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Dors GCH ImpLY AC LoCALLY?

A. KANAMORI and D. PINCUS

We explore how the Generalized Continuum Hypothesis might imply the Axiom
of Choice locally. The focal question is whether for any set X, if there is no

strictly intermediate cardinality between | X| and 2|X|, then X is well-orderable.
This question remains unresolved, and we describe related results and relative
consistencies, taking the opportunity to survey themes from classical to modern
set theory.

That the Generalized Continuum Hypothesis (GCH) implies the Axiom of
Choice (AC) is a classical result of set theory. A sharp, local version of this
result remains open and serves here as the focus for a largely expository
survey, one which is almost completely self-contained and weaves together
basic concepts and results of classical set theory as refined by modern
techniques and sensibilities. The emphasis here is on simple, transparent
arguments, and most of this paper can be absorbed with surprisingly little
sophistication in set theory. With his emphasis on the concrete and the
combinatorial in mathematics, Paul Erdés would presumably have enjoyed
this very arithmetical approach to the study of infinite cardinality.

We proceed in Zermelo-Fraenkel set theory (ZF), quickly recapitulating
the theory of cardinality in the setting without AC: |X| denotes the cardinal
of the set X, and the fraktur letters m,n,... are used to denote cardinals.
Informally, | X is the collection of all sets Y that have a bijection with X,
but then [X| is a proper class when X is not empty. Formally, one can
avoid quantification over these classes altogether by recasting the theory in
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terms of sets and bijections. Officially, we can adopt Scott’s trick, letting
| X[ be the collection of those sets Y of minimal rank bijective with X; such
collections are sets, and so we can quantify over them. A cardinal m is finite
iff it is the cardinal of a natural number, else it is infinite; finite cardinals
arc identified with their natural numbers.

The arithmetic of cardinals is essentially as Cantor defined it: With
|[X] = m and |Y| = n, m + n is the cardinal of the union of disjoint copies
of X and Y; m-n is the cardinal of the Cartesian product of X and Y; and
m" is the cardinal of the sct of functions from Y into X. In particular, the
power set P(X) of the set X has cardinality |P(X)| = 2IX1. Continuing,
m < n iff there is an injection of X into Y, and m < n ¢ff m < n yet m # n.
Beyond the most straightforward results, the two main results of classical
set. theory are Cantor’s Theorem that m < 2™, and the Schroder-Bernstein
Theorem that m < n and n < m implies m = n,

Generalizing Cantor’s Continuum Hypothesis, we take CH (m) to be the
proposition that there is no intermediate cardinal between m and 2™ and
GCH to be the proposition that this holds for all infinite m:

CH(m): -3n(m <n<2™).
GCH : Vm(m is infinitc — CH (m)).

To connect with the Axiom of Choice, we take WO (m) to be the proposition
that m “is an aleph™:

WO (m) : m = |X| for some infinite, well-orderable set X.

The Greck letters &, A, ... are used to denote such cardinals; they them-
selves fit into a well-ordered sequence Rg,Rj,...; and Vm(m is infinite —
WO (m)) is a reformulation of AC.

Turning finally to the connection between GCH and AC, Lindenbaum-
Tarski [6] announced the at first surprising result that GCH implies AC.
Only two decades later did Sierpinski [8] provide the first published proof.
Sierpinski actually established that CH (m) A CH(2"™) A CH (22") implies
WO (m). Lindenbaum and Tarski had announced similar local implications.
Then Specker [10] sharpenced these various results to establish:

CH(m) A CH(2™) implies WO (2").

The conclusion a fortiori implies WO (m), and hence we have a local impli-
cation of two CH hypotheses about | X| implying the well-orderability of X.
This leaves open the following question, the focus of this paper:
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Question 0.1. Does CH (m) imply WO (m)?

81 reviews the main idea behind Zermelo’s Well-Ordering Theorem,
partly to make points of independent interest bearing on the beginnings
of set theory and partly to establish corollaries that will be applied in
later sections. §2 is devoted to a simple, perspicuous proof of Specker’s
result, §3 discusses the strength of a proposition related to 0.1, CH (m) and
WO (2M). In particular, we establish an equi-consistency result with the
existence of an inaccessible cardinal. Finally, §4 is devoted to a sketch of
a consequence of this last proposition, a consequence that imposes further
constraints on a negative answer to 0.1.

