limit point more
elementally put. With Cantor’s synthetic approach involving actually infinite
point-sets, there is a higher-order picture, one which will provide the basis for
his development of set theory and topology.

For any infinite point-set P , considering that “limit point of P” is a well-
determined concept Cantor took the limit points of P collectively to form a new
point-set P ′. Thus, for the first time, an operation on infinite sets was devised.
P ′ is the derived set of P , and if P ′ is again infinite, it too has a (non-empty)
derived set P ′′, and so on. Either this process can be iterated to get for each ν
the νth derived set P (ν) of P , or else there is a least ν when P (ν) is finite. In the
latter case Cantor stipulated P to be of the νth kind, and those P being of the
νth kind for some (finite) ν as derived sets of the first species. With an evident
correlation between Zahlengrößen of the νth kind and derived sets of the νth
kind, Cantor pointed out that if one takes a single Zahlengröße of the νth kind
and traces back through the fundamental sequences all the way back to the
rational numbers, the resulting point-set Q of rational numbers is of νth kind—
Q(ν) in fact consists of a single point. While the correlation with Zahlengrößen
may have stimulated such analysis, the coming to the fore of derived sets as a
systemization of the construction of the real numbers promoted a picture of the
νth kinds not as different types but as of the same extensional domain.
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Finally, with all this structure in place, Cantor established (p.130f) the new
uniqueness theorem, Theorem 3 above, which allows infinitely many exceptional
points. One sees, through his proof idea of a further elaboration involving
Riemann’s F (x) with attention to nested intervals, how he had come to entertain
his derived point-sets of the first species.

1.3 Heine [1872]

With [Heine, 1870] having been a motivation for [Cantor, 1872], it will be à pro-
pos to discuss Heine’s [1872], which followed up on an issue—uniform continuity—
from his [1870] and relied on the Cantorian construction of the real numbers.
Through the discussion one can bring out the operative efficacy of the construc-
tion for real analysis.

Heine began [1872] with a lament that function theory as promulgated by
Weierstrass in his Berlin lectures had not appeared in “authentic” form, and
suggested that in any case its truth rests on a “not fully definite [nicht völlig
feststehenden] definition” of the irrational numbers. Thanking Cantor for his
number conceptualization with sequences, Heine would rigorously set out in his
paper the “elements of function theory” as per the title.

Heine began with “number series [Zahlenreihe]”, fundamental sequences
of rational numbers, like Cantor [1872]. He observed that if a1, a2, a3, . . .
and b1, b2, b3, . . . are two such, then so are a1∗b1, a2∗b2, a3∗b3, . . . for ∗ any
of +,−,×, / (taking care not to divide by 0). Heine then associated to each
sequence a1, a2, a3, . . . a “number symbol [Zahlzeichen]”, [a1, a2, a3, . . . ]. Evi-
dently writing “A = [a1, a2, a3, . . . ]” etc. to express abbreviation, he then for-
mulated relations between symbols A = B,A > B,A + B = C,AB = C etc.,
each given in terms of associated sequences. Finally, Heine defined “limit” for
symbols, first taking a = [a, a, a, . . . ] for rational numbers a and, working with
such, establishing criteria for general symbols. Thus, unlike Cantor [1872] who
initially introduced “definite limit” as an expression and, developing symbols,
later justified its use, Heine developed symbols first and only later brought in
“limit” as concept.4

Like Cantor, Heine next considered fundamental sequences consisting of
“number symbols” and so forth, getting to “irrationals of higher orders”. Can-
tor had pointed out that such an irrational number “can be set equal” to one
of first order, but insisted on maintaining the conceptual distinction for his ac-
count of point-sets of higher kind. Heine, on the other hand, merely sketched
that “the irrationals of higher order are not new, agreeing with those of first
order,” and proceeded to use [x1, x2, x3, . . . ] where the xi’s could be irrational
numbers. Thus taking an extensional view of the real numbers at the outset,
Heine could be said to have proved the completeness of the real numbers under
the taking of limits.

4Years later, making his only reference to [Heine, 1872], Cantor [1883a, §9.8] describes how
with a fundamental sequence (aν) he correlates a number b, “for which one can expediently
use the symbol (aν) itself (as Heine, after many conversations with me on the subject, has
proposed).”
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With the real numbers thus formulated, Heine forthwith developed his func-
tion theory ab initio (p.180f). “A single-valued function of a real variable x is
an expression which is uniquely defined for every rational or irrational value of
x.” Proceeding to continuity (p.182f),

A function f(x) is called continuous for a given individual value
x = X if for any positive ε however small, there exists a positive
η0 such that for no positive η smaller than η0 does the value of
f(X ± η)− f(X) exceed ε.

This is essentially Weierstrass’s “epsilontics” formulation of continuity at X.
Heine then presented a characterization that he credited to Cantor: A func-
tion f(x) is continuous at x = X if and only if whenever X = [x1, x2, x3, . . .],
f(x1), f(x2), f(x3), . . . is a fundamental sequence such that:
f(X) = [f(x1), f(x2), f(x3), . . . ].5

Heine next formulated pointwise and uniform continuity (p.184):

A function f(x) is called continuous from x = a to x = b if it is
continuous for each individual value x = X between x = a and
x = b, including the values a and b; it is called uniformly continuous
from x = a to x = b if for each positive ε however small, there exists
a positive η0 such that for all positive η smaller than η0, the value
of f(x± η)− f(x) remains below ε.

As Heine emphasized, this last is to be so for all values of x and x± η between
a and b.

Working with Cantor’s characterization, Heine then, in quick order, estab-
lished the following theorems, now seen as basic to continuity. Weierstrass had
attended to these theorems in his lectures with his own, more involved construc-
tion of the real numbers.

• Intermediate Value Theorem (p.185f): a continuous function from x = a
to x = b, with values at a and b of opposite sign, achieves 0 in the interval.

• Greatest Lower Bound Theorem (p.186f): a continuous function from x =
a to x = b, never negative yet becomes arbitrarily small in the interval,
achieves 0 in the interval.

• Extreme Value Theorem (p.188): a continuous function from x = a to
x = b achieves both a maximum and a minimum in the interval.

In [1870, p.361], Heine had pointed out the importance of uniform continuity
in work of Dirichlet and Abel. To conclude, he showed that, in the recurrent
situation of intervals including the endpoints, uniform continuity and continuity
coincide:

5It is notable that from a logical point of view, the only-if direction made the first, un-
avoidable use of the Countable Axiom of Choice in mathematics. See [Moore, 1982, p.15f].
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Theorem 4 ([Heine, 1872, p.188]): “A continuous function f(x) from x = a to
x = b (for all individual values) is also uniformly continuous.”

This theorem has come to be called the Cantor-Heine Theorem. It requires a
higher level of argumentation than for the basic continuity theorems, and can be
seen as the thematic climax of Heine’s paper. Heine’s proof, turning on Cantor’s
characterization, is sketched as follows:

Suppose that a positive 3ε is given. Let x1 be the largest y ≤ b such that
a ≤ x ≤ y entails |f(x) − f(a)| ≤ ε. (x1 is the greatest lower bound of those
x such that |f(x) − f(a)| > ε.) If x1 < b, note that |f(x1) − f(a)| = ε (by
a continuity argument). In that case, let x2 be the largest y ≤ b such that
x1 ≤ x ≤ y entails |f(x)− f(x1)| ≤ ε. If x2 < b, note that |f(x2)− f(x1)| = ε.
In this way, proceed for as long as possible to get a < x1 < x2 < x3 < . . . < b.

If this sequence is finite, then the result is established. (In detail, if M
is taken to be half the minimum of the |xn+1 − xn|’s, then a straightforward
“triangle inequality” argument shows that for any z1 and z2 between a and b,
|z2 − z1| < M entails |f(z2)− f(z1)| ≤ 3ε.)

