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0. Introduction

The extensive theory that exists on 3w, the set of ultrafilters over
the integers, suggests an analogous study of the family of k-complete
ultrafili2rs over a measurable cardinal k > w. This paper is devoted
to such a study, with emphasis on those aspects which make the un-
countable case interesting and distinctive.

Section | is a preliminary section, recapitulating some knov.n con-
cepts and results in the theory of ultrafilters, while Section 2 intro-
duces the convenient framework of Puritz for discussing elementary
embeddings of totally ordered structures. Section 3 then begins the
study in earnest, and introduces a function 7 on ultrafilters which is
a measure of complexity. Section 4 is devoted to p-points; partition
properties akin to the familiar Ramsey property of normal ultrafilters
are shown to yield non-trivial p-points, and examples are constructed.
In Section S sum and limit constructions are considered; a new proof
of a theorem of Solovay and a generalization are given, and it is shown
that the Rudin—Frolik tree ciimnot have much height. Finally, Section
6 discusses filter related formulations of the well-known Jonsson and
Rowbottom properties of cardinals.

The notation used in this paper is much as in the most recent set
theoretical literature, but the following are specified: The letters a, £,
7, & ... denote ordinals whereas k, A, u, v ... are reserved for cardinals.
If x and y are sets, *y denotes the set of functions from x to y, 'so that
kM is the cardinality of *k. If x is a set, ?(x) denotes its power set. id
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316 A. Kanamori | Ultrafilters over a measurable cardinal

will denote the identity function with the domain appropriate to the
particular context, and if f and g are functions, fg denotes the applica-
tion of g and then f.

This paper is a slight reworking of the first two chapters of the author’s
dissertation [13]. The author would like to thank his Cambridge super-
visor Adrian Mathias, as well as Kenneth Kunen, who supervised a year
of research at the University of Wisconsin, for their help and encourage-
ment.

1. Ultrafilters

This initial section quickly reviews the relevant concepts, definitions
and results in the theory of ultrafilters which form the basic preliminary
material for the paper.

Definition 1.1. If / is an infinite set, FR, = (X S I| ] - X| < |4]} is the
Frechet filter for I. A filter F over ] is uniform iff X€ F - | X| = 1]. Let

BI = {U U is an ultrafilter over I}
8,1 = {1 is a uniform ultrafilter over /}.

Topologically, fI with the topology generated by the sets (U XEU }
for X C I is the Ceck compactification of / (with the discrete topology),
and B, I is a closed su"space which is identifiable with 'the Stone s:pace of
the Boolean algebra ? (1)} FR;.

The initial work on the structure theory of ultrafilters was done in a
topological context on fw, the ultrafilters over the integers. However,
with the advent of the ultraproduct construction in model thecry, some
of the attention has since focused on a more general set theoretical ap-
proach and, recently, on considerations of other index sets /. The follow-
ing are some of the references in this trend: W. Rudin [30], M.E. Rudin
[29], Booth {5}, Kunen [21], Blass [11, and Keionen [17]. For defin-
iteness / state the following:

Definition 1.2. If ¥ € g1, i, : V- V! Uis the usual elementary embed-
ding of the set theoretic universe into its ultrapower by U , E,, denotes
the induced membership relation for ¥//U, and if f: /> V, (11, de-
notes the equivalence class of fin ¥/ /. The subscripts will often be
dropped if it is clear from the context what U is being discussed.



A. Kenamori [ Ultrafilters over a measuradle cardinal 317

The following partial order was defined independently by M.E. Rudin
and Keisler, and is helpful in evaluating the complexity of ultrafilters.

Definition 1.3. The Rudin—Keisler ordering (RK) on ultrafilters is defined
as follows:

If Y€ pland V€ R/, VKU iff there is a function f: ]+ J so that
V=71 (U, where

[,Q)={(XSJIf'Xeu}.

Let U =<V iff ooth U < VY and VYV <U ;in this case, U is said to be iso-
morphic to V. Finally, let U<V iff UKV andU &V .

As < is transitive, = is an equivalence relation; the use of the term iso-
morphism is justified by:

Proposition 1.4. If U € fland V € pJ, U=V iff therearef: 1~ J,
XEU and Y EV so that [, (U) =V and [restricted to X is 1-1 onto
V,ie fis1-1 (mod<«).

For a proof of this result and more details on <, see M.E. kud'in [29].
Notice that is is reasonable to consider only uniform ultrafilters; since if
U e pland J €U is of least cardinality, then by the proposition U is
isomorphic to U NP (J) € B, J.

It is also interesting to note that if U € I, Ve fJand V<U, to
every fso that f,(U) =<V there corresponds an elementary embeddmg
o: VIV vy /%; define ¢ by &( [g],) = lgf],. Note also that thc com-
position of i, and then ¢ equals i,

The following concepts were ﬁrst used in the study of g, w; see W. Ru-
din {30] and Choquet [6,7].

Definitions 1.5. Let \ be rezular and U € g, \.
(i) f€ M. is unbounded (1nod W) iff for every a < A {E<ANla<f(§)) U
(ii) f€ M isalmost 1-1 iff forevery a< A\, | f- ({a})I < N.f€ M\ is
almost 1—1 (mod U ) iff there is an X €U so that f| X is-almost 1—-1, i.e.
foreverya <A

{f1{e) N XI<A.

(iii) U is a p-point iff every function € *\ unbounded (mod ¥ ) is al-
most 1 -1 (mod U ).
(iv) U is a q-point iff every almost 1—1 function € M\ is 11 (mod U).
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(v) Uis B, \-minimal iff every function € A\ unbounded (mod U ) is
1—-1 (mod U).

It is obvious that U is B, A-minimal iff U is a p-point and a g-point.
Actually, (v) is stated so that this connection is apparent, though the term
B, \-minimal refers to the equivalent condition of U being minimal in the
Rudin—Keisler ordering restricied to g, A, ie. VKU » Y = U or
v ¢ B, A B, A-minimal ultrafilccre niay seem special, but it is known that
if 22 = A*, there are 22 of thcm. The following are easy generalizations
of known characterizations.

Theorem 1.6. Let X be regular and U € 8, \.

(i) U is a p-point iff whenever {X | c <A} & U are such that « < § <
A> X, X,,thereisaYEU 50 that |Y—X,| <\ for every a < \.

(ii) (Kunen, see [S]) U is B, \-minimal iff whenever {X |« <A} EU
are such that a <B< N> X3 C X, thereisa Y €U so that o, € Y and
a<f-+B€X,.

Consider the following definition:

Definition 1.7. For any cardinal k, i
Bk ={UEP, Kk|U is k-complete} . )

k-com:plete mean-, of course, thatif y< k and {X la< p} SU,
naq X, € U. Note that 8, w = B, w, and that for k > w, B, K is not
empty iff k is a measurable cardinal. This latter case is the main subject
of this paper. When considering U € 8, k, several simplications are pos-
sible, for example, the sets {X_ | « < «} in 1.6 need no longer be descend-
ing, and the term f, k-minimal can be properly replaced by minimal, since
VY <U and V ¢ B,k ~ V is principal. Interesting considerations involv-
ing partitions also arise.

i
Proposition 1.8. If U€ B, k, WU is minimal iff U is Ramsey, i.e. for any
function F : (k]2 = 2 there is an X € U so that \F"[X)?| = 1. In addi-
tion, if & > w, U is isomorphic to a normal ultrafilter € B, k.

The main part follows from 1.6(ii). Thus, in §,,« for k > w, below any
element there is a minimal one in the RK ordering. However, Mathias [23]
has shown with CH that there exist elements of §,w with not even p-points
below them.
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Topologically, ,,k is quite special because of its basic separation prop-
erty: given distinct ultrafilters {U | & < u} € B, where p: < k, there
exists a partition (X, | « < u) of k so that X, € U, . Also, 7-points in the
context of §,, x have a topological definition equivalent to the one given:
the intersection of any k open sets containing U also contains a neighbor-
hood of ¥ . Indeed, p-points were originally considered from this view-
point in the theory of g, w. Their topological invariance was used to prove
that B, w is not homogeneous (W. Rudin [30]; CH is assumed here to get
the existence of p-points).

With the exception of some elegant constructions by Kunen [21] in-
volving independent sets, most of the interesting results in the theory of
£, w depend on CH and can often be generalized to follow from Martin’s
Axiom (MA) as well (see for example Blass [3]). Roughly, these hypo-
theses allow inductive constructions which adequately take care of 2w
conditions compatibly. Usually, it there is no direct proof of some asses-
tion, a counterexanipie can ti.us be constructed. However, without CH
or MA it is not even known whether p-points can exist.

Note that in constructir g ultrafilters by gradually extending filters, the
finite intersection property persists through limits as one takcs unions of
filters. But, k-completeness is not preserved in general, so that such induc-
tive methods are not available in the theory of g,k for k > w. However,
there is a new advantage that offsets this somewhat: the well-foundedness
of ultrapowers. This is the new factor which makes 8,k for k > w inter-
esting and distinctive, and will be used repeatedly in this paper.

There are simple processes for constructing new ultrafilters from given
ones.

Definition 1.9. Let D€ fland ;€ §J fori € I.
(i) The D -limit of (¢; | i € I) is the ultrafilter D -lim £; over J defined by

Xe@Aime, iff (il X€&}ED .

(ii) The D -sum of (¢; | i € I) is the ultrafilter @ Z, €, over I X J defined
by
XeDXL €, iff (il{jitiEXIEEIED .
]

The indexing variable under the summation sign Z will be suppressed un-
less it is not clear from the context what (he variable is. When consider-
ing cartesian products like / X J, m, will denote the projection onto the
first coordinate, and =, , the second coordinate.
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(iii) When each ¢€; = € in (ii) we get the product of D and €, denoted
by D X €. For n€ «, %" is defined by induction: U" ="~ xu .

Note that sums can always be written as limits. Taking an ultrapower
of a structure by @ I €; corresponds to first taking ultrapowers by each
€, and then taking their ultraproduct by D. Note that when A is regular
- and each ultrafilter involved is in §,\, D Z &, is not a p-point since the
projection m; is not almost 1 -1 mod( @ X ¢;). Also, the product @ X¢&
is not a g-point either, since

(e, la<B<A}E D XE

and u, is almost 1—1 on this set, but it cannot be 1-1 (mod D X¢).
Sum considerations lead in a natural way to another partial ordering on
ultrafilters, first defined by Frolik and M.E. Rudin.

Definition 1.10.

