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This is the expository paper on strong axioms of infinity and elementary
embeddings originally to have been authored by Reinhardt and Solovay. 1t has
been owed for some time and already cited with some frequency in the most
recent set theoretical literature. However, for various reasons the paper did not
appear in print for several years. The impetus for actual publication came from a
series of lectures on the subject by Kanamori (Cambridge, 1975) and a set of notes
circulated thereaiter. Thus, although this present exposition is a detailed rework-
ing of these nctes, the basic conceptual framework was first developed by
Reinhardt and &olovay some years ago. One factor which turns this delay in
publication to advantage is that 2 more comprehensive view of the concepts
discussed is now possible witr the experience of the last few years, particularly in
view of recent consistency results and also consequences in the presence of the
axiom of determinacy. A projected sequel by Solovay to this paper will deal
further with these considerations.

One of the most notable characteristics of the axiom of infinity is that its truth
implies its independence of the other axioms. This, of course, is because the
(infinite) set of hereditarily finite sets forms a model of the other axioms, in which
there is no infinite set. Clearly, accepting an assertion whose truth implies its
independence of given axioms requires the acceptance of new axioms. It is not
surprising that the axiom of infinity should have this character (one would expect
to have to adopt it as an axiom anyway), and moreover one would expect the
existence of larger and larger cardinalities to have such character, as indeed it has.
The procedures for generating cardinals studied by Mahlo [29] provided a notable
example. It is remarkable that the new comsequences of the corresponding
(generalized) axioms of infinity also include arithmetic statements: this application
of Godel's second theorem is by now quite familiar. It is alsc remarkable that
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certain properties of cardinals which were originally introduced with little thought
of “size” considerations should turn out to have this same character of implyirg
their own iadependence (see, for example, Ulam [44] and Hanf [6]).

The monamental paper Keisler-Tarski [12] examined in detail three classes of
“large cardinals”: weakly compact cardinals, measurable cardinals, and strongly
compact cardinals. Taking these as typical examples, it is reasonable to say
(though we are in no way establishing an absolute criterion) that a property is of
“large cardinal” character if it has the following two consequences:

{i} the ex. tence of a cardinal which (at least in some inner model) is essentially
“larger” than inaccessible cardinals and other “smaller” large cardinals (in the
sens that it is a fixed point of reasonable thinning procedures, like Mahlo’s,
beginning irom these cardinals);

(i1) a discernibie new strength in set theory, not only in the provability of more
formal statements (lik: Con(ZFC), etc.) but also in the existence of a richer
structure on the cumulative hierarchy itself (for example, new combinatorial
prcverties).

We observe in the preceding the emergence of interesting (and somewhat
unc¢xpected) mathematical connections among size, combinatorial properties, and
synactic strength.

It is well known that below each measurable cardinal there are many weakly
compact cardinals. In fact, the experience of the last few years indicates that weak
compactiess is relatively weak, and many interesting train stops lie on the way
from measurability to weak compactness (see Devlin [1] for a comprehensive
survey). On the other hand, though strong compactness implies the consistency of
the existence of any specified number of measurable cardinals, it is now known
that the least measurable cardinal can be strongly compact (see Section 4 for a
discarssion). It is the purpose of this paper to consider even stronger large cardinal
properties, and to investigate their various inter-relationships, as well as the
effects of their presence on the cumulative hierarchy of sets.