If this sequence is infinite, then x1, x2, x3, . . . is a fundamental sequence and
f is continuous at [x1, x2, x3, . . . ], yet f(x1), f(x2), f(x3), . . . is not a fundamen-
tal sequence—which contradicts Cantor’s characterization.

With the Cantorian construction of the real numbers playing a significant
role throughout [Heine, 1872], it is worth describing how its arguments sit among
those in the historical “rigorization” of real analysis. In a historical context
where the Intermediate Value Theorem qua principle was presupposed and ap-
plied as part of the sense of continuity, the Bohemian philosopher Bernard
Bolzano [1817] in his conceptual approach and Cauchy in his expository text
Cours d’analyse [1821, note III] enunciated and established it qua theorem by
“purely analytic” means. Bolzano first “proved” (§7) that a fundamental se-
quence of partial sums converges; the argument is circular, in that the con-
vergence cannot be proved except on some basis equivalent to it. Bolzano then
proceeded (§12) to establish the Greatest Lower Bound Theorem, and with that,
(§15) the Intermediate Value Theorem. Cauchy proved (p.460-462) the Interme-
diate Value Theorem by numerical approximation, constructing two fundamen-
tal sequences, one approaching the intermediate value from above and the other
from below, their convergence then taken for granted. These argumentations are
quite creditable as early gestures in the rigorization of real analysis. With them,
one sees specifically how making explicit beforehand the Cantorian construction
of the real numbers—so objectifying limits of fundamental sequences—renders
argumentation for the Intermediate Value Theorem rigorous and routine, as in
[Heine, 1872].

With respect to the Cantor-Heine Theorem on uniform continuity, it is first
of all a notable historical happenstance that Bolzano in his Functionenlehre—
written in the 1830s but only published a century later as [Bolzano, 1930]—had
engaged with the concept of uniform continuity.6 In improvements written for

6See [Rusnock and Kerr-Lawson, 2005] for this and what follows. Bolzano pointed out
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his work, Bolzano stated (see [Russ, 2004, §6,p.575ff]) the Cantor-Heine The-
orem and made an unsuccessful attempt at proof. In 1854 Berlin lectures on
the definite integral, Heine’s teacher Dirichlet (see [1854 1904, pp.3-8]), with
uniform continuity on closed intervals a needed refinement, discursively estab-
lished the Cantor-Heine Theorem. Dirichlet’s argument and Heine’s proof, given
above, proceed along the same lines, and it can be specified exactly where the
latter has the sufficient buttress: where the Greatest Lower Bound Theorem
provides for the increasing sequence of xi’s and where Cantor’s characterization
is applied to deny their infinitude.

1.4 Dedekind [1872]

Richard Dedekind, in his essay Stetigkeit und irrationale Zahlen [1872], provided
his now well-known construction of the real numbers. While Cantor was invested
in his as part and parcel of his research, Dedekind had arrived at his as a matter
of the conceptual analysis of continuity. In his preface, he recounts that he had
done so already in 1858, and that it was his receipt of Heine [1872] that prompted
publication. He also mentioned that he was just in receipt of Cantor [1872] going
into press, and specifically pointed to Cantor’s axiom as correlated with his own
“essence of continuity”.

Dedekind initially set out (§1) the rational numbers and their ordering and
reviewed (§2) how they can be correlated with points on a straight line, once
an origin o and a unit distance have been specified. Presupposing the line to
consist extensionally of points, Dedekind recalled how any point partitions the
line into two parts, those points to the left and those points to the right, and
formulated (§3) the “essence of continuity” to be the converse, the following
principle:

If all points of the straight line fall into two classes such that every
point of the first class lies to the left of every point of the second
class, then there exists one and only one point which produces this
division of all points into two classes, this severing of the straight
line into two portions.

Dedekind thus fixed on the straight line for his analysis and principle—or
axiom—whereas Cantor worked up his Zahlengrößen first and, latterly correlat-
ing with the straight line, posited his axiom, through which his Zahlengrößen
gain “a certain objectivity”.

Pursuant of his principle, Dedekind formulated (§4) his now well-known cut
[Schnitt ] as any pair (A1, A2) of non-empty classes that constitute a partition
of the rational numbers, with any member of the first less than every member
of the second. A rational number produces two cuts—one with that number
as maximum of the left set and the other with it as the minimum of the right
set—these cuts to be regarded as essentially the same. Those cuts (A1, A2) with

(see [Russ, 2004, §49,p.456]) that the function f(x) = 1
1−x , while continuous, is not uniformly

continuous in an open interval (i.e. excluding endpoints) around x = 1.
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no maximum nor minimum “create a new, irrational number α which we regard
as completely defined by this cut (A1, A2)”. In this, α is like Cantor’s “definite
limit” in having no further sense than as given, though Dedekind’s principle
objectifies the number as corresponding to “one and only one point” on the
straight line.

After setting out the order relations between his real numbers according to
set-inclusion of corresponding cuts, Dedekind established (§5) the thematically
central result, that the real numbers—autonomous and no longer correlated
with the straight line—satisfy his principle of continuity: Given a cut of real
numbers—a partition of the real numbers into two non-empty classes with any
real number in the first less than every real number in the second—there is one
and only one real number that produces the cut. This corresponds to Cantor’s
observation that any member of his domain C, the result of taking limits of
fundamental sequences from his domain B of Zahlengrößen, “can be set equal”
to a member of B.

Rhetorically, having focused on order and continuity, Dedekind latterly at-
tended (§6) to the formulation of the arithmetical operations for real numbers.
He detailed only the addition of cuts: For cuts (A1, A2) and (B1, B2), define
C1 to consist of those rational numbers c such that for some a in A1 and b
in B1, c ≤ a + b; then taking C2 to be the complement of C1, (C1, C2) is a
cut that appropriately serves as the sum. Actually, the multiplication of cuts
cannot be analogously defined because of the law of signs (−a)(−b) = ab, and a
proper definition would have to involve intervals of rationals of differing signs.
Dedekind suggested introducing the ideas of “variable magnitudes, functions,
limiting values, and it would be best to base the definition of even the simplest
arithmetic operations upon these ideas”—thus approaching Cantor’s definitions
of the arithmetical operations.

Dedekind concluded (§7) his essay by proving two “fundamental theorems
of infinitesimal analysis”, each of which he noted is equivalent to his principle
of continuity: “If a magnitude x grows continually but not beyond all limits it
approaches a limiting value”, and “If in the variation of a magnitude x we can,
for every given positive magnitude δ, assign a correspond position from and
after which x changes by less than δ, then x approaches a limiting value.” Were
these stated in terms of sequences, then the first would assert that an increas-
ing sequence bounded above has a limit, and the second, that a fundamental
sequence has a limit.

Stepping back, one sees that, however Dedekind actually arrived at his con-
struction of the real numbers, his account and Cantor’s proceed in diametrically
opposite directions. Dedekind began with the straight line and his principle of
continuity and got to the existence of limits in real analysis; Cantor started with
fundamental sequences having “definite limits” and made his way to an axiom
for correlating numbers with the linear continuum. With its explicit, existence
postulation about the straight line, Dedekind’s principle has been deployed as
an axiom to rigorize Euclidean geometry.7 Once the real numbers have been

7See [Greenberg, 2008, p.134ff] and [Heath, 1956, p.236ff]. From it, one can prove that if a

13



defined and are in place, Dedekind’s principle is seen to be equivalent to fun-
damental sequences having limits, as well as to each of the Intermediate Value
Theorem, the Greatest Lower Bound Theorem, and the Extreme Value Theorem
(cf. [Heine, 1872]).

