

Some combinatorics involving ultrafilters

by

A. Kanamori (Berkeley)

Abstract. This paper briefly discusses the following property of ultrafilters: if μ and λ are cardinals, an ultrafilter U is (μ,λ) -cohesive iff given μ sets in U there are λ of them whose intersection is in U. Among other things, it is shown that a p-point over ω is (ω_1,ω) -cohesive, but that this property does not characterize p-points. We can in fact prove the following: if U is a p-point over and $\{X_a|\alpha<\omega_1\}\subseteq U$, then for any $\delta<\omega_1$ there is an $S\subseteq\omega_1$ of order type δ so that $\bigcap\{X_a|\alpha\in S\}\in U$. A polarized partition relation is strengthened using this fact. These results have direct generalizations to measurable cardinals, and indeed, the paper is written in this general context.

§ 0. Introduction. In this paper, the following rather general combinatorial property of ultrafilters is considered, mainly in connection with ω and measurable cardinals.

DEFINITION. If μ and λ are cardinals, an ultrafilter $\mathscr U$ is (μ,λ) -cohesive iff given μ sets in $\mathscr U$, there are λ of them whose intersection is still in $\mathscr U$.

For those familiar with regularity of ultrafilters, notice that (μ, λ) -cohesion is a strong negation of (μ, λ) -regularity. It is shown that if $\mathscr U$ is a p-point in the space βN , then $\mathscr U$ is (ω_1, ω) -cohesive. The analogous result for measurable cardinals holds by the same proof. Product ultrafilters are considered in this context, and the situations under various set theoretical hypotheses are also discussed. Finally, a new proof and strengthening of a polarized partition relation is derived.

My set theory is ZFC, and the notation is standard, but I do mention the following: α , β , γ , ... denote ordinals, but κ , λ , and μ are reserved for cardinals. If κ is a set, $|\kappa|$ denotes its cardinality and $\Re \kappa$ its power set; if κ is also a set, κ denotes the set of functions from κ into κ ; finally, if κ is an integer, κ denotes the collection of κ -element subsets of κ . If κ is a set of ordinals, κ denotes its order type. An ultrafilter over a set κ is actually one in the Boolean algebra $\Re \kappa$, and is uniform if each of its members has cardinality $|\kappa|$. Finally, κ indicates the end of a proof.

While working on this paper the author has profited from discussions with Mathias and Prikry.

§ 1. Preliminaries and P-points. Under the GCH, we can make some intial deductions from the following classical result of Sierpiński (which I state in a slightly weakened version relevant to our purposes) — see P_4 of [Si].

4 — Fundamenta Mathematicae, t. C

1.1. Proposition (Sierpiński). If $2^{\lambda} = \lambda^{+}$, there are functions $f_{\alpha} : \lambda^{+} \rightarrow 2$ for $\alpha < \lambda^+$ so that: whenever $X \subseteq \lambda^+$ and $|X| = \lambda^+$,

$$|\{\alpha < \lambda^+| f''_{\alpha}X \neq 2\}| < \lambda$$
.

Prikry showed that the first part of the next theorem follows from Sierpiński's result, and the second is easy enough to see.

- 1.2. Theorem. Suppose $2^{\lambda} = \lambda^{+}$.
- (i) (Prikry) If \mathcal{U} is a uniform ultrafilter over λ^+ , then \mathcal{U} is not (λ^+, λ) -cohesive.
- (ii) If \mathscr{V} is a uniform ultrafilter over λ , then \mathscr{V} is not (λ^+, λ^+) -cohesive.

Proof. Let $\{f_{\alpha} | \alpha < \lambda^{+}\}$ be as in 1.1. For (i), set $A_{\alpha}^{k} = \{\xi | f_{\alpha}(\xi) = k\}$ for k < 2and $\alpha < \lambda^+$. Suppose that k < 2 and $S \subseteq \lambda^+$ with $|S| = \lambda$. If $X = \bigcap \{A_a^k | \alpha \in S\}$, then $\{\alpha | f''_{\alpha}X = \{k\}\} \supseteq S$. Hence $|X| \le \lambda$ and $X \notin \mathcal{U}$ as \mathcal{U} is uniform. The result now follows, since there must be a k<2 for which there are $\lambda^+\alpha$'s so that $A^k_{\alpha}\in\mathcal{U}$.

To show (ii), set $B_{\xi}^{k} = \{\alpha < \lambda | f_{\alpha}(\xi) = k\}$ for k < 2 and $\xi < \lambda^{+}$. Suppose that k<2 and $Y\subseteq\lambda^+$ with $|Y|=\lambda^+$. Then

$$T = \bigcap \{B_{\xi}^k | \xi \in Y\} \subseteq \{\alpha < \lambda | f_{\alpha}^{"} Y = \{k\}\},$$

and hence $|T| < \lambda$, i.e. $T \notin \mathscr{V}$ as \mathscr{V} is uniform. The result now follows as for (i).

Having made these initial remarks, I now turn to my main concern, the consideration of measurable cardinals \varkappa and the non-trivial cases involving \varkappa^+ and \varkappa .

- (i) $\mathcal U$ is a \varkappa -ultrafilter iff $\mathcal U$ is a non-principal, \varkappa -complete ultrafilter over \varkappa .
- (ii) \varkappa is a measurable cardinal iff there is a \varkappa -ultrafilter.
- (iii) \varkappa is \varkappa -compact iff every \varkappa -complete filter over \varkappa can be extended to a \varkappa -complete ultrafilter over \varkappa .