The circumnstance that some mathematical problems give rise (unexpectedly) to
large cardinal properties raises the question of adopting new axioms. One
possibility, which seems a bit like cheating, is to “solve” the problem by adopting
its solution as an axiom. Anotler approach (suggested in the paper [12]) is to
attempt to bypass the question b; regarding all results showing that P(k) is a large
cardinal property (which of course show that -1 P(x) has strong closure proper-
ties), as partial results in the direction of showing ¥« 1 P(«). If, however, 3k P(«)
should be true and have important consequences, this may appear somewhat
futile, as comparison with the paradigm case of the axiom of infinity suggests. A
third approach is to attempt to formulate new strong axioms of infinity. Ulti-
mately, since this paper is an exposition of mathematics, the issue of whether the
large cardinal properties we investigate are to be considered axiomatic or prob-
lematic can be left to one <ide. We do, however, wish to discuss briefly the
problem of formulating strong axioms of infinity.
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The whole question of what intuitive and set theoretical considerations should
lead to the formulation of strong axioms of infinity is rather complicated and
merits a systematic analysis (which we do not attempt here). There is some
discussion of this in Wang [45], Ch. VI, especially p. 189, which gives a descrip-
tive classification (due to Gédel} of the coasiderations which have so far led to
such axioms. We remark that series of axioms such as To=2ZF,..., T, T,.,=
T,+ConT,,..., or those of Mahlo, appear “endless” in that it always seems
possible to use the same guiding idea to get yet stronger principles (although it is
not clear how to express this precisely). This even seems a desirable characteristic
in hierarchies of axioms: if they are given as an r.e. sequence, they must be
incomplete, so we would hope that the guiding idea would continue further. The
procedures we consider have this “endless” character up to a point, where a result
of Kunen sets a delimitation to one kind of prima facie natural extension.

We can discern at least four motivating principles behind the large cardinal
properties we formulate.

(i) Generalization. For instance, it is in many ways quite reasonable o attribute
certain properties of @ to uncountable cardinals as well, and these considerations
can yield the measurable and strongly compact cardinals. Also, in considerations
involving measurable cardinals, natural strengthenings of closure properties on
ultrapowers yield the supercompact cardinals (see Sections 1, 2).

(ii) Reflection. The ordinary Reflection Principle in set theory invites various
generalizations, for instance the Il -indescribability of cardinals. In one approach
more relevant to our context, what is involved is a formulation of various
reflection properties ), the class of all ordinals, intuitively ought to have (for-
malized in an extended language), the antithetical realization that {1 ought to be
essentially indescribable in set theory, and thus the synthesis in the conclusion
that there must already be some cardinal at which these properties obtain. Note
that this in itself is a reflection argument. Extendible cardinals especially can be
motivated in this way (see Section 5 and Reinhardt [40]).

(iii) Resemblance. This is closely related to (ii). Because of reflection considera-
tions and, generally speaking, because the cumulative hierarchy is neutrally
defined in terms of just the power set and union operations, it is reasonable to
suppose that there are (V,,€)’s which resemble each other. The next conceptual
step is to say that there are elementary embeddings (V,,€)—>(Vg,€). Since this
argument can just as well be cast in terms of (Vy,), €, X(a))’s, where f(a) and
X(«) are uniformly deiinable from «, the elementary embeddings may well turn
out not to be the identity. Strong axioms like A-extendibility (see Section 5) or
Vopénka’s Principle (see Section 6) can be motivated in this way.

(iv) Restriction. Known assertions can be weakened to gain more information
and sharpen implications. Ramsey and Rowbottom cardinals can be considered to
follow in this way from measurable cardinals, and the axioms of Sections 7-8 can
be viewed as introducing a spectrom of perhaps consistent axioms arising from
Kunen’s inconsistency resuit (1.12).
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In all these approaches, the recurring feature of the various postulations is the
notion of elementary embedding, and this paper is organized around this main
theme.

Let us oncs »gain say that this paper is an exposition of mathematics. We
consider that mzny of the methods and technical relationships that we encounter
are not without <ome mathematical elegance. Thus, hopefully our exposition will
add an esthetic eiement o other incentives for considering strong axioms of
infinity, and this is by no means a factor to be underrated in the investigation of
new mathems’ ical concepts.

Our set theory is ZFC. However, the mathematics in this paper is not strictly
formalizable in ZFC, since we discuss elementary embeddings of the whole set
theoretical universe V. Kelley-Morse (KM) is adequate, as satisfaction can be
expressed there, but Bernays—-Godel (BG) is ofter sufficient for many purposes.
Ultimately, most implications can be formalized in ZFC, since either the elemen-
tary embedding involved can be regarded as restricted to some set, or only one
formvla instance of the elementary schema need be used. For a method of
formalizing elementary embeddings of V in ZFC through a systera of approxima-
tions, see IV of Gaifman [4]; this formalization is adequate to take care of most of
the eribeddings we consider.

