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This is the expository paper on strong axioms of infinity and elementary 
embeddings origi;,ally to have been authored by Reinhardt and Solovay. It has 
been owed for some time and already cited with some frequency in the most 
recent set theoretical literature. However, for various reasons the paper did not 
appear in print far several years. The impetus for actual publication came from a 
series of lectures on the subject by t(anamori (Cambridge, 1975) and a set of notes 
circulated thereafter. Thus, although this present exposition it a detailed rework- 
ing of these notes, the basic conceptual framework was first developed by 
Reinhardt and 5;91ovay some years ago. One factor which turns this delay in 
publication to advantage is that a more comprehensive view of the concepts 
discussed is now possible wit1" the experience of the last few years, particularly in 
view of recent consistency results and also consequences in the presence of the 
axiom of detenninacy, A projected sequel by Solovay to this paper will deal 
further with these considerations. 

One of the most notable characteristics of the axiom of infinity is that its V~uth 
implies its independence of the other axioms. This, of course, is because the 
(infinite) set of hereditarily finite sets forms a model of the other axioms, in which 
there is no infinite set. Clearly, accepting an assertion whose truth implies its 
independence of given axioms requires the acceptance of new axioms. It is not 
surprising that the axiom of infinity should have this character (one would expect 
to have to adopt it as an axiom anyway), and moreover one would expect the 
existence of laIger and larger cardinalities to have such character, as indeed it has. 
The procedures for generating cardinals studied by Mahlo [29] provided a notable 
example. It is remarkable that the new consequences of the corresponding 
(generalized) axioms of infinity also include arithmetic statements: this application 
of G6del's second theorem is by now quite familiar. It is also remarkable that 
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certain l~roperties of cardinals which were originally introduced with little thought 
of "size" considerations should turn out to have this same character of implying 
their ow,a i:adependence (see, for example, Ulam [44] and Hanf [6]). 

The monamental paper Keisler-Tarski [12] examined in detail three classes of 
"large cardinals": weakly compact cardinals, measurable cardinals, and strongly 
compact cardinals. Taking these as typical examples, it is reasonable to say 
(though we are in no way establishing an absolute criterion) that a property is of 
"large card;maP' c~aracter if it has the following two consequences: 

(i) the er.~ ;tence of a cardinal which (at least in some inner model) is essentially 
"larger ''~ th~n inacc~;ssible cardinals and other "smaller" large cardinals (in the 
sense that it is a fixed point of reasonable thinning procedures, like Mahlo's, 
beginning irom these cardinals); 

(5) a discernibie new strength in set theory, not only in the provability of more 
for~n~al statements (lik-. Con(ZFC), etc.) but also in the existence of a richer 
structure 6n the cumulative hierarchy itself (for example, new combinatorial 
prcr~erties). 

We observe in the preceding the emergence of interesting (and somewhat 
un¢~pected) mathematical connections among size, combinatorial properties, and 
zyr.~ :actic strer, gth. 

k is well known that below each measurable cardina~ there are many weakly 
compact cardinals° In fact, the experience of the last few years indicates that weak 
compact:~es~s is relatively weak, and many interesting train stops lie on the way 
fro~E'n m~,asurability to weak compactness (see Devlin [1] for a comprehensive 
survey). On tl~e other hand, though strong compactness implies the consistency of 
the exi~telace of any specified number of measurable cardinals, it is now known 
that tl-,e least measurable cardinal can be strongly compact (see Sec.tion 4 for a 
discw:'~ion). It is the purpose of this paper to consider even stronger large cardinal 
properties, and to investigate their various inter-relationships, as well as the 
effects of thei~ p~,esence on the cumulative hierarchy of sets. 

The circtmlstance that some mathematical problems give rise (unexpectedly) to 
large cardinal pr.3perties raises the question of adopting new axioms. One 
possibility, which seems a bit like cheating, is to "solve" the problem by adopting 
its solunov, as an axiom. Anotl~er approach (suggested in the paper [12]) is to 
attempt to bypass the question bj  regarding all results showing that P(K) is a large 
cardinal property (which of course show that 7P(K) has strong 0osure proper- 
ties), as partial results in the direction of showing VK "-IP(K). If, however, ::IK P(K) 
should be true and have important consequences, this may appear somewhat 
futile, as comparison with the paradigm case of the axiom of infinity suggests. A 
third approach is to attempt to formulate new strong axioms of infinity. Ulti- 
mately~ since this paper is an exposition of mathematics, the issue of whether the 
large cardinal properties we investigate are to be considered axiomatic or prob- 
lematic can be left to one ~ide. We do, however, wish to discuss briefly the 
problem of formulating strong axioms of infinity. 
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The whole question of what intuitive and set theoretical considerations should 
lead to the formulation of strong axioms of infinity is rather complicated and 
merits a systematic analysis (which we do not attempt here). There is some 
discussion of this in Wang [45], Ch. VI, especially p. 189, which gives a descrip- 
tive classification (due to G6del) of the co,~siderations which have so far led to 
such axioms. We remark that series of axioms such as To= ZF . . . . .  T,,, T,+~ = 
T,, +Con T , , . . . ,  or those of Mahlo, appear "endless" in that it always seems 
possible to use the same guiding idea to get yet stronger principles (although it is 
not clear how to express this precisely). This even seems a desirable characteristic 
in hierarchies of axioms: if they are given as an r.e. sequence, they must be 
incomplete, so we would hope that the guiding idea would continue further. The 
procedures we consider have this "endless" character up to a point, where a result 
of Kunen sets a delimitation to one kind of prima facie natural extension. 

We can discern at least four motivating principles behind the large cardinal 
properties we formulate. 

(i) Generalization. For instance, it is in many ways quite reasonable to attribute 
certain properties of to to uncountable cardinals as well, and these considerations 
can yield the measurable and strongly compact cardinals. Also, in considerations 
involving measurable cardinals, natural strengthenings of closure properties on 
ultrapowers yield the supercompact cardinals (see Sections 1, 2). 

(ii) Reflection. The ordinary Reflection Principle in set theor 3, invites various 
generalizations, for instance the gI,~n-indescribability of cardinals. In one approach 
more relevant to our context, what is involved is a formulation of various 
reflection proi~erties lI, the class of all ordinals, intuitively ought to have (for- 
malized in an extended language), the antithetical realization that f~ ought to be 
essentially indescribable in set theory, and thus the synthesis in the conclusion 
that there must already be some cardinal at which these properties obtain, Note 
that this in itself is a reflection argument. Extendible cardinals especially can be 
motivated in this way (see Section 5 and Reinhardt [40]). 

(iii) Resemblance. This is closely related to (ii). Because of reflection considera- 
tions and, generally speaking, because the cumulative hierarchy is neutrally 
defined in terms of just the power set and union operations, it is reasonable to 
suppose that there are (V~,~)'s which resemble each other. The next conceptual 
step is to say that there are elementar 7 embeddings (V~,e)--~(V~,e). Since this 
argument can just as wel! be cast in terms of (Vr(~,~, X(a))'s,  where f(a)  and 
X(~) are uniformly definable from o~, the elementary embeddings may welt turn 
out not to be the identity. Strong axioms like A-extendibility (see Section 5) or 
Vop~nka's Principle (see Section 6) can be motivated in this way. 

(iv) Restriction. Known assertions can be weakened to gain more information 
and sharpen implications. Ramsey and Rowbottom cardinals can be considered to 
follow in this way :~rom measurable cardinals, and the axioms of Sections 7-8 can 
be viewed as introducing a spectrum o[ perhaps consistent axioms arising from 
Kunen's inconsistency result (1.12). 
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In all th~se approaches, the recurring feature of the various postulations is the 
notion of elementauz embedding, and this paper is organized around this main 
theme. 

Let us onc~ ~:gain say that this paper is an exposition of mathematics. We 
consider that mzny of the methods and technical relationships that we encounter 
are nat without ,,ome mathematical elegance. Thus, hopefully our exposition will 
add an esthetic element to other incentives for considering strong axioms of 
infinity, and this is b) no n~eans a factor to be underrated in the investigation of 
new mathem~/ical concept~. 

Our set theory is ZFC. However, the mathematics in this paper is not strictly 
formalizable in ZFC, since we discuss elementary embeddings of the whole set 
theoretical u:aiverse V. Kd~ey-Morse (KM) is adequate, as satisfaction can be 
expre,~sed there, but Bernays-G6del (BG) is often sufficient for many purposes. 
Ultimately,. frost implications can be formalized in ZFC, since either the elemen- 
tary embedding involved can be regarded as restricted to some set, or only one 
formtqa instance of the elementary schema need be used. For a method of 
formalizing el'ementary embeddings of V in ZFC through a system of approxima- 
tions, ~ee IV of Gaifman [4]; this formalization is adequate to take care of most of 
the er~beddings we consider. 

Mu,:h of our notation is standard, but we do mention the following: the letters 
a,/3, % . . .  de~ol:e ordinals whereas K, A,/z . . . .  are reserved for cardinals. V~ is 
the c¢~lleetion of 3ets of rank < a. O ~ denotes the usual relativization of a formula 
0 to a class M. If x is a set, Ix] is its cardinality, ~ x  is its power set, and 
~ x = ~ y ~ x ' l y l < ~ : } .  If also x___O, ~ denotes its order" type in the natural 
orderi~g. The identity function with the domain appropriate to the context is 
denoted by id. Finally, El signals the end of a proof. 

If I is a set, an ultrafilter ~ over I is a maximal filter in the Boolean algebra ~I .  
q/ is urziform ifI wt~enever X ~ ,  [XI=II[;  non-principal iff ~ q / = ~ ;  and to- 
complete iff whereve~ T~_ ~/and IZl < K, f'l T e  6/l. A cardinal K > oJ is measurable 
iff there is a tJon-pri~ncipal, K-complete ultrafilter over K. In context, "for almost 
every x"  means for x in a set in the ultrafilter involved. 

We would like to thank the referee for simplifications in regard to 1.14, 3.2, 
3.3, 4.8, and for suggesting the formulation of 2.6 in order to make 2.7 and 5.11 
clearer. 

1. Elementary embeddings and ultmpowers 

Elementary embeddings with domain either the whole set theoretical universe 
V or just some initial segment V~ play a basic thematic role in this paper. In this 
initial section we quickly review basic techniques and establish some of our 
notation and terminology by v~rking through the paradigm case, which can be 



Strong axioms of infinity and elementary embeddings 77 

considered a natural way of motivating measurable cardinals. Also, we consider a 
result of Kunen which will establish an upper limit to our further efforts. 

When we investigate elementary embeddings j of V into some inner model M, 
it is convenient to have the situation implicit in the notation j : V - ~  M, which we 
also take to include the assertion that j is not the identity function. 

That j is an e lementary  embedd ing  means that it preserves all relations definable 
in the language of set theory: if Xl . . . . .  x, are sets, and O(Vl . . . . .  v . )  is a formula 
and F ( v l  . . . . .  v,) a term in the language of set theory, then 

O(x~ . . . . .  x . )  iff oM(j(xl)  . . . . .  j (x . ) )  

and 

j ( F ( x l  . . . . .  x , ) )  = F ( j ( x O  . . . . .  j(x,,)). 

By an inner mode l  we mean a transitive e-model of ZFC containing all the 
ordinals. There is a formula Inn(M) and finitely many axioms ~P0 . . . . .  ~,~ of ZFC 
so that for any class M, 

t-zFc (q~o &" " " &q~,)t~ & U M _  M & I2 ~_ M o  Inn (M) 

and if ~p is any theorem of ZFC without free variables, 
(*) 

t-zF c Inn ( M ) ~  ~M. 

For example, Inn (M) can assert tha~ M is transitive, contains all the ordinals, and 
that, in M, the sequence (V~[ a ~ .c2) is definable. (Here, the V~'s  satisfy, i,a M, 
the usual definition for the V~',.) Since all instances of ZF axiom schema are 
needed in the proofs of the theorems (*), this by no means implies that ZFC is 
finitely axiomatizable. We have: 

FzF c Inn (V), FzFc Inn (L), FZF c Inn (HOD). 

(HOD is the class of hereditarily ordinal definable sets, cf. Myhill-Scott [36].) 
Assame now that j : V--~ M. We will frequently use the preservation schema for 

j without comment, leaving the reader to see that the relations and functions 
involved are set theoretic. For example, in 1.1 we will use ](rank (x)) = rank j (x)) ,  
and in 1.2 both 

](X,~) = (j(X))i~,, ~ = (j(X))¢, when j(cO--- a, 

and 

i(f'l {X,~ l a <?})= fq {(j(X)L [a </(v)}- 
In the latter case, one must of course realize that X and ? are the free variables. 

l~opo~fion 1.1. (i) For every a, j(t~)>t c~. 
(ii) j moves  some  ordinal. 
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ProoL (i) By transfinite induction. For (ii), let x be of least rank so that j(x) ~ x, 
Then if 3 = r a n k ( x ) ,  j (~ )>& Otherwise, if y~j (x) ,  r a n k ( y ) < r a n k ( j ( x ) ) =  
j(rank (x)) = iJ, so that fly) = y and y ,~ x. But ,also, y e x implies j(y) = y ~ j(x). 
Hence, j(x)= x, which is a contradiction. 12] 

Now let 6 be ~.he least ordinal moved by j. We say that 6 is the critical point of 
the embedding j. A model theorist might be quick to see 

Theorem 1.2r~ Let ~1 be d,fined by 

x ~  ill x ~ _ a & a ~ j ( x ) .  

Then °~d is a non-principal 6-complete ultrafilter over 6, and hence, 6 is a 
measurable cardinal. 

ProoL ~3 ~ ~, but ~ < 8 implies {a} ¢ qI since j({a}) = {a}. Also, X ~ 0//iff 6 ~ j(X) 
if[ 8 # 1 ( 8 - X ) i f f  6 - X ¢ - ~ .  
Finalty, if 7 < a  and {X~[a<~/}_m~t, 8 ~ O ( j ( X ~ ) ] a < ~ , } .  But j (T)=T,  so 
f3 {j~ xo) l ~ < v} = j ( ~  {x~ l ~ < ~1) '~.e., fl  {xo I ~ < ~1 ~ ~- [] 

Th~s, elementary embeddings already give rise to measurable cardinals, and so 
these wi]! be the "smallest" of the large cardinals to be co~isidered. It might be 
worthwhile to r~ote that direct arguments using j show that 6 must be large. 

(a) Since 6 is obviously a limit ordinal, V8 ~Z. 
(b) By the argumen! of 1.1 (ii), if x~V~, j (x )=x .  Henoe, y ~  V~ implies 

y = j(.~) n V~ c: M. 

(c) ~if F:V~--->V~ and x~Vs,  then F"x~V~. This is so since F = i ( F )  I V~ and 
j (F ) " j ( x )= j (F ' "x )~V~Vi (~  ~, and thus F 'x~V~ by elementarity. Hence, 
Vs~ZFC and V~+1I:i3G. 