§1. ON ZERMELO’S WELL-ORDERING THEOREM

Zermelo's first proof of his Well-Ordering Theorem, appearing in his [13],
was epochal both in articulating the Axiom of Choice and applying it in
a specific way to generate well-orderings. The proof provoked considerable
controversy, mainly having to do with the exacerbation of a growing con-
flict among mathematicians about the use of arbitrary functions (see [7],
Chapter 2). Out of this to and fro would emerge Zermelo’s initial axioma-
tization [14] and abstract set theory. For more on the import of Zermelo's
Well-Ordering Theorem see [4], from which much of this section is drawn.
The following result isolates that part of Zermelo’s proof which does not
depend on AC. Several significant corollaries will be drawn that emphasize
the importance of Zermelo’s argument, both for classical results as well as
for arguments of this paper. Well-orderings here are strict, i.c. irreflexive.

Theorem 1.1. Suppose that F : P(X) — X. Then there is a unique
(W, <) such that W C X, < is a well-ordering of W, and:

(a) Foranyz € W, F({ye W |y <z}) ==z.

(b) F(W)e W.
Proof. Call Y C X an F-set iff there is a well-ordering R of Y such that

for each z € Y, F({y € Y|yRz}) = z. The following are thus F-sets
(some of which may be the same):

{F®)}; {F(@),F({ F(®)}) };
{F@,F({F®)}), F({FO.F({F®})})}-
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We shall establish:

(%) If Y is an F-set with a witnessing well-ordering R and Z is an F-set
with a witnessing well-ordering S, then (Y, R) is an initial segment
of (Z.S), or the converse.

(Taking Y = Z it will follow that any F-set has a unique witnessing well-
ordering.)

For establishing (%), we continue to follow Zermelo: By the compara-
bility of well-orderings, we can assume without loss of generality that there
is an order-preserving injection e : Y — Z with range an S-initial seg-
ment of Z. It then suffices to show that e is in fact the identity map: If
not, let ¢ be the R-least member of ¥ such that e(t) # t. It follows that

lyeY|yRt}={z€Z|zSe(t)}. But then
e(t) = F({z€Z|28e()}) =F({neY|yR1}) =1,

a contradiction.

To conclude the proof, let W be the union of all the F-sets. Then W is
itself an F-set by (*) and so, with < its witnessing well-ordering, satisfies
(a). For (b), note that if F(W) ¢ W, then Wu{F(W)} would be an F-sct,
contradicting the definition of W. Finally, that (a) and (b) uniquely specify

(W. <) also follows from (). m
Zermelo of course focused on choice functions as given by the Axiom of
Choice to well-order the entire set:

Corollary 1.2 (Zermelo [13]) (The Well-Ordering Theorem). If P(X) has
a choice function, then X is well-orderable.

Proof. Suppose that G : P(X) = X is a choice function, and define
a function F : P(X) = X to “choose from complements” by: F(Y) =
GX-Y)eX-YlorY # X, and F(X) some specified member of X.
Then the resulting W of the theorem must be X itself. m

It is noteworthy that 1.1 leads to a new proof and a positive form of
Cantor's Theorem m < 2™:
Corollary 1.3. For any F : P(X) = X, there are two distinct sets W
and Y both definable from F such that F(W) = F(Y). Hence. of course,
|X] < |P(X)]-
Proof. Let (W, <) beasin 1.1, and let Y = {reW|z = F(W)}. Then
by 1.1(a) F(Y) = F(W),yet FW)eW -Y. =
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I tlTh;i corol(lary provides a definable counterexample (W, Y') to injectivity,

n the F' : P(X) — X version of Cantor’s diagonal ’
. a 5

consider the definable set ) rument, one would

A={zeX|3Z(z=F(Z) A F(Z2)¢ z)}.

By querying whether or not F(A) € A, one deduces that there must be

some Y # A such that = ; i )
a definit:'fm, such that F(Y) F(A). However, no such Y is provided with

Another notable consequence of the argument for 1.1 is that since the

F' there need only operate on the well-orderable subsets of X or on the well-

or:lerings of subsets of X, the P(X) in 1.1 can be replaced by the following
sets:

W(X)={Z C X|Z is well-orderable}
OX)={RCXxX|Risa well-ordering (of a subset of X)}
Consequently, by the argument for 1.3 we have:

Corollary 1.4. For any set X, .
(a) 1X] < [W(X)]. :
(b) |X] < |O(X)].