@ Ifc;epJforie ], {€;1i€ I} is adiscrete family of ultrafilters iff
there is a partition (X; | i€ I) of J so that X; € ¢, foreachi € 1.

(ii) The Rudir—Frolik ordering (RF) on ultrafilters is defined as fol-
lows: if D € pI, D <z U iff for some J and discrete family {&;li€/} &
BJ, U=D-lim¢€; D<pp Wiff DLgp U and D FU.

Whenever the conditions in (ii) are satisfied for @ and the €;’s,
D-lim€; = D T E; by a simple argument using discreteness. gy is well
defined for Rudin- cisler equivalence classes of ultrafilters. It is known
that g is a sub-odering of the Rudin—Keisler ordering, but the most
interesting fact about it is the following.

Theorem 1.11. (M.E. Rudin) The Rudin— Frolik ordering restricted to
elements of B, for some K is a tree, i.e. the predecessors of any element
are linearly ordered.

For a proof, see Booth [$] or Blass [1]; a more detailed formulation
will appear later (5.5). Frolik [11] used the topological nature of < RF
to show without CH that §,w is not homogeneous. Booth [5] later
showed that there are elements of 3, w with an infinite number of <pg
predecessors, and even a <gp chain isomorphic to the reals. No such re-
sults exist for k > w.

The following praposition is stated here for future reference.

Propositicn 1.12. A family of k distinct p-pair;ts € B,k is a discrete
family,
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Proof. It suffices to establish the following fact: If U € g,k is a p-point
and fora <k U, # Uand U, € f,«, then there isan X € (U - U{U,|
a < k}). An easy inductive argument using k-completeness can then be
used to construct the partition of x that demonstrates discreteness.

So, let X, € ¥ — U, . By 1.6(i) and k-completeness of U, there is an
X €U sothat | X - a,l <« for each a < k. But then X ¢ U, fora < «,
since U, is uniform, and we are done.

Note that we actually proved that no p-point in §,,« is a limit of x or
fewer other elements in 8, k, a consequence of the topological definition
of p-points. This immediately implies that p-points in f,,« ar: minimal in
the Rudin—Frolik ordering. Kunen [19] has proved with CH that the
converse is not true for k = w.

Turning briefly to filters, there will be occasion to use the following.

Definition 1.13. Let X\ be regular. _

(i) A filter F over A is a g-point filter iff whenever f€ *\ is almost 11,
fis 1—-1 on asetin %.

(ii) If A > w, @, denotes the A-compiete filter generated by the closed
unbounded subsets of A.

Stationary subsets of A are just those with positive €, measure, and a
well known result of Fodor states that any function regressive (i.e. strictly
less than the identity function) on a stationary set is constant on a sta-
tionary subset.

The following are some large cardinal definitions, special cases of which
will be used.

Definition 1.14.
(i) k is \-supercompact iff there is an elementary embeddingj: V~+ M
of the universe into a transitive subclass so that:
(a)j(a) = a for a < K, but k < j(k).
(b) M is closed under X sequences, i.e. if (x_|a < Q) CM, (x,Ja<NEM.
(ii) k is \-compact iff every k-complete filter over A can be extended
to a k-complete ultrafilter over A.
For details, see Keisler—Tarski [14] and Solovay—Reinhardt—Kana-
mori [28]. A different, but equally natural, definition of A-compact is
often seen in the literature.
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2. Skies and constellations

This section introduces some concepts essentially due to Puritz for
discussing elementary embeddings of totally ordered structures. I present
the situation in some generality to suggest potential uses in model theory,
but with enough speciality so that cumbersome notation can be avoided
and direct applications are possible in succeeding sections. Thus for exam-
ple, only regular cardinals as domains will be considered. The minimal
structure on such a cardinal k adequate for the discussion seems to be
(k, €, X ...) where the X ... are names for every unary and binary relation
on k. In particular, every subset of k and function € *k has a name. So,
let

ik, € X...)=> (i), E, i(X)...)

"be any elementary embedding (where the second structure need not be
E-well founded). To suggest ordinality < will be used both for € between
elements of k and E between E-members of i(x); similarly, <, =, >, > will
have their derived meanings. The following definitions and propositions
(2.1 through 2.9) are due to Puritz [26,27] for the case k = ¢ but gener-
alize with trivial m odifications.

Definition 2.1, Set
iT(K)=xEik)la< k- i(a)< x).
Then for x, y € i"(«) define:
x~y iff forsomef, g€ "k, i(f{x)>y
and i@)()>x.
x<€y ifffe *x implies iXx) <y .
x ey iffforsomef, g€ "k, i(fXx)=y

and i@0Q)=x.

The sky, constellation and exact range of x € i~ (k) are then defined res-
pectively as follows:

sk(x) ={yei“(k)|y~x},
con(x)= {y €i"(k) |y « x},
er(x) = {i(f¥x)if€ *k and i Mx)E€i~(k)} .
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Thus, two elements are in the same sky if they are close ¢nough to each
other to be mutually accessible by *‘standard™ functions [t is evident
that though the definition of x ~ y is symmetric in x and v, at least one
of £, g can in fact be taker'l to be id, the identity function. Ti'e following
lemm:a is simple.

Lemma 2.2.
(i) ~ and < are equivalence relations.
) Ifx,y€i“(k),x<yiffac sk(x)and b € sk(y)-> a<b.

Proof. Of (i) for ~. To show that ~ is transitive, suppose x ~ y and y ~ 2.
Let y € i(f)(x) and z < i(g)Xy), where by .regularity of k, one can assume
g is an increasing fur.ction. Hence, z < i(g)y) < i(g) i(N(x) = i(gf)x).
Similarly, there is an A € *k so that x < i(h)(2).

By (ii) of the lemma, skies can be naturally ordered by sk(x} < sk(y)
iff x € y. Thus, i"(k) can be decomposed into ordered sub-intervals
called skies, which in turn are made up of (whole) constellations. How-
ever, note that if f& *k is 1 -1 and increasing, i(/)}(x) € con(x), and for
any y € sk(x) there is such an f so that y < i(f)(x). Hence, unless a sky
consists of just one constelletion, its constellations will not themselves
be subintervals, but will be spread out cofinally within the sky. The fol-
lowing propositions provide more information.

Proposition 2.3. Let x € i (k).
G)Iff€ *x is almost 11, then x ~ i(f)(x).
(ii) {i(fXx) | f€ *k is almost 1 -1 and non-decreasing} is both co-
initia! and cofinal in sk(x).
(iii) If S € sk(x) but |S| < k, then S is not cofinal in sk(x). If in addi-
tion S contains no least element, then S is not coinitial in sk(x).

Proof. (i) Set g(a) =sup{f | f(B) < a}. Then g € *k and x < i(g) i()Hx) =
i@ Kx). ,

(ii) Suppose y € sk(x). Then there is an f 1—1 and increasing so that
y € i(f)}x), and i(f)x) ~ x by (i). Also, there is a g so that x < i@g}¥).
If g0 € *k is defined by:

£%(a) = least B(g(B) > ),

i(@®)(x) < y and i(g%)(x) ~ x also by (i).
(iii) Suppose S = {a, | § < «}. For each ¢ < k there is an f, so that



324 A. Kanamori | Ultrafilters over a measurable cardinal

n(fE)(a )> x. If we set'f(a) = sup{f,(B) | £, < a}, an easy elementarity
argument shows that :(f‘)(a )> l(f §( ) > x. Now associate to f a func-
tion f© as in the proof of (u) Then 1(18 x)< a, for every £ < k, and
i(f%)(x) ~ x. Hence, if S contains no least element then S is not co-
initial in sk(x). A similar but shorter proof shows that S is not confinal.

 Proposition 2.4. For x € i™(x), .

con(x) = {i(m)(x) | = is a permutation of k} .

Proof. Let y € con(x). It suffices to find a permutation 7 so that
i(r)(x) =y. Assume i(f)(x) =y and i@)(¥) =x.and set S = {a < k|
gf(e)=a}.fis 1-10n S, and x E i(S). As § is infinite, let Sy U §; = S,
SoN Sy =0,and | Sy =18y | = §. Say for example that x E'i(S;). Let
h: (k—S8y) +> (k- f"Sp) be bijective, and set

. (a)={f(a) ifa€sS,,

h(a) otherwise.

"Proposition 2.5. I x,y € i~(x), x ~ v iff there is an f almost 11 and
non-decreasing so taat i(fXx) = i(f }»).

Proof. One direction follows from 2.3(i). For the other, a;sume x ~ y.
One can suppose x < y and y < i(g)(x) for some g strictly ix:creasing.
Define a function k = *k by induction as follows: #(0) = g(0), h(a+1) =
gh(a), and A(y) = sup{h(a) | « < ¥} at limits 4. The range 6f i(h) is then
closed and cofinal in i(k), so let a < i(k) be such that i(h) (a) is largest

< x. Then

i(h)(a) € x <y < i(g)(x) < i(@)i(h)(ai(+)i(1))
_ = i(h)(ai(+)i(2)) .
So, for example, if @ is an even “ordinal”, set f(§) =a iff h(a) < £ <
h(a+2), for a even <. Clearly i(fXx) = i( )»).

In the situation we have been considering, notice that any x € i~ (k)
can be considered a ‘“‘generic” element which generates a uniform ultra-
filter U over «, defined by

XeU iff xEi(X).

When this idea is pursued further in the case where i itself arises from
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the ultrapower construction with respect to a uniform ultrafilter over «,
we will get another form:ulation of the Rudin—Keisler ordering (and in-
deed, this was Keisler’s original method).

Let U € B,x where again, « is a regular cardinal. The previous notions
and results will now be applied with i and E specialized respectively to
i, and £ restricted to the appropriate domains; the other notation will
be retained. The following are evident:

x <i,(x) iff x=1f], forsomé€fe “k,
n,ei, ) iff f€ *k and fis unbounded (mod U ),
i,@Xr1,)=gf], for ge*k.

So, for example, [k], € er([f],) iff [h], € i, (k) and fis a refinement
of h when both are considered as partitions of k. Also, observe that there
is a highest sky, the sky of the identity function, and in fact

sk(lid],) = {[f], 1 f is almost 11},

for suppose f ~ id; then there is a g so that [gf], > [id],,ie. {§<«k|
gf(¥) > £} €U and on this set S is almost 1—-1. From 2.4 it is also clear
that

con(lidl )= {If},1 fis1-1}.

These remarks immediately lead to the following characterization of p-
points, g-points and f, k-minimal ultrafilters.