(d) If ~:, y6V~+a and V~+~O(x, y) and 0 is first-order, then for some a < 6 ,  
V , + ~ O ( x n V , ,  yNV~): using (b), we have Vs+~_cM, so V~+~O(x, y) in M, so 
that in M ~here ~s ar~. a < j (6)  with V~÷~ ~O(j(x)NV~, j(y)f3 V~). Thus, there is an 
a < 6 with V~+~ ~O(x A V~, y rl V~) by elementarity. It follows that V~ satisfies 
Bernays' schema, i.e. 6 is second-order indescribable. 

Since we will shortly get a converse to 1.2 (that is, if K is a measurable cardinal, 
there is a j :V - -~M with critical point K), the foregoing quickly establish the 
standard facts on the size of measurable cardinals. 

To get that converse, we will take an ultrapower of Vo So first, let us recall the 
general process with ~ an arbitrary ultrafilter over some index set L As usual, 
define for f, g functions with domain /, 

f - ~ g  iff { i ~ I [ f ( i ) = g ( i ) } ~ .  

~ is an equivalence relation ~ ;th each equivalence class a proper class. In order 
to form the ultrapower, we need to have equivalence types [f] such that f ~ g iff 
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[f]= [g]. It is customary to define If] as the equivalence class of f; in our case 
these are proper classes and this is inconvenient (since we prefer to stay within the 
language of ZFC). We may instead use the following device of Scott. 

Definition 1.30 (Scott) If f is a function with domain L 

S~ (f) = {g [ g ~ f & Vh(h  ~ f--~ rank (g) ~< rank (h))}. 

That is, S~(f) is the collection of those g .~ ~ f of least possible rank. S~(f) is a set, 
so we can define 

v ' / ~  = {s~(h I f: J--,v}, 

and as a membership relation, 

S~(f)F_~S~(g) iff { i ~ I I f ! i ) a g ( i ) } ~ - ~ .  

Thus, ~Vt/~, E~) is a (class) structure definable within the language of set theory. 
The following is basic, and proved by induction on length of formulas. 

Theorem ~.4. (Eog) I f  0(yl . . . .  , v ,)  is a formula of set theory and fl . . . . .  , f,, are 
functions: I ~  V, then 

(V'/@,E~)~O(S~(f~) . . . .  , S~(f ,))  iff {i~ I[ O(f~(i) . . . . .  f , ( i ) )}~ . .  

If ~ is a A-complete ultrafilter, then this theorem extends to set theoretical 
formulas in the language Lax. (Recall that L~x is the infinitary language allowing 
conjunctions of < ~; formulas and quantifications over <A variables.) By tile 
theorem, there is a canonical elementary embedding % : V~ V~ / ~  defined by 

e~(x) = S~((x l i ~ t)), 

i.e. e~(x) is the equivalence class of the constant function on I with value x. 
We now assume that ~ is both non-principal and ~ol-complete. The following 

two propositions are basic tools: 

l~ropos|tion 1.$. (Mostowski [35]) Suppose (A,  E)  is a (possibly proper class) 
stntcture so that E is a binary relation on A,  and 

(i) E is well-founded, 
(ii) E is extensio~,al, i.e. if a, b ~ A and for any x ~ A xEa iff xEb, then a = b, 

(iii) {x [ xEa} is a set for each a ~ A.  
Then there is a unique isomorphism h : (A,  E)~--~(M, e) to a transitive e-structure 

M, called the transitive collapse. 

Proo|. Define h by recursion on E by 

h(x) --- {h(y) I yEx}. r-a 
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Proposition ~'.6. E~... on VX/~ is well-tbunded. 

Proof. I f . . .  s~ (h) E~ s~(fi)  E~ s~(/o), x e N,~,o {i e x I/~+,(i) e / , ( i ) }  implies . . .  
h (x )  e f l (x)e[0(~) ,  which would be contradictory.  []  

In view of 1.4,, tqe preceding proposi t ion is essentially the observat ion that " E  
is welt-fo~mded" is expressible in L . . . .  . These  results show that  there is a 
canonical isomorphism ~ : (V~/~, E~) ~ (Me,/e),  where M~ is a transitive class. 
We have imme~X ately from Eog' Theorem that  I-zFc Inn (Me).  Setting ]e = he oe~ 
so that fe is e l emen ta ry  we will use the typical notat ion 

i~ :v--, ~ ~v~/~ 

to depi,:t the: s~tuation. Also, for any f :  I--->V, we '.et 

[)% = h~ (S~ (f)), 

i.e. [[]a is the transitive collapse of the ul t rapower  equivalence class of f. N as a 
subscri t,t will a~ten be dropped in these and similar situations when it is clear from 
the cor~ext. Recalling some comments  before 1.3, notice that  f ~ e  g iff [f]e = 
[g]~. ( ensequenf ly ,  [ f]e  could initially have played the role of S~(f) in the 
constru~,c~i6n of well-founded ul trapowers,  in which case V~/@ is immediately 
identifi~:d ,~ith Me. 

The following proposit ion is very useful. 

P¢oposifion 1~,7. -With f9 as above, ] = ]e, M = Me, etc. 
(i) i] j".~eM, and y c _ M  is such that lyl~lx[, then y e M ,  

(ii) f'(!l I +) ~ 5//[. 

Proof .  For ii), let y = t [ t , ] l a e x } c _ M ,  and define T:j"x--->y by T( j (a) )=[t , ] .  
Since T enumera  es y, it suffices to show that T e M .  So, we need a g so that  
[g] = T, i.e. 

(a) domair~: ( [g])= i"x. 
(b) for a~l a e x, [g](j(a))  = [ta]. 
Let  [f] = j"x. By Eog' Theorem (1.4) if for each i e ! we set domain  (g(i)) = f(i),  

and g(i)(a) = t~(i) for each a e domain (g(i)), then clearly g is as required. 
For (ii3, assume that  f(l/I +) = [ f i e  M. If A = {i e I ] [ / ( i ) l~ < I/lie ~,  since I/i + is 

regular, there is an a e l l l + - O  {f(i) l i e A } .  But then ] ( a ) ¢ [ f ] .  If B =  
{i e I i I/(:)l > iI[}e ~,  define h on B by induction on some well-ordering ~<x of I so 
that 

h(i) e f(i) - {h(/) [ ] < I  i & ] e B}. 

Then [h]e[f],  yet h is not cotistant on any set in N, as ~ is non-principal.  Hence,  
in either case we get a contradl, ' t ion from the assumption tha t / " ( l I I  +) = [fl.  []  
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If txl = A in 1.7 (i), the result can simply be stated as: M is closed under 
A-sequences. In the future, we will also use ~Mc_ M to denote this. 1.7(ii) puts an 
upper limit on the closure of M. 

We now consider ~ a non-principal K-complete ultrafilter over x a measurable 
cardinal, and j :V---~ M ~V*/~t. The next theorem deals with this situation, and its 
(i) completes the converse to 1.2. 

Theorem 1.8. 
(i) K is the critical point of j. 

(ii) ~M~_ M but ~*M~ M. 
(iii) K < 2  * < j ( ~ ) < ( 2 ~ )  ÷. 
(b/) ~/q~ M. 

Proo[. For (i), we first prove by induction on a that if a < K, j (a)  = a. Suppose, 
towards a contradiction, that j ( a ) >  a. Let [ f ]=  a. Then {/3 [ f(/3)< ~}e ¢//, so that 
by the K-completeness of ~/, there is a ~ <  a so that {/3 I/(/3 ) = ~}e~t. But then, 
[f] = ](~)= ~, which is absurd. 

Next, if id :K---~ is the identity function on K, ~ < [ i d ] < ] ( K )  since for each 
< K, {a I 8 < a < K} ~ 0//. Thus K is the critical point of j. 
For (ii), use 1.7 and the fact that ]"K = ~ E M. 
To show (iii), first note that j (K)=order  type of {[f]e IfeKK}, SO that / (K)< 

(2~) +. Also, in M i(K) is measurable, hence strongly inaccessible, so that (2")M < 
](K). But by (ii), ~(K)=NM(K) SO that 2 ~ ~<(2~) M, since M c V. 

For (iv), assume that ~ M .  Since *K = (~K) M, in M one can evaluate ](~), so 
that j (K)< ((2~)+) M as in the previous paragraph. But this contradicts the strong 
inaccessibility of ](K) in M. [] 

The following corollary has been, of course, much strengthened in recent years 
by the work of Gaifman, Rowbottom, Silver and others. 

Corollary 1,9. (Scott [41]). I f  there is a measurable cardinal, V ~ L. 

Proot. Assume V =  L. Then the M as above is an inner model satisfying the 
axiom of constructibility. Hence, M = L .  But ~ / ~ V - M  by 1.8 (iv), a 
contradiction. [] 

This corollary has as an easy consequence the fact that there is no elementary 
embedding j :V-->L. The situation with H O D  is unclear. But, how about an 
elementary embedding of V into V itself? Kumea showed that this is not possible 
in ZFC. His proof uses a simple case of a combinatorial result of Erd6s and 
Hajnal. But first, for the reader's interest a short proof of the general case due to 
Galvin and Prikry is presented. The result is concerned with the so-called 
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J6nss(m's lcroblem (see Devlin [1] for details), and shows that if we allow an 
infinitary oi~eration, there are Jdnsson algebras of every infinite cardinality. 

Definidon L I I L  For any set x, a function f is called to-J6nsson over x iff f:O'x-~, x 

and whenever y!-_- x and l y t - - I x l ,  ? " °y  = x. 

Theorem 1 .1L  (Erd6s-Hajnal  [2]) For every infinite cardinal A, there is an 
to-J6nsson fut~ction over A. 

Proof. (Galvin--Prikry [5]) For the special case A = to, there is a simple inductive 
argument:  Let  {(X~, n~)]~<2"} enumerate  [ t o ] ' x t o .  (Recall that  [co]'° is the 
collection of infinite subsets of co.) By induction on a < 2  ~ pick s~ e'~X~ so that 
s,~#s~ mr ~3<a  and set [ (s~)=n~.  Then any extension of [ to all of ~'to is 
to-Jdnsson over co. 

Suppose now that A > co. Let  9 '  be any maximal collection of subsets of A so 
that members of 9'  have order  type co and are mutually almost disjoint. By the 
special case above, we can assume that for each x eSe there is a function f~ 
~o-J61:sson over x. Define now a function g:'~A--",A by: 

{? ,   ,t e  ng o si in ntea     • 
g(s) = for some x s 9', 

otherwise. 

Then g i~ wett-defined. 
It s~aff~:~s to find an A_cA so that IAl=X, yet B c_A and IBI = A implies 

g"°B ~ A,, for t~en an to-J6nsson function over A can easily be derived from g. If 
no su:t~, A e::istso there are sets A ~ Ao_:_~ A~ ~_ A2" • ° each of cardinality A, and 
a.  ~ A,~- A.~ ~ so that a . ¢  g"O'A.+ 1. If y = {a. i n e to}, by maximality of 9 0 there is 
an x c.: :T so that x C) y is infinite. Let x f) y = {a. o, a . . . . . .  }, where no<  n~ < . . . .  
Now ~={a.~, a . . . . . . .  }___A.~. But by definition of ;f~, there is an se'°t  so that 
g(s)= a... ttenc~, a.o~ g"A .... which is a contradiction. []  

Theorem 1.I2.  (Kunen [15]) There is no non-trioial elementary embedding cf V 
into itset[. 

Proof.  Argue by contradiction and suppose j : V - - ~ V  with critical point K. Set 
A =sup{ /" (K)]n~co} ,  where j°0¢)= K and j"+I(K)=j(j~(K)). Note  that j (A)= 
s u p  { y l ( K )  I n ~ ~o} = ~. 

Now ~et [ be co-J6nsson over A; then J(D is also o-.!6nsson over A. Consider the 
set X = j"A. Since IX[ = A, let x e '°X so that j(D(x)= K. But if x ( n ) =  j (a , )  for 
n e w, x = j(y) where y e ~A and y(n) = a, .  Hence,  K = ](D(J(y)) = ](/(y)), con- 
tradicting the fact that K is not in the range of ]. [ ]  

As Kunen remarks, since the ~. in the above proof is a strong limit cardinal of 
cofinaiity co, the argument of the special case of 1.11 suffices to produce an 
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to-J6nsson function over k. (The full result of ~.11 will be used in our forthcoming 
3.3 and 3.4) Note also that more generally, if ] : V - ~ M  and ~ is defined in the 
same way, then there is actrmlly a subset of 1~ not in M. This way of formulating 
Kunen's result is formalizable in ZFC through the strategem of Gaifman [4]; the 
notion j : V - * V  is not. Since AC was used in the proof of 1.11, we may still ask 

Open Question 1.13. In ZF (without AC) can there be a noi~-trivial elementary 
embedding of the universe into it-elf? 

Kunen's result will limit our efforts in that we cannot embed the universe into 
too "fat"  an inner model. Pending an answer to 1.13, one can perhaps best view 
this fact as a structural limitation imposed on V by the Axiom of Choice. 

Finally, we note the following generalization of 1.8(iv) concerning ultrapowers. 
This was known before Kunen's result (1.12), and established the special case that 
no j :V--*V could be the result of taking an ultrapower. 

Proposition 1,14. I[ ~ is a non-principal, o~-complete uitrafilter over some 
cardinal v, then f f~ M~. 

Proof. Let M =  M~ and j= j~ ,  and assume that ~ M .  It follows that ~Ouc M and 
~ u c ~ ( u × ~ , ) c M .  Note that for any ordinal a, ] ( a ) = t h e  order type of 
{[/]~ j f~  on}. Thus, j"v ~ M, since j"e is just the collection of such order types for 
a ranging over ordinals below u, and can be properly defined in M as ~ 6 M and 

By 1.7(i), it follows that M is closed under v-seauences, and in particular 
"v += ("v+) M. The argument in the previous paragraph can now be used again to 
show that j"(u +) ~ M, thereby contradicting 1.7(ii). [] 

2. Snpercompactness 

Though there can be no elementary embedding j : V - ~ V ,  we noted that if 
j~u:V-'* M,u arises from a non-principal K-complete ultrafilter ~ over K a measura- 
ble cardinal, then/VI~ is not even closed under K+-sequences. The following is an 
intermediary notion, and seems the proper generalization of measurability. 

Definition 2.1. If ~ <~ h, K is ~t-supercompact iff there'is an elementary embedding 
j:V---~M so that: 

(i) j has critical point K and j(K)>2t, 
(ii) XMc_ M. 

K is supercompact if[ K is ~-supercompact for all ~t t> K. 

It follows from (ii) that M contains all sets hereditarily of cardinal~< ~t. Note 
that from Section 1, K is K-supercompact iff K is measurable. It will be shown 
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short;y that if K is 2~-supercompact,  then K is ac tua ,y  the Kth measurable 
cardinal (see 3.5). Kunen noticed that (i) in the above definition can be replaced 
by simpl2¢ " j  has critical point K," since for some integer n, j " ( K ) > A - - e l s e  we 
would zga:in get the contradiction of 1.12. A further argument is needed to show 
that the nl:h iterate of j embeds V into an inner model closed under  A-sequences 

(see [15 ) .  