As for constructions as definitions of the real numbers, it is informative to
consider how Cantor himself in his later, 1883 Grundlagen (§9) saw and com-
pared them. Cantor weighed three definitions of the real numbers, those of
Weierstrass from his Berlin lectures, [Cantor, 1872], and [Dedekind, 1872]. Af-
ter loosely describing the first, Cantor pointed out how Weierstrass was the
first to avoid the “logical error” of assuming a finished number exists to which
a defining process aspires. Cantor here was bringing out the motivating point
of genetic construction for rigorization. Then briefly sketching Dedekind’s def-
inition, Cantor asserted that it “has the great disadvantage that the numbers
of analysis never occur as ‘cuts’, but must be brought into this form with a
great deal of artificiality and effort.” Cantor here speaks as the researcher in
real analysis who finds Dedekind’s conceptualization distant from utilizability;
recall Dedekind’s last efforts in his §6 and §7. Cantor subsequently settled into
an extensive account of his own definition, more detailed than in [Cantor, 1872]
and more in the style of [Heine, 1872].

In the middle of this comparative account, Cantor wrote (para.7):

The disadvantage in the [Weierstrass] and [Cantor] definitions is
that the same (i.e. equal) numbers occur infinitely often, and that
accordingly an unambiguous overview of all real numbers is not im-
mediately obtainable. This disadvantage can be overcome with the
greatest ease by a specialization of the underlying sets (aν) using one
of the well-known unambiguous systems, such as, for instance, the
decimal system or the simple development in continued fractions.

While Dedekind’s cuts can themselves serve as (stand for, be identified with) the
real numbers, with the Weierstrass and the Cantor definitions one real number
corresponds to infinitely many Zahlengrößen that are pairwise equal according
to a derivative notion of equality. This falls short of the ideal of extensionalism,
in that real numbers are not fixed as well-defined by construction. There are
two ways of rectifying this, one by way of equivalence classes and the other, as
Cantor mentions, by way of specializing fundamental sequences to correspond
to decimal expansions or to continued fractions.

The mode of equivalence classes actually has antecedence in the work of
Dedekind. In [1857], Dedekind had proceeded in Z[x], the ring of polynomials
in x with integer coefficients, by taking as unitary objects infinite collections
of polynomials pairwise equivalent modulo a prime p. One can arguably date
the entry of the actual infinite into mathematics here, in the sense of infinite
totalities serving as unitary objects within an infinite mathematical system.

circle has one point inside and one point outside another circle, then the two circles intersect in
two points; with this, one can fill a well-known lacuna in the proof of the very first proposition
of Euclid’s Elements.
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Had Dedekind come to the genetic construction of the real numbers “from the
other end”—Cantor’s approach—he might well have taken equivalence classes
of fundamental sequences as the real numbers.

As for the mode of specializing fundamental sequences, Cantor had engaged
with it in the course of his research in June 1877, as brought out in an exchange
of letters then with Dedekind.8 For specializing via decimal expansions, one
would consider fundamental sequences only of the form: a1 is an integer, and
an+1 = an + dn · 10−n for some integer dn satisfying 0 ≤ dn ≤ 9. With the
happenstance that e.g. .3000 · · · = .2999 · · · , one has to further restrict consid-
eration to those sequences without a tail of 0’s. For specializing via continued
fractions, one would first call on the known fact that every number r in the
interval (0, 1) would have a unique representation as a continued fraction

r =
1

α1 +
1

α2 + .

.

.

+
1

αν + . . .

where each αi is a positive integer. Exactly when r is a rational number, there is
a last αν as denominator, and we denote this by r = [α1, α2, . . . , αv]. With this,
one would consider fundamental sequences only of the form: a1 is an integer,
and an+1 is either: an, or else a1 + [α1, . . . , αn−1, αn]—this last possibility only
in the case that an has the form a1 + [α1, . . . , αn−1].

Cantor’s “specializing” of fundamental sequences to those corresponding ei-
ther to decimal expansions or to continued fractions does achieve the ideal of
extensionalism in that there is a one-to-one correlation between sequences and
real numbers. This however comes at the sacrifice of the ideals of simplicity and
perspicuity as one incorporates a posteriori understandings, so much so that one
might even say that one is looking at different constructions of the real num-
bers, not aspects of the same. Cantor’s [1872] construction of the real numbers
was integrated with his research and has a basic relevance and applicability,
as brought out in [Heine, 1872]. Continued fractions too were brought into his
research, this for working the theme of one-to-one correlation, as he advanced
into transfinite set theory.9

Starting in late 1873, Cantor and Dedekind began a correspondence that
would last, on and off, for decades, a correspondence that was stimulating for
Cantor and is informative to us about his thinking and progress. We mentioned
an exchange of letters in June 1877 above, and in an exchange a month ear-
lier, Cantor and Dedekind discussed aspects of [Dedekind, 1872]. It is through

8See [Ewald, 1996, p.853ff].
9See §2.2.
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this correspondence that we learn much about Cantor’s next advances, those
squarely in transfinite set theory yet much having to do with continuity.

2 Uncountability and Dimension

With his formulation of the real numbers in play, Cantor, in the initiating cor-
respondence with Dedekind in late 1873, pursued a question about one-to-one
correlation and the real numbers, a question that he had apparently considered
several years earlier. The result was a compelling new mathematical under-
standing of cardinality as concept applied to the real numbers, one that would
stimulate Cantor to the development of transfinite numbers and set theory.
Cantor then, in a letter to Dedekind of 5 January 1874, followed up with the
question of whether there could be a one-to-one correlation between a line and
a surface. In 1877, Cantor also compellingly settled this issue, stimulating the
initial work on the invariance of dimension.

These two results on one-to-one correlation would be the bulwark for setting
up the concept of infinite cardinality. Both proofs still being embedded in real
analysis and talk of correlation, transfinite set theory would emerge with the
consideration of arbitrary correspondence, in the form of the study of transfinite
cardinality. In what follows, we describe one by one these developments, the
main points of which are well-known in the history of set theory as Cantor’s ini-
tial accomplishments, with attention put to the specificities of research activity
and the underlying involvement of continuity.

2.1 Uncountability

Cantor in a letter of 29 November 1873 to Dedekind posed the question:10

Take the totality [Inbegriff ] of all positive whole-numbered indi-
viduals n and designate it by (n). And imagine say the totality of all
positive real numerical magnitudes [Zahlengrößen] x and designate
it by (x). The question is simply, can (n) be correlated to (x) in such
a way that to each individual of the one totality there corresponds
one and only one of the other?

(“totality” here is a deliberate translation of “Inbegriff”.11) Note the tentative-
ness of setting out in uncharted waters of totalities and correlation. Today, this
primordial question is put: Are the real numbers countable? Cantor opined
that the answer would be no, that the explanation may be “very easy”. He did
point out that it is not difficult to correlate one-to-one the totality of positive
integers with the totality of rational numbers, and indeed with the totality of
finite tuples of positive integers.

10See [Ewald, 1996, p.844].
11What may first come to mind today for “Inbegriff” may be “essence”, “embodiment”,

or “paradigm”. However, Cantor likely meant “totality”, with a precedent for this in
[Bolzano, 1851], who used “Inbegriff” in proximity to “Ganzes”. “totality” conveys an appro-
priately incipient extensionalism, soon to become more substantive in Cantor’s work.
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Dedekind answered by return post that he could not answer the question.
However, bringing in his algebraic experience, Dedekind included a full proof
that even the totality of algebraic numbers, roots of polynomials, can be corre-
lated one-to-one with the totality of positive integers.12 Cantor in his responding
letter of 2 December, encouraged, wrote that he had wondered about the ques-
tion “already several years ago”; that he agreed with Dedekind that it has “no
special practical interest” and “for this reason does not deserve much effort”;
but that it would be good to answer the question—a negative answer would
provide a new proof, in light of the algebraic number correlation, of Liouville’s
theorem that there are transcendental (i.e. non-algebraic) real numbers.13

Presumably stimulated to success, Cantor in his letter of 7 December wrote
that “only today do I believe myself to have finished” and included for appraisal
an argument that the totality of real numbers cannot be correlated one-to-one
with the totality of positive integers.14 On that day, transfinite set theory was
born. Again Dedekind answered by return post, with “congratulations for the
fine success” and a much simplified version of the proof.15 Cantor in his letter
of 9 December announced that he had already simplified his proof, that it shows
that for any sequence and any interval of real numbers, there is a real number in
the interval not in the sequence.16 In his notes, Dedekind remarked that their
letters must have crossed.17

In a letter of 25 December, Cantor wrote that, with the encouragement
of Weierstrass at Berlin, he had written and submitted a short paper, this to
become “On a property of the totality of real algebraic numbers” [1874].18 Al-
though the paper is where one points to for the naissance of transfinite set
theory, it is restricted in purpose, as Cantor pointed out in a letter of 27 De-
cember, because of “local circumstances”—these presumably being Weierstrass’
restrictive focus on the algebraic numbers.19 In the paper, Cantor established
that the totality of the algebraic numbers is countable and that the totality
the real numbers is not. In his notes, Dedekind recorded that both proofs were
taken “almost word-for-word” from his letters.20 From the correspondence, it
can fairly be said that the first result is actually Dedekind’s.