Much of our notation is standard, but we do mention the following: the letters
@, B, v, . .. denote ordinals whereas «, A, u,... are reserved for cardinals. V,_ is
the callection of sets of rank < ¢. 8™ denotes the usual relativization of a formula
6 to a class M. If x is a set, |x| is its cardinality, Px is its power set, and
Px={yePxr |y|<k}. I also xc (2, % denotes its order type in the naturai
ordering. The identity function with the domain appropriate to the context is
denoted by id. Finally, [ signals the end of a proof.

If I1s a set, an ultrafilter % over I is a maxima! filter in the Boolean algebra #1.
U is uniform iff whenever Xed, |X|=|I|; non-principal iff (\%=0; and -
complete iff wherever T€ ¥ and |T| <k, () T€4. A cardinal k > w is measurable
iff there is a uon-principal, x-complete ultrafilter over «. In context, “for almost
every x”’ meaps for x in a set in the ultrafilter involved.

We would like to thank the referee for simplifications in regard to 1.14, 3.2,
3.3, 4.8, and for suggesting the formulation of 2.6 in order to make 2.7 and 5.11
clearer.

%. Elemeatary embeddings and ultrapowers

Elementary embeddings with domain either the whole set theoretical universe
V or just some initial segment V, play a basic thematic role in this paper. In this
initial section we quickly rcview basic techniques and establish some of our
notation and terminology by working through the paradigm case, which can be
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considered a natural way of motivating measurable cardinals. Also, we consider a
result of Kunen which will establish an upper limit to our further efforts.

When we investigate elementary embeddings j of V into some inner model M,
it is convenient to have the situation implicit in the notation j:V— M, which we
also take to include the assertion that j is not the identity function.

That j is an elementary embedding means that it preserves all relations definable
in the language of set theory: if x,, ..., x, are sets, and 8(v,,..., v,) is a formula
and F(vy,...,v,) a term in the language of set theory, then

0(xy, ..., x,) iff OM(j(xy),...,j(x,))
and
JF(xy, .o %)) = F(j(x0), - 5.
By an inner model we mean a transitive e-model of ZFC containing all the

ordinals. There is a formula Inn(M) and finitely many axioms ¢q, ..., ¢, of ZFC
so that for any class M,

Fzrc(@o& - &) & U Mc M & Q< Mo Inn (M)
and if ¢ is any theorem of ZFC without free variables,

*)

!—ZFC Inn (M)—‘> (pM.
For example, Inn (M) can assert that M is transitive, contains ail the ordinals, and
that, in M, the sequence (VM| a € ¢2) is definable. (Here, the Vs satisty, in M,
the usual definition for the V_'..) Since all instances of ZF axiom schema are

needed in the proofs of the theorems (*), this by no means implies that ZFC is
finitely axiomatizable. We have:

Fore Inn (V), F2ec Inn (L), b rc Inn (HOD),

(HOD is the class of hereditarily ordinal definable sets, cf. Myhill-Scott [36].)

Assame now that j:V— M. We will frequently use the preservation schema for
j without comment, leaving the reader to see that the relations and functions
involved are set theoretic. For example, in 1.1 we will use j(rank (x)) = rank j(x)),
and in 1.2 both

X = ((X)j = ((X))a when j(a)=a,
and
KN AX. | a <y)= NG | & <j(y)}-
In the latter case, one must of course realize that X and y are the ifree variables.

Propesition 1.1. (i) For every o, j(a)= a.
(i) j moves some ordinal.
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Proef. (i) By transfinite induction. For (ii), let x be of least rank so that j{x) # x.
Then if & =rank(x), j(8)>86. Otherwise, if yej(x), rank (y)<rank (j{x))=
J(rank (x))= 8, so that j(y)=y and y-=x. But alsc, yex implies j(y)=yej(x).
Hence, j(x)= x, which is a contradiction. [J

Now let 8§ be the least ordinal moved by j. We say that § is the critical point of
the embeddirg j. A model theorist migut be quick to see

Theerem 1.2. Let % be d:fined by
Xew iff Xc6&dej(X).