2.2. I'a the situa!ion of 2.1, since XMc_ M, the embedding j immediately suggests 
considering the following ultrafilter: 

X ~  ~:~,z iff ~"h E j (X) .  

Note that sim:~ Ij"A[ ; h < j (K)  in M, j"h e~j(~)j(A) M. Hence ~ , h  ~ ,  and we can 
consider this .~et to be the underlying index set for 0g. q/ has the following 
properties: 

(i) ~ is a ~-corrzplete ultrafilter, 
(ii) q/;~ non-principM, and for any a ~ A, {x [ a ~ x}eq/,  

(iii) If j :is a function defined on a set in o//so that {x I f (x)  e x} ~ °1l, then there is 
an a~A so t~,:at {x I f ( x ) =  aid°t/.  

By (i) and (ii) if y ~ , h ,  {x l y _c x} ~ q/. For  a proof of (iii), note that if 
j(f)(j" ~) e j"A. then j(f)(j"A ) = j(a) for some a e h. 

l)efrait~on 2.3. If ~ ~<h, an u~trafilter ~ /ove r  ~ h  is normal iff it satisfies (i), (ii) 
and (i~i~) *ts above. More generally, an ultrafilter 1 /over  ~,I ,  where I is a set, is 
normaf iff it sa~iisfies (i), (ii) and (iii) with h replaced by I. Finally, without 
refere~ace to ~:, an uitra~lter ~ over P I  (i.e. ~ _ _ q ~ I )  is normal iff it satisfies (ii) 
and (iii:) wi~h h replaced by I. 

If ]': 1 - ~  i~ bijective, then f induces a bijection between normal ultrafilters 
over ~ I  a~d those over ~ ,h ,  so for most purposes, it suffices to consider 
ultrafih~rs ov~ r sets of form ~ h .  

Note that an ~,~-c~mplete ultrafilter ~ over  @I is normal iff [ i d~  = j~g"L where 
id : ~ I - - ~ [  is th~ identity :map. This easy but central fact will be used repeatedly 
throughom the rest of this paper. 

Just as i~L Section ~, having produced an ultrafiitter from an embedding, one can 
hope to reverse the process by taking an ultrapower. So, let ~t over ~ h  be normal 
and con~ider the canonical j :V--~ M,~ V~-x/~. Then: 

(i) a~.~r___ M. Use 1.7(i) and the fact that [ id]=j"h .  
(ii) K is the critical point of j and j (K)>A.  We have {x[[x[<K}~°g,  so 

[[id]l = Ij",~[<j(K). But Ij"A I = h in M, since M is closed under A-sequences. 
We have shown 

T h , o r e m  2.4. I f  K <<- A, the ]ollowing are equivalent: 
(i) i< is h-supercompact, 

(ii) there is a normal ultrajq.lter over ~ h .  
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Note  the following reversibility: if ~t is normal  over  o)~A, j ~ : V ~ M ~ ,  and ¢ / i s  
defined f rom j,~ as in 2.2, then ~/ '=  o//. 

Though normal  ultrafilters have been defined generally over  index sets ~h ,  we 
have seen how sets of form ~ h  naturally come into play. In fact, if ¢/ is a 
to,-complete normal  ultrafilter over  ~h ,  then for s o m e / z  < A, ~ , h  e 0//: 

Le t  ] :V- -+M be the corresponding embedding with critical poir:t K. Since 
XMc_ M by normali ty,  Kunen ' s  a rgumeat  shows that for some interger n, we must 
have f f (~)<h<~j"+'(K) .  If h <j"+I(K), se t /x  = j" ( • )  so that /L <A. If h -'-jn+l(K), 
note that a simple argument  inducing on the j~(K)'s and usi;~g AMc_ M shows that 
h must  be inaccessible in V. Thus,  if we set ~t~ = (if(K)) + in this case, we have 
/~ < h. Finally, in either case, not that  [[id][ = [j"h[ = h < j (g ) ,  so that {x [ ]x]< ~z}s 
~ ,  i.e. ~ ,A  e ~ .  

We now show that  if K is supercompact  and 0 ~> K, then V0 can be expressed as 
an ul traproduct  of V~'s with 3' < K. 

Theorem 2.5. Let O>~t<, and assume that K is IVo!-supercompact. Let @l be a 
normal ultrafilter over ~ V o ,  and j:V--->M the corresponding embedding. For 
convenience, set X = ~,,Vo. Suppose that in M, 0 = [(0 x I x ~ X>]. Then 

(i) [or almost every x ~ X, x is an elementary submodel of Vo, and the transiti~e 
collapse gives an isomorphism *rx : x ~ Vo~, 

(ii) set h = zr~ ~. Then ] I Vo = [<j~ I x ~ X>], 
(iii) there is an isomorphism 

(*) 

Vo+,--  [1  Vo=+,/~, 
x ~ .1,' 

which can be explicated as follows: if y e V0, y = [<Try(y) I x ~ X & y E x)]. If  y 

% + .  y = [<=:(y n :~)t x ~ x>]. 

ProoL j"Vo is an elementary submodel of M Vi~o), and the transitization map 
7r : j"Vo -~ Vo has inverse j [ Vo. We also have that lid] = j"Vo in ill, and that j [ V o 
and ar are both in M as they are hereditarily of cardinal~ < [Vo[. From these facts 
and Eo~' Theo rem (1.4), (i) and (ii) of the theorem new follow. 

For (iii), note that  the right side of (*) is clearly isomorphic to V ~ .  However ,  
using the fact that  M is closed under  IVol-sequences, it is easy to prove by 
induction on a ~ 0 + 1 that  V~ = V~.  This establishes (*). 

Now let y e Vo, and suppose y = [(y~ Ix  e X)]. Then y~ ~ Vo~ for almost every 
x ~ X. Moreover ,  j(y) = [(j~(y~) I x ~ X)]. But by definition, j(y) = [<y ! x ~ X>]. 
Hence,  for almost  every x ~ X, we have h(Y~) = Y, i.e. 1r~(y) = y~, which was to be 
proved.  

Finally, let y e Vo+~. We wish to show that y = [(~r~(y f3 x) ] x e X>]. For this, it 
suffices to prove that  y = ~'"(](y)fq j"Vo). But i(y)f 'l  j"Vo = j"y, and 7r(j(z))= z for 
z ~ Vo. So our  claim is evident. []  
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Note that  since, in the notat ion of 2.5, j ( r ) >  IVo] i> 0, we have that 0= < r for 
almost  ever: '  x. 

Let  us say t l 'at  a proper ty  P(x) is local iff it has the form 36(Vn~q~(x)). The  
ul traproduct  representat ion makes  it evident  that  if P(x) is local and for some 3', 
P(3') holds, then if ~ is supercompact ,  P(y) holds for some y <  x. This is worth 
some elaborat ion.  

Definition 2.6, Kecall ~he L6vy hierarchy of formulas (see L6vy [21], Definition 1). 
For a~y trans~ti ¢ M, s~ly 2;, (resp. 17,) relativizes down to M iff whenever  P(x) is 
~ ,  (resp. ILj,  i~ a ~ M and P(a) holds, then M~P(a).  

Y,,~ relativizc, s down to M iff H,,+~ does. According to [21] Theorem 36, if 
IVol = 0, then ~,;~ (and hence iI:~) relativizes down to Vo. Moreover ,  it is easy to 
cons~truct a se~tence ¢ so tl=a'~ V0~q~ iff IV01 = 0. With these points in mind, 
suppose now that P(x) is X2, say -'ty Q(x, y) where Q i s / /1 .  Then,  

P(x) i~ 3t3 [v~ ~(~, &~y Q(x, y))]. 
Thus, ~ny 22 proper ty  is local (as we have defined this notion just before 2.6). 
Conversely,  it is well known that "x  is a V,~" i~ Ha, and hence a local proper ty  is 
one gi~ en by a ~ formula.  

Theorel~l 2.7. f f  ~ is supercompact, ~2 (and hence Ha) relativize down to V~. 

Proof.  :.qappose P(x) is By O(x, y) where O is I1~. Let a ~ V,, so that P(a) holds, 
and fix b such that O(a, b) holds. By supercompactness ,  let j : V---> M with critical 
poipt ~: .'~o ~t~at b e M N V i ~  ~. Note that j (a)=a.  Thus, (Vj~)~P(a))  pa, so 
V~ ~P(~,~). [] 

Observe  that 2.6 i.~,; optiraal, since the Z3 sentence "There  is a supercompact  
cardinal" feils in \1  if K is the least supercompact  cardinal. (Cf. 5.8 below, or 
note that "~ is not ~ 'cpercompact" is ~Sz and apply 2.6.) 

It is pert inent here to discuss the question of cardinal powers in the context of 
large cardinals. Silver [42] showed that in L[~.]~ where ~ is a normal  ultrafilter 
over a measurable cardinal, the G C H  holds, and hence: Con (ZFC & there is a 
measurable cardinal) implies Con (ZFC & there is a measurable  cardinal & GCH).  
Kunen [18] then showed that Con (ZFC & there is a measurable cardinal K & 
2 ~ > ~  +) implies Vcv Con (ZFC & there are a measurable  cardinals). This 
surprising result certainly indicated that strong assumptions would be necessary to 
get a model with a measurable cardinal K so that 2 ~ >  ~+. 

It was Silver who first found such a model:  he showed that if K is supercompact  
in the ground model,  there is a forcing extension in which 2 ~ >  K + and r is still 
measurable.  (A more precise formulation of Silver's result is possible in the 
terminology of Section 5: If K is t~ + 6 + 1)-extendible in the ground model,  there 
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is a forcing extension in which 2 K ~R~.~ and K is still ~-extendible if ~ >0 ,  or 
measurable if -~ was 0.) Combining this result with one further extension using 
Prikry forcing (to change the cofinality of a measurable cardinal to a~) yielded the 
first example of a singular strong limit cardinal K so that 2 " >  K ÷. Magidor [27] 
then proved the following relative consistency result, using in part Silver's resu,~t. 
Given a cardinal with a sufficient degree of supercompactness in the ground 
model, there is a forcing extension in which 2 ~- = ~,o÷2 and for every integer n, 
2 ~ <~R,+2. Recent results of Jensen [9] and Mitchell seem to indicate that one 
cannot expect to weaken the initial large cardinal assumption by very much. See 
also the end of Section 7 for a result of Magidor with a stronger conclusion, but 
also starting with the stronger assumption of hugeness. 

Silver's method of iterated forcing, first used to get the result mentioned in the 
previous paragraph, is often called Backward Easton Forcing. It is applicable to a 
variety of problems in set theory, and in particular can be used to show that the 
presence of large cardinals has little effect on the cardinal powers of regular 
cardinals. For example, Menas [30] shows that if K is supercompact in the ground 
model, and • is a function on regular cardinals so that 

(i) ~t <~ tx implies ¢ ( h ) ~  ~(t~), 
(ii) cf (qB(k)) > ~, and 

(iii) q~ is local (as previously defined, i.e. 2z), then there is a Backward Easton 
forcing extension in which cardinals are preserved, 2 ~ = ~(h)  for every regular h, 
and K is still supercompact. 

When a cardinal K is supercompact, other than the technical result that there 
are K m~asurable cardinals below K (see 3.5), little is known about the behavior 
of the set theoretical universe below K which does not already follow from the 
measurabilily of K. 

Concerning the behavior of the universe above K, several interesting facts are 
known. Some of these already follow from the weaker assumption of strong 
compactness (see Section 4), but one exception is the fact that the second-order 
L6wenheim-Skolem Theorem holds for structures with underlying set of cardinal- 
ity at least K. Magidor [26] shows that, in an appropriate sense, we need the 
strength of supercompactness in this case. 

In Section 4, the main consistency results involving supercompactness and 
strong compactness are stated. Section 5 contains several results on supercom- 
pactness in the context of extendibility, and another characterization (5.7). To 
conclude this section, we mention that there are combinatorial characterizations 
of supercompact cardinals (Magidor [23]), in terms of concepts first formulated by 
Jech [7]. Also, Prikry [37] has recently formulated a concept of real- 
supercompactness in analogy to real-valued measurability, and observed that if it 
is consistent that a supercompact cardinal exists, then it ~s consistent that 2" is 
real-supercompact. He also showed that several consequences of supercompact- 
ness that we will discuss shortly (see 4.6, 4.7) also follow from real- 
,,;upercompactness. 
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3. Normal ~l~rafil:~ers 

With the introduction of normal  ultrafilters in the previous section, we now take 
t ime to investigate them in some detail. First, some technicalities; recall that  if x is 
a set of ordinals, .~ denotes  its order  type. 

Propositiol~ 3.1. f / ~  is normal over ~ .A  and a <~ A, 

(ii) a =! /~'Na]  :: -~A) ]~ .  

ProoL j"~ = ] %  r l j ( a )  and ] " ~ = a .  [ ]  

Proposition 3,,2. I f  ~ is normal over ~ A ,  M e  is actually closed under A <~- 
sequer, ces. 

Proof.  Let  /: 'V--~M,u~V~e-x/~. By 1.7(i), it suffices to show tha~i / " ( ~ 3 , ) ~  Mr, 
since ~ ~ = ]~A ]. However ,  ] " ( ~ A )  = ~ (]"A) = ( ~  (]"3))~ ~ M. (Here,  the first 
equali y holds as ](x) = j"x for any x s ~ ) t ,  and the second, as M is closed under 
3,-seqLenees and j"A~M.)  [] 

We :ee::t present  another  structural result about  normal  ultrafilte, rs, which has 
alread? appeared in $olovay [43]. First, a prel iminary observation.  

Proposi t ion 3.3. Let K <. )t and G be a o~-J6nsson function over A. I f  ql is a normal 
ultrafii'ter over !P~A, 

{ ixGf~'x is w-J6nsson over x} 6 og. 

Remark~  G e:~:ists by 1 . .  Our  definition of a function being o)-J6nssgn is slightly 
stronger than tl)e on :  used in [43], but there is little difference in the manipula-  
tions. 

Proof .  of 33 .  By Lds '  Theorem (1.4), it suffices to show j (G)  I'°j"A is w-J6nsson 
over/") t .  (Here,  we need not distinguish between V and M, as M is closed under 
3,-sequences.) So, suppose Xc_j"3, and IX! = ]]"A]--: A. If Y=j-I(X), since G is 
~o-J6nsson over 3 ,̀ we ha, 'e G " ' Y  = 3`. So, given any a < A, le.~ s ~ ' °Y  such that 
G ( s ) =  a. Then j(c~)= ] (G( s ) )=  ](G)(](s)), and ] ( s ) e ' X .  Thus, we have shown 
j (G)"° 'X = j",L which was to be proved. []  

The fol!owing is Theore, m 2 of [43]. 

Theorem 3,A. Suppose K ~ A are regular cardinals and ~ is a normal ultraIiiter over 
~ A .  I f  F:  :~'~t -~ 3, is defined by F(x)  = sup (x), then there is an X ~ °11 so that f: [ X is 
one-to-one. 
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Proof .  Set X = { x  ~ ~ , ,A t~  is inaccessible, x is closed under o~-sequences, and 
G ! ' x  is w-J6nsson over x}. By 3.1, 3.3, and further use of Eo~' Theorem (1.4), 
X ~ .  We show that X has the required property.  