The non-principal ultrafilters over ω are precisely the ω -ultrafilters, and thus, in this paper I regard ω to be both measurable and ω -compact. Note that \varkappa -compactness is just a restricted version of the usual concept of strong compactness, and that it obviously implies the measurability of \varkappa . The following is another observation of a negative kind.

1.4. Proposition. If \varkappa is \varkappa -compact, there is a \varkappa -ultrafilter which is not $(2^{\times}, \times)$ -cohesive.

Proof. Let $\mathscr{S} \subseteq \mathscr{P}_{\kappa}$ be a family of 2^{κ} κ -independent sets (see Kunen [Ku 3] for details; the existence of such a family only depends on the fact that $\kappa^{<*} = \kappa$); that is, given any $\mathscr{A},\mathscr{B}\subseteq\mathscr{S}$ so that $\mathscr{A}\cap\mathscr{B}=\mathscr{O}$ and $|\mathscr{A}|,\ |\mathscr{B}|<\varkappa$,

$$|\bigcap \mathscr{A} \cap \bigcap \{\varkappa - X | X \in \mathscr{B}\}| = \varkappa.$$

Then

$$\mathscr{S} \cup \{\varkappa - \bigcap \mathscr{T} | \mathscr{T} \subseteq \mathscr{S} \text{ and } |\mathscr{T}| = \varkappa\}$$

generates a uniform x-complete filter:

Let $\mathscr{A} \subseteq \mathscr{S}$ with $|\mathscr{A}| < \varkappa$, and suppose also that $\lambda < \varkappa$ and for $\alpha < \lambda$, $\mathscr{T}_{\alpha} \subseteq \mathscr{S}$ are such that $|\mathcal{F}_{\alpha}| = \varkappa$. It must be shown that

$$|\bigcap \mathscr{A} \cap \bigcap \{\varkappa - \bigcap \mathscr{T}_{\alpha} | \alpha < \lambda\}| = \varkappa.$$

By the cardinality assumptions, we can inductively choose $X_{\alpha} \in \mathcal{F}_{\alpha} - \mathscr{A}$ so that $\alpha < \beta < \lambda$ implies that $X_{\alpha} \neq X_{\beta}$. Note that for each $\alpha < \lambda$, $\kappa - \bigcap \mathcal{F}_{\alpha} \supset \kappa - X_{\alpha}$. Thus,

$$\bigcap \mathscr{A} \cap \bigcap \left\{ \varkappa - \bigcap \mathscr{T}_{\alpha} | \ \alpha < \lambda \right\} \supseteq \bigcap \mathscr{A} \cap \bigcap \left\{ \varkappa - X_{\alpha} | \ \alpha < \lambda \right\},$$

and the set on the right has cardinality \varkappa , as $\mathscr S$ is independent. Hence, we get (*).

Now by \varkappa -compactness of \varkappa , let $\mathscr U$ be any \varkappa -ultrafilter extending the above filter. Clearly the family $\mathcal{S} \subseteq \mathcal{U}$ is a counterexample to the $(2^{\kappa}, \varkappa)$ -cohesion of \mathcal{U} , and we are done. (This example for $\kappa = \omega$ is just Kunen's example (see 2.8 of [Ku 3]) of an ω -ultrafilter of character 2^{ω} , i.e. one not generated by less that 2^{ω} sets of integers.)

Thus, we see that the negative results 1.2 and 1.4 can be culled from previous set theoretical experience; I now turn to the positive results. The following concepts first arose in the study of βN , the Stone-Čech compactification of the integers, which is identifiable with the set of ultrafilters over ω .

1.5. DEFINITIONS.

(i) The Rudin-Keisler ordering (RK) on ultrafilters is defined as follows: If $\mathscr U$ is an ultrafilter over a set I and $\mathscr V$ over J, $\mathscr V\leqslant_{\mathsf{RK}}\mathscr U$ iff there is a function $f\colon I\to J$ so that $\mathscr{V} = f_*(\mathscr{U})$, where

$$f_*(\mathcal{U}) = \left\{ X {\subseteq} J | \ f^{-1}(X) \in \mathcal{U} \right\} \,.$$

If $\mathscr{V} \leqslant_{RK} \mathscr{U}$, then $\mathscr{V} \approx_{RK} \mathscr{U}$ (\mathscr{V} and \mathscr{U} are isomorphic) iff $\mathscr{U} \leqslant_{RK} \mathscr{V}$, and $\mathscr{V} <_{RK} \mathscr{U}$ iff U≰_{RK}V.

- (ii) A x-ultrafilter U is minimal iff it is minimal in the RK ordering, i.e. there is no (non-principal) ultrafilter $\mathscr{V} <_{RK} \mathscr{U}$.
- (iii) A \varkappa -ultrafilter $\mathscr U$ is a p-point iff whenever $\{X_\alpha | \alpha < \varkappa\} \subseteq \mathscr U$, there is a $Y \in \mathscr U$ so that $|Y-X_{\alpha}| < \kappa$ for each $\alpha < \kappa$.