1.4(a) was noted, with a less direct proof, by Tarski ; i
aoplid v proof, by Tarski [11]; 1.4(b) will be

Question 1.5. Beyond |W(X)| < |P(X)| are the order relati i
< , are ationsh
among | P(X)|, |W(X)|, and |O(X)| independent of ZF? b

The argument for 1.1 has yet further consequences for cardinals. Re-
markably, the following generalization of Cantor’s Theorem was only first
observed in the 1950’s by Specker, using a more complicated argument.

Corollary 1.6 (Specker [10]). Form > 1, m+1 < 2™,

Proof. Assume that for some set X, F : P(X) =+ X U {a} is an injection
where a ¢ X. By interchanging values if necessary, we can assume ;:hat,
F(X) = a. Applying the argument for 1.1 to this F, we get a correspondin

w. . I'f W # X, then the argument for 1.3 leads to a counterexamplg
for injectivity. Otherwise, W = X so that X is well-orderable, and we

I 1 f



418 A. Kanamori and D. Pincus

It is casily seen that this argument has simple augmentations that lead
to stronger conclusions. Specker actually showed that 2™ £ m? form >5
using a diagonalization argument and deduced that for infinite m and finite
n, n-m < 2™, Halbeisen-Shelah (2] recently provided various improvements
of Specker’s non-injectibility result. Although we only need Specker’s result
in the sequel, we establish one of those improvements, since no extra effort is
needed, using the argument for 1.1 together with diagonalization. Seq (X)
denotes the set of finite sequences of members of X, identifiable with the set
of functions from some natural number into X. For infinite, well-orderable
Y we have Y] = | Seq (Y)l; in fact. to every infinite well-ordering of a set
Y we can canonically associate a bijection between Y and Seq (Y).

Proposition 1.7 (Halbeisen-Shelah [2]). If Ro < |X|, then |P(X)| £
| Seq (X)| .

Proof. Assume to the contrary that there is an injection G : P(X) —
Seq(X). Using G we shall define a function I on well-orderings of infinite
subsets of X such that:

(%) If R is a well-ordering of an infinite subset Y of X, then F(R) €
X-Y.

With such an F we can start with an infinite well-ordering Rp as given

by Ro < |X| and apply the argument for 1.1 to extend Ry to a well-ordering

W of all of X (cf. 1.2, 1.4). But F(W) ¢ X by (x), which is a contradiction.

To establish (), let R be a well-ordering of an infinite subset Y of
X. As noted above, we can canonically associate to R a bijection H :

Y = Seq(Y). Now let
D={zeY]| G~ (H(z)) isdefined A z¢ G~ (H(x))}.
If G(D) € Seq(Y), then H(zo) = G(D) for some zo € Y, and we would
have the paradigmatic diagonal contradiction:
o €D iff $0¢D.
Henece, G(D) ¢ Seq(Y). But then, we can define F(Y) to be the least
member of the sequence G(D) notinY. =

Diagonalization first enters our exposition only here, since by 1.3 it is

ot needed to establish Cantor’s Theorem. Both 1.6 and 1.7 will be applied

in the next section.
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§2. GCH mvMpLIES AC

In this section we present a simple, perspicuous proof of Specker’s theorem
the currently best known local implication from CH hypothoqés to well-,
orderability. Such implications all turn on how CH hypothose’; entail the
e;fcistence of bijections and on the well-known concept of the I'{a;-toqs’ Alepi;
01 m: A

R(m) is the least cardinal & such that & £ m.

With |X| = m, ®(m) corresponds to the supremum of the well-orderings of
subsets of X, i.e. the supremum of the members of O(X), defined before
1.4. Hartogs [3] himself showed how this supremum can b(; constituted as
a set in Zermelo's [14] axiomatization. We have

2N(m) < 22('\12)

since with |X|= m, Y] = R(m), and W a well-ordering of Y, any subset Z
?f Y can pe injectively associated with the set of all well-orderings C X x X
isomorphic to some initial segment determined by some member.oFZ

Theorem 2.1 (Specker [10]). : impli
20 WO (2). (Specker [10]). CH (m) and CH (2™) implies 2™ = R(m), and