As for the uncountability of the totality of the real numbers, the [1874]
proof is schematically as follows: Suppose that a sequence and an interval of
real numbers is given. The goal is to find a real number in the interval but not
in the sequence. Let α1 and β1 be the least two members of the sequence, if
any, in the interval, say with α1 < β1. Generally, given αn, and βn, let αn+1

and βn+1 be the next two least members of the sequence, if any, in the interval

12See [Ewald, 1996, p.848].
13See [Ewald, 1996, p.844f].
14See [Ewald, 1996, p.845f].
15See [Ewald, 1996, p.849].
16See [Ewald, 1996, p.846f].
17See [Ewald, 1996, p.849].
18See [Ewald, 1996, p.847].
19See [Ewald, 1996, p.847f].
20See [Ewald, 1996, p.848f]. This may have contributed to Dedekind not responding to

Cantor’s letters for quite some time.
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(αn, βn), say with αn+1 < βn+1. If ever this process terminates at a finite stage,
then we are done, as the interval at that stage will have a real number not in the
sequence. Assume then that this process is infinite, and let α∞ be the upper
limit of the αn’s, and let β∞ be the lower limit of the βn’s. Then any real
number η such that α∞ ≤ η ≤ β∞ cannot be in the sequence.

This proof has an evident involvement of continuity, viz. the fundamental
sequences of Cantor’s construction of the real numbers. But also, as Cantor
pointed out in a prescient footnote, the rth member of the sequence is not in the
particular interval (αr, βr), thereby correlating the indexing of the sequence with
the enumeration of the nested intervals. Almost two decades later, Cantor in
[1891] would present his famous diagonal proof, abstract and no longer involving
continuity, of a vast generalization of uncountability: For any set whatsoever,
there is no one-to-one correlation of that set and the collection of functions from
that set into a fixed two-element set.

2.2 Dimension

Cantor already in a letter of 5 January 1874 to Dedekind raised a new question
pursuant of the motif of one-to-one correlation:21

Can a surface (say a square including its boundary) be one-to-
one correlated to a line (say a straight line including its endpoints)
so that to every point of the surface there corresponds a point of the
line, and conversely to every point of the line there corresponds a
point of the surface?

He opined that the answer is “very difficult”, that as with the previous question
“one is so impelled to say no that one would like to hold the proof to be almost
superfluous.” Again a primordial question, one for which an answer of no does
look difficult to establish, but this time the pathways of proof would lead the
other way, working against the initial surmise. Note, importantly, that Cantor
could only hope to answer such a question—indeed, even pose it—with his
construction of the real numbers in place to work combinatorial possibilities for
one-to-one correlation.

Dedekind did not respond, nor when Cantor brought up the question again
in a letter of 15 May 1874. Fully three years would pass before there was again
an exchange of letters, this initially about aspects of Dedekind’s [1872]. During
this time, Cantor had evidently developed a new conceptualization.

In a letter of 20 June 1877 to Dedekind, Cantor now set out his question:22

The problem is to show that surfaces, bodies, indeed even con-
tinuous structures of ρ dimensions can be correlated one-to-one with
continuous lines, i.e. with structures of only one dimension—so that
surfaces, bodies, indeed even continuous structures of ρ dimensions
have the same power [Mächtigkeit ] as curves.

21See [Ewald, 1996, p.850].
22See [Ewald, 1996, p.853f].

18



Note the “continuous”, “dimension”, and especially “power”. Two totalities
have the same power if there is a one-to-one correlation between them, and
with this notion of cardinality Cantor had begun his ascent into transfinite
set theory. In the letter, specifically addressing whether the ρ-tuples of real
numbers in the closed unit interval [0,1] can be correlated one-to-one with the
real numbers in [0, 1], Cantor now answered yes. Writing each such real number
in infinite decimal expansion, he simply interlaced ρ expansions into one. In
the ρ = 2 case, given .α1,1α1,2α1,3 · · · and .α2,1α2,2α2,3 · · · the result would be
.α1,1α2,1α1,2α2,2α1,3α2,3 · · · .

By return post Dedekind pointed out the problem that, presuming in the
cases e.g. of .3000 · · · = .2999 · · · one would choose the latter representation,
those real numbers with expansion consisting of a tail of alternating 0’s would
never be the result of an interlacing.23 By postcard, Cantor acknowledged this,
and noted the reduction of the issue to finding a one-to-one correlation between
the interlaced real numbers with all the real numbers in [0, 1].24

In a pivotal, long letter to Dedekind of 25 June 1877,25 Cantor accepted
that the “subject demands more complicated treatment” and set out to prove a
theorem that he now stated in Riemannian terms, (A): “A continuous manifold
[Mannigfaltigkeit ] extended in e dimensions can be correlated one-to-one with a
continuous manifold in one dimension.” His proof, “found even earlier than the
other”, established that the ρ-tuples of real numbers in the closed unit interval
[0, 1] can be correlated one-to-one with the real numbers in [0, 1].

Cantor first took an irrational number in [0, 1] to be represented as an in-
finite continued fraction,26 and correlated one-to-one the ρ-tuples of irrational
numbers in [0, 1] with the irrational numbers in [0, 1] by interlacing the frac-
tion entries—in analogy to what he had tried with decimal expansions. This
time, the known fact that continued fraction representations are unique ensures
one-to-one correlation. What must now be established is (B): The irrational
numbers in [0, 1] can be correlated one-to-one with all the numbers in [0, 1]. For
this, he first enumerated the rational numbers in [0, 1] (recall his first, 1873 let-
ter to Dedekind!) and then correlated them one-to-one with certain 0 < εi < 1
with ε1 < ε2 < ε3 < . . . having limit 1. The proof then devolves to proving (C):
The numbers in [0, 1] except for the εi’s can be correlated one-to-one with all
the numbers in [0, 1]. Since this in turn would follow if each half-open interval
(εi, εi+1] can be correlated one-to-one with the closed interval [εi, εi+1], one is
left to proving the paradigmatic (D): The half-open interval (0, 1] can be corre-
lated one-to-one with the closed interval [0, 1]. And this he establishes with a
step function of line segments, providing a detailed diagram.

Note how this proof proceeds by successive reduction of the problem, each
step having to do with composing one-to-one correlations of various domains.
One can say that Cantor was driven, almost by necessity, from analytic thinking

23See [Ewald, 1996, p.855f]. See, several paragraphs below, how with an adjustment this
problem can be avoided.

24See [Ewald, 1996, p.856].
25See [Ewald, 1996, p.856ff].
26cf. end of 1.4.
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about correlations to set-theoretic, combinatorial thinking about manipulating
them. In modern terms, the initial continued-fraction correlation of the irra-
tionals is continuous, while the rest is gradually worked down combinatorially
to (D), which cannot be carried out with a continuous function. As here and
generally in his work, as one-to-one correspondence comes to the fore, continuity
recedes, this seen in the new ways that one must entertain arbitrary functions.

Today, (D) is a simple exercise in set theory texts. Cantor’s overall result,
as he later pointed out in his mature Beiträge [1895, §4], could be derived with
“a few strokes of a pen” in his cardinal arithmetic:

2ℵ0 · 2ℵ0 = 2ℵ0+ℵ0 = 2ℵ0 .