Proposition 2.6.
(i) Uis a p-point iff i, (k) is one sky.
(ii) Wis a g-point iff the highest sky is one constellation.
(iii) Uis B, k-minimal iff i, (k) is one constellation.

Proof. Obvious from the deﬁnitions;

So, the sky structure of an ultrafilter can be considered a measure of
its complexity: the more skies there are and the more constellations there
are in each sky, the more complex the ultrafilter. As noted before, any
“large” element of i, (k) generates an element of §,«. It is now evident
that

y< ‘l( and VY € B, « iff there is an f€ “x unbounded (mod ‘U )
such that f, (%)= V,
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and that
XeV iff f-'X)ed iff If], € i,(X).

Also, if [f], Ig], € iy (k),
con([f1,) =con(lg] ) > f,(U) =g (U).

When £, (%) = V, by the remark just before 1.5, themap ¢ : V*/ ¥ -
V* [ U defined by ¢([g],) = [gf], is an elementary embedding. When
Ve B, k, the following facts abour the action of ¢ on i,(x) are easy to
ascertain:

(i) ¢ preserves ~ and <.
(ii) 9" i,”(x) = ex([f1,).

(iii) ¢ sends constellations cnto constellations.

(iv) ¢" sk(lg},) is coinitial and cofinal in sk({gf], ), and no two skies
are sent into one.
Bearing these facts in mind, the following proposition corresponds to 2.6.

Proposition 2.7. If f (U) =V and V € B, k, then
(i) Vis a p-point iff er([f],) < sk([11,)-
(ii) Vis a q-point iff ex((f1,) 0 sk({f],) = con((f],).
(iii) Vis B, k-minimal iff er [f1,) = con([f],).

Corollary 2.8,

(i) If U is a p-point, VK U and <V € B, k, then <V is a p-point.

(ii) If f (U)iis a q-point and |e], € sk([f],), then [f], € er([g],).
Hence, at most cne constellation in each sky can consist of [f], so that
f.(U) is a g-point.

Proof. For (ii), notice that by 2.5, there is an & so that [kf) = {#g] and
[Af]1 € con([f1). So, there is permutation  so that [f] = {mhf] = [®hg].
Hence, [f] € er([g]).

Note that by 2.8(ii), any two g, k-minimal ultrafilters below a p-point
are isomorphic. The next result essentially generalizes 2.8(ii) to g-points
not necessarily ultra.

Theorem 2.9. If F is a q-point filter over k, then any sky of U contains
ai most one element [f}, so that 1, (U)2F.

Proof. Suppose f,(¥) 2 F and g, () 2 ZF, but sk((f]) = sk(lg]). By 2.5
there is an almost 1—1 function 4 so that i, (AX[f]) = i, (A)X[g]). Since
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¥ is a ¢-point, there is an X € 7 so that
a,f€X and h(a)=h({f)»>a=f.
Then, by elementarity,
x,y E, i,(X) and i,(h)Xx)=i,(h)Qp)>x=y.

Butf,(U)2 F and g (U) 2 F,so that [f],, [g], E, i,(X), and hence
(1, = lel,.

The following propositions mark the point of departure from the case
& = w and hence from Puritz’s results. The assumption from now is that
K is regular and uncountable.

Proposition 2.10. @, the closed unbounded filter over Kk, is a q-point.

Proof. Suppose fis almost 11 ar. | let g(a) =sup{f! f(f) < a} < « for
a<kK.ThenC = {a<k|f:a-+a and g:a - a} is closed unbounded
and a,f€C anda < B~ fla)< < f(B),i.e. fisl-1onC.

The next proposition is really a special case of 2.9.

Proposition 2.11. Suppose f€ *k is 1 1bonndc “ (mod U ). The= (f],, is
the least element of sk(If),) iff f,(U) =2 €,.

Hence, if a sky has no least element, there are no [g], in the sky such
that g, (%) extends the closed unbounded filter.

Proof. If there is an element below [f], in its sky, by 2.3(ii) thereis a g
almost 1-1 so that [gf], < [f],. g is regressive on a set X in f, (%), and
if X were stationary, g would be constant on an unbounded subset of X,
a contradiction since g is almost 1--1. Hence f,_ (%) 2e,.

Conversely, if f, (%) contains some X which is the complement of a
closed unbounded set, g(a) = sup(a N (xk — X)) defines an almost 11
function regressive on X. Thus, [gf], < [f], and [gf], ~ [f]),.

Corollary 2.12. No distinct extensions of €, in B,k can be isomorphic.
To conclude this section I make two remarks relating skies to recent

work in the theory of ultrafilters over w:
(a) M.E. Rudin’s ordering C whose minimal points are precisely the
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p-points (see [29]) can be succinctly characterized by

D C € iffthereis an f€ “wso that D =f (€),
and sk([f], ) < sk(lid},)-

(b) The ultrafilter version of the main theorem in Blass [2] is as fol-
lows: If a countable number of p-points have a common p-point upper
bound, then they have a common lower bound. Using skies, a short proof
of this result is possible.

Suppose D and €,, for n € w are p-points such that there exist f,, with
fs (D) =C€, for every n. By 2.3(iii) S = {[f, ] | n € w} is neither coini-
tial nor cofinal in the sky i, (w), so let [gly, < [f,]n < [h], for each
n. By 2.5 there is a t nondecreasing so that [1g], = [th], =sone [F]l,,
i.e. for each n [tf,]e = [Flo .

Hence, F (D) is a lower bound for each € ,, and note that there is one
function ¢ which can be used to simultaneously project all the €,,’s down
to a common lower bound, a fact that also follows from 1.12.

3. k-ultrafilters and the function

This section begins in earnest the study of g,k where x denotes a
typical measurabie ~ardinal >w. To simplify the presentation the foliow-
ing definitiun will te used throughout:

Definition 3.1. If X is a set such that | X| = «, a x-ultrafilter over X is a
non-principal k-complete ultrafilter over X, and a x-ultrafilter is just a
k-ultrafilter over k itself, i.e. a member of g, .

As remarked in Section | many aspects of the theory of 8, w will
have analogues, but there is now an essentially new advantage, the well-
foundedness of ultrapowers. I assume the reader’s acquaintance with the
model theoretic techniques involved, and as is common practice, 1 do not
distinguish between a well-founded ultrapower and its transitive isomorph.
In particular, if U is a k-ultrafilter i, : V> M = V*/ 9 will :iow be a non-
trivial elementary embedding of the universe into a transitive submodel
which first moves « to some ordinal i, () > k. Note that i, (x) is now
just iy(x) — k. Also, I often do not distinguish between an equivalence
ciass of functions and a typical member, e.g. fis called® the least non-con-
stant function (mod U ) when (the transitization of) [f) u €quals k.

In considering the family of k-ultrafilters a natural question to ask is
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how rich it can be, how much, for example. the structure of §, (w) with
CH or MA can be copied. As noted in Sectivii 1, without much in the
way of inductive procedures which can be adequately controlled at each
stage, it seems more difficult to construct various interesting kinds of
k-ultrafilters. An obstacle in this regard is the existence of a simple inner
model of measurability, the model L{U ] of sets constructible from a
norma’ iz u'tratilter . Kunen [20] has shown that in L[ %] there are
only x* x-ultrafilters, and each one is equivalent to a finite product of
UNL{UJ. Thus in L{U] the Rudin—Keisler ordering on «-ultrafilters
has order type w. In fact, it will soon be clear that every k-ultrafilter
there has a finite number of skies, there are no non-minimal p-points or
q-points, and the only extension of the closed unbounded filter is U N
L% ] itself. Hence, though L[] is extremely interesting in many res-
pects (especially in exhibitir.g strong similarities to L; see Devlin [8], for
exampie), it is a rather barren landscape to search for k ultrafilters, and
shows that mere measurability is not enough to prove the existence or
any essentially non-trivial x-ultrafilters.

A fully adequate hypothesis seems to be the assertion that « is 2x-
supercompact, and indeed, Kunen and Solovay have both constructed
very interesting examples of x-ultrafilters from this hypothesis. Another
hypothesis rich in possibilities is the assertion that k is k-<compact. The
relative provability strengths of these hypotheses are not yet sufficiently
clarified. Perhaps the main question in this connection is still whether it
is consistent to have x k-compact and carry only one normal k-ultrafilter.
In this paper these hypotheses will be intermittently used to provide
examples on which a rich ana interesting structure theory for k-ultrafil-
ters can rest.

To begin the development, some initial remarks are in order. If ¥ is
a x-ultrafilter and f € *k, f, (U) is a k-ultrafilter iff [f], > x (and prin-
cipal otherwise), so we are only interested in such f. Concerning the sky
structure of U , the following observations are evident:

(i) each sky sk([f]) has a least element, which by 2.3(ii) is of the form
[hf] where h is almcst 11 and non-decreasing, and by 2.11 is such that
hf) (U) 2 @,; (ii) each constellation also has a least element, and though
constellations within a sky are not convex subsets but cofinally spread out,
constellations can now be naturally ordered as per their least elements. The
next proposition is also easy.
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Proposition 3.2. Let U be a x-ultrafilter.
(i) U is a p-point iff its least non-constant functicn is almost 1 -1
(mod U).
(ii) U is a g-point iff its least almost Y —1 function is 1-1 (mod U).
(iii) U is minimal iff its least non-constant function is 1-1 (mod U ).

Proof. (i) is evident, since the Jeast non-constant function is in the highest,
and hence only, sky. For (ii), if fis the least almost 1—1 function (mod %),
for any almost 1—1 function g there is an A so that [hg] = [f]. But then
[f-'hg) ={id) andgis 1 -1 (mod ).

The following well-foundedness result is much deeper, and perhaps
somewhat surprising. Due to Solovay, it is a basic tool in the theory of
k-ultrafilters. I state it in general form and include a short proof.

Theorem 3.3. (Solovay). The Rudin—Keisler ordering on countably com-
plete ultrafilters (over arbitrary sets) is well founded.

Proof. For each n € w let U, be countably complete over a set /,,, and

forn<mletf,,: I, > I, besuch that f, .+ (%,) = U,, and £, fon = fom -

It suffices to find some n such that for every m > n f,,,, is 1 -1 (mod < ).
Consider an equivalence relation = defined on I by x = y iff there is

an n such that £, (x) = f5, (). Fix one element in each equivalence class

as a representative, #nd for x € /, set f(x) = the least n such that f;,(x) =

Jon(r) and r = x is the representative of the class of x. By countable com-

pleteness there is an 7y such that X = {x € Jj| f(x) =ny} € U,. Then it

is simple to see that for every m > ng fym is 1—1 on fopg X € U, .