. The theorem will follow from a calculation based on two lemmas of
wider applicability:

Lemma 2.2. If CH(m), thenm+m =m? =m,

.Pl.'OOf. By 1.6 and CH (m), we have m+1 = m. Hence, if | X| = m, there is a
injection f of X into a proper subset of itself (X is “Dedekind-inﬁ;lite") and
so X has a countable subset, namely {f(xo),f(f(mo)) ,f(f(f(n:o))) . }
for an 7o € X not in the range of f. The consequent Xy < m allows’u;to
apply 1.7 in what follows. B
Next,
m<m+mg 2" 4 2M =M+ = gm

using m + 1 = m at the end. But m + m = 2™ easily contradicts 1.7, and so
by CH (m) we can conclude that m +m =m, ,

Finally,
m<m-m< 2. 2M g oMM _ gm
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using m + m = m at the end. But m-m = 2™ easily contradicts 1.7, and so
by CH (m) we can conclude that m-m=m. m

Lemma 2.3. If m+m=m and m+n =2", then n = 2™,

Proof. 2M.2M = 2M™+™ = 2™ = m 4+ n. With |X| = m and |Y| = n and
X NY =0 there is a corresponding bijection

[ :P(X)xP(X)= XUY.

By Cantor’s Theorem there must be an Xy € 7'3(X ) thﬁt{ d?es not slerve
as the first coordinate of any member of the preimage FHX ).' I:)»ut .t 1en%
the restriction of f to pairs with first coordinate Xy induces an mJ'ectlf); o}
P(X) into Y, so that 2™ < n. The conclusion now follows by the Schroder-

Bernstein Theorem. m

(m’") m U
Proof of 2.1. Using 2.2 to get 28™) < 22 = 22" we have

w om m moggmom — 92"
om S om + N(m) < 2(2 +R(m)) — 22 . zN(m) — 22 . 22 =9 9 ,

using 20 4+ 2™ = 2M+1 = 2M 4t the end. Hence, 2™ 4 R(m) = 2:: !:)y C.H (2™),
so that R(m) < 2™. But then. m < m + R(m) < 2™ 4 2™ = 2™ implies that
m + R(m) = 2™ by CH (m). Hence, R(m} =2" by 2.3. =

63. ON CH (m) AND =~ WO (2™)

Absent a direct arginment for an affirmative answer t(? t‘he main questlog 0.1,
what remains is to try to establish the (:()nsist;cncy.oi CH (m) and —-Wt ‘ ('m.)
by forcing. In this section and the um.ct we consider what const;am ;ia;i
already imposed on this project by co-nsxdermg the consequenczs 0 \; g(zm)
hypothesis which is known to be cm}smtent, namely CH (m) ;Mf C—-H o) .(m(i
Indeed, it is well-known that the Axiom of Detcrl?nna‘cy mTIt). ies ( e ;,i ) and
- WO (2%). 1In this section we observe that this 1)10.[)051‘1101: lb'th ’ l(.)ml
relative to just ZF (see 3.3(c)). Moreover, we obs.elve t m.‘wllt o) t};(,
choice principle adjoined, we can get an equi-consistency result the
existence of an inaccessible cardinal (3.2 and 3.3(a)(b)). . .

The following simple observation imposes a limitation on forcing possi-
bilities.
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Proposition 3.1. Suppose CH (m), CH(n), and m < n. Then 9m <n. In

particular, there is at most one K, a cardinal of a well-orderable set, such
that CH (k) and - WO (2%).

Proof. With m < n we have
N2 402" 42" = g g0

since n+1 = n by 2.2, It follows that either 2™+ n = nor 2M 4 n = 2", Bug

the latter implies 2™ = 2n by 2.2 and 2.3, so that m < n < 9™ contradicting
CH (m). Hence, we must have 2™ +n=mn,and so 2™ < p.

The latter statement of 3.1 follows by assuming that m and n are two

cardinals of well-orderable sets; 2™ < n would then contradict WO (2m).
| |

The next, more substantial results have to do with the metamathemat-
ical interplay with inner models of set theory. M is an inner model iff it
is a transitive class containing all the ordinals such that for any axiom o of
ZF, ZF establishes oM the relativization of o resulting from réstricting its
quantifiers to M. M is an inner model of ZFC (ZF fogether with AC) iff it
is an inner model such that ZF also establishes ACM. Gédel's constructible
universe L is the archetypal inner model of ZFC,

The following local versions of the Axiom of Choice will be germane:

AC(m): Every family of non-empty sets indexed by a set of cardinal m
has a choice function.