Then % is a non-principal 8-complete ultrafilter over 8, and hence, 8 is a
measurable cardinal.

Prooi. 8%, but o < 3§ implies {a}¢ U since j({a}) ={a}. Also, XU iff §€j(X)
iff 8cj(8—-X) iff 6—-X¢

Finally, if v<8 and {X,|a<vylcu, se N {i(X,)|a<vy}. But jiy)=4y, so
N | e<y=i(N{X, Ja<y) ie, N{X,|a<yle. O

Thus, elementary embeddings already give rise to measurable cardinals, and so
these will be the “smallest” of the large cardinals to be cossidered. It might be
worthwhile to note that direct arguments using j show that 8 must be large.

(a) Since § is obviously a limit ordinal, Vg EZ,

(b) By the argument of 1.1 (ii), if xeV,, j(x)=x. Hence, yc V, implies
y=j(»NV,e M.

(c) If F:1V;—V; and xeV,, then F"x €V, This is so since F=j(F)| V; and
KEYjs)y=j(F"'x)2Vs€V,4, and thus F'xeV, by elementarity. Hence,
Vs EZFC and V,,IFBG.

(d) If x, yeV,,; and V,;,,F6(x, y) and 0 is first-order, then for some o <§,
Vo FO(xNV,, yN'V,): using (b), we have V5., S M, so V;,,E8(x, y) in M, so
thatin M there is ar. a < j{§) with V,,; F8(j(x) NV, j(y)NV,). Thus, there is an
a<d with V., Fé(xNV,,yNV,) by elementarity. It follows that V; satisfies
Bernays’ schema, i.e. 8 is second-order indescribable.

Since we will shorily get a converse to 1.2 (that is, if « is a measurable cardinal,
ihere is a j:V->M with critical point k), the foregoing quickly establish the
standard facts on the size of measurable cardinals.

To get that converse, we will take an ultrapower of V. So first, let us recall the
general process with & an arbitrary ultrafilter over some index set I As usual,
. define for f, g functions with domain I,

f~og iff {iel!f(i)=g(i}eD.

~g is an equivalence relation with each equivalence class a proper class. In order
to form the ultrapower, we need to have equivalence types [f] such that f ~g g iff
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[f}=[g]. It is customary to define [f] as the equivalence class of f; in our case
these are proper classes and this is inconvenient (since we prefer to stay within the
language of ZFC). We may instead use the following device of Scott.

Definition 1.3. (Scott) If f is a function with domain I,
So(f)={g| g ~af & Vh(h ~5 f—>rank (g) <rank (h))}.

That is, Sa(f) is the collection of those g ~4 f of least pessible rank. Sg(f) is a set,
so we can define

VYD = {So(f) | f: 1>V},

and as a membership relation,

So(f) B Sa(g) iff {icl|fli)eg(i)}ecD.

Thus, {V//9, Eg) is a (class) structure definable within the language of set theory.
The following is basic, and proved by induction on length of formulas.

Theorem 1.4, (Lo§) If 6(y,,...,v,) is a formula of set theory and f,,....,f, are
functions: I—V, then

(V'ID, Ep)F0(Sa(fi)s .- ., Salf)) it {ieI]0(fi(i),..., fu(D)}eD.

If 9 is a A-complete ultrafilter, then this theorem extends to set theoretical
formulas in the language L,,. (Recall that L, is the infinitary language allowing
conjunctions of <« formulas and quantifications over <<\ variables.) By the
theorem, there is a canonical elementary embedding e, : V— V'/D defined by

ea(x)=Sai{x|ic ),

i.e. ep(x) is the equivalence class of the constant function on I with value x.
We now assume that & is both non-principal and w;-complete. The following
two propositions are basic tools:

Proposition 1.5, (Mostowski [35]) Suppose (A, E) is a (possibly proper class)
structure so that E is a binary relation on A, and
(i) E is well-founded,
(ii) E is extensional, i.e. if a, b€ A and for any x € A xEa iff xEb, then a = b,
(iii) {x | xEa} is a set for each a€ A.
Then there is a unique isomorphism h:(A, E)e>(M, £) to a transitive -structisre
M, called the transitive collapse.