Assume that x, y ~ X, and sup (x) = 'y = sup (y). As 2, ~ are inaccessible and ~, y 
are both dosed  under  o~-sequences, a simple argzment  shows that x f'l y is ce.final 
in % and hence l x l = l x f ' l y l = t y l .  Thus, ~ay the ~,-J6nsson property, x =  
G " ' ° ( x ~ y ) = y .  

It  is not  hard to see that if Y ~ ~ ,  U {~x I x ~ Y} = ~ ,~ .  Thus, by 3.4 we can 
conclude that if K is supercompact and K ~< h is regular, then h <~= ,k. This fact 
already follows from the strong compactness of K (Solovay [ 4 3 ] ) - - s e e  Section 4 
for further remarks. 

Recall now that the term "normal"  is already known in another context: if K is 
measurable, a non-principal K-compiete ultrafilter °/t over ~ is normal iff in M~, 
K=[id] .  This, of course, just means that whenever f~K~ is such that 
{a < K [ f ( a )  < a} ~'~/, there is a 3, < K so that {a [ [ (a )  = 3,} 6 q/. Normal  ultrafilters 
turn out to be rather special, but  one can always get them from ele~aentary 
embeddi~gs. In fact, it is easily shown that the ultrafilter of 1.2 is normal. 

We now have a notion of normality in two senses, but in fact, th~re is a 
one- to-one  correspondence between normal ultrafilters over ~ and normal 
ultrafilters over K. If of is normal over K, qZ = { X _  ~ I X f3 K ~ 7/'} is norn lal over 
~ K .  Conversely, if ~t over ~ K  is normal, K ~ .  If not, then { x l x  is not an 
ordinal} ~ °/t. For such x, let f(x) ~ x be so that f(x) is the least above some ordinal 
not in x. By normality, [ f ] = J ( 7 )  for some 3~< r, but  this contradicts { x ] 7 ~  x}~-z 

Deterraining the number  of normal ultrafilters possible over a measurable 
cardinal has turned out ot be an interesting problem. Kunen [17] showed that in 
L[qz], the universe constructed from a normal ultrafilter ~ over K, ~t N L[~t] is the 
only normal ultrafilter over K. Kunen and Paris [19] showed that if K is 
measurable in the ground model, there is a forcing extension in which K carries 
~!he maximal number  of normal ultrafilters, i.e. 2 '~. Then Mitchell [33] more 
recently showed that if K is 2~-supercompact and ~" i s~  K or one of the terms K + 
or K ÷+, there is an inner model in which ~ is measurable and carries exactly ~- 
normal ultrafilters, It would still be desirable to get Mitchell's relative consistency 
results starting from just the measurability of K. 

In Mitchell's model  with exactly two normal ultrafilte~s over K, one contains the 
set {a < x I a is measurable} and the other does not. I~ this regard, con~;ider the 
following two propositions. 

Proposition 3.5. If  r is 2~-supercompact, there is a normal ultra[ilter ~ over ~ so 
that {a < K I a is measurable}~ qz. Hence, 2"-supercompactness is already enough to 
assure that r is the •th measurable cardinal. 
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Pr~,o!i. Let j :V---~ M with critical point ~, so that M is Hosed under  2~-sequences. 

If ~ ~s defined by 

X ~ /  iff X = _ r ~ z ~ e j ( X ) ,  

#/is nor~nal over ~, as before. But since M is closed finder 2"-sequences,  it is not  
hard to see that every ultrafilter over ~ is a member  of M. Hence,  K iS measurable 
in M, i.e. {a < r i~  is m e a s u r a b l e } ~  by the  definition of ~t. [ ]  

Propt~sitie,~: 3.6. A n y  measurable  cardinal  K carries a normal  ultrafilter all so that  

{a < K [ a !-" not m~ asurable}~ql .  

Proof .  By induction. Let  °V be a normal ultrafilter over K. Set T =  {a < K [ a  is 
measurabt,~}. If T¢  ~, the theorem certainly holds for K. So assume T~  o//,. For  
each a e T, by induction hypothesis let q/~ be normal over. a so that {/3 < a [/3 is 
no~: measurable}e~//,. Define '~t over r by 

It i ~ not hard to check that ~ is a normal ultrafilter over r so that {a < g ] a is not 
me~surab]e} 6 ~. []  

"~7~e ~;e two propositions shoxv that if r is 2 ~-supercompact,  there are a~: least two 
no:m~l ultrafilters over r. In fact, there are 2 2" normal ultrafilters over ~, and this 
res~,Jt is a special case of a general result on the number  of normal ultrafilters over 
~KA. To prove the main ~.heorem (3.8) from which this will follow, we develop 
some techr~ical machinery of independent interest. 

C,3,nside: the following situation. K ~ h < t~ and there is a normal uitrafilter qt 
over ~ t ~  For  X_~ ~ if we let X [ A = {x D h [ x ~. X} and set 

it is no:  ~ard ~o see that ~ [ A is a normal ultrafilter over ~ h .  In fact~ 

Consider ~he following diagram: 

\ 1 
M1 ~ V ~ / ~  

where k is defined b), 

k ([if(x) ] x e e ~ ) ] . , i , )  = [q (x  n ,~ ) ! x e e ~ ) k .  
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Proposition 3.7. k is an elementary embedding ami the diagram commutes. 

Proof. Straightforward. 

For those familiar with the Rudin-Keisler ordering on ultrafilters, note that 
q~l h is just h,(~/), where h : ~ / x - - ~ h  is defined by h(x)= x f q A, and k is the 
associated elementary embedding. 

Concerning the action of k, first note that if a ~2t, k ( a )=  a since 

Next, we show k ( x ) = x  for x ~ h .  Let 3,<~¢, and suppose h:y--*x is 
snrjective. Then h ~ Mo. Since h (3/) = % k(h) is ~ function with domain ,/. For 

< % k(h)(¢)= k(h(~))= h(~) by the preceding p:tragraph. So k(h)= h, whence 
k(x) = range (k(h)) = range (h) = x. 

Next, since k ( ~ A ) = ~ A M , = ~ A ,  an argument using elementarity and the 
preceding paragraph shows that k(X) = X for X ~ 9~fit. 

Finally, if X ~ f ~ h f ) M o ,  then k (X)=X,  sioce f f~h~_Mo by 3.2. Using 
these results, a straightforwar~t argument (Menas [32], 2.6 and preceding) shows 
that if t~ ~> 2 ~<', the least ordinal moved by k is (2~<') +~o. However, this particul~r 
fact will not be used in this paper. 

We are now is a position to prove the main result of this section 

Theorem 3.8. If K is 2 x<" -supercompac~, X ~ A  implies that there is a ~ 
normal over ~ ) t  so that X ~ My. 

Proof. Let ~t be normal over ~ ( 2  ~'") and consider the diagram: 

V ~°-~Mo = V~/~a I~ 

Argue by contradiction. Let ~(X, K, A) iff X ~ O ' ~ ) t  and for any ~ normal 
over ~ h ,  X ¢ ( ~ , A f ' I M ~ . ) .  Suppose 3Xq~(X, K,A). Then MI~3X~o(X, K,A). 
This is so since every normal 'V over ~ ) t  is in M~, and ~ 5 ~ h  f3 M~ is correctly 
"computed" in M~:every function ~A--~V~ is in M~ and ~ 9 ~ h f ' l M r c . -  - 

(v~+,)~ =_ (vw~) '~  = &(v~). 
Recall now the properties of k discussed just before the theorem. Since 

k(K)=~ and k (h )=h ,  Mo~3Xq~(X,t~,h). Let Xo~Mo so that Mo~¢(Xo, s,X). 
X o ~ 5 ~ X  so k(Xo)=Xo. Hence, M~o(Xo ,  K,X). But this contradicts Xo~- 
Mo = M,u Ix and the definition of q,. [] 

The following improves the result of Magic~or [25]. 
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Corollary 3..9. I f  ~ is 2a~'-supercompact, there are 2 a'<" normal ultrafitters over 
~ .  Hence, if ~ is 2~-supercompact, there are 22- normal ultrafilters over K. 

Proof.  If ~ is normal over ~ A ,  note first that  ] ~ , A  N M~-]< (2x")  +. "Chis is so 
because 

t,22~') ~ < & ( K )  < (2~<') +, 

the first inec'~ qty because j r (~)  is inaccessible in My and the second, a trival 
upper bound ~t~e the analogous 1.8 (iii)). Hence,  since by 3.8, 

~ A  = I_J { ~ x  A M r  I ~ normal over ~,dt}, 

there must be 

normal ultrafilters over ~'~A. [ ]  

By examimng the proofs of 3.8 and 3.9, one can check that if K is 2 ~- 
supercompact there are 2 z" normal ultrafilters over K containing the set {a < K ] a 
is me~,~rable}. But paradoxically, the following question is still open. 

Open  Ql~;e~fien 3.10. If K is 2~-supercompact,  is it provable that there is more 
than on~ norraal ultrafilte~ over K containing the set {a < K t a is not  measurable}? 

We car~ al:;o prove something about the following ordering defined on ultrafil- 
ters. 

I)efinit~on 3.11. If ~ and o//, are to~-complete ultrafilters, ~<1T' i f f  q/~ M~r. 

<~ on no:ma~ ultrafilters over fixed ~ ) t  is a well-founded partial ordering (by a 
generalization of 1.t of Mitchell [33]). Notice that if ~ is normal over ~ A ,  there 
are at most 2 ~<" normal ul~rafilters over ~ h  which are<apredecessors of °~, by the 
first fact used in the proef  of 3.9. 

Corollar~ 3,12 If K is 2x~-supercompact, there is a<~ chain of normal ultrafilters 
over g~.:i of length (2x'K) ÷. Hence, if • is 2~-supercompact there is a<lchain of 
:zormal ultrafilters over K of length (2~) +. 

Proof.  Given at most 2 A~ normal ultrafilters, one can code them as some 
X e ~ f f % A .  Thus, 3.8 can be used to find some normal ~' over ~,~. so that 
X~.M~.. [] 

For an application of the order<a, see Magidor [22]. He shows that if jz < K are 
regular, a~cha in  of order type /x of normal ultrafilters over K can be used to 
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define a partial ordering such that forcing with it preserves all cardinals but 
changes the cofinality of ~c to /x. This, of course, complements Prikry forcing. 

To conclude this section, we mention that, analogous to Rowbottom's  partition 
result for normal ultrafilters over a measurable cardinal, there is the following 
partition property: say that a normal ultrafilter q/ over ~,A has the partition 
propen 7 iff whenever f:[~A]2--->2, there is an X s ~  and an i < 2  so that x, y e X, 
x c_ y, and x #  y imply that f({x, y})= i. Menas established a characierization of 
this property and showed that 3.8 holds with the additional requirement that the 
normal ultrafilters over ~,A each satisfy the partition property. However, Solovay 
has shown that if K < A, K is A-supercompact and A is measurable, then there is a 
no-real ultrafilter over ~ A  without the partition property. Also, Kuneo proved 
that the least tz > K so that there is a normal ultrafilter over ~ / ~  without the 
partition property is II~-indescribable and strictly less than the least ineffable 
cardinal greater than K. See Menas [31] for the details. 

4. Strong compactness 

The concept of strong compactness is discussed in Keisler-Tarski [12] and 
historically was motivated by efforts to generalize the Compactness Theorem of 
lower predicate calculus to infinitary languages ~f~. Supercompactness was con- 
ceived partly in order to ostensibly strengthen the definition of strong compact- 
ness in a desirable manner, but Solovay conjectured that the two concepts coincide. 
Though this conjecture stood for some time, it is now known to be false (see 4.4 
and after). 

In view of our thematic approach, in this section we consider strong compact- 
ness as formulated in terms of elementary ernbeddings and ultrafilters. The 
connection with ~ ,  and other equivalent formulations are given in a variety of 
sources. 

Definition 4.1. If K <~ A and ~ is an ultrafilter over ~ ) t ,  then ~ is fine i~ ~t is 
K-complete and for each a < A, {x l ~ ~ x} e q/. 

Thus, the defnition leaves out clause (iii) of the definition of normality (2.3). 

Definition 4.2. If K <~ A, K is A-compact iff there is a fine ultrafilter over ~ A .  K is 
strongly compact iff K is A-compact for all )t/> ~. 

Trivially, if K is A-supercompaet, K is A-compact, a:ad K is measurable iff K is 
K-compact. If ~ <~ )t < ~, K is/z-compact,  and 0/{ is a fine ultrafilter over ~ /~ ,  then 

[ A is a fine ultrafilter over ~ A ,  so that • is A-compact. The reader is cautioned 
that there is a different, equally natural notion of ,,~-compactness often seen in the 
literature. 

We proceed immediately to the characterization 
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T h e o r e m  4.3. I f  ~ ~; A, the ]bllowing are equivalent: 

(i) ~ is h-comi~act, 
(i~) there is a j : V--~ M with critical point K so that: X ~_ M and tXI :~ A implies 

there is a ~ / e M  so that Xc_  Y, and M~IYI<j(~). 
(iii) if ~¢ is ,~ny K-complete filter over an index set I so that ..¢ is generated by <<. h 

sets, then ~ can be ex~ended to a K-complete ultra[ilter over L 

ProoL (~)-*(ii). Le t  ~ be  fine over  ~ , h ,  and consider j :V- - -~M-~V~," /~ .  If 
X={[L]Io'<hI~M, set O ( x ) = l [ , ( x ) l a e x }  amd Y = [ G ] .  

(ii)--*(iii). t~.zppose ~ is as hypothesized,  and genera ted by e lements  of Tc_ 
!9(I), where 17"t~xo By (ii) let Y ~ _ j " T  so that Y e M  and M~IYI<j(K). In M, 
j (~ )  is a ](K)-ccTmplete filter and j(~)Cl Y is a subset of cardinality < ](K). Hence,  
there is a c e M so that c ~ ~ (j(.¢) Cl Y). Set X e °/tiff X c I & c e j (X) .  Then ~t is 
a K-complete ultrafilter which extends & 

(iii}---~ (i). Extend the K-complete filter over  ~ h  genera ted by the sets {x [ a e x} 
for c~ < h to a ~,~-complete ultrafilter. []  

4.3 (ii) lhu;s shows the weakness of h-compactness ;  with h-supercon 'pac tness  
one can always assert that X = Y. We mention here that  Ketonen [13] has another  
cFara: terizat ion:  if K~<;~ are regular, r is h -compac t  iff for  every regular t~ so 
lhat  ,:¢-~:/x ~ h there is a uniform K-complete  ultratilter over  tz. For a further 
discu~:;sim. ~ of fine ultrafilters, normal  ultrafilters, and connections involving the 
Rudin-Keis ler  ordering, consult Sections 2.1-2.3 of lVlenas [32]. 