Finally, if one insists on working with infinite expansions, then it is straightfor-
ward, just working with infinite decimal expansions, to take all non-zero real
numbers as successive blocks each consisting of a sequence of zeros followed by a
non-zero digit—e.g. .|08|1|3|2|001|03|1|2| · · ·—and, through interlacing accord-
ing to blocks, one-to-one correlate pairs of real numbers in (0, 1] with all the
real numbers in (0, 1]. What then remains, if [0, 1] is desired, is to apply (D).

Cantor concluded the 25 June 1877 letter with remarks that positioned his
result in a larger tradition. For years he had followed with interest the efforts
of Gauss, Riemann, Helmholtz and others at clarification of the foundations of
geometry. The important investigations in this field proceed from a presupposi-
tion that Cantor too had held to be correct, though he alone had thought that
it was a theorem in need of a proof. Attending the Gauss-Jubiläum,27 he had
aired (A) above as a question. There was acknowledgement that a proof was
needed, to show the answer to be no. But “very recently” he had arrived at
the conviction that the answer is an unqualified yes, and thus he had found the
proof presented in the letter. All deductions that depend on the erroneous pre-
supposition are now inadmissible. “Rather, the difference that obtains between
structures of different dimension-number must be sought in aspects completely
different from the number of independent coordinates, which is taken to be
characteristic.”

Dedekind in a substantive reply of 2 July 1877 first off avouched that Can-
tor’s proof is correct and congratulated him on the result.28 Dedekind however
took issue with Cantor’s last remarks on the dissolution of dimension. He main-
tained that the “dimension-number of a continuous manifold remains its first
and most important invariant”, though he would gladly concede that this in-
variance is in need of a proof. All authors have made the “completely natural
presupposition” that transformations of continuous manifolds via coordinates
should also be via continuous functions. Thus, he believes the following theo-
rem:

If it is possible to establish a reciprocal, one-to-one, and complete
correspondence between the points of a continuous manifold A of a

2730 April 1877 at Göttingen, on the centenary of his birth.
28See [Ewald, 1996, p.863f].
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dimensions and the points of a continuous manifold B of b dimen-
sions, then this correspondence itself, if a and b are unequal, must
be utterly discontinuous.

Dedekind here, with his acute sense of mathematical structure and consequent
emphasis on structure-preserving mappings, had swung the pendulum back to-
ward continuity. Riemann, and others, had put forward an informal theory of
continuous manifolds with an implied concept of dimension based on the num-
ber of coordinates. Dedekind forthwith asserted the invariance of dimension of
continuous manifolds under homeomorphisms, i.e. one-to-one correspondences
of their points which are continuous in both directions. Framed as a question,
his proposition can be fairly said to have stimulated the study of topological
invariants.

Cantor in his letter of 4 July 1877 responded that he had not intended to
give the appearance of opposing the concept of ρ-fold continuous manifold, but
rather “to clarify it and to put it on the correct footing.”29 He agreed with
Dedekind that if the correspondence is to be continuous, then only structures
of the same dimension can be correlated one-to-one. He suggested that, if so,
difficulties might arise in “limiting the concept of continuous correspondence in
general.” Indeed, in the decades to come, how to frame continuity for mappings
between continuous manifolds so as to establish Dedekind’s proposition would
itself become a substantial issue.

Cantor published his one-to-one correlation result in his “A contribution
to the theory of manifolds” [1878], a paper he pitched be to promulgating his
concept of power [Mächtigkeit ]. Having made the initial breach in [1874] with a
negative result about the lack of a one-to-one correlation, he worked to secure
the new ground by setting out the possibilities for having such correlations. With
“manifold” evidently meant in a broad sense, two manifolds have the same power
if there is a one-to-one correlation between their elements. “If two manifolds M
and N are not of the same power, then M either with a part [Bestandteile] of N
or N with a part of M has the same power; in the first case we call the power
of M smaller, and in the second we call it greater, than the power of N .”30

The class [Klasse] of manifolds of the power of the positive whole numbers
is “particularly rich and extensive”, consisting of the algebraic numbers, the
point-sets of the νth kind from [1872], the n-tuples of rational numbers, and so
forth. If M is in this class, so also is any infinite part [Bestandteil ] of M ; and
if M ′,M ′′,M ′′′ . . . are all in this class, so is their union [Zusammenfassung].31

Proceeding to n-fold continuous manifolds, Cantor first elaborated on how
invariance of dimension under continuous correspondence had always been pre-

29See [Ewald, 1996, p.864f].
30Note the locution “power of M”. Already here, at the incipience of Cantor’s theory

of cardinality, we have the assertion of the trichotomy of cardinals. As set theory became
axiomatized, it was seen that the trichotomy of cardinals is equivalent to the Axion of Choice;
see [Moore, 1982, p.10].

31Note the set-theoretic delving. Logically speaking, this last assertion, put in axiomatic
set theory as “the countable union of countable sets is countable”, requires the Countable
Axiom of Choice. See [Moore, 1982, pp.9,32].
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supposed but should be demonstrated, and then offered up his theorem as to
what becomes possible when no assumptions are made about the kind of corre-
spondence.32 Most of the paper is given over to a proof of his one-to-one corre-
lation result, almost verbatim as given in his 25 June 1877 letter to Dedekind
save for some notational refinements made in succeeding letters.

At the end of the paper, having reduced considerations of power to linear
manifolds, Cantor opined:

. . . the question arises how the different parts of a continuous straight
line, i.e. the different infinite manifolds of points that can be con-
ceived in it, are related with respect to their powers. Let us divest
this problem of its geometric guise, and understand (as has already
been explained in §3) by a linear manifold of real numbers any con-
ceivable totality [Inbegriff ] of infinitely many, distinct real numbers.
Then the question arises, into how many and which classes [Klassen]
do the linear manifolds fall, if manifolds of the same power are placed
in the same class, and manifolds of different power into different
classes? By an inductive procedure, whose more exact presentation
will not be given here, the theorem is suggested that the number of
classes of linear manifolds that this principle of sorting gives rise to
is finite, and indeed, equals two.

Thus the linear manifolds would consist of two classes, of which
the first includes all manifolds that can be given the form of a func-
tion of ν (where ν ranges over the positive whole numbers), while
the second class takes on all those manifolds that are reducible to
the form of a function of x (where x can assume all real values ≥ 0
and ≤ 1). Corresponding to these two classes, therefore, would be
only two powers of infinite linear manifolds; the exact study of this
question we put off for another occasion.

Note that the “geometric guise” can be divested through Cantor’s construction
of the real numbers; how a linear manifold is any “conceivable totality” of real
numbers; how “classes” consisting of these are being entertained; and how the
initial “having the same power” has become being “of a power”—equivalence
relation has become equivalence classes. We see entering line-by-line the more
set-theoretic posing and thinking. The “inductive procedures” are presumably
what evolved into the transfinite numbers in his coming papers. In suggesting
the existence of only two power classes of linear manifolds, this passage has
Cantor’s first statement of the Continuum Hypothesis, a primordial, dichoto-
mous assertion that he would wrestle with “on another occasion”—the rest of
his life—and set theory still wrestles with to the present day.

Cantor’s ascent into set theory would be by himself, but the issue raised
of the invariance of dimension, with its foregrounding of continuity, elicited
quick reaction. Within a year, five publications appeared that offered proofs

32Thus, Cantor set out the sequential thinking on the topic in reverse order relative to how
it had been in his correspondence with Dedekind.
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of the invariance of dimension in various formulations, by Jacob Lüroth, Jo-
hannes Thomae, Enno Jurgens, Eugen Netto, and soon after, by Cantor [1879a]
himself.33 The arguments were complex and would latterly be deemed as only
partially successful, revealing a lack of command of the relevant topological no-
tions at the time. In a letter of 29 December 1878 to Dedekind, Cantor wrote
that he had seen the papers of the four others on the invariance of dimension,
but that “the matter does not seem to me to be fully resolved.”34 In a letter
of 17 January 1879, Cantor claimed to have settled the question, sketching an
argument that turned on contradicting the Intermediate Value Theorem were
there a continuous one-to-one correlation between continuous manifolds of differ-
ent dimensions.35 As on previous occasions, Dedekind in a reply of 19 January
helpfully responded with issues, though this time he saw a “real difficulty”.36

In a postcard of 21 January, Cantor wrote, acknowledging the difficulty, that
he would only consider publishing “only in case I should succeed in settling the
point.”37 Cantor must have done so at least to his own satisfaction, for his
[1879a] appeared shortly after with his proof.