Proof. Define h by recursion on E by
h(x)={h(y)|yEx}. O
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Proposition 1.6. E,. on VY@ is well-founded.

Proof. If - - - S3(f;) Es Sa(f1) B So(fo)y x€ Mewli€ I fisa(i) € f,(D)} implies - - -
fo{x) € fi(x) € fo(x), which would be contradictory. [J

In view of 1.4, the preceding proposition is essentially the observation that “E
is well-founded™ is expressible in L, . These results show that there is a
canonical isomorphism hg ((VYD, Eg) <> (My,/e), where M, is a transitive class.
We have imme ately from F.o§” Theorem that Fppe Inn (My,). Setting ji = hg o ey
so that j, is elementary we will use the typical notation

jo (V- Mg =V
to depict the situation. Also, for any f: -V, we w6t

[f]ez» = hg(Sa{f)),

i.e. [fle is the transitive collapse of the ulirapower equivalence class of f. @ as a
subscript will often be dropped in these and similar situations when it is clear from
the cortext. Recalling some comments before 1.3, notice that f~, g iff [flp =
[g)e. Cousequently, [flp could initially have played the role of Sg(f) in the
construction of well-founded ultrapowers, in which case V'/@ is immediately
identifind with M,

The following proposition is very useful.

Proposition 1.7. With @ as above, j= jg, M = My, eic.
() if "xeM, and y= M is such that |y|<|x|, then ye M,
@) T ¢ M

Proef. For (i), let y={[t,]]aex}c M, and define T:j"x—y by T(j(a))=[t]
Since T enumera-es y, it suffices to show that Te M. So, we need a g so that
[g1=T, ie.

(a) domair: ([g)=;"x.

(b for all aex, [gl(j(a)) =[t.].

Let [f]=j"x. By Ko§” Theorem (1.4} if for each i€ I we set domain (g(i)) = f(i),
and g(i)(a)=1,(i) for each aedomain (g(i)), then clearly g is as required.

For (i), assume that j"((I|")=[fle M. If A={ie I||f(i)|<|I]}e D, since |I|" is
regular, there is an ac€|ll"—U {f(i)|ie A}. But then j(a)¢[f]l If B=
{ieI||f("]>|1]}e D, define h on B by induction on some well-ordering <, of I so
that

h(i)e f(i)~{h()|j <;i & je B}.

Then [h]e[f], yet h is not coustant on any set in 9, as @ is non-principal. Hence,
in cither case we get a contradition from the assumption that j"((I|")=[f]. O
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If {x|=A in 1.7 (i), the result can simply be stated as: M is closed under
A-sequences. In the future, we will also use *M < M to denote this. 1.7(ii) puts an
upper limit on the closure of M.

We now consider % a non-principal x-complete ultrafilter over « a measurable
cardinal, and j:V-— M=V*/a. The next theorem deals with this situation, and its
(i) completes the converse to 1.2.

Theorem 1.8.
(i) « is the critical point of j.
(i) “Mc M bu: “"M¢& M.
(i) k<2 <j(x)<(2)".
(v} U¢M.

Proof. For (i), we first prove by induction on « that if a <k, j(a)= a. Suppose,
towards a contradiction, that j(a)>a. Let [f]=a. Then {8 | f(B)<a}e, so that
by the x-completeness of ¥, there is a £ <<a so that {8 f(B)= & e%. But then,
[f1=i(&) = & which is absurd.

Next, if id:k—« is the identity function on «, k =[id] < j(«) since for each
3 <k, {a|d<a<k}eu Thus  is the critical point of j.

For (ii), use 1.7 and the fact that "k = ke M.

To show (iii), first note that j(k)=order type of {[flo | f€“«}, so that j(k)<
(2<)". Also, in M j(x) is measurable, hence strongly inaccessibie, so that (2*)™ <
j(x). But by (i), P(x)=2M(k) so that 2* < (2)™, since Mg V.