I now consider for each k-ultrafilter an associated set of ordinals first
defined by Ketonen, and show its direct relationship to skies.

Definition 3.4. (Ketonen [17]) For a x-ultrafilter U set
r@)={lfl,1f,(¥)=2 e}
7(U) = order-type of I'(¥).

Note that if W <U , the canonical embedding sends I'(V ) into I'(U ) and
so, for example, VY =Y implies 7{(V) = (V).

Proposition 3.5. If U is a «-ultrafilter, T(U ) is the order type of the skies
in their natural ordering, and in fact the least element of each skj is the
unique one in I'(U).
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!

Proof. See 2.11.

Corollary 3.6. I'(‘w) is a closed set of ordinals with a highest element, and
so (W) is always a successor ordinal.

The following interesting theorem on ,{%) is due to Ketonen.

Theorem 3.7. (Ketonen [17])) Let U be a -ultrafilter and u a regular
cardinal < k. _
QY If(U)> u, thereisaV KU such that Y 2 C, U {{a < k| cf(a)=u).
(i) If U is a g-point, T(U) = p+ 1 iff U is isomorphic to an RK-minimal
extension of C, U {{a < k| cf(a) = pu}}.

Proof. For (i), let ([f 11§ < u) be any increasing sequence of elements of
F(u), and define f€ *k by f(a) = sup{fz(a)l ¢ < u}. Then {f] e '(U ) by
3.6,and {a < k| cf(a)=p} € f (U).

For (ii), if % is a minimal extension of ?, U {{a| cf(«) = u}}, then
first of all 7(*¥ ) < u+1: if not, by the argument of the preceding para-
graph there is an f such that [f] < [id] and (f] is the supremum of u
elements in [(Y); but then f,(U) <U yet £, (U) 2 €, U {{a] cf(a) = u}},
contradicting the minimality of U. Secondly, (%) > u+1: otherwise,
since {a | cf(a) = p} € U, let ({f, 11 £ < w) be any sequence cofinal in
[id]. Since we are assuming thai there are less than u skies, some final
segmen: of the sequence must be in a single sky < sk([id]), but this con-
tradicts 2.3(iii). Thus, 7(U)=pu+1.

Conversely, if (%)= u+1, by (i) thereisa ¥ <U sothatV 2 e, U
f{a} ci(e) = pu}} and V can be taker minimal in this respect. If V <U,
(V) < 7(U) as U is a g-point and the highest sky of U is left out in the
embedding of T'(V) into U(¥ ). But 7(‘¥) < u+ 1 contradicts the conclu-
sion of the previous paragraph; hence <V =U , and the result follows.

The assumption that U is a g-point is necessary in (ii) since, for exam-
ple, if V and U are such that (V) < p and 7(%) = u+ 1, it will follow
from forthcoming results that 7(Y XU )= u+1, yet ¥ X U is not an RK-
minimal extension of €, U {{a < k| cf(a) = u}}.

Corollary 3.8. (Ketonen [17]) (i) /f u is regular <« and no k-ultrafilter
extends C, U {{a < k| cf(a) = pu}}, then every k-ultrafilter has less than
i normal x-ultrafilters below it.

(i) if v< p< k are regular and €, V {{a < k| cf(a) = u}} can be ex-
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tended to a k-ultrafilter, then €, U {{a < x| cf(a) =v}} can also be ex-
“tended to a k-ultrafilter.

Thus, as u gets larger it becomes harder to extend €, U {{a! cf(a) = }}
to x-ultrafilters. Essentially, more and more skies must be constructed.

3.9. When « is k-compact it is immediate from the above that for arbitra-
rily large u < « there exist k-ultrafilters with u skies. In fact, the following
“brute force™ argument shows that for arbitrarily large p < (2%)* there
exist k-ultrafilters U with (U) > u:

Let ¥ C *« be a family of 2* k-independent functions (see Ketonen
[15] for details); that is, if {f, | £ < 2*} enumcrates ¥, for any ¥ < «,
any set of distinct ordinals {£ | @ < 4} £ 2% and any set of ordinals

{n,la<7v} Ck,
{811, (ﬂ)=n foralla <y} # 0.

Then given 2% < u < (2%), let {8; | £ < u} enumerate ¥ in type u and
let U be any k-ultrafilter which mcludes the sets

{a<klhgla}<g, (o)}

for £ < i < u, and /. ranging over all functions € “x unbounded in «.
Then for § < n < p, sk((g;]) < sk([g,]) and so 7(% ) > u. Of course, this
kind of constructio\ does not give much information, and in 5.3 there are
better woven examples of k-ultrafilters with a large number of skies.

Finally, concern.ng the extent of skies in absolute terms, consider the
following proposition.

Proposition 3.10. Let U be a k-uitrafiiterand i,: V -+ M = V«/U the
associated embedding. Then if k < a, B < (2¥)M, there exists an f € *k
such that i, (f)(B) = a. (It is well known that 2« < (2*)M < j (k) < (2%)*.)

Proof. Let F: ?(k) ~ & be some well ordering of P(x), § being some or-
dinal, so that the following two conditions are satisfied for any cardinal
u<K:

() If < 24, there is an X & p such that F(X) = 9.

(ii) X € p implies that F(X) < «.

For § < k let G(§) = the least cardina! » so that ¢ < 2. Finally, for
X & k define fyy € %k by:

x®=FXnGE)N<«k.
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Now if a < (2%} there is an X € k so that i, (FYX) - a by (i). Then for
any § such that k < g < (2%)M,

i, U (B) =i, (F) G, (X) 0 i, (G) (B))
=i, (F) (i,(X) N k)
=i (F) (X)

-
Fa
.

Corollary 3.1¥. The first sky (indeed, the first constellation) extent!s be-
yond 2%.

Of course, the proposition can be generalized to show that eac 1 con-
stellation includes long definable intervals of ordinals, but this n ethod
will not yield any characterizations, since skies and constellatio is are
essentially ‘non-standard’ objects.

4. P-points

This - “ction deals with p-points, i.e. the case (%) = 1. " he main inter-
est here i> essentially in the possible complexities of struc ure within one
sky.

As previously noted, to get any interesting (i.e. not minimal) p-points
assumptions stronger than measurability will have to be used. But once
in a sufficiently rich situation the ncxt proposition is relevant. But first,
a lemma due to Solovay and used by him in the initial proof of 3.3. It is
of independent interest, as it shows that con([id | ) is always the highest
constellation for x-ultrafilters.

Lemma 4.1. (Solovay) If \ is regular and U € f,\, then for every f un-
bounded (mod U ) there is a [g] € con([f 1) such that [g] < [id].

Proof. Set g(a) = least B(f(B) = f(a)). Then [g] < [id] and [fg] = [f].
Also, if h is dcfined by A(a) = least B(f(B) = «) then [hf] = [g]. Hence
[g] € con([f]).

Suppose now that ‘U is a non-minimal p-point. If U is normal <U
and <V is such that N < VY € U and minimal in this respect, then <
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would be a two constellation p-point. The following proposition describes
how to get one canonically.

Proposition 4.2. If U is a non-minimal p-point and con(1f],) is the sec-
ond constellation, then f,(U) =V is a two constellation n-point.

Proof. One can assume that [f], is the least element of con([f ], ). Be-
cause of the pror zrties of the embedding V*/V -+ V*/U defined from f,
it suffices to show : whenever {g], > k and [g], € con([id],), then [gf],
is in some fixed constellation of i,"(x). But for such [g],, by the Lemma
there is an h such that [h], € con([2],) and [h], < [id],, ie. [Af], <
[ﬁ]u By the choice of f, [hf }, isin the first constellatxon of iy (k) and
hence [gf],, is as well.

I do not know in general how to get a Y € U with exactiy three con-
stellations (assuming U had at least three), and indeed, this may not al-
ways be possible. The following definitions will yield soine nice p-points
for which such questions can be answered.

Definitions 4.3. For a k-ultrafilter % and a positive integer n, define¥
is n-Ramsey iff for any F : [k]%2 - n+1 there is an X €U ;o0 that
\F"X] 2} < n, and n is minimal in this respect. Define by induction on
n U is strictly n-Rarasey iff U is n-Ramsey and either n = 1, or there is
an f'so that f,_(U) is a strictly (n— 1)-Ramsey «-ultrafilter.

These notions are clearly well defined for Rudin—Keisler equivalence
classes of k-ultrafilters, and it is easy to see that 2-Ramsey is the same as
strictly 2-Ramsey. 2-Ramsey ultrafilters for the w case were first defined
(as ‘weakly Ramsey’ ultrafilters) by Blass [4]. He shows that 2-Ramsey
ultrafilters are two constellation p-points, and that CH implies there are
many 2-Ramsey ultrafilters. The notion is extended here through all posi-
tive integers, and examples in the measurable cardinal case are considered.

4.4. n-Ramsey ultrafilters are not necessarily p-points. For example, if

U is normal, U XU is 6-Ramsey: Let F: [k X k]2 - 7. There arc 6 ways
that four ordinals ay, fy, a;, 8; such that ay < B, a; <, and (ag, fy) <
(a,, B, ) (in the lexigraphic ordering) can be ordered. For 1 € n < 6, a cor-
responding function f,, : {k]4 (or [k]3) - 7 can be defined by fabeg, By
ay, B 1) = F({{ag, By), (a3, By }). Hence, by normality there isan X,
homogeneous for f, and if ¥ = N, (6 X, IF"IY X V12| < 6. At the
same time, [« X ]2 can be partitioned into 6 parts according to which
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ordering the four component ordinals assume, and any X €¥ is such that
[X X X]? contains sets ordered in each of the 6 ways. Hence, 6 was mini-
mal, and U X U is 6-Ramsey.

Thus, some n-Ramsey ultrafilters are not particularly special (though
many interesting characterization and existence questions can be asked
concerning n-Ramseyness in generalj, and hence the introduction of strict-
ly n-Ramsey ultrafilters.

The proof of the next theorem has some new details beyond the n = 2
case tiat must be taken care of.

Theorem 4.5. (Blass [4] forn=2) Ifa x-ultrafilter U is strictly n-Ram-
say, it is a p-point with exactly n constellations such that con([f]) <
con((g]) implies (f] € er([g]).