The following result indicates that strong compactness  and supercompactness  
are not the same concept.  

lProp~i t ioa  4.,4. (Menas [32] (i) I~ r is measurable and a limit of strongly compact 
cardinals, the~ K is strongly compact. 

(ii) i]" K is t.he {ec ~t cardinal as in (i), then r is not 2 "-supercompact. 

Proof ,  For (i), iet ~d be a non-principal  K-complete ultrafilter over  K so that  
A = {a < ~ I a is strongly compact} e °/t. If h -~ r, for a ~i A let ~ be fine over  ~9~h. 
Define ~:, by 

Then ~ is fine over  ~ h .  
For (ii), argue by contradiction, and suppose r were 2~-supercompact .  Let  

j : V - - * M  with critical point K so that M is closed under 2~-sequences. By 
definition of r and elementari ty,  we have in M that j ( r )  is the least measurable  
cardinal which is a limit of strongly compacf  cardinals. But  M is closed under  
2 "-sequences so that r is measurable  in M, and also, if a < r is strongly compact ,  
j ( a )  = a is strongly compact  in the sense of M. Hence,  in M, K is also measurable  
and a limit of strongly compact  cardinals, which is a contradiction. []  
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It  is a consequence o[ the existence of an extendible cardinal (by an easy 
strengthening of 5.9 of the next section) that there are many cardinals as in 4.4 (i). 
Menas was able to establish the following result. 

(a) (Menas [32]) Con (ZFC & there is a measurable cardinal that is the limit of 
strongly compact cardinals) implies Con (ZFC & there is exactly one strongly 
compact cardinal ~, and K is not even K÷-supercompact), 

The following are results of Magidor. 
(b) (Magidor [24]) Con (ZFC & there is a supercompact cardinal) implies 

Con (ZFC & there is a supereompact cardinal with no strongly compact cardinals 
below it). 

(c) (Magidor [24]) Con ~ZFC & there is a strongly compact cardinal) implies 
Con (ZFC & there is a strongly compact cardinal with no measurable cardinals 
t, elow it). 

Though Kunen [17] has shown that the existence of a strongly compact cardinal 
implies the existence of inner models with any specified number of measurable 
cardinals, the results (a), (b) and (c) indicate that strong compactness is a rather 
pathological concept in the hierarchy of large cardinals. Perhaps it should ulti- 
mately be re3arded as a generalization of weak compactness in the same spirit 
that supereompactness is a generalization of measurability. 

In connection with these considerations, recall that in the previous section we 
showed that if K is supercompact there are many normal ultrafilters over K. 
However, th~ following is still open. 

Open Question 4.5. If ~ is strongly compact, can it be proved that there is mere 
than one normal ultrafilter over ~? 

4.6. Concerning the effect of the existence of a strongly compact cardinal ~ on 
the behavior of the set theoretical universe, Solovay [43] has proved that if A ~ K 
and A is a singular strong limit cardinal, then 2 ~ = A ÷. As noted by Paris, Prikry 
and probably others, this result now follows from the easier result of [43] that if 
A/> A and A is regular, then A <~ = A, and Silver's recent solution to most cases 
of the singular cardinals problem: 

Assume A-~K and A is a singular strong limit cardinal. If c f ( l ) < K ,  it is 
"mmectiate that 2A---Acf(x)~<(A+)cf~)=A+. But if cf(A)~K, S = { a < A ] c ~  is a 
singul~x strong limit cardinal of cofinality < K} is a stationary subset of X and a ~ S 
implie~,; 2 ~=  a + by the previous sentence. Silver's result states that if ~ is a 
singular cardinal of uncountable cofinality so that those a < #with 2" = a + forms 
a stationary subset of t~, then 2" = t~ +. Thus, we can conclude 2 x = t ÷. 

However, we note that the further results in [43] on powers of cardi.~.al~: cannot 
ostensibly be simplified in this way. 

It  is also proved in [43] that ff K ~ A and K is A+-supercompact, then Jensen's 
combinatorial principle Da fails (see Jensen [8] for the result that if V = L, r-I~, 
holds for every infinite cardinal/~). Since then, Gregory proved that the failure of 
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Kt~ akeady follows from ~he hA +-compactness of r. His proof used the notion of a 
hA-free Abe lian gtoup, but  a direct combinatorial  proof  is possible. Following a 
comm em of Kunen,  we present the ideas involved in general context.  

For regular ,~ >o~, let us call the following principle Ex : there  is a set S_.G 
{a < I z f ( a ) =  ~o} stationary in hA so that for all limit ordinals ~ < h ,  Sf ' l~  is not 
stationary in ¢. Jensen [8] proved that if V =  L, then Ex fails just in case hA is a 
week!) compact :ardinal. The following proposit ion is well-known. 

Proposition ¢,7. Sup2ose 
w~enever 7 a statio~mry 
limit ,ordinal ~ < hA +, S ,'3 

hA > o~ and F'I x holds. Then E~+ holds, and in fact: 
subset of hA +, there is a stationary S ~_ T so that for any 
is not stationary ~. 

Proof,  Let  es fir,~4 recall the principle I-Ix: there is a sequence (C~ 1~ < ,~ +) so that 
for ar~y ~ <: hA +, we have 

(i) C~; _c ~, and if ~ in a limit ordinal. Ce is closed and unbounded in ~, 
(ii) The order  type of C~ is~hA, 

(iii) If 3' is a limit point of C~, then C v = C~ M 7. 
Sul: pose now that T is a stationary subset of hA +. Without loss of generality, we 

can a,:mme that T consists of limit ordinals. For  a ~< it, set S, = {~:e T[C~ has 
o:der  type aL Then,  as the S, ' s  partition T into hA parts by property (ii), there is 
some ao :~ ,,~ ,.~o that S = S~, o is still stationary in h +. We now claim that for any 
limit ordir.a. ~ ~<:X +, SA  ~ is not stationary in ,~. There  are three case,;. 

(a) cf (if)= ~. Then a,.; S consists of limit ordinals, S is disjoint from any 
sequer~ce cA type ~o of successor ordinals, cofinal in ~. 

(b) cf (~)>,~ and C e has order  type ~< ao. Let  Ce consist of the limit points of 
C~. Then as c~ (~)> ~o, (~ is closed and unbounded in f, and (S t7 ~j)f7 C~ = ¢ by 
proper~y (iii). 

(c) cg (~)> ,o and Ce has order  t y p e >  a6. Let  7 e C~ so that C~ ~ Y is of type 
ao. Then if C~ is det~ned as in (b), we have by property (iii) that (SO,5)f'l  

(C '~ - (v  + f)) = 0 
Thus, the c~aim iis proved, and the proposition foilows. []  

The following theorem establishes the connection to large cardinals. 

Theorem 4.8. If hA is regular and there is a uniform, ~ -comple te  ultrafilter over hA, 
then E~ fails. 

Proof.  Let q/ be uniform, ~ol-complete over hA. Let  f:hA--+A so that 
sup {L(a)  ] a < A} = [f],~. Such an f exists since the supremum in question it, ~< [id]. 
Set 
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It is nm hard to see that ~ is a uniform, ~o~-complete ultrafilter over 3`, which is 
weakly nor,hal in the following sense: if g : 3  ̀~ 3. so that {a I g(a)  < a}E ~,  then 
for some 8 < h ,  {a [ g ( a ) < 6 } e W .  

Let us first prove a preliminary 

Fact. {a I c f ( ~ ) > t o } c  ~. 

Otherwise, for  almost every a, let {a. l n ~ o }  be cofinal in a. By the weak 
norma!ity of °It, for every n~ to  there is a 6 ,<3`  so that X,  ={(z l a , < ~ ; , } ~  °V. 
Then  Y = (]  X,  ~ ~F, but if 8 = sup 8,, < 3 ,̀ notice that a ~ Y. implies a ~< ;~, con- 
tradicting the fact that ~V is uniform. The Fact is thus proved. 

We now proceed with the main proof.  Let  S be a stationary subset of h .,~o that 
S c_ {a I cf (a)  = to}. To show that Ex fails, we establish in fact that 

(*) 
{~ ] S I"1 ~ is stationary in ~} ~ 7.  

Let  us suppose to the contrary, and derive a contradiction. Then for almost 
every ~, there is a closed and unbounded Ce c ~ so that S n Ce = 0. Define 

c={~ I{~l ~ ~ c~}~ ~}. 
Because ~ is tol-complete, and as almost every ~ has cofinality >to by the Fact, C 
is to-c}osed: given a . e  C for nero ,  sup a . e  C. Also, we claim that C is an 
unbounded subset of 3 .̀ To show this, let /30< h be arbitrary. Using the weak 
normality of °V, for each integer n we can define functions f.  : 3̀  -~ 3̀  and ordinal,,~, 
/3. by induction so that 

(a) A .  ={¢ I t , (~)~ C~ & f, .(¢)> 13.}e °K, 
and 

Since °K is tol-complete, X =  ~ (A.  O.B.)~ ~K. But then if /3 = sup 13,~, iit is not 
hard to show using the set X (and the Fact proved earlier) that for almost every ~, 
~ c ~  

We have just established that C is oJ-closed and unbounded in X. Since S is a 
stationary subset of {a < 3  ̀[ c[ (a)  = ~o}, we must have Cf3 S #  ¢. Having arrived at 
this contradiction, we have thus established (*) and the theorem. E3 

The following is now immediate from 4.7 and 4.8. 

Corollary 4.9. (Gregory) If  K is 3`+-compact, then Via fails. 

We remark that the main idea in the proof of 4.8 is due to Jensen, Prikry and 
Silver, and is stated (somewhat obscmely) in Theorem 20 of Prikry [39]. Let U~ 
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for regula~ f: < A 0e like Ex but with the required stationary S_c{a !cf ( a ) =  K}. 
The method of proof actually shows (see [39]) that if ~here is _ uniform ultrafilter 

over A which is K-descendingly complete, then E~, fails. Prikry had to assume 
some form of tt~e G C H  to get a weakly normal ultrafilter related to such a 0g, but 
it is now knowa that no such hypothesis is needed (see Theorem 2.5 of [!0]). 

The referee t~as outlined a proof of 4.8 (which similarly generalizes for E~) that 
does not use weak normality. Suppose that S ~ A  witnesses E~. For a ~ S ,  let 
(3'~"1 neon) be cofina1 in a. Call a function f:S---~to a dis]ointer iff whenever 
~,¢/3~ S, m > f ( c ~ ) z n d  n> / ( /3 )  implies y 2 #  y~. By the regressive function 
lemma, there is no disjointer for S. However, one can s low by induction on ~ <  h 
that there are disjointers )~ for S fq ~, using the fact that S tq ~ is not stationary in 
~. If 0// were uni ~ v~, ~o~-complete over A, one can obtain a disjointer for S (and 
hence a contradiction) by ~aking the ultraproduct of the/~. 

5. Extendible cardinals 

We now consider an axiom which implies the existence of many supercompact 
cardinals. ' rhe notion of exterdibility is motivated in Reinhardt [40] by considera- 
tions involving .~trong principles of reflection and resemblance formalized in an 
extended t leory which a~,ows transfinite levels of higher type objects over the set 
theor~,t:.cal universe V. Essentially, Cantor 's O, the class of all ordinals, is 
hypothesiz~d ~o be extendible in this context. With the natural reflection down 
into the r~.aln: of sets, we have the concept of an extendible cardinal. (As 
Remhardt  [4(,~ po~ints out, however, this sort of internal formalization with.~n V 
rather begs the question if we want to discuss fundamental issues about the nature 
of V and CL) 

More sfi~plisticaHy, recall that Kunen's Theorem (1.12) showed that one cannot 
embed V hate too fat an inner model° As a natural weakening one can instead 
consider embedding initial segments of the universe into larger initial segments, 
j : V~ --~ V~ where c¢ ~ ~. (As before, implicit in this notation is the assertion that ] 
is no~ the identity.) T~s  approach may be conceptually helpful, but the exact form 
of the following,, defim~on owes its origin to the considerations of [40]. 

Definition 5.1. If "O >0 ,  K is 77-extendible iff there is a ~r and a ] :V~+.  --> V~ with 
critical point K, where K + ~  < j (~)<f f .  K is extendible iff K is r/-extendible for 
every ~1 > 0. 

l~emarks. (i) Since -q ~ r , .K implies K +rl ='0, the exact form of tile above 
definition is distinctive only for small rl. 

(ii) When , /<K,  it is not hard to see thai ~'= j(K)+rl. This fact will be used 
without further reference. Note that in such cases and especially for rt an integer~ 
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it is clear that 'o-extendibility is just a postulate of resemblance : With j : V~+, 
Vj(~)+n, V ,  and Vi~) are indistinguishable as far as ('o + 1)th order  propert ies  are 
concerned.  

(iii) If K is ~-extendible  and 0 <  8 <'O, then K is ~-extendibte.  Since the term 
V~ is definable from a, if ~ and j are as in 5.1 for the -0-extendibility of K, then 
j IV~+~ :V~+~--~ Vj(~+~)is also an e lementary  embedding,  as 

V~ +~ U- ~ (x )  o V~ +,~ It- (V~+~ It-,v(x)) 

W¢ II- (Vif~ +a)lb q( j (x ) ) )  

V , ~  ÷,, II- ~(j(x)). 

That  restrictions of e lementary  embeddings  in this way at'e also e lementary will be 
assumed in what  follows. 

(iv) For  the related concept  of complete rl-extendibility and some result~ 
concerning it, see Gai fman [-¢]. 

(v) The  requi rement  j ( k ) > K + ~  in 5.1 can be regarded as a natural one, 
reminiscent of the definition 2.1 of A-supercompactness.  It is a useful, bet  not 
stringent, condition; in fact, if it were ever  the case that j(K)<~ K +'o,  we would 
have a much stronger  axiom (A2 (K)of Section 8). In this connection, we remark 
that  the definition of extendibility given in [40] contains an equivocation (pointed 
out by Wang) between s ta tements  E0 and E in 6.2c, which leaves Axiom 6.3 
unclear. We take this opportuni ty  to resolve this ambiguity: what was intended 
was E, rather  than Eo (this corresponds to including the condition j(tc) > K -e r/ in 
our  Definition 5.1). This should not affect the ensuing discussion in [40], since it is 
argued there that the additionail condition is natural,  though not forced by the 
guiding idea. (In 6.3 of [40], it is suggested that the critical step in arriving ztt 
Kunen ' s  contradiction is the t rea tment  of V~+n as a universe in itself, which 
moreover  is absolute in a strong sense (in our formulat ion,  this amounts  to setting 
K+'O = ~), rather  than anything in the guiding idea behind extendibility as 
expressed in E or E0.) The following result shows that  (full) extendibility as a 
concept  is not affected, in any case. 

Proposition 5.2. K is extendible iff .for evet3~ ~ > ~, there i:; a ~ and  a j : V~ --~ Vc 

with critical point ~. 

Proof .  The  forward direction is immediate.  Fo:r the converse, it suffices to show 
from the hypothesis that if 'O > K • K, then ~ is 'o-extendible. 