AC (< m): Vn(n<m— AC ().

Also, a cardinal m is regular iff no X with |X| = m is a union of form
Usey Xi where Y| < [X| and cach |X;] < [X|. mis a strong limit iff
whenever n < m, 2" < m, Finally, m is inaccessible f m is both regular
and a strong limit.

Although we did not need to do this unti now, whenever WO (m) we
henceforth identify m, as usually done, with its least (von Neumann) ordinal
aud regard our < as extended to ordinals. In an inner model of ZFC every
cardinal is thus an ordinal, but of course that ordina) may not be a cardinal
in the full universe as there may be more bijections.

Theorem 3.2. Suppose CH (m), ~WO(2™), and M is an inner model
of ZFC. Then R(m) is a strong limit cardinal in the sense of M. If in
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addition AC (< R(m)), then R(m) is regular, and hence in the sense of M,
inaccessible.

Proof. Suppose that |X| = m and « is an ordinal less than X(m). There
is thus a ¥ € X well-orderable in ordertype «, and so a Z C P(Y) well-
orderable in ordertype type 8 = (2")“, the cardinal of the power set of
« in the sense of M. Clearly, |8] < 2™ by cmbeddability. We thus have
m < [B] +m < 2" But || + m = 2™ would imply by 2.2 and 2.3 that
1Al = 2", contradicting — WO (2™). Hence, m = |B] +m, and so [#] < m,
ie. (2°)" < R(m) by definition of R(m).

Suppose next that AC (< R(m)) holds. Assume to the contrary that,
with the identification with ordinals, X(m) = [J,<y Ko Where A and each
Kq is less than R(m). Let (yo |@ < A) be a sequence of distinct elements
of X. Also, using AC(})) let (Ro|a < A) be a sequence with cach Ry a
well-ordering in ordertype ko of a corresponding Y, C {ya} X X. Then
Uncr Yo € X x X is well-orderable in ordertype X(m) by taking the lexi-
cographic “sum” of the well-orderings. However, this contradicts m? = m
from 2.2, m

The next theorem provides converses for the necessary implications
aboul inner models given by 3.2; we in particular get an equi-consistency
result with the existence of an inaccessible cardinal. The theoremn requires
familiarity with forcing, in particular the Levy collapse and Solovay’s model
for “every sct of reals is Lebesgue measurable”. Solovay [9] started with
the universe satisfying ZFC + “there is an inaccessible cardinal” and Levy
collapsed such a cardinal & to Ry, i.e. applied Levy’s idea of forcing every
cardinal less than s to be countable. Solovay then took the inner model
HOD (¥ ON) of the séts hereditarily definable from some countable sequence
of ordinals and established that every set of reals is Lebesgue measurable
there. Solovay’s procedure can also be applied to the Levy collapse of & to
Xy and the taking of the inner model HOD (%! ON) of the sets hereditarily
definable from some w; sequence of ordinals. Finally, the Levy collapse
was first applied to collapse X, to ®) in a “symmetric” fashion (not adding
the entire sequence of collapsing functions but only adding the functions
individually) by Fefferman-Levy (1] to get a model of ZF + “the set of reals
is a countable union of countable scts.”

Theorem 3.3.
(1) Suppose that an inaccessible cardinal & is Levy collapsed to R,. Then

HOD (Y ON) |= CH (Rg) A WO (2%) A R(Rg) =R A AC(Ry).
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(b) Suppose that an inaccessible cardinal k is Levy collapsed to Ny. Then

HOD (** ON) = CH(R;) A =~WO (2%') A R(R;) =Ry A AC(Ry).

(c) Supposc that R, is a strong limit. Then in the symmetric Levy collapse
M of ¥, to N,

M = CH (Rg) 'A=WO (2%) A R(Rg) =R; A = AC(Ry).

Proof (Sketch).

(a) is a procedural observation about Solovay’s model. The model in
fact satisfies the Perfect Set Property, which is stronger than CH (Xg), and
the Principle of Dependent Choices, which is stronger than AC (Ry).

