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ABSTRACT. For a filter over a regular cardinal, least functions and

the consequent notion of weak normality are described. The following two

results, which make a basic connection between the existence of least functions

and irregularity of ultrafilters, are then proved: Let U be a uniform ultrafilter

over a regular cardinal k. (a) If k = )\+, then U is not (A, 7\+)-regular iff U has

a least function f such that {E <t f(f¢)=A}EU. (b) If w<p<ckand

U is not (w, u)-regular, then U has a least function.

In this paper is considered a relatively new class of filters, those which sat-
isfy a property abstracted from normal ultrafilters over a measurable cardinal.
The first section discusses these filters in a general context, and the second shows
their relevance to the study of the regularity of ultrafilters. The set theoretical
notation and terminology is standard, in particular o, £, v, . . . are variables for
ordinals while k, A, u, . . . are reserved for cardinals. In fact, x will denote an
arbitrary but fixed regular cardinal throughout the discussion. It is always as-
sumed that a filter over k is proper and contains the sets {¢|a < £ <k} for every
a <K, so that ultrafilters are always uniform.

This material forms part of the third chapter of the author’s doctoral dis-
sertation [4], but the results (except 2.5) were obtained some time ago in 1974.

1. Weakly normal filters. A series of easy definitions culminate in the
main concept; recall that a set X has positive measure with respect to a filter F
iff X meets every element of F.

1.1. DEFINITIONS. Let F be a filter over k.

(i) f € *k is unbounded (mod F) iff {§ < kla < f(¥)} has positive measure
for every a <k.

(i) f € *k is almost 1-1 iff for every a <k, |f " {a})l <k. fE* Kk is
almost 1-1 (mod F) iff there is a set X of positive measure so that f|X is almost
1-1,i.e. for every a <k, If ~'({a}) N X| < k.

(iii) F is a p-point filter iff every function unbounded (mod F) is almost
1-1 (mod F).

(iv) fE€ ¥k is a least function (mod F) iff f is unbounded (mod F) yet
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394 A. KANAMORI

{& <klg(¥) <f(¥)} € F implies that g is not unbounded (mod F).

(v) F is a weakly normal filter iff any function € ¥k regressive on a set
in F is not unbounded (mod F), i.e. the identity function € ¥k is a least func-
tion (mod F).

When k = w and F is an ultrafilter, then 1.1(iii) coincides with the usual
notion of a p-point in BN, the Stone-Cech compactification of the integers.
Notice that if there is a least function f for F and F is ultra, then f4(F) =
{X Ck|f~Y(X) € F} is weakly normal. Weak normality is typical of several
fruitful concepts that have developed through the study of large cardinal axioms;
the existence of countably incomplete ultrafilters with least functions may still
be possible even on w, .

The following characterizations are easy to establish. Let C, where Ais a
regular cardinal denote the filter generated by the closed unbounded subsets of A.

1.2. PrOPOSITION. For any filter F over k, the following are equivalent:
(i) F is weakly normal.
(ii) Every filter extension of F is weakly normal.
(i) If X, for a <k are sets of positive measure such that « < —> X, 8
C X, then {f§ <kla<B—> B EX,} has positive measure.
(iv) F is a p-point filter extending C, .

Proor. (i) — (ii) is obvious.

(ii) — (iii). Let G be the weakly normal filter generated by F U {X la <
k}. If the set in question does not have positive F measure, then {8 < k| for
some f(B) <B,8 & X, €G. But then fis bounded (mod G) and the X,’s
are descending, so that for some 8 <k, X; & G, which is a contradiction.

(iii) — (iv). To show that F is a p-point, if f is unbounded (mod F), let
X, = Ela<fE)} in (iii). If C, € F, there is a Y C« of positive measure whose
complement is closed unbounded in k. As usual, f € *k defined by f(8) =
sup(8 N (xk — Y)) is an almost 1-1 function regressive on Y. The sets X, =
{B € Yla < f(B)} for a <k are descending, so that by (iii), {f <kla <f—

B € X,} has positive measure. But for such f, § < f(B), a contradiction.