For (iv), assume that %e M. Since “x = (*k)™, in M one can evaluate j(k), so
that j(k)<((2*)") as in the previous paragraph. But this contradicts the strong
inaccessibility of j(k) in M. O

The following corollary has been, of course, much strengthened in recent years
by the work of Gaifman, Rowbottom, Silver and others.

Corollary 1.9. (Scott {41]). If there is a measurable cardinal, V#L.

Proof. Assume V=L. Then the M as above is an inner model satisfying the
axiom of constructibility. Hence, M=L. But %#eV-~M by 1.8 (iv), a
contradiction. [

This corollary has as an easy consequence the fact that there is no elementary
embedding j:V~L. The situation with HOD is unclear. But, how about an
elementary embedding of V into V itself? Kumen showed that this is not possibie
in ZFC. His proof uses a simple case of a combinatorial result of Erdos and
Hajnal. But first, for the reader’s interest a short proof of the general case due to
Galvin and Prikry is presented. The result is concerned with the so-called
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Jéusson’s problem (see Devlin {11 for details), and shows that if we allow an
infinitary operation, there are Jonsson algebras of every infinite cardinality.

Definition 1.80. For any set x, a function f is called w-Jonsson over x iff f:“x~>x
and whenever yzx and |y|=|x|, f"“y=x.

Theorem: 1.11. (ErdSs-Hajnal [2]) For every infinite cardinal A, there is an
w-Jonsson furction over A.

Proof. (Galvin--Prikry [5]) For the special case A = o, there is a simple inductive
argument. Let {X,, n,)| @ <2} enumerate [w]" X w. (Recall that [w]” is the
collection of iufinite subsets of w.) By induction on « <2 pick s, €“X, so that
5, # 8 tor B<a and set f(s,)=n,. Then any extension of f to all of “w is
w-Jénsson over w.

Suppose now that A > w. Let & be any maximal collection of subsets of A so
that members of ¥ have order type w and are mutually almost disjoint. By the
speci:] case above, we can assume that for each xe ¥ there is a function f,
w-Jorsson over x. Define now a function g:“A—A by:

f.(s) if the range of s is infinite and s € “x
glsy =1« for some x€ &,
0 otherwise.

Then g is weli-defined.

It suffizes to find an Ag A so that |A|=A, yet B€ A and |B|=A implies
g"“B 2 A, for then an w-Jénsson function over A can easily be derived from g. If
no suth A eriss, there are sets A2 A2 A; 2 A, - - - each of cardinality A, and
a,€ A, - A, 50 that a,¢ 8" A, ;1. If y ={a, | n € 0}, by maximality of & there is
an x &% so that x Ny is infinite. Let xMNy={a,, a,, ...}, where no<n;<....
Now t={e,, a,,...}= A,. But by definition of f,, there is an s€“t so that
g(s)= a,,. Henc:, a,€g"A,, which is a contradiction. [

Theorem 1.12. (Kunen [15]) There is no non-trivial elementary embedding ¢f V
into itseif.

Proof. Argue by contradiction and suppose j:V-»V with critical point k. Set
A=sup{j"(x)| ne w}, where j°(k)=xk and j**'(x)=j(j"(x)). Note that j(A)=
sup {i"" (k) | new}=A.

Now let f be w-I6nsson over A; then j(f) is also w-Y6nsson over A. Consider the
set X = j"A. Since |X|=A, let xe“X so that j(f){x)=«. But if x(n)=j(e,) for
new, x=j(y) where ye“rx and y(n)=a,. Hence, « = j(f)(j(y))=j{f(y)), con-
tradicting the fact that « is not in the range of j. [J

As Kunen remarks, since the A in the above proof is a strong limit cardinal of
cofinality o, the argument of the special case of 1.11 suffices to produce an
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~w-J6nsson function over A. (The full result of .11 will be used in our forthcoming
+3.3 and 3.4) Note also that more generally, if j:V-—->M and A is defined in the
same way, then there is actnally a subset of A not in M. This way of formulating
Kunen’s result is formalizable in ZFC through the strategem of Gaifman [4]; the
notion j : V-V is not. Since AC was used in the proof of 1.11, we may still ask

Open Question 1.13. In ZF (without AC) can there be a non-trivial elementary
embedding of the universe into it.elf?