Proof. By induction on n. Let £, (%) <U be strictly (n—1)-Ramsey and
et {f;1, ..., fy_y] = [f] beiner((f]) and in different constellations
such that: f; is the least function of er([f]),and 0< i<j<n-[f;] €
er(Lf;1).

To prove the theorem it suffices to verify two facts: (i) f; is almost
1—-1 (mod %), and (ii) if g is not cons.ant and not 1—-1 (mod U ), there
is an i < n such that [g] € er(1f;]). Whence, to show that U is a p-point
it suffices to show that f, is the lcast function, by 3.2(i). But if k < [g] <
U1, sk([g)) < sk(lf; 1), and since by (ii) [4f;] = [g] for some i < n and
a function A, er([f;]) would contain at least two skies. Hence, f;, (%)
would not be a p-point, contrary to the inductive hypothesis. The rest of
the theorem would follow from (ii).

I now turn to the proofs of (i) and (ii). To show (i), for a, f < « set

{least i<n such that f;(a) # f;(8) ifit exists,
S .=
«p

n otherwise.
Define F: [k]2 - n+1 by

0 ifS,=1and a<p and f;()< f;(8)
F({a,B}) = {1 if S,5=1 and a > and f;(a) < f,(B)
Sag  if Sap #1. ,

Since U is n-Ramsey, there is an X € % such that F"[X]? omits one
value. If that value were n, an easy argument shows that f,,_, would be



336 A. Kanamori [ Ulrafilters over a measurable cardinal

1-1 on X, a contradiction. If the value werc not n but still.greater than
1, then for some jsuch that 1 <j< n,

6,6€X and f_ @)=f_ (B)~ f@) = £,{).

Hence, there is a function Ak such that [hj;-_ 11 = U;] , contradicting the
assumption that [f;_, ] and [f;] are in uifferent constellations.

Suppose now that the omitted value were 0. Let « € X be such that

f1(a) is least. Then for any S € X, f, («) < f;(B) implies « > B, once again
a contradiction, since f; must be unbounded on every set in U%.

So we conclude that the omitted value must be 1. It is then easy to see
that fora,f€ X, a < - f,(a) < f;(B). Thus, fy is almost 1—1 on X, and
(1) is proved.

To show (ii), let [g] > k. Let S,; be as before, and for 0 < i < n de-
fine 7 : [k]2 > n+1by

0 if S, =i and gla) =g(p)

1 ifS, =i and gla)# g(B)
Fille. B = S+l S, <i

Sos if S, > i.

For 0 <i< nthereisan Y; €U such that F}[Y;]2 omits some value.
As before, we can deduce tha' the omitted value must either be 0 or 1.
Let Y =Ny i, Y, €U . If fct0 < i< n F"[Y]2 always omits the value
1, then g is constant on Y; sc. we can assume that for some ig,0<ig<n,
the omitted value is 0, and i, is maximal in this respect.

I claim that for 0 < j < iy, the value omitted for F, is again O: Since
YEU , there are a, B, ¥y € Y so that Sus = ip and Saqy =1i. Note that also
Sg, =]. Since g(a) # g(B), éither g(vy) # g(ﬁg or g(y) # g(B). Thus, F'[Y] 2
does not omit 1, so it must omit 0, which was the claim.

Finally, by the claim if a,f€ Y,

g2a)# 2B) Uff S,p<ip.

Hence, if iy =n,gis 1—1 on Y. But if iy < n, J (a) = fio (B) > 8(c) = g(B)
on Y, and so [g] € er([f; )). ‘

The proof of the theorem is now complete.

The following example of a non-minimal p-point is due to Ketonen.

Example 4.6. (Ketonen [17]). Assume « is a measurable cardinal and a
limit of measurable cardinals. Let % be a normal k-ultrafilter and for M
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measurable < k let 9, be a normal p-ultrafilter. For a < k set m(a) =
the least measurable cardinal > a. Finally, define D over k by

Xed iff {a<x|Xnm(a)e%m(a)}e‘7t.

If A € « is the closure (in the ofder topology) of the set of measurable
cardinals < «,

U{(a,m(e@)) |la€E A} ED .
On this set, define a function ¢ by
oB)=a iff € (a,m(a)) and a€ 4.

Then ¢,(D) =N and ¢ is the least non-constant function (mod @ ):
Assume [flo <[¢],.Forainasetin % {f< m(a)| f(B) < a} € N,y(o),
so that by m(a)-completeness there is an (a) < a so that {§ < m(a)]
fB)=h(a)} € ‘)tm(a But since 9 is normal, 4 is constant (mod"ﬂ ), and
so f is constant (mod D).

Since ¢ is almost 1—1 but not 1-1 (mod D ), D is a non-minimal p-
point. Ketonen goes on to show that con({¢], ) and con(fid],, ) are the
only constellations. This wiil now be a consequence of the following
theorem.

Theorem 4.7. The x-ultrafilter D .n 4.6 is a 2-Ramsey «-ultrafilter.

Proof. Let F: [k]}~ 3.
Step 1: There is an Xy € D such that for some fixed i<3:a,f€ X,

and ¢(a) # ¢(B) > F({a, }) =i.
To show this, for § < k let S;€D be such that for a fixed i < 3:

6eS;>p<d and F({B,6})=i,.
Thereisani< 3sothat Y = {8li;=i} € D. Now let

T,=N{Sg1d(B)=a} €D .

Since ¢ is the least non-constant function (mod < ),Z = {fla < ¢(B) »
BET,}ED.

Then Xy =YNZ€D ,andifa,f € Xy, ¢(a) < ¢(B) > BE Ty(o) & Sa»
that is

F({e, BN =i =i
Step 2: There is an X;, € D so that for some fxxed1<3 ifa,f€ X,
¢(a) = ¢(B) » F({a,B}) =j.
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To show this, for @ € A since N (4 is normal, let Y, € N, (,, be such
that Y, € (a, m(e)) and for a fixed j, < 3, F'[Y,12 = {j,}. There isa
j<3sothat K={a€ Alj,=j} € N. Now let

X1=U{YQ|QEK}€(D .

Ifaaﬁe X] ’ ¢(¢¥) = ¢(ﬂ) -> F({O‘,B}) =i¢(a) =j°
The proof is now complete since

F"[Xgn X,1% = {i,}} .

A weak converse to this theorem exists. Suppose € is a 2-Ramsey «-
ultrafilter and ¢ its least function, which we can take to be non-decreas-
ing. Suppose, in addition, that there are filters 7, over the sets Y ~1({a})
so that

Xe¢ iff a<klXnyl{aDe FIeE Y ().

Then, fora inasetin ¢ (), %, isa Ramsey ultrafilter and so (¢~ 1({a})l
is a measurable cardinal.

To show this, it suffices to get a contradiction from the assertion that
forainasetin ¢ (&), ¥, are not Ramsey. So for these a let F :
[v-t({aDI2 > 2 be wnthovt +omogeneous sets in F, . Set

F ({8.m}) if Y(8)=vY(n)=a forsomea,
G({8,n}) = { otherwise.

Let X € € be such tha. G"[X 12 # 3. The omitted value cannot be 2,
as Y is not constant (mo1¢ ). Say, for example, that it is 0. Then for a
inasetin ¢ (&),

8,n€ XN ¢y ({a}) > F({8,nD) =1,
and X N Y~ 1({«})€ ¥, a contradiction.

Question 4.8, Can 2-Ramsey «-ultrafilters always be written as a discrete
limit of ultrafilters over smaller cardinals, as above?
This is closely related to the following more general problem:

Question 4.9, If there is a non-minimal p-point over a measurable cardi-
nal k, does Solovay’s 0% exist. ! If « is k-compact, is there a non-mini-
mal p-point over k ?

! For more on 0"', see 5.13. This is the proper question to ask, since T.K. Menas has recent-
ly shown that if it is consistent that a measurable cardinal which is a limit of measursble cardi-
nals exists, then it is consistent that the least measurable cardinal carries a non-minimal p-point.
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Concerning generalizations, it follows by induction on n th:t if in 4.6
the A “’s were replaced by strictly (n — 1)-Ramsev p-ultrafilter: D s tite
resulting D will be a strictly n-Ramsey «-ultratilter:

The proof of 4.7 goes through with the appropriate modification in
step 2, and to show that there is an f so that f,_(D) is strictly (n—1)-
Ramsey, fora € 4 let f, : (a,m(a)) ~ (@, m(a)) be such that £, , (D pq,))
is strictly (n —2)-Ramsey. Then if

f= aéJ 2 [,
we have
XEf,@) iff {alffX)Nm()ED, IEN

iff {aiXnm@)€f (D)) EN.

Hence, by induction f,_ (D) is strictly (n —1)-Ramsey.
I have proved:

Theorem 4.10. If « is @ measurable cardinal and a limit of measurable
cardinals which carry strictly (n—1)-Ramsey ultrafilters, n > 1, then for
every normal ultrafilter N over K, there is a D >N which is strictly n-
Ramsey.

By the constructions so far, it does not seem possible to get p-points
with an infinite number of constellations. I now present Kunen’s example
of p-points which have this property and many more. It is relevant to our
context because it shows the richness of structure under the assumption
of 2*-supercompactness.

Theorem 4.11. (Kunen, unpublished) If k is 2*-supercompact, there is
an ascending Rudin--Keisler chain (X , | a < (2 ) of p-points of length
(2%)* such that for any g < (2%)*,

Ql<‘)(p iff =X, forsomea<§p.

Note that (2%)* is the maximal length possible. This example shows
that it is possible to have k-ultrafilters with exactly u constellations for
every cardinal u < 2*. Indeed, for any ordinal p < (2*)* there can be p-
points with the ‘constellations in their one sky ordered in type p.

Proof. By definition of 2% supercompactness let j : ¥ -+ M be an elemen-
tary embedding which first moves x, where M is transitive and closed un-
der 2% sequences. By standard arguments, (2€) = 2% and (2*)*¥ = (2*)*
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Note also for k < { < j(k), if
U, = (XS klE€jX)},

U, is a k-ultrafilter. The proof now depends on two lerfmas.
Lemma 1. If a,f < 2%, there is a 1 -1 function f € *«k such that j(fXB) = a.

Proof. Same as for 3.10. To show that fcan be taken 11, let g€ *k so
that j(g)(a) = # and use the idea of 2.4.

