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Abstract. This paper briefly discusses the following property of ultrafilters: if zz and 4 are
cardinals, an ultrafilter U is (4, A)- cohesive iff given u sets in U there are A of them whose intersection
is in U. Among other things, it is shown that a p-point over w is (w,, w)-cohesive, but that this
property does not characterize p-points. We can in fact prove the following: if U'is a p-point over w
and {Xqla<w,}CU, then for any d<, there is an SCw, of order type d so that ﬂ{X¢| aeS}teU.
A polarized partition relation is strengthened using this fact. These results have direct generaliz-
ations to measurable cardinals, and indeed, the paper is written in this general context.

§ 0. Introduction. In this paper, the following rather general combinatorial
property of ultrafilters is considered, mainly in connection with w and measurable
cardinals.

DerNITION. If 1 and A are cardinals, an ultrafilter % is (u, 4)-cohesive iff
given p sets in %, there are A of them whose intersection is still in %.

For those familiar with regularity of ultrafilters, notice that (i, A)-cohesion
is a strong negation of (u, A)-regularity. It is shown that if % is a p-point in the
space BN, then % is (w, , w)-cohesive. The analogous result for measurable cardinals
holds by the same proof. Product ultrafilters are considered in this context, and the
situations under various set theoretical hypotheses are also discussed. Finally, a new
proof and strengthening of a polarized partition relation is derived.

My set theory is ZFC, and the notation is standard, but I do mention the fol-
lowing: o, §,7, .. denote ordinals, but %, A, and p are reserved for cardinals.
If x is a set, |x| denotes its cardinality and 2x its power set; if y is also a set, "y de-
notes the set of functions from x into y; finally, if # is an integer, [x]" denotes the
collection of 12-clement subsets of x. If z is a set of ordinals, Z denotes its order type.
An ultrafilter over a set I is actually one in the Boolean algebra 21, and is uniform
if each of its members has cardinality |I|. Finally, B indicates the end of a proof.

While working on this paper the author has profited from discussions with
Mathias and Prikry.

§ 1. Preliminaries and P-points. Under the GCH, we can make some intial
deductions from the following classical result of Sierpirski (which I state in a slightly
weakened version relevant to our purposes) — see Py of [Si].
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1.1. PrOPOSITION (Sierpifiski). If 2% = A*, there are functions f,: A*—2 for

a<A® so that: whenever X< ¥ and |X| = A%,
Ha<A*| faX#2}|<A.

Prikry showed that the first part of the next theorem follows from Sierpiniski’s
result, and the second is easy enough to see.

1.2. THEOREM. Suppose 2* = A*.

(i) (Prikry) If % is a uniform ultrafilter over A", then U is not (A*, X)-cohesive.

(i) If ¥ is a uniform ultrafilter over A, then ¥ is not (A*, A™)-cohesive.

Proof. Let {f] a<A*} be as in 1.1. For (i), set A = {¢| £,(&) = k} for k<2
and a<A*. Suppose that k<2 and S<i* with [S| =A. If X = () {4% aeS),
then {o| f,X = {k}}=S. Hence |X|<A and X ¢ % as % is uniform. The result now
follows, since there must be a k<2 for which there are A*a’s so that AXea.

To show (i), set Bf = {a<A| f(£) = k} for k<2 and &<A*. Suppose that
k<2 and Y=A* with |¥] = A*. Then

T=({Bd ¢eYisla<dl foY = {K}},

and hence |T| <4, i.e. T¢ ¥ as ¥ is uniform. The result now follows as for (i). B
Having made these initial remarks, I now turn to my main concern, the consi-
deration of measurable cardinals » and the non-trivial cases involving »* and x.
1.3. DEFINITION.
() % is a x-ultrafilter iff % is a non-principal, %-complete ultrafilter over x.
(i) 2 is a measurable cardinal iff there is a x-ultrafilter.

(ii) 2 is 2-compact iff every x-complete filtler over » can be extended to
a x-complete ultrafilter over x.

The non-principal ultrafilters over w are precisely the w-ultrafilters, and thus,
in this paper I regard o to be both measurable and w-compact. Note that %~-com-
pactness is just a restricted version of the usual concept of strong compactness,

and that it obviously implies the measurability of x. The following is another obser-
vation of a negative kind.