Given such an ~, first get an auxiliary ordinal 3' > 'O so that 

(a) cf (~,) = ~o~, 
(b) whenever  there is a k : V ,  ~ V¢ with critical point K SO that k (K)<  % there 

is such a k (with the same value for k(K)) for some K so that K<3'.  
We can use a reflection argument  to get (b), and (a) can easily be arranged. 



100 R.M. Solovay, W.N. Reinhardt, A. Kanar ~ ~ri 

By hypgthesis, let j : V r - - >  V o with critical point :. Set Ko = r,  and for n ~ co, 
u,,÷~ ,=j(r~) whenever  possible (i.e. whenever  ~ ,<3` ) .  If  K, is defined for each 
integer ~, then sup {r ,  tn  e co)< 3' since cf (~/)= co~. But then, we can now get a 
contradictmr~ using Kunen ' s  a rgument  (1.12). Thus, it follows that  there is an n so 

that  ~¢. < 7 ~:- K~ ÷~. 
To conclude the proof,  it suffices to establish P ( m )  for every m < n +  1 by 

induction on m, where P (m)  states: there is a ~ and an i :Vn-->  V~ with critical 
point ~ so t:aat i(K~= K,,÷I. This is so, since , /-extendibili ty would follow from 

P(~) and , - 7<~ ~ , ~ .  
Define j ~: j[  V~,. Then f :Vn --~ V~(, o with critical point K so that  f ( r ) =  ~ .  

Hence,  we have P(0). Now assume P(m) ,  where m---n.  Then,  because ~,,.~ < 3', 
by tLe proper ty  (b) of 3', there is an i :Vn  -*  V~ for some ~'< 3', with critical point 

so that i t s ) =  Km÷~. Thus,  by the e tementar i ty  of j, we have that in V o (and 
hence in V),, there is an ~:V/(,~--> Vj(~ with critical point j(K) SO that  / ( i (~ ) )=  
j(~,,, .~)= ~,+~. Recalling the definition of f above,  we can now conclude that  

• ] : V ,  ~,~,¢ '~ with critical point r so that  ,~ • f ( r ) =  ~,,~+2. Hence,  P ( m + l )  
hok,.,, and 'the proof  it, complete.  []  

If K iS supercempact ,  it is consistent that  there is no strongly inaccessible 
carci.:~l >K, since if there were one, we can cut off the universe at the least one 
and gt~.~l have a model  of set theory in which K is supercompact .  However ,  
suppose that ~ is even 1-extendible,  with ] :V,+~ ~ Vi(~)+a. Then. by e lementar i ty  
j(K) is inaccessible in Vj~,)+a, and hence in V. Similarly, if K is 2-extendible with 
j:V~+z--*Vi~.~+2, by elementar i ty  ](K) is measurabl,:  m Vs(~)+2, and hence in V. 
Thus, the extendibility of a cardinal K implies the existence of large cardinals >K. 

Ti~ese cel~sidc-rations begin to show how strongly the existence of an extendible 
cardinal aflects the higher levels of the cumulative hierarchy, and why A- 
extendibility cannot  be formulated,  as ;~-supercompactness can, merely in terms 
of the cxisten.:e of certain ultrafilters. They  also point to the close relationship 
between e×ten tibility and principles of reflection and resernblance. See the end of 
this seclion for an elaboration in terms of the L6vy hierarchy of formulas.  

We now proceed ~o investigate extendibility, particularly in connection with 
supercompactness.  Ultimately,  we will establish that any extendible cardinal K is 
supercompact  and is the nth supercompact  cardinal, and that the least supercom- 
pact cardinal is not even 1-extendible. 
Note first that 1-extendibility is already quite strong. 

Proposi t ion 5.3. I f  K is 1-extendible, then K is measurable and there is a normal  

ultrafilter °t1 over K so that {co < ~ 1 c¢ is measurable}~ ~ .  

Proof.  Let j :V~+I--> Vw,)+I with critical point ~¢. Then ~,/ defined by X ~  ~ iff 
Xc_ K & • ~ j ( X )  is normal  over K. Certainly 0~/~Vj~)+I, so V~t~)÷I~K is measura-  
ble, i.e. {a < K I c~ is measurable}e ~ .  []  
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We now proceed to establish some connections between degrees of supercom- 
pactness and degree:~ of extendibility. 

Proposition 5.4. I f  K is W~. , [ - supercompac t  and  "q < r, there is a normal ultrafilter 
ql over K so that {a < K l a  is ~-ex tendib le}~  °bt. 

Prooi.  Let ]:V---> M be as in IV,+nl-supercompactness. Then V.+.~ 6 M, since 
V,,+, is hereditarily of cardinal <~[V~+,I. Similarly, if we set e = j  IVy+n, e~_M. 
Now in M, e :V,+,~ --~ j( V~ +n) is an elementary embedding with critical point ~ and 
e(K) > ~ +-q, since this is true in V. Thus, K is "q-extendible in M. If we let ~ be 
the ust~al normal ultrafilter over ~x corresponding to ], then it follows~ that 
{o < K I a is ~l-extendible} ~ q/. [] 

Thus, supercompactness implies the existence of many cardinals with some 
degree of extendibility. One conjecture which expresses confidence in even 
2-extendibility is the following. 

Open Question 5.5. Does Con (ZFC & there is a 2-extendible cardinal) imply 
Con (ZFC & there is a strongly compact cardinal)? 

Of course, by 5,4 an affirmative answer to this question would imply that the 
consistency strength of strong compactness is very weak compared to that of 
supercompactness. 

The following proposition reverses the process of 5.4° 

Proposition 5.6. I f  ~ is rl-extendible and 6 + 1 < r/, then ~ is Iv~+~l-supercompaet. 
Hence,  if K is extendible, then it is supercompact. 

ProoL Suppose j :V~+, ~ V~ is as in rl-extendibility. Since j(K) is really inacces- 
sible and ](K)> K + 6, ] (~)> IV~+~I. Hence, since 6 + 1 < rt so that ~ V ~ + ~  _ V. +~. 
we can define a normal ultrafilter over ~V~+~ as usual: 

Xe°/ /  iff j " V ~ + ~ e j ( X ) .  [] 

Incidentally, the methods of 5.4 and 5.6 yield another characterization of 
supercompactness, which was also noticed by Magidor [26]. 

Theorem 5.7,. K is supercompact iff for every r I > K there is an e~ <: K and a 
]:V,~--*V n with critical point 3~ so that ](3,)= K. 

Proo| .  For the forward direction, fix r l>K and let j :V ~ M  be as in the 
IVn [-supercompactness of •. Then just as in 5.4, j [V~ :V.  -* Vj(.; M is an elemen- 
tary embedding which is in M. Thus, M models the following: "there is an 
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a < j ( r )  and an elementary embedding e :V=--> Vj(n) with a critical point 3' such 
that e( '~)= ](~)." The result now follows from the elementari ty of j. 

For  t!~e converse, fix ~/> ~ and let j :V=+,, --> V,~+,~ for some a < K, with critical 
po~at 3' so that j(3')--= K. As in 5.6, since ~N.~a c V=+,, j determines a normal 
uh~afilter ed over ~va.  But • ~V~+,o and so j(ad) is a normal  ultrafilter over 

The f,l~ ,wing proposit ion on supercompactness will be used in the next 
theorem, but is interesting in its own right. 

Propos~tR~n 5.8. If  K is ~-supercompac~ for every a < a and It is supercompact, then 
is super, compact. 

Pr~ao~. Let t~: ~ It. We must get a normal ultrafilter over ~ t z .  For each x e ~ /~ ,  so 
that tx]>-~, let ~t~ be normal over ~ x .  Such ~ exist since Ix!< ~. Let  Y be 
ncrmal over ~x>, and define 0// over ~ / x  by 

Si:ace j%"x = [id7 ~, it is not hard to see that ~ is a normal ultrafilter over ~ /~ .  []  

Th,eor,:~:a 5.9. ii' K ~s supercompact and 1-extendible, then there is a normal 
utt~r~-.filwr ~ ot'er K so that {a < ~lc~ is supercompact}6qlo Hence, the least 
supercompact cardinal is not 1-extendible. 

Pr~oL Le~: ]:V,,+~-+Vj(~)+~ be as in 1-extendibility, and let q/ be the usual 
nozmal ultrafil~er over K corresponding to j, as in 5.3. Nov., Vs<,)+~K is 8- 
supercompact fo. ~ all 6 < j (~ ) ,  since j(K) is inaccessible. Hence,  A = {a < K [ a  is 
6-supercoml: act ~or al~ ~ < K} ~. 0~t. But by the previous proposition, a ~ A imwies 
a is ;uperco~tpact. [.'7] 

Note that if K is extendible, 3'0 = K + 1, and 3',,+a = least ordinal ~g so that there is 
a j : Vv, ' --+ V~ as in y,-extendibility, then if 3' = sup 3',, we have V~ ~ K is extendi- 
ble. However,  V v may not model ZFC. In contrast, consider the following. 

PrapositJL~n~ 5.10. I[  K<A,  K is extendible and 3, supercompact, then V ~ r  is 
extendible. 

P~o~L Suppose that K ' K < a < A .  We must show that VA~K is a-extendible.  
Since K is a-extendible in V, there is a j :V~ -+ V~ with critical point ~, so that 
j(~) > a. ]f f3 < A, we are done, so assume /3 ~ It. 

Let k :V--+ M be as in the [V~l-supercompactness of A. Then M~j:V~,--+Vt~ 
with critical point K, and j ( ~ ) >  a and /3 < k(A). So, by elementarity, in V there is 
a 6 < h ,  and j ' :V~-->Va with critical point K, and f(K)>~Y. Thus, V,~K is 
a-extendible. []  
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One can also prove 5.10 using the fact that the property "K is extendible" is II3 
in the L6vy hierazchy and so reflects down to Vx for A supercompact, by 2 .7  

We thus see that the extendibility of a cardinal K can already be comprehended 
in Vx where ,~ is a supereompact cardinal > K. This shows in particular that it is 
consistent to assume there ~re no supercompact cardinals above an extendible 
cardinal. Perhaps, 5.10 may serve to allay suspicions about extendibility, which 
might arise from the fact that it has as a consequence the existence cf proper 
classes of various large cardiaals. 

In terms of the L6vy hierarchy, this last fact about extev~dibility can be 
expressed as folio'vs. Any local property (i.e. ~2, see Section 2) of an extendi*zle 
cardinal ~ holds for a proper class of cardinals. The example of supercompactness 
shows that one cannot prove in ZFC that every //2 property of an extendible 
cardinal ~ holds for some )t > K. Finally, it follows readily from 5.10 ~hat "~ is the 
least extendible cardinal" is II~ (being equivalent to "K is extendible & Vg < 
K (V~ ~ t~ is not extendible)") ~ and certainly holds for no A > K. 

Theorem 5.11. I [  K is extendible, then 23 (and hence//4) relativize down to V~. 
(Recall 2.6 for this notion.) 

Proo| .  Actually, we only use the fact that there are arbitrarily large inaccessibles 
A > K with VK <Vx. Suppose P(x) is 3y Q(x, y) where Q is//2.  Let a ~V~ so that 
P(a) holds, and fix b such that Q(a, b). Let A > K be inaccessible so that b 6 V~ 
and V~ <VA. Since, by a remark just after 2 .6 , / /2  relativizes down to V~, we have 
Va~O(a ,b ) .  Th'as, Vx~P(a)  and so V ~ P ( a ) .  [] 

Note that the 24 se~atence "T~ere is an extendible cardinal" is false in VA if A is 
the least extendible cardinal (by 5.6 and 5.10). Thus, //4 in 5.11 is optimal. 

6. Vop~nka's principle 

We pext consider an axiom of a different character both from supercompact~,ess 
and from extendibility. Bearing in mind oar theme of elementary embedding and 
considerations of resemblance, the motivation behind the following statement is 
evident, especially in the context of model theory. 

Vop~uka~s principle. Given a proper class of (set) s.tructures of the same type, 
there exists one that can be elementarily embedded in another. 

This concept was also considered independently by Keisler. It may not be 
immediately clear that Vop~nka's Principle is a very strong axiom of infinity at all, 
but we shall prove that the principle implies the existence of many extendible 
cardinals in a strong sense. In Section 8, it will be shown that the principle 
actually has a natural place in a hierarchy of strong axioms of infinity. 



104 R.M. Solovay, W.N. Reinhardt, A. Kanat,. "i 

Vop6r, Lk a's Pri~ciple definitely can,ot  be formulated in ZFC, and in this section, 
we will fre ely use quantification and comprehension over classes. However, all the 
mm~ipula:ions can be carried out in ZFC within some V~, where x is inaccessible 
(inde,~d, this is how A~ of Section 8 is stated). Formulated in this way, note that 
Vop~nka's Prwcip!e i~ a second order statement about V~, whereas even 
mea~rability is third order. Indeed, one significant way in which Vop6~aka's 
Principle differs from our previous axioms is that it does not merely assert the 
existence of a large cardinal with higher order properties, but provides a 
framewc,rk l+ which many such cardinals can be shown to exist. 

We now a~sume Vop~nka's Principle throughout this section. The approach 
here is reminiscent of L6vy [20] in that a natur~ filter is developed and used as a 
tool, Eecall that ~ is the class of all ordinals. Call a sequence of structures 
( ~ I o : ~ f ~ )  a na~ra! se~,aence iff each ~ is of the same fixed type and 
spec!ifically c,f form (V~o; e, {a}, A~), where A~ codes a finite number of relations 
and ~ </3 implies ~ < ~ ~< ~¢~. The specification of {a} in JA~ insures that 
whenever a </3 and ~:~¢¢~ ~ d~ is elementary, ] moves some ordinal, since 
j ( ~ )  : ~. 

Defi~.fian 6 .L  If X ~ O is a class, X is enforced by a natural sequence (,/~ [ a e 
~) itr ,vhencver a < / 3  and j:J~---~ ~ ,  the critical point of ] is a member of X. 
Xc_,f2 ,~ enforceable iff X is enforced by some natural seq~,~nce. 

Proposifieu 6.2. The enforceable classes form a proper filter over fL 

ProoL Clearly, if X is enforceable and X c  Y ~  1~ then Y is enforceable. ~ is not 
enfo~'ceable Ance we are assuming Vop~nka's Principle. 

Su~.ose l!ow that X and Y are enforced by (~,, ]a ~f~) and (N,~la ~f~) 
respe~,~ively. Sel ,-/~ =(V~;  c, {a}, ~¢A~,2¢',)) where V~ is the union of the 
underlying set, c+~? ~ and .~f~. Then X f l Y  is enforced by ( M ~ ] ~ I - I ) :  If 
j:,s4. . . . .  ~e with c~itical point K, j[M~ and j l de. both have critical point ~(, i.e. 
K~X(1 Y. 

Propositivn 6.3. Every closed unbounded subclass of fl is enforceable. 