Cantor’s solution, his last work dealing directly with continuous correspon-
dences, was thought to have settled the matter for decades. However, Guissepe
Peano’s [1890] “space filling curve”, a continuous mapping from the unit interval
[0, 1] onto the unit square [0, 1]× [0, 1], was latterly seen to be a counterexam-
ple to Cantor’s formulation. As topological notions were developed, the stress
brought on by the lack of firm ground led the young L.E.J. Brouwer to defini-
tively establish the invariance of dimension in a paper [1911] that was seminal
for algebraic topology.

In retrospect, it is to his considerable credit that Dedekind made explicit
the invariance of dimension as an issue in his 1877 correspondence with Cantor.
Cantor [1878] publicized it, and he [1879a] pursued this new angle on continuity
for a while, but he soon reverted to earlier conceptualizations to be followed up
into the transfinite. The renewed pursuit of invariance of dimension in the 20th
Century led to the new field of algebraic topology.

3 Point-Sets and Perfect Sets

Through the early 1880s Cantor carried out what would be his major work, work
which would be of basic significance for the subject he created, transfinite set
theory. It featured continuing engagement with immanent topological notions,
and through them, what would become his mature results having to do continu-
ity, involving continua and perfect sets. Through sustained effort, in large part
driven by the urge to establish the Continuum Hypothesis, Cantor vindicated
his early construction of the real numbers and his derived sets by iterating the

33See [Dauben, 1979, p.70ff] for details and references.
34See [Ewald, 1996, p866f].
35See [Ewald, 1996, p.867ff].
36See [Ewald, 1996, p.869f].
37See [Ewald, 1996, p.870f].

23



derived set operation through limits and establishing a hierarchical structure of
continuity.

During this period, Cantor published a series of six papers under the title
“On infinite, linear point-manifolds” which documents his progress. Pursuing
them in sequence one by one, we can see an overall forward logic in the progress
of discovery. §3.1 describes the progress through the first four papers in the
series, through (in modern terms): dense sets, derived sets of infinite order,
the countable chain condition, and countability along the iteratively defined
sequences of derived sets. §3.2 then describes the plateau reached, derived sets
of uncountable sets, continua, and closed and perfect sets.

These sections, describing Cantor’s major advances having to do with conti-
nuity, are comparatively short for several reasons. First, they describe work by
one individual working on his own with novel conceptualizations and methods.
Second, the new set-theoretic context thus established transcends continuity,
which was to command our main focus. And third, the work builds on earlier,
seminal formulations and results about continuity for which we have already
provided comparatively elaborate historical and mathematical detail.

3.1 Point-Sets

The first paper [1879b] in Cantor’s “linear point-manifolds” series established
a base camp for his further ascent through infinitary processes. Containing no
new results, it framed ab initio Cantor’s earlier, basic work on limit points and
power and cast it anew systematically. In doing so, it brought out aspects of
simplicity and directness to constructs and results that had initially emerged
in an encumbered way out of Cantor’s construction of the real numbers and
considerations of one-to-one correlation.

In the grip of his recent initiatives Cantor had titled his intended series
with the ponderous “linear point-manifolds [Punktmannigfaltigkeiten]”, but he
quickly reverted in [1879b] to his earlier “point-set [Punktmenge]” for a collec-
tion of real numbers. Recalling the [1872] operation of taking for an infinite
point-set P the derived set P ′ consisting of its limit points, he again set out
its iteration P (ν) through ν stages, and deemed P to be of the first species if
P (ν) is finite for some ν. He then officially stipulated that P is of the second
species if the series of P (ν) continues ad infinitum. Proceeding, Cantor brought
to the fore what his [1874] uncountability result had turned on: A point-set P is
everywhere-dense—for us, just dense—in an interval [α, β] if every sub-interval
contains a point of P .38 He observed that if P is everywhere-dense in [α, β],
then [α, β] is included in P ′ and P is of the second species. Lastly, bringing
in the concept of power Cantor reviewed its basics and focused on point-sets
of two powers. Point-sets of the power of the natural numbers are now simply
the countable [abzählbaren] point-sets. Any infinite point-set of the first species
is countable, and so also are the rational and the algebraic numbers, which are

38We write the now-standard [α, β] for Cantor’s (α, β). Cantor specifies that his “intervals”
contain their endpoints.
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of the second species. Point-sets of the power of the real numbers include any
interval, and any interval from which a countable set is excluded—this recalling
the [1878] dimension proof. Cantor concluded the paper by giving his [1874]
uncountability result in the new terms, separating the two powers.

[Cantor, 1880], though quite brief, is remarkable for a palpable extensional-
ism as set out in set-theoretic notation and terminology and indexed by sym-
bols of infinity. Cantor deployed P ≡ Q for extensional equality; P ≡ O for
P “does not at all exist [nicht vorhanden ist ]”; {P1, P2, P3 . . .} for disjoint
union; and, for inclusion P ⊆ Q, P is a “divisor” of Q or Q is a “mul-
tiple” of P . M(P1, P2, P3, . . .) is union, “the least common multiple”, and
D(P1, P2, P3, . . .) is intersection, “the greatest common divisor”.39 In these
terms, Cantor considered point-sets of the second species. He observed, ex-
plicitly for the very first time, that the successive P ′, P ′′, P ′′′, . . . satisfy the
set-theoretic P ′ ⊇ P ′′ ⊇ P ′′′ . . .. Cantor could then move to the overall inter-
section D(P ′, P ′′, P ′′′, . . .), which he denoted by the “symbol [Zeichen]” P (∞).
With type distinctions collapsed, Cantor could further pursue the uniformity of
construction through set inclusion and intersection. As long as one has infinite
point-sets, one can continue with P (∞+n), the nth derived set of P (∞), and
get to their intersection P (2∞). The intersection of P (∞) ⊇ P (2∞) ⊇ P (3∞) . . .
would be denoted P (∞2). The intersection of P (∞) ⊇ P (∞2) ⊇ P (∞3) . . . would

be denoted P (∞∞). One gets to P (∞∞∞
), etc., and only the notation is running

out. “We see here a dialectical generation of concepts, which leads on and on,
free from any arbitrariness, in itself necessary and consequent.” In a footnote,
he mentioned that “ten years ago” he had come to such concepts as a proper
extension of the concept of number. Whatever is the case, unlike Cantor’s
[1872] Zahlengrößen which gained a certain objectivity according to historical
antecedence and their relevance to the straight line, these symbols of infinity
emerged sui generis in the study of point-sets and the iteration of the derived
set operation, as necessary instruments for indexing.

The third paper [Cantor, 1882] broadened the context with new domains and
issues, and in so doing established two new, significant results that mark the
initial ascent into the elucidation of concepts of power and continuity. Recalling
his [1878] work with manifolds consisting of n-tuples of real numbers, Cantor
set out “limit point”, “derived” and “dense” for these, now simply called “n-
dimensional domains”, or again, “point-sets”. With this generality attained,
Cantor emphasized the necessity of having “well-defined” “manifolds (totalities,
sets)” for deploying the concept of power, “internally determined” on the basis of
definition and according to the law of the excluded middle. (With set-theoretic
constructs in place, the next stipulation is the logical definability of prospective

39[Ferreirós, 2007, p.204] pointed out that this number-theoretic terminology agrees with
Dedekind’s in his [1871]. Dedekind there was famously developing his theory of ideals as a
generalization of divisibility in number theory, and the terminology, used for ideals, is analo-
gously appropriate. These set-theoretic relations and operations are now commonplace, but
one must remember that at the time, working with them, especially with actually infinite total-
ities, was still quite novel. Both Cantor and Dedekind should be credited with domesticating
set-theoretic operations on infinite totalities in the course of their work.
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sets.40) With this, “the theory of manifolds as conceived embraces arithmetic,
function theory and geometry.” (Nascent set theory is beginning to be seen as
foundational.)