1.4. PROPOSITION. If x is x-compact, there is a x-ultrafilter which is not
(2%, %)-cohesive.

Proof. Let =2, be a family of 2* »-independent sets (seec Kunen [Ku 3] for
details; the existence of such a family only depends on the fact that % <* = %); that
is, given any &/, #<SY so that Z/ 0 B = @ and ||, |B|<x,

NN {x—X| XeB)| =x.
Then
F U~ T T and |7 = x}

generates a uniform x-complete filter:

m@

®
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Let o =% with |#/| <3, and suppose also that A<x and for <}, 7, are
such that |7,| = %. It must be shown that

() INA N {x—N T o<} =x.

By the cardinality assumptions, we can inductively choose X,€J,—& so that
a<f <2 implies that X,#X,. Note that for each a<i, x—(17 ,>%—X,. Thus,

N A x=—N T a<i}2 N A () =X a<i},

and the set on the right has cardinality %, as & is independent. Hence, we get ().

Now by x-compactness of x, let % be any x-ultrafilter extending the above
filter. Clearly the family & =% is a counterexample to the (2%, »)-cohesion of %, and
we are done. (This example for » = o is just Kunen’s example (see 2.8 of [Ku 3])
of an w-ultrafilter of character 2°, i.e. one not generated by less that 2° sets of
integers.) M

Thus, we see that the negative results 1.2 and 1.4 can be culled from previous
set theoretical experience; I now turn to the positive results. The following concepts
first arose in the study of AN, the Stone-Cech compactification of the integers, which
is identifiable with the set of ultrafilters over w.

1.5. DEFINITIONS.

(i) The Rudin-Keisler ordering (RK) on ultrafilters is defined as follows: If % is
an ultrafilter over a set I and ¥ over J, ¥ <gx% iff there is a function f: I-=J so
that ¥~ = fy (%), where ’

S@) = (X<T| fTH X @} .
If ¥ <pu, then ¥ mpy% (¥ and % are isomorphic) iff U<w?", and ¥ <px%
iff ULee?.

(ii) A s-ultrafilter % is minimal iff it is minimal in the RK ordering, i.e. there
is no (non-principal) ultrafilter 7" <gg%.

(iti) A x-ultrafilter % is a p-point iff whenever {X,| a<x} %, thereisa Ye ¥
so that |Y—X,|<x for each a<x.

See the reference work Comfort—Negrepontis ([CN], especially § 16) for details
on these concepts and the general development of the theory of BN. For an analogous
development of the theory of x-ultrafiters for %>w with attention to-distinctive
features and new factors, see Kanamori [Ka]. In the present context, it is not hard
to show that if % is (i, A)-cohesive and ¥ <px%, then ¥ is (u, 2)-cohesive. For
future reference, I collect some known characterizations in the next proposition.

1.6. PROPOSITION.

(i) The following are equivalent for a x-ultrafilter %:

(a) % is minimal.
(b) % is Ramsey: for any n<w and A<x, if f [x]"—> 1, there is an X €U
so that | f X7 = 1. .

4%
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(0) % is selective: if fe*x so that f~*({a}) ¢ U for each a, then there is an
Xe so that |X o f~*{«})|<1 for each o.
When »>w, we can also add:
(d) There is a normal x-ultrafilter A" so that /= rx%.
(i) The following are equivalent for a x-ultrafilter %:
(a) % is a p-point.
(b) % is almost selective: if f&*x so that f~*({o}) ¢ % for each «, then f is
almost 1-1 (mod), i.e. there is an X €U so that |X n f~*({e})| <x for each o.

Hence, minimal x-ultrafilters are always p-points. When » = w, the converse
is not true under CH or Martin’s Axiom (MA), but it is not even known whether
p-points exist if we do not assume either of these hypotheses. However, Kunen
[Ku 1] has shown that there is 2 model of ZFC without any minimal c-ultrafilters,
When x>, minimal x-ultrafilters always exist (Scott), but it is consistent that
all p-points are minimal, and, in fact, all RK -isomorphic to each other (Kunen —
see after 2.2 below). Non-minimal p-point %-ultrafilters exist if » is measurable and
a limit of measurable cardinals; but it is still open whether such x-ultrafilters exist
when x is x-compact.