Lemma 2. If a < B < (2%)*, there is an almost 1 -1 function f € “k such

that j(}{B) =o

Proof. Let G € *k be defined by G(8) = (8l,and let F: (8,0 In<6<
Kk} - Kk be such that:
(i) for 6 < k, 5 defined by F;(n) = F{: 8, 7)) is an injective function:
8 -+ |61.
(ii) for n < k. there is a », and p,, such that v, <8 Fs(n)=p,.
By Lemina 1, it is only necessary to consider § such that 2« < g < (2%)*,
so that j(GX3) = 2~. Suppose j(F)(¢B,«)) =y < 2*. By Lemma 1, there is
a 1-1 gso that j(g):2%) - 4. Then if f€ *« is defined by:

f(5) = F;'gG(8) on S = (81 F;'gG(5) is defined }

and f'{ k — S is arbifrary but 1--1, then j(f)}B) = a. To see that fis almost 11,
note that for any 5 < k,

Snft{aNSv, U (818G(B)=p,},
where g is 11 and G is almost 1—1, so that | f~1({n})| < k. The proof of
the lemma is complete.

To prove the theorem, define a sequence of ordinals 6, fora < (2%)*

as follows:

I

| 6,4, =least 8 > 6_ such that for all f€ *, e ) # 8.
y =Sup{0,la<vy}, yalimit.

By the lemmas, 8, > 2* and the 8, ’s are just the beginnings of constzlla-
tions < (). If we set A, = U, _, (A, | a < (2%)*) is as required by the
theorem:
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(i) They are p-points, since if j(f)(0,) =k, [f] a«, =k and f can be taken
almost 1 1.

(ii) If u < X, by Solovay’s Lemma 4.1 we can assume [, (A)=u
and [f] %, < [id} «,- But then, j(f)68,) < 0, so that j(fX8,) is in the
constellation of some 0 8 forf<a,ie U= Xg.

The proof of the theotem is now complete.

Question 4.12. Can Kunen’s A, for n < w be strictly n-Ramsey? In gener-
al, is a two constellation p-point 2-Ramsey?

5. Sums and limits of ultrafilters

This section contains several results on sum and limit constructions. The
following notational convenience will be used throughout.

Notatior 5.1. If f: k X k - &, then f*: k » k for a < « is the function de-
fined by f*(B) = f(a, B)).

If D and €, for a < k are x-ultrafilters, D T €, is a k-ultrafilter over
k X k such that @ <D Z £, via the projection to the first coordinate, =, .
In fact, er([#; ]) constitutes'an initial segment of ordinals >«, and [f] €
er([m,}) iff f* is constant (mbd € ) for « in a set in D. Note also that

when (f] € er([x,]),
JA(DZE)=Dlim fI(E),
and that in particular,
(DX E)=DAmE, .

The following formula is essentially due to Puritz.

Theorem 5.2. (Puritz (26]) If D, €, for a < k are k-ultrafilters,
(DI E)=7(D)+ l;l 7€) D

Proof. Let U =D T €. The first contribution to the ordinal sum on the
right is duc to the fact that er([#, ],,) is an initial segment of the interval
[, i,(x)). For the second, because of the basic relationship of skies to the
7 function (see 3.5), it suffices to show the following: if [f],, [g], €
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ex(im),), ~
n,~&l, iff [f"]ca~[g°lca foraisasetin®.

One direction is easy. For the other, assume for example that X €D
and fora € X, [h,f*] ¢, > (8] ¢, for some function A, . If h is any func-
tion so that h(g) > h,(B) for every a < < k, then [4f], > [g],. An ana-
logous argument with the f and g interchanged shows that (f], ~ [g],.
The groof is complete.

Remark 5.3.. This theorem can be used to construct “good’ examples of
many-skied ultrapowers, as heralded in 3.9. For instance, let €, for p
regular < i be such that #(€,) = u+1, as in 3.7. If D is any k-ultrafilter
and f€ “x is such that if [f], =9, M= V*/ D satisfies “x < yand yisa
regular cardinal”, then

(D ch(a,)=r(rb)+7+1 .

Puritz goes on to establish conditions for when skies in the ultrapower
by a sum can be just orfe consteilation. As a corollary, he gets a result
proved also by sever2; others. For k-ultrafilters, it states that given x dis-
tinct normal k-ultrafilters. N, @ < k, and any x-ultrafilter @, then
D Z N, is a g-point such that 7(DZ N ) =7(D)+1.

I now prove a thec rem on product ultrafilters which provides quite a
useful characterization; for applications, see also Glazer [12]. It is impli-
cit in Ketonen [171], and I derived this formulation ind:pendently of
Puritz [27], Theorem 3.4.

Theorem 5.4. Let f,g € *k and h : k - «k X k be defined by h(a) = (f(a),
gla). If U, D, and € are x-ultrafilters, h (U)=DXCE iff

D (W=D and 5 (U)=¢,

(ii) [f] < Ner([g], )
(Ner(fgl, ) is, of course, the least element of er([g],).)

Proof. Suppose that 2 (U) = D X ¢ . Then (i) is straightforward, and for
(ii), let [kg], be the least ele:nent of er(g],). Fora<k X, = (< k|
a<k(5)}ec soY=U _ {a} XX,€ D XE.Thush- ‘(Y)e‘l! and
a € k1Y)~ kegla)> f@).

Conversely, suppose X€ T X €. If X1a= (B (a,p)E X}, Y =
{a| X1 € €} €D. One can assume that X | a € (a, k) for every a. De-
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fine a function ¢ € “k by ;
t(f)=leasta€ Y suchthatfed X|a.

If {1g], =n< Kk, XIn€EC but {a|gla)¢ X |7} €U , contradicting
8,(‘U)= € . Hence by hypothesis, Z = {a| f(a) < tg(a)} €U . But then
an WY)eU anda€ ZN f-1(Y)~ gla) € X | f(a). Hence h~!(X) €
% , which was to be proved.

The next theorem is also useful. Due to M.E. Rudin in the w case, it
says that the Rudin—Frolik ordéring is a tree, i.e. the predecessors of any
ultrafilter are linearly ordered.

Theorem 5.5. (Linearity of RF) (M.E. Rudin) For x-ultrafilters such that
Dim €, =Ulim V,, where { £, | a < k} and {V, | a < k} are discrete
families, one of the following occurs:
(i) D=U,f(D)=U,and €, = ‘me forainasetin®.

(i?) There is a discrete family { %418 <k} so that D =Ulim F,, and
Jorpinaserin U, Vg = F-lim €.

(iii) There is a discrete family {Gg | B < K} so that U = D-lim §,, and
Jor Binasetin D, €5 = gglimY,.

Corollary 5.6. For x-ultrafilters such that D X € = U XV, one of the
following occurs:
() D=Uand €=V,
(ii) For some x-ultrafilter FD = UXF and V= F X €.
(iii) For some x-ultrafilter G, U = D X @ and € = G XY,

Proofs. See for exaniple Blass {1] or Booth [§]. No modifications are
needed to gt the measurable cardinal case.

Some apylications of the two previous theorems are now made. The
following interesting result was first discovered by Solovay; the analogue
for B,w is not known. By using Rudin’s Theorem a short proof is possible;
the original proof was presumably more involved.

Theorem 5.7. (Solovay) If U and <V are x-ultrafilters such that

U XV 2P XU,
then there is a k-vitrafilter W and integers n and m so that Y = W" and
VY x M,
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Proof. Use S.6. If (i) of 5.6 occurs, we are done. Otherwise, for example,
thereisa D suchthat U = P XD and Y =D X V. Since U< Y XV,
the problem has been reduced one step down in the RK order. Repeating
this process and using the well-foundedness of the order, we see that (i)
will eventually occur, and thus, the required ¢ will emerge.

So, for example, if U and <V are k-ultrafilters so that (%) < w and
(V)> w, then UX V¢ VYV XU.

Question 5.8. If U and <V are k-ultrafilters such that U XV < Y X U,
does the conclusion to 5.7 still hold?

Kunen [21] showed by an elegant argument (without CH) that the RK
ordering on B, w is not a linear ordering. However, note that RK on «-
ultrafilters in L[U ] is (trivially) linear. On the other hand, distinct nor-
mal k-ultrafilters are, of course, RK incomparable. Whether there is more
than one normal k-ultrafilter or not, the following theorem will show that
RK on k-ultrafilters is not linear in most cases, e.g. when « is k-compact.
It is a solvable case of 5.8.

Theorem 5.9. If U aid V are k-ultrafilters, U is a p-point, and

UXVSPXU,
then there is an integer n such that V = U", 50 U XV = VYV XU .

Remark. If U is a p- oint and <V is such that 7(V) > w, then by the
theorem, U XV € VY XU. Also, since 7(U XV )= (V) and 7V XU ) =
T(V)+1, VXU L UXY . Hence, ¥ XV and V XU are RK incom-
parable.

Proof of Theorem. By 5.4, let h (VY XU)= UXD, h(x) = (f(x), g(x),
F AV XUY=U ,g, (VW XU)=DV,and [f] <A er([g)). (Al equivalence
classes of functions'in this proof are mod < X ¢ , unless otherwise sub-
scripted.j I first show that: (a) [f] € er( [#; 1), and (b) [g] € er([x, ]).
For (a), if [f] € er({x,]), then by 5.2, and the fact that U is a p-point,
{£] would have to be in the highest sky. But this violates (] <N er([g}).
Now to show (b), suppose otherwise and let {g] = (km,]1. Then k (V) =Y
so k is the identity, and [¢] = [, ]. But er([#, ]) is an initial segment of
the ultrapower, so that [f] € er([g]), a contradiction.
Now to proceed with the proof. By (b), V=V -lim £5,(). Set U,
&L ). K U, =V forainasetin V, Y< U, and since from (a) it fol-



A. Kanamori | Ultrafilters over a measurable ¢ wdinal 345

lows that U < VY, VY = U and we are done. S0, we can assume that this
is not the case. Let 1 € “k be any function such that t(a) = t(B) iff U, =
U, . ¢t is thus non-constant (mod V), and if we set W, ,, = U,, then

V=V-lim U, = V-lim W, ,, =t (Vplim W,
The W_’s are now distinct (and p-points, being KU ) so they are discrete
by 1.12,i.e.
(*) V=t (V) W, .

Since W_ < U fora < «k, it is easy to show £, (V) Z W, <t (V)XU.
Hence, it suff ces to prove U X ¢ (V)< YV, for then

**) UXt (V) (VE W <t (VIXU.

Thus, as ¢,(V) < V, an RK reduction would have been achieved, and we
can conclude that if ¢ L) A", then U™ =V by (*) and (**).
Finally, to prove ‘1( X t, (V)<Y itis sufficient to show [f] <
ﬁer([ml 1). Since by (a) [ku,] = [f] for some k, it would foliow that
k], < Ner([z],) and k (V) =U . Hence, 5.4 would be applicable.
That [f] < Ner(ltn;]) follows from [f] < Ner([g]) and the next
claim:

Claim. [t ] = i5g] for some s € *k.