See the reference work Comfort-Negrepontis ([CN], especially § 16) for details on these concepts and the general development of the theory of βN . For an analogous development of the theory of \varkappa -ultrafiters for $\varkappa > \omega$ with attention to-distinctive features and new factors, see Kanamori [Ka]. In the present context, it is not hard to show that if $\mathscr U$ is (μ, λ) -cohesive and $\mathscr V\leqslant_{\mathsf{RK}}\!\mathscr U$, then $\mathscr V$ is (μ, λ) -cohesive. For future reference, I collect some known characterizations in the next proposition.

- 1.6. Proposition.
- (i) The following are equivalent for a x-ultrafilter U:
 - (a) W is minimal.
- (b) $\mathcal U$ is Ramsey: for any $n < \omega$ and $\lambda < \kappa$, if $f: [\kappa]^n \to \lambda$, there is an $X \in \mathcal U$ so that $|f''[X]^n| = 1$.

(c) $\mathscr U$ is selective: if $f \in {}^{\varkappa} u$ so that $f^{-1}(\{\alpha\}) \notin \mathscr U$ for each α , then there is an $X \in \mathscr U$ so that $|X \cap f^{-1}(\{\alpha\})| \leqslant 1$ for each α .

When $\varkappa > \omega$, we can also add:

- (d) There is a normal $\varkappa\text{-ultrafilter }\mathcal{N}\text{ so that }\mathcal{N}\approx_{RK}\!\!\mathscr{U}.$
- (ii) The following are equivalent for a \varkappa -ultrafilter $\mathscr U$:
 - (a) W is a p-point.

(b) $\mathscr U$ is almost selective: if $f \in {}^{\varkappa} x$ so that $f^{-1}(\{\alpha\}) \notin \mathscr U$ for each α , then f is almost 1-1 (mod $\mathscr U$), i.e. there is an $X \in \mathscr U$ so that $|X \cap f^{-1}(\{\alpha\})| < \varkappa$ for each α .

Hence, minimal \varkappa -ultrafilters are always p-points. When $\varkappa = \omega$, the converse is not true under CH or Martin's Axiom (MA), but it is not even known whether p-points exist if we do not assume either of these hypotheses. However, Kunen [Ku 1] has shown that there is a model of ZFC without any minimal ω -ultrafilters. When $\varkappa > \omega$, minimal \varkappa -ultrafilters always exist (Scott), but it is consistent that all p-points are minimal, and, in fact, all RK-isomorphic to each other (Kunen — see after 2.2 below). Non-minimal p-point \varkappa -ultrafilters exist if \varkappa is measurable and a limit of measurable cardinals, but it is still open whether such \varkappa -ultrafilters exist when \varkappa is \varkappa -compact.

I now proceed to show that if $\mathscr U$ is a p-point \varkappa -ultrafilter, then $\mathscr U$ is (\varkappa^+, \varkappa) -cohesive, and, toward this goal, provide a new characterization of p-points which may be of independent interest.

1.7. Definition. If $\mathscr D$ is an ultrafilter over some cardinal $\lambda, \mathscr D$ is coherent iff whenever $X\in \mathscr D$ and $\mathscr A\subseteq \mathscr D$ so that for each $\alpha<\lambda$,

$$|\{A \in \mathcal{A} | X \cap \alpha = A \cap \alpha\}| \geqslant \lambda,$$

then there is a $\mathscr{B} \subseteq \mathscr{A}$ so that $|\mathscr{B}| = \lambda$ and $\bigcap \mathscr{B} \in \mathscr{D}$.

If $\mathscr D$ and $\mathscr E$ are ultrafilters over λ so that $\mathscr E\leqslant_{\rm RK}\mathscr D$, then if $\mathscr D$ is coherent, so is $\mathscr E$. Note that coherence makes sense for an ultrafilter $\mathscr U$ over an arbitrary set I, by considering some $\varphi\colon I\mapsto |I|$ and formulating the property for $\varphi_*(\mathscr U)$ instead.

1.8. PROPOSITION. If $2^{<\lambda} = \lambda$ and $\mathscr{A} \subseteq \mathscr{P}\lambda$ with $|\mathscr{A}| > \lambda$, then there is an $X \in \mathscr{A}$ so that $|\{A \in \mathscr{A} \mid A \cap \alpha = X \cap \alpha\}| = |\mathscr{A}|$ for every $\alpha < \lambda$.

Proof. Argue by contradiction, and assume that for each $X \in \mathscr{A}$, there is an $\alpha_X < \lambda$ so that $|\{A \in \mathscr{A} \mid A \cap \alpha_X = X \cap \alpha_X\}| < |\mathscr{A}|$. Surely, there is a $\beta < \lambda$ and a $\mathscr{A}_1 \subseteq \mathscr{A}$ with $|\mathscr{A}_1| = |\mathscr{A}|$ so that $X \in \mathscr{A}_1$ implies $\alpha_X = \beta$. But as $2^\beta < |\mathscr{A}|$, there is an $\mathscr{A}_2 \subseteq \mathscr{A}_1$ with $|\mathscr{A}_2| = |\mathscr{A}|$ so that $X, Y \in \mathscr{A}_2$ imply $X \cap \beta = Y \cap \beta$. This is a contradiction.

The following is now immediate from the definitions and 1.8:

- 1.9. COROLLARY. If $2^{<\lambda} = \lambda$ and $\mathcal D$ over λ is coherent, then it is (λ^+, λ) -cohesive. With these preliminaries, I now prove the main result. The (\varkappa^+, \varkappa) -cohesion of normal \varkappa -ultrafilters for $\varkappa > \omega$ was first proved by Solovay.
 - 1.10. Theorem. If $\mathcal U$ is a \varkappa -ultrafilter, then $\mathcal U$ is a p-point iff $\mathcal U$ is coherent.