(b) is established by adapting Solovay’s argument. For CH (R,;), one
establishes the direct analogue of the Perfect Set Property for subsets of R;.
(In terms of Kanamori [4], one first establishes the analogue for. 11.12 and
then proceeds with the argument on p.141 for building a perfect tree.) The
rest, follows straightforwardly from propertics of HOD (** ON).

(c) is a procedural observation about the symmetric Levy collapse. That
R, is a strong limit is needed to establish CH (Xg). Moreover, AC (Rp) fails
in the strong sense that the set of reals is a countable union of countable
sets. =

3.3(b) shows that the specificity in 3.3(a) of kK = Ro for CH(x) A
-~ WO (2*) is not peculiar, and 3.3(c) also has a similar analogue.

84. A LONG SEQUENCE OF CARDINALS

In this final section, we provide a sketch of a technical result that establishes
a further constraint imposed by CH (m) and - WO (2™). The result is a
strong negation of Specker’s result 2.1, which in a contraposition asserts
that CH(m) and - WO (2™) implies that there is at least one cardinal
intermediate between 2™ and 22" . Recall that for an ordinal o, the cofinality
of , denoted cf (), is the least ordinal 8 such that there is function: 8 — «
whose range is cofinal in a.
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Theorem 4.1. Suppose that CH(m) and =WO (2™). Then there is an
increasing sequence of cardinals of length cf (R(m)) between 2™ and 22"

Proof (Sketch). For each ordinal £, let 0% denote ¢ iterations of the
operation O defined before 1.4, with unions taken at limits. For cardinals
m, sct O%(m) |Of )| for some set X with |X| = m. By 2.2 we have:

O(m) < 2M*) = 2™ By applications of 1.4 we then have

m < 2™ = O(m) < O%(m)..

We proceed to establish a series of properties about these Of(m)’s.
First, a simple transfinite induction shows:

(i) For any ordinal £, |€] < O%(m).

Second, the last part of the proof of 2.1 shows that with CH (m) one
must have X(m) £ 2™. Hence, the definition of the Hartogs’ Aleph implies
that R(m) = R( ™). Since 2™ = O(m) from above, we thus have

(i) R(m) = R(O(m)).

Third, a simple argument. about reconstituting well-orderings of well-
orderings shows that in general, R(n) < ®(n’) implies R(O(m)) < R(O()).
Consequently,

(iii) R(n) = R(n') implies R(O(n)) = R(O(')).

The next property has a detailed, though straightforward, proof by
transfinite induction.

(iv) For any infinite cardinal n and ordinal §, Of(n) < gn-R(O4(M))

(With |A] = n say, every member of O(A) can be canonically associated
with a subsct of A x R(n). Then cvery member of (0?(A) can be canonically
associated with a subset of R(O(n)) x A x R(n). But for (well-ordered)
cardinals £ < A we have k x A = ), and so |N(O(n)) x A x N(n)l

| AxR(O(n)) | . The general argument can be based on a recursively defined
representation of members of Of(A). That we do not bother to give the
cumbersome details is the reason why this proof is flagged as a sketch.)

Turning to the main line of argument, by (ii) and (iii) we have

R(m) = R(O(m)) = R(O*(m)) =...,
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yet‘ by (i) the O%(m)’s are arbitrarily large. Hence, there must be a least v
satisfying R(m) < N(O"(m)) , and this 4 must be an infinite limit ordinal.
Using (iv), we then have for 1 < £ < :

om Of(m) < om-R(O¢(m)) _ om-R(m) _ (ZR(m)) m < (22'“) m_ 2'2m
using 2™-m < 2M+! = 2™ a¢ the end. Thus, (OE m) € < 'y) is an increasing

sequence of cardinals between 2™ and 22", The following cstablishes the
theorem:

(v) v >cf (R(m)).

To prove this, let |X| = m. Noting that v a limit ordinal, there is an
injection f : R(m) = Ug, OY(X). For each £ < 9, let ¢ be that ordinal
order isomorphic to the pre-image f~1(0%(X) - UC<E O%(X)). Let n be
the ordinal sum E¢yn¢. Then || = R(m). Moreover, 7 is the supremum of
partial sums each less than X(m), by the definition of 4. Hence n = R(m),
and so vy > cf (R(m)). =

The question 0.1 remains. None of the forcing models in which AC fails
seem applicable, and the results of this and the previous scction restrict
various possibilities. ,
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