(@iv) — (i). Suppose f € “k is regressive. If for every a <k, X, = {8 <
k|f(B) > a} has positive measure, since F is a p-point, there is a set Y of posi-
tive measure such that f is almost 1-1 on Y. But since Y is stationary, this con-
tradicts a well-known result of Fodor, as f must be constant on a stationary sub-
setof Y. O

Weak normality is a different concept from normality in the sense of
Solovay [9], since in particular no completeness property for filters need be
hypothesized. However, the two concepts are closely related if the filter is
k-complete:
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WEAKLY NORMAL FILTERS AND IRREGULAR ULTRAFILTERS 395

13. ProprosITION. For any k-complete filter F over k, the following are
equivalent:

(i) F is weakly normal.

(i) F is a normal k-saturated filter (in the sense of Solovay [9]).

Proor. If Fis weakly normal and f is regressive on a set of positive mea-
sure, then for some a <k, {£|f(§) < a} has positive measure. By k-complete-
ness, it follows that f is constant on a set of positive measure. Suppose now
that F is not k-saturated. Let (X,la < k) be a partition of k such that for a <
Kk, X, has positive measure. We can assume that § € X, implies § > « for «
such that 0 < a <k by throwing all contrary ordinals into X,. But then, f
defined by f(8) = a iff B € X, is regressive but must be unbounded (mod F),

a contradiction.

Conversely, if f is regressive, let T = {a <k|f~({a}) has positive mea-
sure}. By k-saturation, |T| <k. So,if § =sup T, {8 <k|f() <8} € F: other-
wise, {8 < k|8 < f(8) < B} would have positive measure, and by normality there
would be a p > 8 so that f~({p}) has positive measure, contradicting the de-
finition of 6. O

The following well-known definition is due to Keisler.

14. DEFINITION. If u <A, an ultrafilter U is (u, A)-regular iff there are
A sets in U so that any u of them has empty intersection.

Keisler first considered regularity as a measure of width in the context of
model theory. Roughly, he showed that regularity assumptions on an ultrafilter
result in their ultraproducts having large cardinality (see Chang-Keisler [2] for
details). The following result is due to Ketonen.

15. THEOREM (KETONEN [6]). Suppose an ultrafilter U over k has a
least function f. Then U is (u, k)-regular iff {al cf(f(e)) < u} € U.

Note that any ultrafilter which has a least function cannot be (w, k)-regu-
lar. When k is weakly inaccessible and U over k is weakly normal, it follows
from the theorem that either: (i) {a < k|a is regular} € U and U is not
(i, k)-regular for any u <k, or (ii) for some u < k, {alcf(e) < u} € Uand U
is (u, k)-regular. Hence, by a well-known result of Solovay [9], we get a result
of Silver in a strong form:

1.6. THEOREM. Any ultrafilter extension of a normal k-complete k-sat-
urated filter over k is a weakly normal ultrafilter which is not (u, k)-regular for
any u<K.

In contrast, consider the following observation:

1.7. PROPOSITION. Let F be a filter over k such that there exists a parti-
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396 A. KANAMORI

tion (X la < k) of k with each X, of positive measure. Then there is an ex-
tension of F which is (w, k)-regular.

PROOF. Let f: k < [k] <% be bijective and consider for § < k the sets
Yﬁ =Ux /B € f(e)}. They satisfy the finite intersection property, yet any
intersection of infinitely many of them is empty. Hence, the filter generated
by FU{Y4B< k} is as required. O

Suppose now that k is a measurable cardinal, u < k, and {N la < pu} is a
collection of distinct normal ultrafilters over k. Then F = ﬂ{Nala <uw}isa
k-complete weakly normal filter and hence k-saturated. In fact, it is not hard
to see that F is exactly u*-saturated. Moreover, if (X, la <) is a partition of
k such that X, € N, then F U {X_,} must generate N: ifa <wpand Y CX,
so that Y ¢ N, then k — Y € F, so Y does not have positive measure. How-
ever, in L[U] where U is a normal ultrafilter over a measurable cardinal k, it is
the case that the only normal k-complete k *-saturated filter over k is U N L[U]
itself (see Kunen [7]).