Thus, p-point \varkappa -ultrafilters are (\varkappa^+,\varkappa) -cohesive, and in particular, p-points in βN are (ω_1,ω) -cohesive.

Proof. Suppose first that $\mathscr U$ is coherent, and $\{X_\xi \mid \xi < \varkappa\} \subseteq \mathscr U$. We must find a $Y \in \mathscr U$ so that $|Y - X_\xi| < \varkappa$ for each $\xi < \varkappa$. By taking successive intersections, we can assume henceforth that $\xi < \zeta < \varkappa$ implies $X_\xi \subseteq X_\xi$.

Set $Y_{\xi} = X_{\xi} \cup \xi$ for $\xi < \varkappa$. Then for each $\alpha < \varkappa$,

$$|\{\xi{<}\varkappa|\ Y_{\xi}\cap\alpha=\alpha\}|=\varkappa$$

and so by coherence, there is a $T \subseteq \kappa$ with $|T| = \kappa$ so that $Y = \bigcap \{Y_i | \xi \in T\} \in \mathcal{U}$. Now given any $\gamma < \kappa$, let $\delta \geqslant \gamma$ so that $\delta \in T$. By the definition of the Y_ξ 's and the fact that the X_ξ 's were descending, we have $|Y_\delta - Y_\gamma| < \kappa$. Hence, $|Y - Y_\gamma| < \kappa$ and the result follows.

Conversely, suppose that $\mathscr U$ is a p-point, and $X \in \mathscr U$ and $\mathscr A \subseteq \mathscr U$ with $|\mathscr A| = \varkappa$ so that for each $\alpha < \varkappa$.

(*)
$$|\{A \in \mathcal{A} | X \cap \alpha = A \cap \alpha\}| = \varkappa.$$

We must establish the existence of a $\mathscr{B} \subseteq \mathscr{A}$ so that $|\mathscr{B}| = \varkappa$ and $\bigcap \mathscr{B} \in \mathscr{U}$.

Since $\mathscr U$ is a p-point, there is a $Y \in \mathscr U$ so that $|Y - A| < \varkappa$ for every $A \in \mathscr A$. For each $A \in \mathscr A$, with $A \neq X$, let I_A be the half-open interval of ordinals $[\gamma_A, \delta_A)$, where

$$\gamma_A = \bigcup \{\alpha | X \cap \alpha = A \cap \alpha\},\$$

and

$$\delta_A = \text{least } \delta \geqslant \gamma_A \text{ so that } Y - \delta \subseteq A$$
.

Notice that I_A may be empty; in any case, $|I_A| < \kappa$.

By (*) for every $\varrho < \varkappa$, there is an $A \in \mathscr{A}$ so that $\varrho < \gamma_A$. Hence, by induction we can choose an $\mathscr{A}' \subseteq \mathscr{A}$ so that $|\mathscr{A}'| = \varkappa$ and if $A, B \in \mathscr{A}'$ with $A \neq B$, then $I_A \cap I_B = \varnothing$. Now we can find some $\mathscr{B} \subseteq \mathscr{A}'$ so that $|\mathscr{B}| = \varkappa$ and

$$Z = \bigcup \{I_A | A \in \mathcal{B}\} \notin \mathcal{U}.$$

Thus, $X \cap Y \cap (\varkappa - Z) \in \mathscr{U}$.

Suppose now that $\beta \in X \cap Y \cap (\varkappa - Z)$, and $A \in \mathscr{B}$. As $\beta \notin I_A$, either $\beta < \gamma_A$ or $\delta_A \leq \beta$. If $\beta < \gamma_A$, then $\beta \in X$ implies $\beta \in A$ by the definition of γ_A . If $\delta_A \leq \beta$, then $\beta \in Y$ implies $\beta \in A$ by the definition of δ_A . Hence, in either case, $\beta \in A$. We have thus shown that $X \cap Y \cap (\varkappa - Z) \subseteq \bigcap \mathscr{B}$. This establishes that $\bigcap \mathscr{B} \in \mathscr{U}$, and the proof is complete.

In § 2, it is shown that (\varkappa^+, \varkappa) -cohesion does not characterize *p*-points, and in § 3, a refinement of the argument for 1.10 is given.

- § 2. Product ultrafilters. Let us first recall some further definitions.
- 2.1. Definitions. Let $\mathscr D$ be an ultrafilter over I, and $\mathscr E_i$ ultrafilters over J for $i\in I$.

(i) The \mathscr{D} -sum of $\langle \mathscr{E}_i | i \in I \rangle$ is the ultrafilter $\mathscr{D} \sum \mathscr{E}_i$ over $I \times J$ defined by

$$X\in\mathcal{D}\ \textstyle\sum\ \mathcal{E}_i\quad \text{ iff }\quad \left\{i|\ \left\{j|\ \left\langle i,j\right\rangle\in X\right\}\in\mathcal{E}_i\right\}\in\mathcal{D}\ .$$

(ii) When each $\mathscr{E}_i = a$ fixed \mathscr{E} in (i), we get the product of \mathscr{D} and \mathscr{E} , denoted $\mathscr{D} \times \mathscr{E}$. For $0 < n < \omega$, \mathscr{U}^n is defined by induction: $\mathscr{U}^1 = \mathscr{U}$ and $\mathscr{U}^{n+1} = \mathscr{U} \times \mathscr{U}^n$.