Proof. Sup)ose C c_ f~ is closed unbounded. For each ordinal a let 3'~ be the least 
limit point of C greater than a, and set 

We show that C is enferced by (M~ [ a ~ 1~). Suppose j :,//~ -+ ~ with critical 
point K, and assume K~ C. Then p = sup ( c n  K)< +c and if -q is the least element 
of C greater than p, K < ~ < 3'~ since 7~ is a limit point of C. As rl is definable 
from p in ~ and j (p)= #, i(n)= n. But, as usual, h =sup {]"(K)[ n~ to} is the 
least ordinal greater than K fixed by j, so that h~<~. We can now derive a 
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contradiction by Kunen 's  argument  (1.12), since ~/~ is a limit ordinal > ~. Thus, 
K ~ C .  [ ]  

In fact, the enforceable  classes form a normal ,  f~-complete filter over  f~, see 
[11]. This paper  discusses strong versions of Vop~nka ' s  Principle related to 
n-hugeness (see Section 7 for this concept),  which are analogous to the n-subtle 
and n-ineffable cardinals studied by Baumgartner .  

Propos~.tion 6.4. {a e 12 i a is extendible} is enforceable. 

Proof. Define F :  f~ ~ i l  by 

a if a is extendible,  

F ( a )  = a +/3 where /3  is the least so that a is not 

, /3-extendible otherwise. 

If C = { 6 I F :  8 ~ 8}, C is closed unbounded.  Define ( ~  I s  ~ ~ )  for this C, just 
as in the previous proposit ion.  

It  suffices to show that  if j : d ~  ~ d~a with critical point ~¢, then ~¢ is extendible. 
If not, let F(K) = p > K. Since t~ < 3'~ and 3'~ e C, we have p < q/~ by definition of C. 
So, j [  Vp :V o ~ Vj(p~ is e lementary  with critical point to. Finally, by the proof of 
the previous proposit ion,  K ~ C and so j(t¢)~ C (recall that  C O  2/, is a specified 
relation in . ~ ) .  Hence ,  K< j (K)  implies p < j ( K ) .  This also implies p < j ( p ) .  If 
p = K +/3, all these facts show that  K was/3-extendible  after all, which contradicts 
the definition of F. [ ]  

Proposition 6.5. I f  X is enforceable and Y = {a I a is measurable and for some 
normal ultrafilter ql over a, X VI c~ ~ °71}, then Y is also enforceable. 

Proof. For each ordinal a,  set 

~ = (v~+~;  e ,  {,~}, { x n  ~}). 

It  suffices to show that if j : 3,t~ ~ d ~  with critical point K and K z X, then ~ e Y. 
Let  • be the normal  ultrafilter over  r corresponding to j. We have 

j (× n K) = j ( x  n ~ n K) = / ( x  n ~) n j(~) = x n/3  n j(:~) = x n j(K). 

But  K ~ . X N j ( ~ ) ,  so X f q K ~ .  []  

Theorem 6,6. Assuming Vop~nka's Princ~ple, :he class of extendible cardinals K 
which carry a normal ultrafilter ,containing {a < K I a i~ extendible} is stationary in 

Proof. See 6.3, 6.4, and 6.5. []  
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AI~ in al!, Vop~nka ' s  Principle seems ~o have an unbridled strength, and the 
relative ease with which strong consequences can be derived f rom it may lead one 
to be rather  suspicious of the principle. However ,  it is the weakest  of the 
hierarchica! !i,,;t of axioms we will consider in Sections 7-8.  

In the remainder  of this section, we present  two alternative characterizations of 
Vop~nka ' s  Prmc pie. [n addition to their intrinsic interest, these results will be 
usefui in t~e discas, sion of Backward Eas ton forcing in a projected sequel to this 
paper.  

Let  A be a class. We are going to relativize the notions of supercompactness  
and extendi i ~y to the class A. 

Defiltifion 6,7, A cardinal K is A-extendible fit for every a > K, there is an 
eleme:atary ec~abedding 

j :(V~; ~, A f'~V,~)---~ (Vo; e ,  A VIVa), 

with r the critical point of j and a <j (K)<{3.  

A ~ardinal K is A-s~,,percompact iff for every -q > K there is an a < K, and an 
elementary e~rabedding 

j : (V~ ; .~., A f l  V,~)--~ ( V , ;  ~, A O V , )  

~vith crificat point -y such that j ( y ) =  K (cf. 5.7). 

We: ca a also) give a characterization in terms of normal ultrafilters. Let  ~ be a 
normal ultrafiJlter over  ~ V . .  Recall (2.5) that  if r 1 = [(rl. tx  6 ~ V . ) ] ,  for almost  
all x ~,cP,~¥' there [s an e lementary  embedding  j. :V.~ --> V~, with x = j~V. .  

We ~ay t~at ~,;~ is A-normal  iff for almost  all x, 

j~ : (~ ' , . ;  E, A fq V.~)---> (V , ;  6, A fqV. )  

is elem~:~qtary. Evidently o/t is A-no rma l  if[ ~ is (A ,q Vn)-normal .  

Propo~itian 6°8. ~< is A-supercompact iff for every ~ >t K, there is an A -norma l  

ultrc, filte , ~ver ~ V ~ .  

ProoL We show that if • is A- supe rcompac t  and 7/>/~, there is an A - n o r m a l  
ultrafilter o~er ~ V . .  The other  implication is left to the reader.  (Cf. the proof  of 
5.7.) 

By the A-supercompactness  of K, let a < K and 

j :(V~+o,; ~, A fq V,~+,.)--> (V,+,o; c ,  A N V,+,~) 
i 

with critical point y such t h a t / ( 7 )  = r. Note  that j ( A  n v ~ ) =  A n v , .  
D e f n e  ~ over  ~vV~ by X~o// if[ j " V , ~ E j ( X ) . T h e n ,  as usual, • is a normal  

ultrafilter over  ~vV~. Let  a' = [(ax Ix ~ ~vV~)],n, and recall 2.50) in what follows. 
For almost every x, (x; ~, A (~ x) is an e lementary  submodel  of (V~; E, A VIV~)o 
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Thus, at/ is A-normal  iff the transitive collapse ~r~:x-~V~, "preserves A "  for 
almost every x iff the transitive collapse ,r:j"V~ ~ V~ "preserves A" .  But this iast 
formulation is evident since ~r(j(x))= x for x ~ V~, and ] "preserves A" .  

Thus, ~ is an (AfqV,,)-normal ultrafilter over &vV~. But tken j(o~l) is an 
](A f'lV~)-normal ultrafilter over ~ V , .  Since j ( A F ) V , , ) = A n V , , j ( ~ t )  is the 
desired A-normal  ultrafilter on @~Vn. [] 

Note that if A = {3'}, then 3' is not A-supercompact  or A-extendible. However, 

Theorem 6.9. The following are equivalent: 
(1) Vop~nka ' ~ Principle, 
(2) For every class A,  there is an A-extendible cardinal, 
(3) For every class A,  there is an A-supercompact cardinal. 

We remark that our proof will show in fact that if (1) holds, the classes of 
A-extendible cardinals and A-supercompact  cardinals are enlorceable. 

Proof. The proof of 6.4 adapts to show that (1)-~ (2). Also, the proof of 6.8 can 
be used to show that every A-extendible cardinal is A-supercompac'..  Thus 
(2) -~ (3). 

Finally, let (~e [~jel)) be as in the statement of Vop~nka's Principle. Let 
A = {(¢, ,~e) l Ce f~}. Let K be A-supercompact.  Let 0 > K be such that: 

(i) ~ < 0 ~ d/¢ ~ V0, and 
(ii) IVol = 0. 

Let c~ < K, and 

/ : ( V . ; ~ , A n V ~ ) ~ ( V 0 ; ~ , A n V o )  

be an elementary embe6ding that maps its critical point y onto K. Then j induces 
an elementary embedding of Jgv into d/~. [] 

7. On the verge og inconsistency 

Having examined several axioms increasing in strength and motivated with 
different but definite plausibility arguments in mind, we now take a more 
pragmatic approach. Kunen's result (1.12) sets an upper bound to our efforts in an 
essential way, but it is still of interest to see what weaker principles can possibly 
be retained without inconsistency in ZFC. In this and the next section we work 
downward through weaker and weaker axioms that suggest lhemselves., are at 
least as strong as Vop~nka's Principle, but are not directly ruled out by Kunen's 
argument. 

Tacit in this section is the assumption that if ] is some elementary embedding 
with critical point K, then Ko :-- K and for each integer n, K,+ 1 = j(K,) if •, is still in 
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t~e domain of L and r,~ = sup {r ,  [ n e oJ}, again, if definable at all. (Of course, the 
K~ 's depend on ], but  the ] being discussed should L clear from the context.) 

If there were a ] : V ,  ~ Vo with K,, ~< a, n6te that we must have a < ~o, + 2. This 
is so ,,,ince what is needed to get Kunen 's  contradiction is that a function 
~,)-J6nsson over ~ ,  i.e. a certain function: '%0 ~ K,o, be in the domain of j - -  but  
a~ suc'a functions are in V,.+z. When a function to-J6nsson ever ~o, is in the 
domain cf  an elementary embedding as in, say, ] : V ~ M ,  then by Kunen 's  
argument  w~ must have V~o+~ ~ M. However ,  we can still consider the following 
statements. 

11, There is a ]:V~o,+I --> V~+I.  

I2. There is a j : V ~ M with V,~ _c M. 

13. There is a ] : V ~  --* ""~,o. 

Notice that in I I  ~e have specified the range of ] to be included in V~.+~, but this 
is true si~ce j(K,o)= K,~ ; similarly for I3. In fact, I1 and I3 are the only possible 
fo::ms that an axiom of the type "there is a non-trivial elementary embedding of 
st~me V~ into itself" can take. 

The proof of the next proposation uses iteration and limit ultrapower techni- 
q .~es. 

l~rolJositi~n 7.1. (Gaifman). I1 implies I2. 

Ptc~of. See IV, 8 of Gaifman [4]. [ ]  

Pmp,~sific~n 7.2. 12 im[lies 13. 

P~o~f. If j is as in I2, then j ( V J  = V ~ =  V~,  so that 

[] 

N~.~t, it is natural to consider postulations with weaker closure requirements on 
the r~ qge of the embedding. 

Definition 7.3. If n is an integer, K is n-huge iff there is a j : V --> M with critical 
point K :o  that ~ -M_ M. t~ is huge (Kunen) iff ~ is 1-huge. 

Note that ~ is 0-huge itI • is measurable, and r is n-huge implies K,, is 
inaccessible in V itself. It is interesting to note that, reminiscent of ,~- 
supercompactness, a characterization exists in terms of the existence of certain 
ultrafilters. 
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Theorem 7.4. K is n-huge iff there is a ~-complete normal altrafiher ~ over some 
!gA, and cardinals r = A o < A ~ < . . . < A , = A  so that f o r  each i < n ,  

Proof. If j : V--~ M as in n-hugeness, define 9 /over  ~K, by 

X ~  ~t iff j"K. ~ j (X) .  

Then as in 2.2, we can show that ~ is normal and x-complete. Also, note that 

j "K, ,n j (K, )=j"~ ,=~,  for O~i<~n, 

so that we can set K~ = A~. 
Conversely, take j, M the ultrapower as usual. Then, as in 2.4, [id] = j"A and M 

is closed under A-sequences. Also, as in 3.1, we have that for 0~<i< n, 

j (x,)  = [<x c~ x,+, I x ~ @x>] = a,+, .  [ ]  

Theorem 7.5. I f  13 or .~ is n + 1-huge, then there is a normal uhrafiher ~ over K so 
that { a < K  l a is n-huge}~qL 

ProoL Suppose, for example, that j :V ~ M as in the n + l-hugeness of ~. Since 
~-+~M _cM, M certainly contains the ultrat~lter described in 7.4 for the n- 
hugeness of K, arising from j. Hence, Mg • is n-huge, and we can take q/to be the 
(usual) normal ultrafilter over ~ corresponding to j. [] 

It seems likely that I1, 12 and 13 are all inconsistent since they appear to differ 
from the proposition proved inconsistent by Kunen only in an inessential technical 
way. The axioms asserting the existence of n-huge cardinals, for n > 1, seem (to 
our unpracticed eyes) essentially equivalent in plausibility: far more plausible that 
I3, but far le,~s plausible than say extendibility. 

Kunen's work [16] relates 1-hugeness (i.e. hugeness) to the theory of saturated 
ideals. He shows that Con (ZFC & there is a huge cardinal) implies Con (ZFC & 
there is a countably complete, co2-saturated ideal on ~1 containing all the 
singletons). Kunen also indicates a heuristic argument suggesting that the consis- 
tency of something slightly weaker than hugeness (A3(K) of the next section) 
should follow from the consistency of the existence of such a non-trivial co2- 
saturated ideal on col. 

More recently, Laver has announced a refinement of Kunen's argument to get 
an ideal over col with an even stronger property, which has as a consequence the 
following polarized partition relation: 
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Since the GCH ct~n also be arranged in this particular case, this answers problem 
27 of Er:6~-Hajnal  [3] in the negative (at least if we assume the consistency of 
the existe~ce of a huge cardinal!). Prikry [38] had previously shown that there is a 
combinatoria~ i~rincip~e which impEes, in a strong sense, that the partition relation 
does not hold, and theft this principle can be made to hold by forcing. Jensen then 
showed that tt~is r~rinc~pte holds in L. 

An ultrafilte~" ~4 is called (¢, h)-regular iff there are h sets in • any K of them 
having empty intersection. This concept was formulated by Keisler in the context 
of model i~heory some time ago. Recently, it has beenshown that the existence of, 
for instantce~, a uniform ultr~tfilter over ~o~ which is not (to, o~0-regular leads to 
consequences of large cardinal character (see Kanamori [10] and Ketonen [14]). 
In this context, ,',o stat.e he following result of Magidor [28], proved by using a 
variat:.'on of the ,'-~unen [16] argument: Con (ZFC & there is a huge cardinal) 
implies Con (ZFC & :.here is a uniform ultrafilter over ~o2 not (wo, oJ2)-regular). At 
present, there is ~o c~her known way to get uniform ultrafilters with any degree 
of irregularity o~er any ~%. 

Finally. the most recent relative consistency result involving hugeness is the 
following, due or~ce again to Magidor [27]: Con (ZFC & there is a huge cardinal 
with a supercomt,~act cardinal below it) implies Con (ZFC & 2 ~- = bl,o+z, yet for 
every int~. ger n, 2 ~,, = ~+~). This, of course, solves the so-called singular cardinals 
problem :tt N,~. P~'evioasly, we had remarked (end of Section 2) that Magidor had 
found a model in which 2 s~ = N,,+2, and R~ is a strong limit cardinal, assuming the 
consiste~:y strength of the existence of a cardinal with sufficient degree of 
st~percompa, tness. To get the exactitude of the GCH actually holding below 1~o,, 
Magidor ~iound ~t necessary to start from his stronger assumption. 