Bringing to the fore power as “unifying concept”, Cantor established:

In an n-dimensional, infinite, continuous space A let an infinite num-
ber of n-dimensional, continuous sub-domains (a) be [well-]defined,
disjoint and contiguous at most on their boundaries; then the man-
ifold (a) of such sub-domains is always countable.

In modern terms, Cantor had affirmed that Rn, the space of n-tuples of real
numbers, satisfies the countable chain condition: any collection of pairwise-
disjoint open sets is countable. This follows directly from Rn being separable—
another modern topological notion—that is, having a countable dense subset; as
Cantor had noted, the n-tuples of rational numbers are countable and are dense
in Rn. However, Cantor’s proof was much more roundabout, this indicative of
his forging a new path through new, basic topological notions. That the real
numbers satisfy the countable chain condition would soon become of crucial
import.

Cantor subsequently observed that if A is a continuous domain and M is a
countable point-set consisting of points in A, then for any two points N,N ′ in
the domain A consisting of the points of A except those in M , there is a contin-
uous, “analytically defined” line connecting N and N ′ and lying entirely in A.41

His argument draws out his assumptions: Let L be a line in A connecting N and
N ′. Then L can be segmented into finitely many lines NN1, N1N2, . . . , NnN
with N1, N2, . . . Nn not in M . Each line can now be replaced by a circular arc
avoiding M completely. The result is an “analytically defined” line connecting
N and N ′ and avoiding M . With this observation, Cantor speculated about
the possibilities of continuous motion in a discontinuous space; about how the
hypothesis of the continuity of space may not actually conform to the reality of
phenomenological space; and about how a revised mechanics might be investi-
gated for spaces like A.

With the broader context established by the first three, Cantor in his fourth
paper paper [Cantor, 1883b] made headway by incorporating countability into
the sequences of derived sets indexed with symbols of infinity. Notably, Cantor
introduced further set-theoretic notation to new purpose: P + Q for disjoint
union; P − Q for set difference when Q ⊆ P ; and P1 + P2 + P3 . . . for infinite
disjoint union. With this, he stipulated that a point-setQ is isolated if it contains
none of its limit points, i.e. D(Q,Q′) ≡ O. For any point-set P , P −D(P, P ′)
is isolated. Crucially, countability enters the fray here: Every isolated point-set
is countable. (Every point in an isolated point-set has a neighborhood disjoint
from the point-set, and by the [1882] countable chain condition, there are only

40Zermelo, in his axiomatization of set theory, famously included the Aussonderungsaxiom
for just this purpose.

41Cantor initially made this observation in a letter of 7 April 1882 to Dedekind. See
[Ewald, 1996, p.871f].
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countably many such neighborhoods.) With this, one has: For any point-set
P , if P ′ is countable, then so is P . (P = (P −D(P, P ′)) + D(P, P ′), and both
point-sets are countable.)

Through a series of extensions Cantor proceeded to establish, with α any
of the symbols loosely indicated in [1880]: If P is a point-set such that P (α) is
countable, so is P . Recalling that P ′ ⊇ P ′′ ⊇ P ′′′ . . .,

P ′ ≡ (P ′ − P ′′) + (P ′′ − P ′′′) + . . .+ P (α)

is a disjoint union of countable sets. So P ′ is countable, and hence P is as well.

3.2 Perfect Sets

The fifth paper [1883c] in Cantor’s “linear point-manifolds” series was conspicu-
ously longer and magisterial, and Cantor published it separately, with a preface
and footnotes, as an essay [1883a], his Grundlagen. In it Cantor presented his
new conceptualization of number, the transfinite numbers [Anzahlen] couched
in a carefully wrought philosophy of the infinite. Cantor’s Grundlagen, together
with his mature presentation Beiträge [1895, 1897] of his theory of sets and num-
ber, would become the definitive publications from which transfinite set theory
would emanate. In what follows, we persist with our scheme of going through
Cantor’s publications, but now in a decidedly skewed fashion. We assume some
familiarity with the transfinite (ordinal) numbers, and with continued our focus
on continuity, emphasize Cantor’s historical progress, setting out the details of
his culminating work on limit points and derived sets, the analysis with perfect
sets.

In keeping with the expository thrust of the Grundlagen Cantor briefly de-
scribed (end of §3) his work on the iterations P (α) of the derived set operation,
indexed by the transfinite numbers, and (§9) his construction of the real num-
bers, making comparison with other treatments.42 In the midst of §10, Cantor
formulated a concept central to the last paper of the “linear point-manifolds”
series: a perfect set is a (non-empty) set P such that P ′ = P . With this, Cantor
proceeded to a resolution, in the Grundlagen spirit of coming to terms with
number, of what is, or ought to be, a continuum.

Cantor began his §10 discussion of the concept of the “continuum” by re-
calling an age-old debate between partisans of Aristotle and of Epicurus, this
leading to the regrettable impasse that the continuum is not analyzable. He
then opined that the “concept of time” or the “intuition of time” is not the way
to proceed, nor is any appeal to the “form of intuition of space”. What is left
then is to take the continuum to consist of points and to start with the concept
of real number, this as arithmetically and mostly felicitously given by his limit
construction. Taking as a foundation the “n-dimensional arithmetical space”,
essentially Rn, endowed with the usual distance,∣∣∣∣√(x′1 − x1)2 + (x′2 − x2)2 + . . .+ (x′n − xn)2

∣∣∣∣ ,
42We discussed Cantor’s comparisons already in §1.4.
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Cantor specified that a point-set P ⊆ Rn, to be a continuum, ought to be
perfect, i.e. satisfy P ′ = P . However, perfect sets are not necessarily dense. (To
emphasize this, Cantor gave in an endnote the now famous “Cantor ternary
set”, the totality of all real numbers given by

z =
c1
3

+
c2
32

+ . . .+
cν
3ν

+ . . .

where the cν can be 0 or 2 and the series can be finite or infinite. This set is
perfect yet nowhere dense, i.e. not dense in any interval, and serves today as a
paradigmatic example of a set of real numbers with many distinctive properties,
e.g. it is the prototype of fractal.) So, Cantor came up with a second condition
for a continuum: A point-set T is connected “if, for any two of its points t and t′

and for any arbitrarily small number ε there always exist [finitely many] points
t1, t2, . . . , tν , such that the distances tt1, t1t2, t2t3, . . . , tνt′ are all less than ε.”

Putting these concepts together, Cantor defined a “point-continuum inside
[Rn] to be a perfect-connected set.” “Here ‘perfect’ and ‘connected’ are not
merely words but completely general predicates of the continuum; they have
been conceptually characterized in the sharpest way by the foregoing defini-
tions.” Thus, as with his construction of the real numbers, Cantor has formu-
lated, through mathematical precisification in topological terms, the concept of
continuum.

Cantor concluded §10 forthwith with rhetorical remarks vis-à-vis Bolzano
and Dedekind. Contra Bolzano, Cantor pointed out that Bolzano in his defini-
tion of the continuum in Paradoxien des Unendlichen [1851]43 had only managed
to express one property of the continuum, connectedness. By way of counter-
example, Cantor pointed out how with e.g. “sets which result from [Rn] when one
imagines an ‘isolated’ point-set at a distance from [Rn]”, there is no continuum,
while Bolzano’s definition would still be satisfied. This brings out how Cantor
was not characterizing some one categorical continuum but rather entertaining
a range of possibilities, marshaling them through his point-set theory.