Notice that if $\mathscr D$ and $\mathscr E_\alpha$ for $\alpha<\varkappa$ are all \varkappa -ultrafilters, then $\mathscr U=\mathscr D\sum\mathscr E_\alpha$ is RK-isomorphic to a \varkappa -ultrafilter, but not a p-point, since $\pi: \varkappa \times \varkappa \to \varkappa$, the projection onto the first coordinate, cannot be almost 1-1 (mod \mathbb{U}). The next propositions show that cohesion is preserved under the taking of sums and products of κ -ultrafilters under suitable conditions, and thus, that this concept does not characterize p-points.

2.2. Proposition. Suppose $\mathcal U$ is a minimal κ -ultrafilter. If $\mathcal U$ is (μ, λ) -cohesive, then \mathcal{U}^n is (μ, λ) -cohesive for each $n < \omega$. Hence, each \mathcal{U}^n is always (κ^+, κ) -cohesive.

Proof. Let $\Delta_n = \{ \langle \alpha_1, \alpha_2, ..., \alpha_n \rangle | \alpha_1 < \alpha_2 < ... < \alpha_n < \kappa \}$. It is not hard to establish the following characterization of minimal x-ultrafilters, using the Ramsey

A \varkappa -ultrafilter \mathscr{D} is minimal iff for any n, $\{X^n | X \in \mathscr{D}\} \cup \{\Delta_n\}$ generates \mathscr{D}^n , i.e. for any $A \in \mathcal{D}^n$, there is an $X \in \mathcal{D}$ such that $X^n \cap A_n \subseteq A$.

Hence, that $\mathscr U$ is (μ,λ) -cohesive certainly implies that $\mathscr U''$ is (μ,λ) -cohesive for each $n < \omega$. An appeal to 1.9 now yields the full conclusion of the proposition.

Kunen [Ku2] showed that in $L[\mathcal{U}]$, the inner model constructed from a normal \varkappa -ultrafilter over $\varkappa > \omega$, each \varkappa -ultrafilter is RK-isomorphic to $(\mathscr{U} \cap L[\mathscr{U}])^n$ for some $n < \omega$. Hence, 2.2 immediately shows that if it is consistent that there is a measurable cardinal $\varkappa > \omega$, then it is consistent that such a cardinal \varkappa exists and every \varkappa -ultrafilter is (\varkappa^+, \varkappa) -cohesive. Thus, 1.4 is yet another way of showing that \varkappa cannot be \varkappa -compact in $L[\mathscr{U}]$.

The proof of the following result does not generalize for $\varkappa > \omega$.

2.3. Proposition. Suppose that $\mathscr U$ and $\mathscr V_n$ for $n<\omega$ are all (ω_1,ω_1) -cohesive ω -ultrafilters. Then $\mathscr{U} \sum \mathscr{V}_n$ is (ω_1, ω) -cohesive.

Proof. For any $S \subseteq \omega \times \omega$ and $n < \omega$, set $(S)_n = \{i \mid \langle n, i \rangle \in S\}$ for the purposes of this proof. Also, if $S \in \mathscr{U} \sum \mathscr{V}_n$, let $S^* = \{n \mid \langle S \rangle_n \in \mathscr{V}_n\}$. Thus, $S^* \in \mathscr{U}$. Now let $\mathscr{A} \subseteq \mathscr{U} \sum \mathscr{V}_n$ with $|\mathscr{A}| = \omega_1$. By the (ω_1, ω_1) -cohesion of \mathscr{U} , there

is an $\mathscr{A}' \subseteq \mathscr{A}$ so that $|\mathscr{A}'| = \omega_1$ and $K = \bigcap \{A^* | A \in \mathscr{A}'\} \in \mathscr{U}$.

By induction on the ascending enumeration of K, we can define $\mathscr{B}_n \subseteq \mathscr{A}'$ for $n \in K$ with the following properties:

- (a) m < n implies $\mathcal{B}_n \subseteq \mathcal{B}_m$,
- (b) $R_n = \bigcap \{(A)_n | A \in \mathcal{B}_n\} \in \mathcal{V}_n$, and
- (c) $|\mathscr{B}_n| = \omega_1$.

Choose $S_n \in \mathcal{B}_n$ for $n \in K$ so that m < n and $m, n \in K$ imply $S_m \neq S_n$. For each $n \in K$, we have

$$T_n = R_n \cap \bigcap \{(S_m)_n | m < n \text{ and } m \in K\} \in \mathcal{U}_n$$
.

Hence, by the construction.

$$\bigcup_{n \in K} \{n\} \times T_n \subseteq \bigcap \{S_n | n \in K\} \in \mathscr{U} \sum \mathscr{V}_n.$$

The proof is complete.