It is tempting to, speculate on the further relevance of huge cardinals in 
considera.tions involving the lower orders of the cumulative h~erarchy. After all, it 
is such empiricah evidence which gained for measurability a certain respectability, 
if not acc~.p~ance 

8. Below huge 

This sectlcn contain,', the rest of the new axioms to be considered in this paper. 
They are in~.'r~ded to fdl ~n the gap between the concept of hugeness and the 
relatively weal one of extendibility with a spectrum of statements. Though we are 
thus continuing to take a pragmatic approach, hopefully these further axioms will 
prove interestin~ in their own right. At least, their motivations should be clear in 
the context of th.s paper. By a natural model of KM (Kelley-Morse) we mean one 
of form V,,+~, where K is inaccessible and elements of V~ are to be the "sets". 
The axioms are as follows. 

At(K). There is a j :V---~ M with critical point ~, so that MJ(~)~ M. (K is h~age.) 
A2(K). There is a j :V~-->V~ with critical point K, so that j(K)<<-a. 
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A3(K). There is a j : V ~  M with critical point K, so that hM G M  for every 
x <i(K). 

A4(K ). There is a ~ > K  and a normal ultrafilter qt over ~,,A so that if 
M~V~' .x /q l  and f ~ K ,  then Mgj ( f ) (K)< A .  

As(K). There is a normal ultrafilter q/ over K with the following property. 
Suppose ( ~ ¢ ] ~ < K )  is a sequence of structures of the same type with each 
JA, EV~. Then for some X~q/,  whenever a,/3 ~ X and a </3, there is an elemen- 
tary embedding . /~ ---> :/~ which fixes any element of V~ in its domain and moves 
cz if a is in the domain. 

An(K). V~+I is a natural model of KM and Vop6nka's Principle: given a proper 
class of (set) structures of the same type, there exists one that can be elementarily 
embedded into another. 

/~:(K). V~+I is a natural model of KM and the following: there is a stationary 
class S so that for any integer n and ao < aa <-  • • < a ,  < 13o </3a <" • • </3~ all in 
S, there is a j:V~.--> V~. with critical point ao and j(a~)= 13~ for 0 ~  i <  n. 

AT(K). K is extendible and carries a normal ultrafilter containing {a < K ! a is 
extendible} as a member. 

It is convenient in this section to use the following terminology: if 0(.) and q~(-) 
are both formulas with one free variable, say that $(K) strongly implies q~(K) iff 
¢(K) implies ¢(K) and also that there is a normal ultrafilter over ~ containing 
{a < K I ~o(a)} as a member. We shall prove that 3K AI(K) implies 3K A2(K) in a 
strong sense, A~(K) strongly implies A:+I(K) for 1 < i < 5 ,  and that A6(K) and 
A*(K) are both strongly implied by As(K). In Section 6, we showed that 3K A6(K) 
implies 3K Av(K) in a suitably strong sense; in this section, we show that 3K A6*(~) 
similarly implies 3K AT(K) in a strong sense. However, the exact relationship 
between A6(K) and A*(K) is as yet unclear. The rest cf th!ts section is devoted to 
the task of establishing these implications. 

In terms of relative consistency, we are dealing with very strong principles. 
However, it should be pointed out that, except for AT, all of these various 
assertions about K, as well as the notion of n-hugeness, are local properties, and 
so do not even imply that K is supercompact. By 2.6, if any one of these 
properties hold for some cardinal at all, then it holds for a cardinal less than the 
least supercompact cardinal. On the other hand, as remarked by Morgenster,a 
[34], a straightforward application of work of Magidor shows that, for example, it 
is consistent for the least huge cardinal to be larger than the least strongly 
compact cardinal. 

Theorem 8.1. AI(~) implies that there is a normal ultra]ilter 9~ over K so that 

Proof. Let j:V---> M show that K is hedge. As in previous arguments, V j c ~  M 
and j I Vj(~)E M. Hence, as j I Vj(~):Vj(~)--* j(Vj(K)), this is also true in M. Thus, it 
follows that if q/is the normal ultrafilter over K corresponding to j, {a < K I there 
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are /3, -/. and e so that e : V o - - > V r  with critical point a and e(a)~</3}e~.  But 
from ths ,  the result follows. [ ]  

For  the pas~afle from A~ to A3 some auxiliary notions are needed.  If ~ < A, say 
that a sequence (o~t,~ t ~: ~ v, < A) is coherent iff each °'a n is a normal ultrafilter over 
~ r l  and K ~< ~1 ~ ~ < ,~ ~mplies 0/t~ t "0 = ~n. If (q/~ I K ~ 7 / <  A) is coherent ,  for 
convenietme le~ M~ = Me.,, and ],~ : V ~ Mn the canonical e lementary embedding. 
Recall that by 3.7, there exist e lementary embeddings k.~ : M,  ~ M~ for ~ <~ r I ~< 
~<A so that k~,~trl is the identity. In this notation, consider the following 
statement. 

A*(~). There is a strongly inaccessible catdinal A > ~ and a coherent sequence 
( ~  I K ~ r / < ) t )  ~o that if K<<- , < A  and ~/~<p<j~(K), then there is a ~ so that 

<~ ~ < )~ and k~,~(p) = ~. 

A3*(K) is a technical statement that we show is actually equivalent to A3(K), and 
then we prove that A2(~) strongly implies A3*(~). Ostensibly, A~*(r) involves 
proper  classes t, and kn~, but actually it can be considered a s tatement  in j~ lVa 
and k~]V~o  Hence,  A~(~) can be expressed in the form ::IA > ~ (V~+~q~(~)) for 
some sui' ab.~e sel-theoretical formula ~0. This aspect of A3*(~) becomes significant 
i,: 8 .3.  

T h e o r e m  ,~.2. A~(K) is equ2valent to A3*(K). 

Proof.  S~ppose i~rs~ that A3(K ) and let j :V---> M with critical point K, SO that M 
is closed trader <j(K)-sequences.  If we set A =j(K),  then h is inaccessible. For  
K~<r/<& ~et c~t~ be the (usual) normal ultrafilter over ~ ' 0  corresponding to /'. 
Then it is ~.tot hard to :;ee that (~n I ~ ~< rt < A} is coherent.  

Assume now tba~ K ,~ r / < &  f : ~ ' O  ~ K, and ~ ~<[/]~., <in(K). (We are using 
the notation developed for coherent  sequences just after 8.1.) Then by definition 
of 0~,, we La~e r / = l  "~l'-'I(f (I "0)<J(x) =A. Let  f f=J(f)(J"n). But then, j " ~ ' =  s r 

i([)(J"C A j(~l,' and so {x 6 ~,~" ] 2 ~ = f ( x  Cl ~1)} 6 ~//¢, i.e. k,c([/]ou .) = g" by the defini- 
tion of kn~ (set* 3.7 and before). Thus, A3*(K) bolas. 

Suppose now that A3*(K). Continuing to use the notation developed for coher- 
ent sequences, n,~te that (M~, k ~ t .  ~ n ~< ~ < A) forms a directed system. Sir!re A 
is regular, the direct limit of this system is well founded, so let .~ /be  its transitive 
collapse. There are canonical embeddings k n :M~ ~ M and f:V--~/~7I, where for 

It suffices to show that /~/ is closed under <A-sequences,  and that [ (K)= A. 
First, note that if s = {x~ ] ~ < 3'} c / ~ / w h e r e  , / <  A then by regularity of A there is 
an r /<A so that t={y,~]a<~,}_cM~,  where for a < V ,  kn(y~)=x~. We can 
certainly assume that y < r/ so tha* t ~ M n and hence k~(t) = s ~ !~4. 
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To show tha t / (K)=  A, note first that if 71 <h ,  since ~ <j~,(K), 

-<- k~(rl) < k,~(j,j(K)) = ](K). 

Hcnce, ~(K)t> ~. Conversely, suppose p < [(K). There is an "q ~nd a p '<  j~(~c) so 
theft k~(p')=p. The case p '< r / :  since k~ fixes p' for ~ < ~ < A ,  p = k ~ ( p ' ) = p ' <  
jn(~). The case r l~p ' :  by A*(K) there is a ~ so that ~ I ~ < A  and k,c(p ' )=£;  
thrzs, whet.ever ~ < £ < A ,  we have k,~(p')=£, so that p =  k~:(p')=~<j~(K). In 
either case, there is some 8 < / t  so that p<j~(K), and he~,~e, 

p </~(K) < (2~")+ < X 

as )t is inaccessible. Thus, [(K)= )t. 
Che proof is complete. 

Theorem 8.3. A2(K) strongly iron, lies A3*(K). 

Proof. Suppose j:V~---~V~ as for A2(K). Since A=j(K) is inaccessible and 
j(K)~ < c~, by using an argument entirely analogous to the first part of 8.2, it can be 
shown that A3*(K) holds ~ note that j need only be defined on VA. It now follows 
that A3*(K) holds within Va (recall the observation made just before 8.2). Thus, if 

is the normal ultrafilter ever K corresponding to j, {a < K l A*(a))e~. 

Theorem 8.4. As(K) strongly implies A4(K). 

Proot. Let j :V-- -~M with critical point K so that M is closed under <j(K)- 
sequences. Since j(K) is inaccessible and f~  ~K implies j(/)(K)<j(K), let/x be such 
that sup{j(f)(K) J f~  ~K}< ~ <j(K). Let 0//" be the normal ultrafilter over .@~tx 
corresponding to j. Then 

j~(f)(K) < t~ iff {x I f(x N K) < ~}~ 

iff j(f)(j"lz Nj(K))<j"/~ 

iff j(f)(K) < IX. 

Thus, A4(K) holds, but then it also holds in M. That A3(K ) strongly implies A4(K) 
follows, with • the normal ultrafilter over K corresponding to j. [] 

Theorem 8.5. A4(K) strongly implies As(K). 

Pre~f. Let j : V--~ M be determined by a normal ultrafilter over ~,A as provided 
by A4(K). Let ~t be normal over K corresponding to j. We first show that As(K) is 
satisfied with this q/. 
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Suppose (.4~ l t j <  ~) are stru:tures of the same type so that each d~ aV, .  We 
may a~sume: that Cae underlyiv~i~ set of .///~ has the form V~ for rl a limit ordinal 
> ~, and that ~ is a predicate of ~ge (If not, replace d~ by (V n, ~, {d~t}) where rl is 
the least limit ordinal greater ll:~an max (~, rank (./~)).) 

Clgim. ff  a < ~ ,rod X~ ={~[ t~ere is an elementary embedding ~ ~ At~ with 
critical! point ~}, T--= {a < ~[X,,  ~ q/}e ~/. 

To show :~e~ claim, first set 

j(.~.,~~ I f :< ,~) = ( ~ l  ~ </(K)), 

/((:~:. Is  < ,~)) = (." ~,1'~ < / (K) ) .  
Note that ~ < ~ implies ~ = ./~. If ~ < K, X~ ~ ~/iff K ~ j(X,) iff ~ ,  is elementar- 
ily embeddable into ~ with crit,i,:al point a. So if a < j(r) ,  X~E j(~) iff in M, Jg~ 
is elementarily embeddable into d~]~ with critical, point a. Hence, T ~ t  iff 
K~j(~') iff X ~ e j ( ~ )  iff in M, ,~'~ is elementarily embeddable into ~ t ~  with 
critica poir~t ~. 

Now ./j ~ :  d/~ --~ ~'~(~ = j(~',,) is elementary, so it suffices to show that j [ . ~ ' ~  
M. !)efi~¢ f~  "~ by f(~)= Id/el. By the A~(~) property of j, j(/)(~) <,~. Thus, since 
M is dl(~s~:.d ur~der ,~-sequences and j 1.,~" is just a set of ordered pairs of elements 
of M ~3,f cardiaality f~'~l = j(f)(~), j [ ~ e  M. The claim is proved. 

Hav~:r~g shown that T~q/ ,  by the diagonal intersection property of normal 
ultrafilters we have that {a ~ T I/3 < ~ & /3 e T implies a ~ X~}~ ~. This set 
satisfie~ A~(~) for (,A(~ I ~<  K). 

Fina,!y, a~o~:her application of the A4(~) property of j shows that 2 ~  (2~)~ < 
h, so that our °~l~M. Thus M~As(~), and so { a < ~  IA~(a)}~ ~t. [] 

Theorem 8.6. A~(K) strong, ly implies A6(K). 

ProeL A~,',:) is immediate from As(K). But if j:V--->M corresponds to any 
normal ult~ ~filter ¢g over K, then MI:A6(K), as V~+ 1 ~ M. Thus, {a < K [ A6(a)}~ 
~. [] 

Theorem ~1.7. As(K) strongly implies A6*(K). 

2Proof. It suffices to show A6*(K), for the result would then follow as in the proof 
of 8.6. Let 01/ be as in As(K). It is sufficient to find an X, ~ 0g satisfying the 
condition ',for the S of A6*(•) for a fixed n, as we can then take a countable 
intersection. Define a function F:[K]2"*2---> 2 by 

F((ao . . . . .  a,,,/3o . . . . . .  % ) ) = 0  iff ao <  . . . .  : a ~ < ~ o < - - ' < # , ,  
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and there  is a j :V~, ---> V0, with critical poin t  So so that  j(a~) = f3~ for i < n. By the 
par t i t ion p roper ty  for normal  ultrafil ters,  there  is a Y e ~ and an m < 2  so that  

F"[Y]  2"*z = m. I t  suffices to get a contradic t ion from the assumption that  m = 1. 

Fo r  a in such a Y, let ct ~ . . . . .  or" be the first n members  of Y after a,  and set 

~ ,  = ( vo ,~ ;  ~, {~}, {a~},..., {~"-~}). 

By the hypothesis  As(K), there  is an X e 0// so t~at  a, /3 e X and a </3 implies 

there is a k : ~ t . - *  ~ 0  with critical poin t  a.  But  this would be contradic tory for 

any a , / 3 ~ X f ' l Y s o  that  / 3 > a " .  [ ]  

Theorem 8.8. Suppose A*(K) and let ? be a stationary class as provided° Then 
(i) if a,/3 ~ S and a < [3, the inclusion map V~ ---> Vt3 is elementary, 

(ii) a e S--~V~ <V~,  

(iii) a e S ~ V,  [ :Av(a ). 

Proof .  Fo r  (i), let  a </3 < ~/1 < 72 < "/3 all in S. Let  ] : Vw -> V,/~ with critical point  
~. and j ( a ) =  72; and let k:Vw--->Vv~ with critical point  /3 and k( /3)= Yz. Now 

J I V~ :V~ -~  Vv~ and k I V~ :Vt3 ---> Vv~ are e lementary ,  and both are identities.  
Hence ,  V~ < V  w and Vt3 <Vv~ , so that  V~ <V~.  

(ii) follows from (i) by union of e lementary  chaies.  

To show (iii), work  within V~. Note  first that  each e lement  of S is an extendible  

cardinal .  Also,  if c~ < .,/~ < 2/2 < 73 all in S, let  j : V v , - ~  V~,~ with critical point  a and 

j ( a )  = 3'2. By 5.10, Vv~ga is extendible .  Hence ,  if ~ is the normal  ultrafilter over  
corresponding to j, {/3 < a I/3 is extendible} ~ 0//. [ ]  

Open Question 8.9. Wha t  is '~he rela t ionship be tween A6* and A6? 
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