T now proceed to show that if % is a p-point %-ultrafilter, then % is (™, »)-co-
hesive, and, toward this goal, provide a new characterization of p-points which may
be of independent interest.

. 1.7. DeFNiTION. If 9 is an ultrafilter over some cardinal A, @ is coherent
iff whenever X € 2 and &/ <2 so that for each a<A4,

{ded| Xna=A4na}|>1,
then there is a #<f so that |#| = A and (\ #€D.

If 9 and & are ultrafilters over A so that & <gpg 2, then if 2 is coherent, so is &.
Note that coherence makes sense for an ultrafilter % over an arbitrary set I, by
considering some ¢: I+ |I| and formulating the property for ¢.,(%) instead.

1.8. PROPOSITION. If 2<* = A and o =P with |f|> 2, then there is an X esf
so that [{Aed| Ano=Xna}| =|| for every a<A.

Proof. Argue by contradiction, and assume that for each X es, there is an
ay<lA so that |[{des| 4 nay =X oy} <||. Surely, there is a f<i and
asl, o with || = || so that X eof, implies ay = f. But as 2 <|&|, there is
an of S/ with |&f,] = || so that X, Yeol, imply X nf = Y n p. This is
a contradiction. B

The following is now immediate from' the definitions and 1.8:

1.9. COROLLARY. If 2°* = 1 and @ over Ais coherent, then it is (A*, A)- cohesive.

With these preliminaries, I now prove the main result. The (x*, %)-cohesion
of normal x-ultrafilters for x> was first proved by Solovay.

1.10. THEOREM. If % is a x-ultrafilter, then U is a p-point iff U is coherent.
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Thus, p-point x-ultrafilters are (x*, x)-cohesive, and in particular, p-points in BN
are (0, , )-cohesive.
Proof. Suppose first that % is coherent. and {X| &<x}<%. We must find
a Y e so that | Y—X,| <x for each £ <x. By taking successive intersections, we can
assume henceforth that {<{<x impli¢s X, cX,.
Set ¥y = X; U ¢ for {<x. Then for each a<,

[{é<ul Yenoa=a}| ==x

and so by coherence, there is a TS with |T| = x so that Y = () {¥,] éeT}e%.
Now given any y<x, let 6>y so that § € T'. By the definition of the ¥,’s and the
fact that the X;’s were descending, we have |Y;— Y,| <. Hence, | Y~ ¥,|<x and
the result follows. .

Conversely, suppose that # is a p-point, and X e % and o <% with || = %
so that for each a<x,

¥ [{AEM’[Xna=Ana}b|=;¢,

We must establish the existence of a A</ so that |B| = % and (| B e¥.
Since % is a p-point, there is a Y e % so that | ¥ —4| <x for every 4 es/. For
each 4 e/, with 4#X, let I, be the half-open interval of ordinals [y,, d,), where

ya=U{d Xnae=4na},
and
8, = least 6>y, so that Y—6<4 .

Notice that I, may be empty; in any case, |L]<x.

By (x) for every o<, there is an 4 e/ so that g<y,. Hence, by induction we
can choose an &'cof so that [#'| = x and if 4,Besl’ with A#B, then
I, n Iy = @. Now we can find some #<s/' so that | %] = » and

Z=U{{I AcB}¢u.
Thus, XN Y n(x—Z)eU.

Suppose now that fe X n ¥ n (x—2Z), and 4 €B. As p¢l,, either f<y,
or §,<p. If B<y,, then B e X implies f € 4 by the deéfinition of y4. If §,<pB, then
B e Y implies f e 4 by the definition of §,. Hence, in either case, BeA. We have
thus shown that X' n ¥ n (x—Z)<() #. This establishes that (| & €%, and the

proof is complete, W
In § 2, it is shown that (x*, x)-cohesion does not characterize p-points, and

in § 3, a refinement of the argument for 1.10 is given.