We know from 1.2(ii) that CH implies that no ω -ultrafilter is (ω_1, ω_1) -cohesive. However, the previous proposition is not vacuous under Martin's Axiom. Booth [Bo] showed that MA implies the existence of minimal ω-ultrafilters W with the following property: for any $\mu < 2^{\omega}$ and $\mathscr{A} \subseteq \mathscr{U}$ so that $|\mathscr{A}| = \mu$, there is a $Y \in \mathscr{U}$ so that $|Y-X| < \omega$ for every $X \in \mathcal{A}$. Thus, when μ is uncountable, there is a finite set s so that Y-s is contained in μ members of \mathcal{A} , and hence, \mathcal{U} is (μ, μ) -cohesive. It is also clear from Booth's work how to get non-minimal p-points under MA which are still (μ, μ) -cohesive for $\omega_1 \leq \mu < 2^{\omega}$. On the other hand, Solomon [So] showed that MA and $2^{\omega} > \omega_1$ also imply the existence of minimal ω -ultrafilters which are not (ω_1, ω_1) -cohesive.

- § 3. Polarized partition relations. This section is devoted to showing that a refinement of the proof of 1.10 yields a strengthened, ultrafilter related, version of a known polarized partition relation for measurable cardinals. Let us first recall the definitions of the relevant versions of the polarized partition symbol of Erdös and Hajnal, and also specify a modification. Recall that if x is a set of ordinals, \bar{x} denotes its
 - 3.1. DEFINITIONS.
 - (i) The polarized partition symbol

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \rightarrow \begin{pmatrix} \gamma \\ \delta \end{pmatrix}_{\lambda}^{m, r}$$

where $m, n < \omega$, denotes the following statement: whenever $F: [\alpha]^m \times [\beta]^n \to \lambda$, there are $A \subseteq \alpha$ and $B \subseteq \beta$ so that $\overline{A} = \gamma$ and $\overline{B} = \delta$, and $|F''([A]^m \times [B]^n)| = 1$.

- (ii) When "n" in the symbol is replaced by " $<\omega$ ", we mean the following statement: whenever $F_n: [\alpha]^m \times [\beta]^n \to \lambda$ for each $n < \omega$, there are $A \subseteq \alpha$ and $B \subseteq \beta$ so that $\overline{A} = \gamma$ and $\overline{B} = \delta$, and for all $n < \omega$, $|F_n''([A]^m \times [B]^n)| = 1$.
- (iii) When " δ " in the symbol (either in context (i) or (ii)) is replaced by " $\in \mathcal{A}$ " where $\mathscr A$ is a set, we mean that the Y specified is a member of $\mathscr A$ (instead of $\overline Y = \delta$).

The following result strengthens a known polarized partition relation. The reader is referred to Hajnal [H] and Choodnovsky [Ch] for the previous efforts in this direction. In particular, a question asked in passing in [H] (top of p. 44) is now answered positively.

- 3.2. Theorem. Let $\varkappa \geqslant \omega$ be a measurable cardinal.
- (i) If $\mathcal U$ is a p-point \varkappa -ultrafilter, then

$$\begin{pmatrix} \varkappa^+ \\ \varkappa \end{pmatrix} \rightarrow \begin{pmatrix} \eta \\ \in \mathscr{U} \end{pmatrix}_{1}^{1,1}$$

for any $\eta < \varkappa^+$ and $\lambda < \varkappa$.

(ii) If W is a minimal x-ultrafilter, then

$$\begin{pmatrix} \varkappa^+ \\ \varkappa \end{pmatrix} \quad \rightarrow \quad \begin{pmatrix} \eta \\ \in \mathscr{U} \end{pmatrix}_{\lambda}^{1, n}$$

for any $\eta < \varkappa^+$, $\lambda < \varkappa$, and $n < \omega$. When $\varkappa > \omega$, the "n" can be replaced by " $< \omega$ ".

Proof. If $\mathscr U$ is a \varkappa -ultrafilter, $\lambda < \varkappa$, and $F \colon \varkappa^+ \times \varkappa \to \lambda$, for each $\xi < \varkappa^+$ there is an $X_\xi \in \mathscr U$ and a $\beta_\xi < \lambda$ so that $F''(\{\xi\} \times X_\xi) = \beta_\xi$. Also, $\beta_\xi = \text{fixed } \beta$ for $\varkappa^+ \xi$'s. Hence, to show (i), it suffices to show the following: If $\mathscr U$ is a p-point and $\{X_\xi \mid \ \xi < \varkappa^+\} \subseteq \mathscr U$, then for any $\eta < \varkappa^+$ there is a $B \subseteq \varkappa^+$ with $\overline B = \eta$ and $\bigcap \{X_\xi \mid \ \xi \in B\} \in \mathscr U$.

The refinement to get (ii) is just an initial application of the Ramsey property of minimal \varkappa -ultrafilters in the above argument, and the final remark in (ii) follows from an application next, for each $\xi < \varkappa^+$, of the countable completeness of \varkappa -ultrafilters for $\varkappa > \omega$.

Thus, suppose that $\mathscr U$ is a p-point and $\{X_{\xi}|\ \xi < \varkappa^+\} \subseteq \mathscr U$. By Proposition 1.8, there is a $Y \in \mathscr U$ so that for each $\alpha < \varkappa$,

$$|\{\xi < \varkappa^+| \ Y \cap \alpha = X_\xi \cap \alpha\}| = \varkappa^+.$$

We can surely define ordinals $f(\zeta) < x^+$ for $\zeta < x^+$ by induction so that the following are satisfied:

- (i) f is a normal function, i.e. f is strictly increasing and continuous at limits.
- (ii) For any $\zeta < \varkappa^+$ and $\alpha < \varkappa$, $|\{\xi | f(\zeta) \le \xi < f(\zeta + 1) \text{ and } Y \cap \alpha = X_{\xi} \cap \alpha\}| = \varkappa$.