To prove this, let (P, | & < k) be a partition of k so that P, € W .
Definesbys(&‘i-asz&eP Then on Ua<,‘{a}x(g")“( (a))e
VXU,

tm; ((a, B)) = t(a) = s(g*(B)) = sg({a, B)) .

The proof of the theorer: is now complete.

The next theorem has to do with the Rudin—Frolik ordering on k-
ultrafilters; it shows that the tree ordering cannot be very high.

Theorem 5.10. No k-ultrafilter can have k Rudin— Frolik predecessors.

Proof. Argue by contradiction, and let U be 4 counterexample. By
well-foundedness of the RF order on k-ultrafilters, we can assume that
there are D, for a < k so that

a<B<k+ D, <pgp Dy<pr U,

4 <RF‘IC =D, for some a < K,
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and that U is an RF-least upper bound for the @ ’s. To get a contradic-
tion, a % will be found so that V <g ¥ and <V is still an RF-upper
bound for the D_’s. The argument is based on a diagonalization process.

Fora< <k, let {€F1E<K}, (FFIE<K) be discrete families so
that

(D.Q-lim C: = ql ’
= 8.1 8 1 3
cg EI: lim € " forfinasetin D .

Dy =D, -lim‘}“”‘

The existence of these various families and relationships follows from the
definition and linearity of the RF order.

Suppose first that for somea < < k, T = {n| Cf, = C‘é for some
E<Kk}E€D, Then, TEF ¥ and €§ =9‘E’“’-lim ¢8forfmasetin D,.
But -this leads to a contradiction, since for such §, €} is a limit of others
in {£§ | 6§ <«k}. Thus, by an inductive argument on f, we can suppose in
what follows that €2 is differ:nt from any ¢§ fora < < k.

Now define a function fincuctively so that (a) €} = 9‘0“‘)-hm FALE
and (b) whenever possible, f(£) > f(¥') forany §' < . It is not hard to see
that fis defined (mod <) and cannot be constant (mod D). Let (X ¢!
¢ < k) be a partition of « so that X € C . Consider now the family

A=(cf® ) e<k and xeec{,m}.

A is clearly a discrete fimily. By limit considerations, if X €U , X € € ‘g
for a £ so that for some 1, X and X, are in €/®. Thus, U is a limit of A.
Let {V; | § < k} be an enumeration of A, and set

PY=({YCKkIY={S|XEYV,} and XEU}.

By straightforward arguments (as in the w case) YV is a k-ultrafilter so
that V-lim V; =U. Hence, YV <gp U .

To complete the proof, it suffices to show that D, <g V for every
a < k. If not, then for some § < k we must have D, = Vv, a function 7
so that 7, (D,) = YV, and C" Ve fOr ninaset m D,. Forsuch n, by
definiti m of A and the dxstmctness assumptions on the C S X t € C
for a & such that f(¥) = . Hence,

U{X, | f(E) =B} € Dylim €8 =U.

This contradwts the fact that fis not constant (mod D), and the proof
is now complete.
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I am indebted to J. Paris for pointing out an error in a previous version
of the above proof.

It might be appropriate here to state perhaps the two most important
open questions in the structure theory of x-ultrafilters:

Questior. 5.11. Is there a x-ultrafilter with an infinite number of Rudin—
Frolik predecessors?

Question 5.12. If (D | « < k} is a family of distinct k-ultrafilters and
U any x-ultrafilter, is there an X €U so that {D_ | « € X} is a discrete
family?

For the w case, Booth {5] constructs an example to answer the first
question in the a‘firmative, and Kunen [19] constructs with CH a coun-
terexample (in a strong sense) to the second question.

There are no k-ultrafilters as hypothesized by 5.11 in the Kunen—Paris
model [22] nor in the Mitchell model {24], and a negative answer to the
question in general would be very interesting. It would follow, for exam-
ple, that there is an RF-minimal non-p-point by a simple argument. Solo-
vay showed that such a x-ultrafilter exists, but from the assertion that «
is 2*-supercompact and by an involved argument. In any case, the follow-
ing observation can be made.

Proposition 5.13. If there is a k-ultrafilter with an infinite number of
Rudin— Frolik predecessors, then Solovay’s O exists. (0 is the analogue
of 0% for the model L[<%]; see Kunen [20] for some results concerning
it.)

Proof. Suppose that

‘Do <RF ) <gF ‘Dz <RF v <RF D .
For each n € w, there is a discrete family {€7 | a < k} so that D -lim€] =
D. By the linearity of the RF order, if 1 < m < w, each ¢} is a limit of
{€ g’ | < k). Thus, an easy well-foundedness argument shows that there
must exist a situation of the following kind:

U= Pdlim Y =VZI DY ,
and

{ali, (k)=i,(kK)}EDV .

o
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Set y =i, (k). Then
v=order type (11 i, ()/)

= order type (v*/V)
=i, (7).

Finally, defire k, for n € w by induction as follows: Ky =K, K,,,; =
i,(x,), and K, =sup{k, | n € w}. Then &, is the least element > « fixed
by i,, so that k, < ¥ =i, (k). By Theorem 9.4 of Kunen [20], ot exists.

Actually, by methods of [20] an inner model with two measurable car-
dinals can be constructed from the fact that k, < i, (k). Concerning the
question 5.12, the following proposition is relevant.

Proposition 5.14. Let D, € for a < k, be distinct k-ultrafilters and con-
sider U = D T &,. The following are then equivalent.
(i) Thereisan X€D so thct { €, | a € X'} is a discrete collec:ion.
(i) my is 1-1 (mod U).
(iii) [m;] € er([7,]).
(iv) sk(fm 1) ner([x.])# 0.

Proof. The logical progre:sion is (i) = (ii) = (iii) - (iv) = (i). I only prove
the last implication, as the¢ others are evident.
Suppose that [fm,] = ‘gm, ], where fis an almost 11 function. If
X, =Bl fla)=gB)} fora<k,thenY={a<k|X,€ €, } € D.Ob-
serve that X, N X, # @ implies f(a) = f(B). But f was almost 11, so for
each y < k: the X ’s for those & so that f(a) = v can certainly be made

mutually disjoint so that (calling these new sets again X ) each X, is still

a member of ¢, fora € Y. Hence, { €, | a € Y} is a discrete family.

The following corollary is known, but usually via a different proof, e.g.
Blass [1].

Corollary 5.15. Let D be a p-point and €, for a < k distinct k-ultrafilters.
Then thereisa Y € D such that {€ | a € Y} is discrete.

Proof. Consider U =D T €. If [m] < Ner[n;]), then by 5.4,
DZE,=DXM(DTE)=DXDAIMC .

It follows that €5 =D -lim Ca for B in a set in @D, a contradiction since
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the €4’ were distinct. Thus, for some f, [fr,] < [ ]. Since D is a p-
point, sk({m; ]) is the least sky of U, i.e. sk([m; ]) N er([w,]) # Q. The
result now follows from the proposition.

By the reasoning of the corollary, it follows that if there are D, € for
a < k which do not satisfy any (and hence all) of the conditions of the
proposition, then for @ Z €, we must have er([n;]) not meeting sk([=, ]),
but containing elements below it — a rather peculiar situation. For more
on 5.12 and related topicsi see Glazer [12].

6. Jonsson and Rowbottom filters

This fina! section is concerned with filter related formulations of some
well-kknown concepts and their relationships with the function 7. Some
similar notions were independently considered by Ketonen [16].

Definitions 6.1. Let ¥ be a uniform filter over a cardinal \. ¥ is Jonsson
iff for any F : [A]<* - A there is an X € F so that F"[X]<“ = \. If

u <\, is u-Rowbottom iff for any F : [)\]<‘~‘ -+ p< Athereisan X CF
so that |[F"[X]<¥| < pu.

For the terminology, see e.g. Devlin [10]. Straightforward arguments
show that if U, V€ B, Aand V< U,U Jonsson +~ VY Jonsson, and U
p-Rowbottom - <P u-Rowbottom. The following auxiliary notion, some-
what akin to that of indecomposability in Prikry [25], will be useful in
the discussion.

Definition 6.2. If 7 is a uniform filter over a cardinal A and a < A, F is
a-strongly indecomposable (abbreviated a-str. indec.) iff forany G : [A]Sw
- a thereisan X € F so thac IG"[X]<¥| < lal. '

The main interest here is in k-ultrafilters, but the general situation will
be discussed briefly at the end of the section. The following theorem ap-
plies only to k-ultrafilters.

Theorem 6.3. If U is a x-ultrafilter, U is Jonsson iff U is y-Rowbottom
Sfor some p< k.

Proof. One direction is standard: if U is u-Rowbottom and F : [k]<“ - k,
define G : [k]<¥ - u by
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F(s) ifF(s)<upu,
0 otherwise.

G(s)= {

IfX€U and IG"[X]1<%| < , then F"[X]<¥ # «.

The proof of the converse is in two steps. For an ordinal §, say that’
¢, (8) is satisfied iff for any F : [k] <% - § there isan X €U so that
F"[X]1<% s §. 1 will show: (a) there is ¥ < k so that ¢,(7), and (b) if
¢, (8) for & < k, then in fact U is §-str. indec. Since ¢,(8) anu <<k
implies ¢, (7) by an argument like in the preceding paragraph, the resuit
would follow by repeated use of (b).

The argument to show (a) is due to Kleinberg {18]. If no ¥ < « satis-
fies ¢, (7). let G, : [k]<* - ¥ be counterexamples for every ¥ < k. De-
fine F: [k]<% - x by

F({a,, ..., an}) = Ga, ({ay, v a, N

where @, < ...< a,. Then forcve: X €U F"[X]<¥ =k, contradicting
U is Jonsson.

To show (b), let ¢, (8) be satisfied for a § < « and assume ~: [k] << + §
is a counterexample to (b). If

S={(SC8|F"[X]<w¥ =5 forsome X€ U },

d is a basis for a uniforn filtes over 8 which is k-complete. Hence, as
26 < i, $ has some principal generator Sy € 8. Define H : [k] < - S,
by

F(s) . if F(s)€E S,
P otherwise,

H(s)= {

where p is some fixed element of S;,. Then ior any X € ¥ H"[X] W =
Sy, and |S¢ ! = 181, contradicting ¢, (5).
The proof is now complete.