§ 2. Product ultrafilters. Let us first recall some further definitions.
2.1. DEFINITIONS. Let @ be an ultrafilter over I, and &; ultrafilters over J
for iel.
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() The @-sum of (& ieI) is the ultrafilter & 3 &; over IxJ defined by
Xea Y& it {i| {jli.ieXleb}ed.

(i) When each &; = «a fixed & in (i), we get the product of 9 and &, denoted
D x 8. For O<n<w, X" is defined by induction: #' =% and U™** = Ux%".

Notice that if & and &, for a<x are all x-ultrafilters, then % = 2 ' &,is
RK-isomorphic to a x-ultrafilter, but not a p-point, since m: % X x>, the projec-
tion onto the first coordinate, cannot be almost 1-1 (mod%). The next propositions
show that cohesion is preserved under the taking of sums and products of x-ultra-
filters under suitable conditions, and thus, that this concept does not characterize
p-points.

2.2. PROPOSITION. Suppose % is a minimal x-ultrafilter. If % is (u, 2)- cohesive,
then A" is (i, X)- cohesive for each n<w. Hence, each " is always (¢, %)-cohesive.

Proof. Let 4, = {{oy, 0py s tyy| 0 <05 <...<t,<2}. It is mot hard to
establish the following characterization of minimal x-ultrafilters, using the Ramsey
condition:

A x-ultrafilter @ is minimal iff for any n, {X"| X e 2} U {4,} generates 9",
i.e. for any 4 € 2", there is an X € 2 such that X" n 4, 4.

Hence, that % is (i, A)-cohesive certainly implies that %" is (1, A)-cohesive
for each n<w. An appeal to 1.9 now yields the full conclusion of the proposition. B

Kunen [Ku2] showed that in L[#]; the inner model constructed from a normal
x-ultrafilter over »>w, each x-ultrafilter is RK -isomorphic to (% n L[#«])" for
some 1< . Hence, 2.2 immediately shows that if it is consistent that there is a measur-
able cardinal x>, then it is consistent that such a cardinal x» exists and every
»-ultrafilter is (™, %)-cohesive. Thus, 1.4 is yet another way of showing that » cannot
be %-compact in L[%].

The proof of the following result does not generalize for »>w.

2.3. PROPOSITION. Suppose that % and ¥, for n<w are all (wy, w,)-cohesive
w-ultrafilters. Then % 3 ¥V, is (01, ©)-cohesive.

Proof. For any SSwx o and n< o, set (S), = {i| {n, i) e S} for the purposes
of this proof. Also, if Se¥ Y ¥, let S* = {n| (S),€¥,}. Thus, S*e%.

Now let £ =% 3 ¥, with || = . By the (v, ®,)-cohesion of %, there
is an &/'S&f so that || = w; and K = ) {4*| ded'}e .

By induction on the ascending enumeration of K, we can define #,<&/’ for
n e K with the following properties:

(a) m<n implies #,<%,,,

®) R, = N {4)] 4eB,} e, and

©) 12,| = ;.

Choose S, € 8, for ne K so that m<n and m,n e K imply S,,#S,. For each
ne K, we have

T,,.= R, () {(Sp)sl m<n and meK}eu,.

icm°®
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Hence, by the construction,
Ux{n} xT,s N{S,| neK}eu v ,.
ne

The proof is complete. W

We know from 1.2(ii) that CH implies that no o-ultrafilter is (e, w,)-co-
hesive. However, the previous proposition is not vacuous under Martin’s Axiom.
Booth [Bo] showed that MA. implies the existence of minimal w-ultrafilters % with
the following property: for any u<2® and &/ S% so that || = p, there isa Ye ¥
so that | Y—X|<w for every X es/. Thus, when y is uncountable, there is a finite
set s so that Y'—s is contained in y members of o/, and hence, % is (u, p)-cohesive.
It is also clear from Booth’s work how to get non-minimal p-points under MA which
are still (u, p)-cohesive for w; <pu<2® On the other hand, Solomon [So] showed
that MA and 2>, also imply the existence of minimal w-ultrafilters which are

not (;, w;)-cohesive. .