1.8. Concerning forcing and weakly normal filters, note that if F is weakly
normal over k such that {alcf(a) = u} € F, then in any u-c.c. extension of the
universe F generates a weakly normal filter F', by an idea in Ketonen [6]:

If 0 < @ <k implies f(a) < a with Boolean value one in the extended
universe, by u-c.c. there is a standard function g so that for every a <k, f(a) <
g(a) and g(a) is the supremum of less than u ordinals each less than a. Hence,
{a<klg(a) < a} € F and f will be bounded (mod F"), as g is bounded (mod F)
in the standard universe.

Thus, one can freely reduce the complexity of F by collapsing the cardinal
M, for instance. As another observation, Kunen’s concept of a huge cardinal
(i.e. a cardinal k such that there is an elementary embedding j: ¥V —> M of the
universe into a transitive submodel M which first moves k, where M is closed
under sequences of length j(k)) yields a k-complete, weakly normal, uniform
ultrafilter U over j(k) such that {a <j(x)lcf(a) = k} € U (see Ketonen [6]). By
collapsing k to w,, one can get a weakly normal filter over an inaccessible cardi-
nal A any of whose ultrafilter extensions will be (w,, A)-regular but not (w,,
A)-regular.

2. Irregular ultrafilters. The following rather easy theorem, proved two
years ago, first connected irregularity phenomena to the existence of least func-
tions, and led to the deeper results of Jensen [3] and Ketonen. The expression
[f] denotes the usual equivalence class of f modulo the ultrafilter concerned.

2.1. THEOREM. If an ultrafilter U over k is not (w, Kk }regular, then there
is a least almost 1-1 function (mod U).
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WEAKLY NORMAL FILTERS AND IRREGULAR ULTRAFILTERS 397

ProOOF. Argue by contradiction, and inductively define a sequence (f, |
a < k) of almost 1-1 functions, with the property that a < g < k implies fB(E) <
fo(§) for every £ <k, as follows:

Suppose & <k and f, for a <& have been defined. If § =8 + 1, let f;
be any almost 1-1 function such that [f;] < [f5] and f5(&) < f3(%) for every
£ <k. If & is a limit ordinal, define f5 by f5(£) = min{f_({)la <&}., Note that
fs is almost 1-1.

To complete the proof, set for a <k, X, = {¢If,(§) > foe Y EU. If
any infinite subcollection of the X,’s had a nonempty intersection, then there
would be an infinite descending sequence of ordinals. Hence, U is (w, k)-regu-
lar. O

Notice that if the U of the theorem were also a p-point, then it would
have a least function. There is one known irregularity hypothesis for which this
is true:

22. ProrosiTION (KETONEN [1]). If an ultrafilter U over A* is not
(\, X)-regular, then U is a p-point; moreover, if f: \* — A% is unbounded
(mod U), then there is an X € U so that for every a < A*, X N f~1({a})| < A.

The following characterization was announced in Kanamori [5].

23. THEOREM. For an ultrafilter U over \*, U is not (\, A+ )-regular iff
it has a least function f so that {a < A% |cf(f(a)) = A} € U.

ProOF. See 2.1, 2.2, and 1.5. Also, the following is a short proof of
one direction.

Assume f is a least function (mod U) such that {a < A*|cf(f(a)) = A} € U.
If {X,la <A*} is a collection of sets in U, define g: A* — A* by g(a) =
sup(B < f(@)lx € Xg}). If [g] < [f], then g is bounded by some § <A* (mod U),
and so X; ¢ U, which is contradictory. Thus, [g] = [f], and {a < A*|g(e) =
f(@) and cf(f(e)) = A} € U. But any such a must be in at least A of the X ﬁ’s.
Hence, U is not (A, A*)regular. O

24. COROLLARY. If \ is singular then every uniform ultrafilter over A*
is (A, A" )-regular.

It is still not known whether a U as in the theorem can exist, but Ketonen
has recently used the theorem to show that if there were such a U, then 0¥
exists. Also, a very weak form of Kurepa’s Hypothesis called wKH l(Cw l)
which is known to refute Chang’s Conjecture (see [1] for details) suffices, by
the theorem, to show that every uniform ultrafilter over w, is (w, w, )-regular.