As things would go, the concept of manifold would gain ascendancy following
Riemann’s articulation of n-dimensional manifolds, and connectedness would
be built into modern formulations. In his classic Topology [1968, vol.II,chap.5],
Kuratowski investigated connected spaces according to a general topological
definition and defined a continuum to be a compact, connected Hausdorff space.
He then observed (p.167) that a compact metric space is a continuum if and
only if it is connected in Cantor’s sense, acknowledging [Cantor, 1883c].

As for Dedekind, Cantor opined that in [Dedekind, 1872], “only another
property of the continuum has been one-sidedly emphasized, namely, that prop-
erty which is in common with all ‘perfect’ sets.” This remark is somewhat
opaque, but some light is cast on it by their correspondence. In a letter of 15
September 1882 to Dedekind, Cantor initially raised the question of “what we
are to understand by a continuum,” and wrote: “An attempt to generalize your

43This, though the only reference to Bolzano in Cantor’s works, shows that he was aware
of it. Paradoxien is the first text that explicitly espoused the actual infinite.
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concept of cut and to use of it for the general definition of the continuum did
not succeed.”

The sixth and last paper [1884] in Cantor’s “linear point-manifolds” series
was of comparable length to the previous, the Grundlagen, and continued its
paragraph numbering with §§15−19. As counterpart to the Grundlagen, which
was expansive in conceptualizations and philosophical underpinnings, Cantor in
[1884] set out his mature mathematical work integrating continuity and cardi-
nality, centering on perfect sets.

After advancing some involved technicalities in §15 to serve as lemmas, in
the major paragraph §16 Cantor detailed his characterizing results about the
transfinite iterations P (α) and perfect sets. In §17, he re-articulated his results
in terms of a now basic topological notion, one to which he thus gave rise. A
point-set P is closed [abgeschlossen] if it contains its limit points, i.e. P ′ ⊆ P .
Cantor observed that a point-set is closed exactly when it is of the form Q′ for
some point-set Q. As set out in the Grundlagen, a set is of the first power if it
is countable; a transfinite (ordinal) number is of the first number class if it is
finite; and it is of the second number class if it is infinite and countable. The
second number class is uncountable, and in fact its power is the least after that
of the first number class. Systematically, Cantor now allowed P (α) ≡ O. If P (α)

is finite for some α, then P (α+1) ≡ O, and if P (β) ≡ O for some β, then for
γ ≥ β, P (γ) ≡ O.

Theorem 5 ([Cantor, 1884, p.471]): “If P is a closed point-set of the first power,
there is always a smallest number of the first or second number classes, say α,
so that P (α) ≡ O, or what is said, such sets are reducible.”

Theorem 6 ([Cantor, 1884, p.471]): “If P is a closed point-set of higher than the
first power, then P is divided into a perfect set S and a set of the first power
R, so that P ≡ R+ S.”

Theorem 5 is a forward-direction version of the prominent [1883b] result for
countable derived sets, afforded by the focal Grundlagen result that the second
number class is uncountable. For closed P , one has P ⊇ P (1) ⊇ P (2) ⊇ . . ., and
so

P ≡ (P − P (1)) + (P (1) − P (2)) + . . . .

The isolated sets P (β)−P (β+1) are each countable, so if P itself were countable,
then there must be a countable α such that P (α) ≡ O—else there would be the
contradiction that the second number class is countable.

Theorem 6 is the crucial structure result for uncountable point-sets. With
the §15 lemmas, Cantor established the theorem through an involved argument
that was indicative of his forging a new conceptual path. In terms of now
standard topological notions, we can render his argument perspicuously. A
point-set Q ⊆ Rn is open if Rn−Q is closed. A collection B of open sets of Rn is
a basis if every open set is a union of members of B. Cantor in effect devised a
countable basis for Rn by taking the collection of n-spheres with rational radius
and center an n-tuple of rational numbers.
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To establish the theorem for an uncountable closed point-set P ⊆ Rn, first fix
a countable basis B for Rn. The successive P ⊇ P (1) ⊇ P (2) ⊇ . . . ⊇ P (α) ⊇ . . .
are all closed, so for each α let Bα ⊆ B be such that Rn−P (α) =

⋃
Bα. Then if

P (α+1) is a proper subset of P (α), Bα is a proper subset of Bα+1. Consequently,
there must be a countable α such that P (α+1) ≡ P (α)—else there would be
the contradiction that B is uncountable. Specifying α to be the least such and
setting S ≡ P (α), note that

P ≡ (P − P (1)) + (P (1) − P (2)) + . . .+ S ,

where each P (α)−P (α+1) is isolated and hence countable. Taking R to be their
union, one has P ≡ R+ S, where R is countable and S is perfect.

Cantor had asserted, in summarizing remarks in the Grundlagen (§10), that
the set R of Theorem 6 is reducible in the sense of Theorem 5, i.e. there is a
countable α such that R(α) ≡ O. The Swedish mathematician Ivar Bendixson, in
a letter to Cantor of May 1883, pointed out that R is not necessarily reducible.
In a careful analysis that Cantor included in [1884, Theorem G], Bendixson
showed that there is a countable α such that, instead, R∩R(α) ≡ O. Theorems
5 and 6 are nowadays often called the Cantor-Bendixson analysis, and the least
α such that P (α) ≡ O in the first and P (α+1) ≡ P (α) in the second the Cantor-
Bendixson rank. However, this eponymy hardly does justice to Cantor to whom
the entire development of the iterations P (α) leading to perfect sets ought to be
credited.

In §18, Cantor with his perfect sets in hand took the time to develop a
theory of “content [Inhalt ]”—his word—pursuing a subject with which he had
been dialectically engaged in the earlier [1883b]. He essentially showed that,
according to his formulation, the content of an arbitrary set is equal to that of
a perfect set.

In the last §19, Cantor affirmed the central role of perfect sets, as incipiently
seen in his definition of the continuum (e.g. [1884, §10]) and later in his theory of
content, and focusing on the subsets of the real numbers, proceeded to establish:

Theorem 7 ([Cantor, 1884, p.485]): Linear perfect sets have the power of the
linear continuum [0, 1].

The proof, indicative of how far he had journeyed, marshaled the accumulated
store of topological concepts and results to establish the requisite one-to-one
correlation. Hence, “closed sets satisfy the Continuum Hypothesis”, in that
either they are countable or have the power (cf. Theorem 6) of the real numbers.
Cantor concluded optimistically,

In future paragraphs it will be proven that this remarkable the-
orem has a further validity even for linear point-sets which are not
closed, and just as much validity for all n-dimensional point-sets.

From these future paragraphs, . . . it will be concluded that the
linear continuum has the power of the second number class (II).

That is, Cantor would establish the Continuum Hypothesis.
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Here at last is revealed what must have been a driving motivation for Can-
tor’s research. Having suggested that there are only two classes of infinite sets
of real numbers according to power (cf. end of [1878]), Cantor had persisted
with an analysis of sets through the iteration of the derived set operation—this
soon proceeding into the new terrain of transfinite numbers. Along the way,
he had developed now basic topological notions to handle limits and continuity,
this resulting in the perfect “kernel” of uncountable sets. Perfect sets have the
power of the continuum, as seen through accumulated experience, and the next
stage would have been to extend the closed set result to all sets of real numbers,
thereby establishing the Continuum Hypothesis. Cantor would fail to do this,
and, as we now know, it could not be done in the setting that he was working
in.

Stepping back, we see that Cantor in his remarkable ascent developed, in
the mathematical articulation of continuity, the basic topology of point-sets.
And we also become aware, here at the end, that as a matter of mathemati-
cal practice—as with his construction of the real numbers—Cantor thus made
lasting conceptual advances concerning continuity in the course of establishing
necessary ground for the resolution of a problem. These aspects of Cantor’s work
bring into sharper relief what we have focused on as Cantor’s steady engagement
with continuity as he ascended into set theory.
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