Now fix an $\eta < \varkappa^+$, where, to avoid trivialities, we assume $\varkappa \leqslant \eta$. Since $\mathscr U$ is a p-point, there is a $Z \in \mathscr U$ so that $|Z - X_\xi| < \varkappa$ for any $\xi < f(\eta + \eta + 1)$. Define (possibly empty) intervals I_ξ for $\xi < f(\eta + \eta + 1)$ as in the proof of 1.9: $I_\xi = [\gamma_\xi, \delta_\xi)$, where

$$\gamma_{\xi} = \bigcup \{ \alpha | Y \cap \alpha = X_{\xi} \cap \alpha \},$$

and

$$\delta_{\xi} = \text{least } \delta \geqslant \gamma_{\xi} \text{ so that } Z - \delta \subseteq X_{\xi}.$$

Let $\varphi: \varkappa \leftrightarrow \eta + \eta$ be a bijection. By induction, we can choose $\xi_{\alpha} < \varkappa^+$ for $\alpha < \varkappa$ as follows: If ξ_{β} for $\beta < \alpha$ have been chosen, let ξ_{α} be such that:

- (a) $f(\varphi(\alpha)) \leq \xi_{\alpha} < f(\varphi(\alpha) + 1)$, and
- (b) $I_{\xi_{\alpha}} \cap I_{\xi_{\beta}} = \emptyset$ for $\beta < \alpha$.

By the definition of the intervals I_{ξ} , the condition (b) can always be met because of the property (ii) of the function f.

Clearly, $\{\xi_{n} \mid \alpha < \varkappa\}$ has order type $\eta + \eta$. By splitting it into two parts each of type η , it is seen that there must be a $B \subseteq \{\xi_{n} \mid \alpha < \varkappa\}$ so that $\overline{B} = \eta$ and

$$T = \bigcup \{I_{\xi} | \xi \in B\} \notin \mathcal{U}$$
.

Hence, like in the proof of 1.10,

$$Y \cap Z \cap (\varkappa - T) \subseteq \bigcap \{X_{\xi} | \xi \in B\}$$
,

and so since this last set is in \mathcal{U} , the proof is complete.

3.3. COROLLARY (Galvin for $\varkappa=\omega$, unpublished Choodnovsky [Ch]). If $\varkappa \geqslant \omega$ is measurable, then

$$\begin{pmatrix} \varkappa^+ \\ \varkappa \end{pmatrix} \rightarrow \begin{pmatrix} \eta \\ \chi \end{pmatrix}_{\lambda}^{1, n}$$

for any $\eta < \varkappa^+$, $\lambda < \varkappa$, and $n < \omega$. When $\varkappa > \omega$, the "n" can be replaced by " $< \omega$ ".

Proof. For $\varkappa > \omega$, the result is immediate from 3.2, since normal \varkappa -ultrafilters always exist. But, as remarked after 1.6 there are models of ZFC without any minimal ω -ultrafilters. However, the following strategem is available:

A minimal ω -ultrafilter $\mathscr U$ can always be added to any model of ZFC by an ω -closed notion of forcing. (For example, say that p is a condition iff p is a countable collection of infinite subsets of ω with the finite intersection property and that a condition q is stronger than p iff $q \supseteq p$. Notice that if $m, n < \omega$ and $f : [\omega]^n \to m$, any condition p can be extended to one which contains a homogeneous set for f: first let $Y \subseteq \omega$ be infinite so that |Y - X| is finite for every $X \in p$, and use Ramsey's theorem to get an infinite homogeneous subset Z of Y for f. Then $p \cup \{Z\}$ is stronger than p.)

Thus, the forcing adds no new countable sequences of ordinals, and ω_1 is preserved as a cardinal. Hence, for any $F\colon \omega_1\times [\omega]^n\to m$ with $m,n<\omega$, 3.2 can be applied in the extension using $\mathscr U$, and any resultant "homogeneous" set for F, being countable, must already exist in the ground model.

Galvin's proof of 3.3 for $\varkappa=\omega$ apparently did not generalize, and both the proof of Choodnovsky [Ch], and of Hajnal [H] for the weaker statement with η replaced by \varkappa , relied on developing a tree and showing that a long branch exists. The present proof yields more information, being a thinning process which works by keeping the needed large sets in an ultrafilter. In the paper Baumgartner and Hajnal [BH] another proof of 3.3 for $\varkappa=\omega$ is outlined which, like the one I give, depends on a forcing and absoluteness argument. But their forcing is one to make MA true in the extension, and hence not ω -closed, and thus a more involved argument was needed to show absoluteness.