By the forcing considerations of 1.8, observe that if an ultrafilter U over
A" is a non-(A, A*)-regular ultrafilter which we can now assume to be weakly
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398 A. KANAMORI

normal, and if A is either a strongly inaccessible or a successor cardinal, then in
the usual forcing extension by the A-c.c. algebra which collapses every cardinal
below A to w, U generates a uniform, weakly normal filter over w, which con-
tains the set {a < w,lcf(e) = w,}. Thus, no extension of this filter can be
(w,, w,)-regular. This last observation amplifies a fact known to Ketonen [6].

Recent work of Jensen and Ketonen sheds more light on irregularity of
ultrafilters. Jensen [3] showed that if A is regular so that 2%= X and there is
a uniform weakly normal ultrafilter over A, then 0¥ exists and A is ineffable in
L. The following theorem is due independently to the author and Ketonen,
although Ketonen first proved it some time before the author did. Ketonen ap-
parently has much further amplifications which use close unbounded sets, but
the theorem is presented here since the proof needs little further sophistication
beyond 2.1.

2.5. THEOREM (KETONEN, INDEPENDENTLY). Let U be an ultrafilter over
Kk which is not (w, k)-regular. If U has no least function, then there is a se-
quence of functions (f,la < k) C “k and a sequence of ordinals {y,la < k) Ck
so that:
(i) each f, is unbounded (mod U);
(@) fa<p<k, [f] <[fe];
(i) if a <B <k and v5 < fo(§), then f5(§) < f,(5).

ProoF. Proceed by induction. Suppose § <k and (f,la < 8) and (y,|
a <) have already been chosen. If § =8 + 1, let y5 = 7 and f; any function
unbounded (mod U) such that [f;] < [fB] and f;(§) < f;(¢) for every & <.
If & is a limit ordinal, we need the following:

LEMMA. There is a p <k so that whenever p <o <k, {§ <kl@ <8
and p < f(§)) = o < f (E)} €.

PROOF. Argue by contradiction and inductively define an increasing se-
quence of ordinals (pel§ <k by:

po = sup{y,la <38},

Py = sup[pgli‘ <7}, n a limit, and

Pyyy =least 0> Py SO that {EIP; < fo(8) <o for some a <3} € U.
But then, if Yg ={£ng SfB< Peyy for some a <8} for ¢ <k, {Y‘,IS’ <k}
C U shows that U is (w, k)-regular, else there would be a £ < k and an infinite
set of ordinals {a, |n € w} so that:

po <fy OLL, O, ®...,
0 1 2

but then ay > a; > @, * - . This contradiction establishes the Lemma.
To continue the proof of the theorem, let 7Ys be a p as in the Lemma,
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WEAKLY NORMAL FILTERS AND IRREGULAR ULTRAFILTERS 399
where we can suppose Y5 > sup{y,la <8}. Now define f; by
0 iffa(z) < s for every a < 8§,
min{f (§)If(§) = 7;} otherwise.

Since {£|f;(£) # 0} € U, if f; were bounded (mod U), then for some 0 <k,
{&lys < f,(8) <o for some @ < §} € U, which contradicts the choice of ;.
The proof is now complete. O

&=

2.6. COROLLARY. If w < A <« and an ultrafilter U over k is not (w,
A)regular, then U has a least function.

PrOOF. Let v = sup{y,la <A} <k, and for @ <A, set X, = {¢f,(§)>
fos1(®) > Y} E U. As before, the existence of the X,’s shows that U is (w, A)-
regular, else we get an infinite descending sequence of ordinals. O

It follows easily from this corollary and previous remarks that in L, every
uniform ultrafilter over a regular cardinal k is (w, A)-regular for every A <«k.
Hardly anything is known about uniform ultrafilters over singular cardinals, in
L or elsewhere. Finally, note that the corollary can be combined with results
in [3] to show that if A < k are regular cardinals and there is a uniform ultra-
filter over k which is A-descendingly complete (see Prikry [8] for details on
this concept), then 0¥ exists, a result also known to Koppelberg.
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