Kunen’s result will limit our efforts in that we cannot embed the universe into
too “fat” an inner model. Pending an answer to 1.13, one can perhaps best view
this fact as a structural limitation imposed on V by the Axiom of Choice.

Finally, we note the following generalization of 1.8(iv) concerning ultrapowers.
This was known before Kunen’s result (1.12), and established the special case that
no j:V—V could be the result of taking an ultrapower.

Proposition 1.14. If @ is a non-principal, w,-complete uitrafilter over some
cardinal v, then D¢ M,

Proof. Let M = M, and j = j, and assume that @ e M. It follows that v < M and
veP(vxvyc M. Note that for any ordinal a, j(a)=the order type of
{{ifle | fe"a}. Thus, j"ve M, since j"v is just the collection of such order types for
o ranging over ordinals below v, and can be properly defined in M as @ e M and
Vy = (VV)M-

By 1.7(i), it follows that M is closed under v-sequences, and in particular
"p* = (*v*)™. The argument in the previous paragraph can now be used again to
show that j"(v") e M, thereby contradicting 1.7¢i). I

2. Supercompactness

Though there can be no elementary embedding j:V—V, we noted that if
ju: V—> M, arises from a non-principal k-complete ultrafilter % over « a measura-
ble cardinal, then M, is not even closed under k *-sequences. The following is an
intermediary notion, and seems the proper generalization of measurability.

Definition 2.1. If k <A, k is A-supercompact iff there is an elementary embedding
j: V=M so that

(i) j has critical point k and j(k)>A,

(i) *"Mc M.
x is supercompact iff k is A-supercompact for all A =«.

It follows from (i) that M contains all sets hereditarily of cardinal=<A. Note
that from Section 1, « is x-supercompact iff « is mcasurable. It wili be shown
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shortiy that if « is 2*-supercompact, then « is actuauy the xth measurable
cardinal (see 3.5). Kuneu noticed that (i) in the above definition can be replaced
by simply “j has critical point ,” since for some integer n, j"(x)>A —else we
would again get the contradiction of 1.12. A further argument is needed to show
that the nth iterate of j embeds V into an inner model ciosed under A-sequences
(see [15).

2.2. In the situa‘ion of 2.1, since *M € M, the embedding j immediately suggests
considering the following ultrafilter:

Xea iff "Aej(X).

Note that since [j"A]= A <j(k) in M, j"A € P, j(A)™. Hence P,x €%, and we can
consider this set to be the underlying index set for %. % has the following
properties:

(i} U is a x-complete ultrafilter,

(iiy % is non-principal, and for any ae A, {x|aex}e,

(iii) If [ is a function defined on a set in % so that {x | f(x) € x} €%, then there is
an a€ A so that {x | f(x)=a}e .

By (i) anc (i) if ye®\, {x|ysx}eu For a proof of (i), note that if
JOGEA ) e A, then j{A{(j"A)= j(a) for some a€A.

De&nition 2.3. If << A, an uitrafilter % over P, A is normal iff it satisfies (i), (ii)
and (iii)} 4s above. More generally, an ultrafilter % over 2,J, where I is a set, is
normal it it satisfies (i), (i) and (iii} with A replaced by I Finally, without
reference to w, an uitrafilter % over PI (i.c. Uc PPI) is normal iff it satisfies (ii)
and (iif} with A replaced by L

If f:1— A is bijective, then f induces a bijection between normal ultrafilters
over ¢ .J and those over ?.A, so for most purposes, it suffices to consider
ultrafilicrs over sets of form P A.

Note that an w,-complete ultrafilter U over PI is normal iff [id]y, = jo,"I, where
id: 2I—- ! is the identity map. This easy but central fact will be used repeatedly
throughout the rest of this paper.

Just as in Section 1, having produced an ultrafilter from an embedding, one can
hope to reverse the process by taking an ultrapower. So, let % over ?,A be normai
and consider the canonical j: V- M~ V®*/q. Then:

(i) "< M. Use 1.7(i) and the fact that [id]= j"A.