3.4. Interestingly enough, when $\varkappa > \omega$ the well-foundedness of ultrapowers can be used to yield a simpler proof of the main assertion of 3.2 (and hence, 1.10):

Let $\kappa > \omega$, and again, $\mathscr U$ a p-point κ -ultrafilter with $\{X_{\xi} \mid \xi < \kappa^+\} = \mathscr U$. For a fixed η , $\kappa \leqslant \eta < \kappa^+$, we want to find a $B \subseteq \kappa^+$ with $\overline B = \eta$ so that $\bigcap \{X_{\xi} \mid \xi \in B\} \in \mathscr U$. Just as before, we can suppose that there is a $Y \in \mathscr U$ so that

$$|\{\xi\!<\!\varkappa^+|\ Y\cap\alpha=X_\xi\cap\alpha\}|=\varkappa^+$$

for every α< χ

By well-foundedness, let $h \in {}^{\times}\!\kappa$ be a "least" non-constant function, i.e. one so that for any $\alpha < \kappa$, $h^{-1}(\{\alpha\}) \notin \mathscr{U}$, but so that if $g \in {}^{\times}\!\kappa$ and $\{\xi < \kappa \mid g(\xi) < h(\xi)\} \in \mathscr{U}$,

then $g^{-1}(\{\beta\}) \in \mathcal{U}$ for some $\beta < \kappa$. Since \mathcal{U} is a p-point, we can assume that h is almost 1-1, i.e. for each $\alpha < \kappa$, $|h^{-1}(\{\alpha\})| < \kappa$.

Let $\tau: \varkappa \leftrightarrow \eta$ be a bijection. We can define ordinals $f(\zeta) < \varkappa^+$ for $\zeta < \eta$ by induction so that the following are satisfied:

- (i) f is strictly increasing.
- (ii) $Y \cap (\alpha+1) = X_{f(\zeta)} \cap (\alpha+1)$ for any α so that $h(\alpha) \le \tau^{-1}(\zeta)$. (Recall h is almost 1-1.)

It now suffices to show that $T = \bigcap \{X_{f(\zeta)} | \zeta < \eta\} \in \mathcal{U}$. If not, $Z = Y \cap (\varkappa - T) \in \mathcal{U}$. On Z we can then define a function g by

$$g\left(\alpha\right)=\tau^{-1}$$
 of the least ζ so that $\alpha\notin X_{f\left(\zeta\right)}$.

If $\alpha \in Z$ and $h(\alpha) \leqslant g(\alpha)$, then $Y \cap (\alpha+1) = X_{f(\zeta)} \cap (\alpha+1)$ where $\tau^{-1}(\zeta) = g(\alpha)$. But $\alpha \in Y$ so that $\alpha \in X_{f(\zeta)}$, contradicting the definition of g. Hence, $\alpha \in Z$ implies $g(\alpha) < h(\alpha)$, and thus $g^{-1}(\{\gamma\}) \in \mathcal{U}$ for some $\gamma < \kappa$. But this set is disjoint from $X_{f(\tau(\gamma))} \in \mathcal{U}$, an evident contradiction. Thus, this proof is complete.

This argument enables us to make the following observation about closed unbounded sets.

3.5. PROPOSITION. Suppose $\lambda^{<\lambda}=\lambda$ and C_{α} for $\alpha<\lambda^+$ are closed unbounded subsets of λ . Then for any $\eta<\lambda^+$, there is a $B\subset\lambda^+$ with $\overline{B}=\eta$ so that \bigcap $\{C_{\alpha}|\ \alpha\in B\}$ is still closed unbounded in λ .

Proof. Mimic the argument of 3.4 with the identity function: $\lambda \rightarrow \lambda$ in the role of h, and use the normality of the ideal of non-stationary subsets of λ at the appropriate places.

- § 4. Open questions. I conclude the paper with two typical open questions.
- 4.1. QUESTION. Is it provable in ZFC alone that there is a (ω_1,ω) -cohesive ω -ultrafilter?
- 4.2. QUESTION. Is it consistent that there is a $\varkappa > \omega$ and a \varkappa -ultrafilter $\mathscr U$ which is $(\varkappa^+, \varkappa^+)$ -cohesive? $2^\varkappa > \varkappa^+$. If there were such a \varkappa -ultrafilter, then by 1.2(ii), Silver first showed that the consistency of the existence of a measurable cardinal $\varkappa > \omega$ so that $2^\varkappa > \varkappa^+$ follows from a large cardinal assumption (2-extendibility).

References

- [BH] J. Baumgartner and A. Hajnal, A proof (involving Martin's Axiom) of a partition relation, Fund. Math. 78 (1973), pp. 193-203.
- [Bo] D. Booth, Ultrafilters over a countable set, Ann. Math. Logic 2 (1970), pp. 1-24.
 [CN] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Berlin 1974.

1975, vol. 1, pp. 289-306.

[Ch] G. V. Choodnovsky, Combinatorial properties of compact cardinals, in Infinite and Finite Sets, Colloquia Mathematica Societatis Janos Bolyai, 10 (dedicated to P. Erdös), Amsterdam

 [H] A. Hajnal, Some combinatorial problems involving large cardinals, Fund. Math. 69 (1970), pp. 39-53.

[Ka] A. Kanamori, Ultrafilters over a measurable cardinal, Ann. Math. Logic 11 (1976), pp. 315-356.

[Kul] K. Kunen, Some points in βN , to appear.

[Ku2] — Some applications of iterated ultrapowers in set theory, Ann. Math. Logic 1 (1970), pp. 179-227.

[Ku3] — Ultrafilters and independent sets, Trans. Amer. Math. Soc. 172 (1972), pp. 299-306.

[Si] W. Sierpiński, Hypothèse du Continu, Warszawa 1934.

[So] R. C. Solomon, Ultrafilters and ultraproducts, doctoral thesis, Bedford College, London 1972.

Accepté par la Rédaction le 22. 3. 1976