§ 3. Polarized partition relations. This section is devoted to showing that a refine-
ment of the proof of 1.10 yields a strengthened, ultrafilter related, version of a known
polarized partition relation for measurable cardinals. Let us first recall the defi-
nitions of the relevant versions of the polarized partition symbol of Erdés and Hajnal,
and also specify a modification. Recall that if x is a set of ordinals, X denotes its
order type.

3.1. DEFINITIONS.

(i) The polarized partition symbol '

o \™"
(ﬂ) - (6)
where m, n<w, denotes the following statement: whenever F: [«]™ x [f]"—2, there
are Aca and B<f so that A =y and B = §, and |F"([4]"x [B]")| = 1.

(if) When “n” in the symbol is replaced by “<w”, we mean the following state-
ment: whenever F,: [0]™x [8]"—A for each n<w, there are 4 S« and BSf so that
A=y and B =4, and for all n<o, |F,([4]"x [B]")| = 1.

(i) When “8” in the symbol (either in context (i) or (i) is replaced by “es/”
where o is a set, we mean that the ¥ specified is a member of o (instead of ¥ = 6).

The following result strengthens a known polarized partition relation. The
reader is referred to Hajnal [H] and Choodnovsky [Ch] for the previous efforts
in this direction. In particular, a question asked in passing in [H] (top of p. 44) is
now answered positively.

3.2, THEOREM. Let %> be a measurable cardinal.

(i) If % is a p-point x-ultrafilter, then

() - Cal
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for any n<x* and A<x.
(i) If % is a minimal x-ultrafilter, then

%+ n 1,n
() - (e
Sfor any n<x*, A<u, and n<w. When x>, the “n” can be replaced by “<w”.

Proof. If % is a x-ultrafilter; A<z, and F: x* x%—J, for each &é<x* there
is an X,e% and a By<A so that F"({£} x X) = f;. Also, B = fixed j for AR
Hence, to show (i), it suffices to show the following: If % is a p-point and
{X;| £<x*}c%, then for any n<x* there is a Bcx™ with B=yn and
N {X: éeB}le.

The refinement to get (i) is just an initial application of the Ramsey property
of minimal %-ultrafilters in the above argument, and the final remark in (ii) follows
from an application next, for each £<x*, of the countable completeness of -ultra-
filters for x> w.

Thus, suppose that % is a p-point and {X;| é<x*}<%. By Proposition 1.8,
there is a Ye% so that for each a<zx,

{e<xt| Yna=X;na}| =x".

We can surely define ordinals £ ({)<x™* for {<x* by induction so that the fol-
lowing are satisfied:

. (i) fis a normal function, i.e. f is strictly increasing and continuous at limits.
(i) For any {<x* and a<x, |{¢| fO<E<f+Dand Y no = Xy na}| = x.
Now fix an n<x*, where, to avoid trivialities, we assume x<7#. Since % is

a p-point, there is a Z e % so that |Z—X,| < for any £<f (+#+1). Define (possibly
empty) intervals J; for {<f(n+n+1) as in the proof of 1.9: I; = [y,, 6,), where

ye=U{al Yno=X;na},
and
: 0 = least 6=y, so that Z—6cX,.

Let ¢: x<>n+n be a bijection. By induction, we can choose £,<x™ for a<x
as follows: If &, for f<a have been chosen, let &, be such that:

@) fle@) <& <f(p(@)+1), and

() I, n I, = J for p<a.

By the definition of the intervals I, the condition (b) can always be met because
of the property (ii) of the function f.

Clearly, {,| @<} has order type n-+#. By splitting it into two parts each of
type 7, it is seen that there must be a B={¢,| a<x} so that B =  and

T=U{l teB}éu.
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Hence, like in the proof of 1.10,
YnZn@x-T< {X) EcB},

and so since this last set is in %, the proof is complete. m
3.3. CoroLLARY (Galvin for » = , unpublished Choodnovsky [Ch]). If x>

is measurable, then
+ 1, n
() - )
* %/

Jor any n<x¥, A<x, and n<w. When x>w, the “n” can be replaced by “<w”.

Proof. For x>, the result is immediate from 3.2, since normal - ultrafilters
always exist. But, as remarked after 1.6 there are models of ZFC without any mini-
mal w-ultrafilters, However, the following strategem is available: .