The next theorem will be usea to get upper bounds on the number of
skies Jonsson and Rowbottom k-ultrafilters can have. But first, a simple
proposition; recall that a set of ordinals is u-closed if it is closed under
increasing u sequences in the order topology.

Propusition 6.4. Let u < \ be regular cardinals and U € B, \. Then U ex-
tends the filter generated by the p-closed, unbounded sets iff U 26,V
{{a < Alcf(a) =ul}.
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Proof. Suppose U 22 €, U {{a | cf(a) = p}} and X is u-closed unbounded.
Ifk—Xe€EU, then f deﬁned by f(a) = sup(X N a) is regressive on (k — X) N
{ajcf(c)=u} €U. But every set in U is stationary, and so f is constant
on an unbounded set, a contradiction.

Thec.em 6.5. Let p < A be regular cardinals and U € B, \. If W is p-str.
indec., then U does not extend the filter gencrated by the p-closed,
unbounded sets.

Proof. For each a < A such that ct{o) = y, fix a cofinal sequencs (7"‘|
¢ < ). Define F: [A\]2 > u by

F({a,B}) = £ if "f(mf B, a < B, and £ is least such that ¢ < 7¢,
0 ctherwise.

Since U is u-str. indec., let X €U and F"[X]2 C §, where § < u. Suppose
that (e, | £ < p) is a strictly increasing sequence of elements of X, and let
a =sup{a, | §< u}. Ifa werein X, a, < v5 <« for cvery £ < u, a contra-
diction. Thus, X is disjoint from its u-closure — X, which is obviously u-
closed, unbounded, and the theorem is proved.

Co-»llary 6.6. If ‘U is a k-ultrafilter,
() U is Jonsson » 7(U) < k.
(ii) U is y-Rowbottom where p is regular <Kk->1(U;< p.
(iii) U is w,-Rowbottcm - U has at mo..: countably many skies.

Proof. By previous results, 7(% ) > u - there is a V < U such that
Y2C, UV {a<klcfla)=ul}.

Thus, if x is k-compact, there are.non-Jonsson k-ultrafilters. But also,
if U is a normal k-ultrafilter, by arguments like in 4.4, %" is w; -Row-
bottom for every integer n. Henc 3, it is consistent that every k-uitrafilter
is w; -Rowbottom, since this is true in L[U%].

Question 6.7. Are there w, -Rowbottom x-ultrafilters with an infinite
number of skies?
The next theorem is also important because of its corollary.

Theorem 6.8. Let u < A be regular cardinals and U € B, \. Suppose that
for a < u there are functions f, € M\ such that each [, is unbounded
(mod U)and a < B< p~— If,) & con((f,)), but there is an h so that
hfg(§) =1, (¥) for every £ < \. Then U is not y-str. indec.
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Proof. Let ? be the common refinement of the f,’s considered as parti-
tions of A and let f€ *\ be any function such that f(a) = f(8) iff « and 8
are in the same partition. Consider YV = f_(U). We can assume that the
hypotheses on ¥ continue to hold for <V, and, in addition, the follow-
ing: if £ < 7 < X there is an a < u so that fo(§) # f, (n). Define f: [A\]2»pu
by

F({& n})=least a < p(f () # f,(m)) .

If Q" were p-str. indec., there would be an X € %V such that F*[X)2 € 8.
where § < u. But then, it is evident that ¢, n€ X and f;(B)=f;(n) > & =1,
i.e. f5 is 1 -1 (modV ). This contradictica shows t 1at <V is not p-str. in-
dec., and since V €U, 9f is not u-str. indec.

Corollary 6.9. If k is 2% -supercompact, there is a non-Jonsson p-point -
ultrafilter.

Proof. Consider X, in the Kur en chain of p-points, 4.11. For every regu-
lar u < k; the hypotheses of the theorem are satisfied for X, , so X, is
not y-Rowbottom. Hence X, is not Jonsson.

It might be appropriats to conclude this section with some discussion
of Jonsson and Rowbottom filters in general, when the underlying cardi-
nal is not necessarily me ssurable. It is a. well known result of Solovay {31}
that any A-complete nor mal u-saturated filter over A, whe:e u is an vn-
countable regular cardinal < A, is a y-Rowbottom filter. For more on
questions of existence and relative consistency, see Devlin [10].

In the following, Kleinberg [18] will be very relevant. For example the
next theorem is a filter related formulation of some results which appear
there.

Theorem 6.10. (Kleinberg [18]) If F is a Jonsson filter over X, then for
some 8 < X\ ¥ is §-str. indec., and for u such that § < u < \: if F is not
p-str. indec. and G : [\]<“ - uis a counterexample to this, then

{G"[X]<¥|XeF)

generates a Jonsson filter over u.

Actually, the least § as above is the least  so that ¢,(y) is satisfied,
as in (a) of the proof of 6.3.
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Corollary 6.11. (i) (Kleinberg (18] ). If A is the least cardinal which car-
ries a Jonsson filter and F over ) is Jonsson, then for some u < Ao Fis
u-Rowbottom.

(i) (G.C.H.) If T over A is Jonsson, then for sufficiently large u < \,
if p is c successor cardinal, ¥ is p-str. indec.

Proof. (i) is immediate, and for (ii), by a well known result of Erdds and
Hajnal (see Devlin [10]), no successor cardinal can carry a Jonsson filter.
Hence A is a limit cardinal, and the rest follows as wel'.

Conceming strong indecomposability, there is also:

Proposition 6.12. Let F be a filter over \.
(i) (Kleinberg [18]). If F is p-str. indec., then F is u*-str. indec.
(ii) If F is p-str. indec., where p is regular, and y < p - 27< 2%, then
is 2#-ctr. indec.
(iii) If u is a limit cardinal > « such that 2* = y* and F is u-str. indec.,
then for sufficiently large p < u F is p-str. indec.

Proof. (i) follows directly from the following Lemma ir Kleinberg [13]:
ifu<Nand F: [A]<® = y*, then thereisa G : [A]<“ - u so that if
XCA,

IF" [ X]<°| < IG"[X]<¥[*.
To show (ii), suppose f: [A]<* = P (u). Fors, t € [A]<¥, set

0 iff(s)=1(1),
least § (f(s) N 6 # f(t)n 8), otherwise.

Now define a function g : [A]<* - u by:

Als, ) = {

8(s) = sup{A(s,,: .)I5,.5, Cs}.

Let X€F and g"[X]<¥ € y < u. Ifs, t € [X]<¥, either f(s) = f(t) or
else f(s) N y# f(t) N v, since g(s U £) < v. Hence, | /" [X]<¥| < 27 < 2¥,
To show (ii), assume that for cofinally many v < u there are counter-
examples F, to vstr. indec. Viewing each F, as a partition of [A] <%, con-

sider their canonical refinement R . This is a partition of [A]<“ into at
most 2* = u* parts, and it is easy to see that for any X €F, [X]<* must
intessect at least pu parts. If there is an X € F so that [X]<“ meets exactly
i parts, then R would bc a counterexample to u-str. indec. Otherwise ‘R
is a counterexample to u*-str. indec., and the result follows from (i).
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Without assuming 2* = g* in (ii) of the proposition, one can still show
that the conclusion holds if u is singular and ¥ is u-str. indec. but not
cf(u)-str. indec., using a straightforward modification of an argument in
[18]. :

Corollary 6.13. (G.C.H.) If F is a Jonsson filter, the least p so that F is
p-str. indec. is a successor cardinal.

Finally, consider Prikry forcing (see [9]). Let M model ZFC, ¥ a filter
over regular A in M, and M[G) a generic extension via Prikry forcing with
F. It is evident from the work of Devlin [9] that for u < A:

(a) If T is cf™(u)str. indec., cf 1G] () = cfM(p);

(b) if F is not cf¥(u)-str. indec., cf¥ (Gl (p) = w.

Hence, the following:

Theorem 6.14. (i) Prikry forcing with F over a regular limit cardinal A > w
preserves \ as a cardinal while changing its cofinality to w iff F is g-str. in-
dec. for arbitrarily large u < \

(ii) (G.C.H.) Either, so both, conditions in (i) hold if F is Jonsson. In
fact, if F is v-str. indec.. every cardinai between v and \ is preserved by
the forcing.

Proof. (i) If F is u-str. i~dec. for arbitrarily large u < A, by 6.12(i) we can
assume that these u are regular.

The result foliows from (a) above since A being a limit of cardinals
which are preserved inust itself be preserved. Conversely, if A is preserved
as 2 limit cardinal, cofinally many u < A must also be preserved.

To show (ii), argue by contradiction and assume u is the least so that
»< u< \and uis not preserved as a cardinal. Then g must be a successor,
but as in 6.11(ii), Fis p-str. indec., contradicting (a) above.

6.14(ii) is somewhat in contradistinction to Theorem 3 of Devlin [9].
To conclude, two questions which naturally suggest themselves.

Question 6.15. Is the least Jonsson caidinal less than the least card:nal
whicn carries a Jonsson filter?

Question 6.1€. If U is a normal k-ultrafilter, are there any Jonsson filters
overA# kin L[U]?
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7. Open questions

For the reader’s convenience, I list here the open questions stated in
-his paper with their original n:mbering.

Question 4.8. Can 2-Ramsey x-ultrafilters always be written as a discrete
limit of ultrafilters over smaller cardinals?

Question 4.9. If there is a non-minimal p-point over a measurable cardi-
nal k, does Solovay’s Ot still exist. If k is k-compact, is there a non-mini-
mal p-point over k?

Question 4.12. Can Kunen's X, for n < w be strictly n-Ramsey? In gen-
eral, is a two constellation p-point 2-Ramsey?

Question 5.8. If U and <V are x-ultrafilters such that 4 XV <V XU ,
is there a W and integers n and m so that U =W snd V= Wm?

Question 5.11. Is there a k-ultrafilter with an infinite number of Rudin—-
Frolik predecessors?

Question 5.12. If {D , | @ < k} is a family of distinct k-ultrafilters and
U any k-ultrafilter, is there an X €U so that {D |« € X} is a discrete
family?

Question 6.7. Are there w, -Rowbottom «-ultrafilters with an infinite
number of skies?

Question 6.15. Is the least Jonsson cardinal less than the least cardinal
which carries a Jonsson filter?

Question 6.16. {f U is a normal k-ultrafilter, are there‘ ary Jonsson filters
overA# kin L{U]?
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