A minimal o-ultrafilter % can always be added to any model of ZFC by an
o-closed notion of forcing. (For example, say that p is a conditioniff p is a countable
collection of infinite subsets of  with the finite intersection property and that a con-
dition ¢ is stronger than p iff g2p. Notice that if m, n<® and f: [0]"-m, any con-
dition p can be extended to one which contains a homogeneous set for f first let
Y<S o be infinite so that | ¥— X is finite for every X e p, and use Ramsey’s theorem
to get an infinite homogeneous subset Z of ¥ for f. Then p U {Z} is stronger than p.)

Thus, the forcing adds no new countable sequences of ordinals, and w, is pre-
served as a cardinal. Hence, for any F: o, x [0]'=m with m,n<w, 3.2 can be
applied in the extension using %, and any resultant “homogeneous” set for F, being
countable, must already exist in the ground model. M )

Galvin’s proof of 3.3 for » = w apparently did not generalize, and both the
proof of Choodnovsky [Ch], and of Hajnal [H] for the weaker statement with # re-
placed by s, relied on developing a tree and showing that a long branch exists. The
present proof yields more information, being a thinning process which works by
keeping the needed large sets in an ultrafilter. In the paper Baumgartner and
Hajnal [BH] another proof of 3.3 for » = o is outlined which, like the one I give,
depends on a forcing and absoluteness argument. But their forcing is one to make MA
true in the extension, and hence not w-closed, and thus a more involved argument
was needed to show absoluteness.

3.4, Interestingly enough, when x> the well-foundedness of ultrapowers can
be used to yield a simpler proof of the main assertion of 3.2 (and hence, 1.10):

Let %x>w, and again, % a p-point x-ultrafilter with {X,| &<x*}<=%. For
a fixed ), x<n<x*, we want to find a Bex* with B = nso that () {X;| e B}e%.
Just as before, we can suppose that there is a Ye % so that

{e<xt] Yro=Xna}| =%+

for every a<. . . .
By well-foundedness, let 4 €k be a “least” non-constant function, i.e. one

so that for any a<s, h~1({a}) ¢ %, but so that if g € *x and {E<x| g(O)<h(O)} %,
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then g~ *({B}) e % for some f<x. Since % is a p-point, we can assume that & is
almost 1-1, i.e. for each a<s, [h™*({a})|<x.

Let 7: % be a bijection. We can define ordinals F(©)<x* for { < by induction
so that the following are satisfied:

(i) f is strictly increasing.

() Y (2+1) = Xyq 0 (@+1) for any o so that A(@)<t (). (Recall & is
almost 1-1.) .

It now suffices to show that T= () {Xyl {<n} €%.If not, Z= Y x—T)euU.
On Z we can then define a function g by

g(e) =t~ of the least { so that a ¢ Xyq) -
4

If aeZ and h(x)<g(0), then ¥ N (a+1) = Xy 0 (@+1) where 1) = g(a).
But o€ ¥ so that ae X ¢, contradicting the definition of g. Hence, o € Z implies
g(@)<h(®), and thus g~*({y}) % for some y<x. But this set is disjoint from
Xy €%, an evident contradiction. Thus, this proof is complete. M

This argument enables us to make the following observation about closed un-
bounded sets.

3.5. PROPOSITION. Suppose A<* = A and C, for a<A* are closed unbounded
subsets of A. Then for any n<J*, there is a B< ¥ with B =1 so that ( {C,| o € B}
is still closed unbounded in A.

Proof. Mimic the argument of 3.4 with the identity function: A—4 in the role
of h, and use the normality of the ideal of non-stationary subsets of A at the appro-
priate places. W

§ 4. Open questions. I conclude the paper with two typical open questions.

4.1. QUESTION. Is it provable in ZFC alone that there is a (@, , w)-cohesive
w-ultrafilter ?

4.2. QuesTION. Is it consistent that there is a x> and a x-ultrafilter % which
is (x*,n")-cohesive? 2>x*. If there were such a x-ultrafilter, then by 1.2(i),
Silver first showed that the consistency of the existence of a measurable cardinal
x> so that 2*>x* follows from a large cardinal assumption (2-extendibility).
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