(i) k is the critical point of j and j(x)>A. We have {x||x|<<«}e, so
[lid]| = |j"A| < j(k). But |j"A|=A in M, since M is closed under A-sequences.

Ve have shown

Theorem 2.4. If k <A, the following are equivalent:
{i) « is A-supercompact,
(ii) there is a normal ultrafilter over P A.
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Note the following reversibility: if 9 is normal over P A, jo: V—>M,, and ¥ is
defined from jg, as in 2.2, then %' =

Though normal ultrafilters have been defined generally over index sets PA, we
have seen how sets of form 2, naturally come into play. In fact, if U is a
ay~-complete normal ultrafilter over PA, then for some p <A, P A€W :

Let j:V—~M be the correspondiny embedding with critical poirt . Since
*M < M by normality, Kunen’s argumeat shows that for some interger n, we must
have j*(x) <A <j""Nk). If A <j"*Y(k), set u=j"(k) so that g <A If A =j""(k),
note that a simple argument inducing on the j'(x)’s and using *M < M shows that
A must be inaccessible in V. Thus, if we set p=(j"(x))" in this case, we have
< A. Finally, in either case, not that [[id]]=|j"A]= X <j(u), so that {x | |x|<u}e
A, i.e. P AU

We now show that if « is supercompact and 8= «, then V, can be expressed as
an ultraproduct of V,’s with y <«.

Theorem 2.5. Let 0=k, and assume that k is |Vg|-supercompact. Let U be a
normal ultrafilter over P. V4, and j:V—>M the corresponding embedding. For
convenience, set X =®,V,. Suppose that in M, 8 =[(6, | x € X)]. Then
(i) for almost every x € X, x is an elementary submodel of V,, and the transitive
collapse gives an isomorphism #, . x=V,,
(ii) set j.=m:t. Then jlV,=[({, | xe X)],
(iii) there is an isomorphism
*
Vo = 11 Vo, +1/%U,
which can be explicated as follows: if yeV,, y=[{m(y)|xeX &yex)]. If ye
Ves1 Y=UmUyN2)xe X))

Proof. j"V, is an elementary submodel of V), and the transitization map
7:j"Ve =V, has inverse j | V,. We also have that [id]=j"V, in M, and that j|V,
and 7 are both in M as they are hereditarily of cardinal <|V,|. From these {acts
and K08’ Theorem (1.4), (1) and (ii) of the theorem now follow.

For (iii), note that the right side of (*) is clearly isomorphic to VM .. However,
using the fact that M is closed under |V,|-sequences, it is easy to prove by
induction on a < @+1 that V_,=VM. This establishes (*).

Now let y€eV,, and suppose y=[(y, | x€ X)]. Then y, €V, for almost every
xeX. Moreover, j(¥)=[{j,(y:)|x€X)]. But by definition, j(y)=[{y|xeX)].
Hence, for almost every x € X, we have j(y,) =y, i.e. m(y) = yx, which was to be
proved.

Finally, let y € V4, ;. We wish to show that y =[(#%(y Nx)|x e X)]. For this, it
suffices to prove that y = w"(j(y) N j"V,). But j(y) N j"V, = j"y, and w(j(z)) =z for
2 €V, So our claim is evident. [J



86 R.M. Solovay, W.N. Reinhardt, A. Kanamor.

Note that since, in the notation of 2.5, j(x)>[V,|= 6§, we have that 6, <« for
almost everv x.

Let us say that a property P(x) is local iff it bas the form 38(V;Fy(x)). The
ultrapraduct reoresentation makes it evident that if P(x) is local and for some v,
P(v) holds, then if « is supercompact, P(y) holds for some y<«. This is worth
some elaboration.

Definition 2.6. F.ecall the Lévy hierarchy of formulas (see Lévy [21], Definition 1).
For any transit ¢ M, say %, (tesp. I1,,) relativizes down to M iff whenever P(x) is
%, (resp. I1,), it ae M and P(a) holds, then MFP(a).

3, relativizes down to M iff II,,, does. According to [21] Theorem 36, if
[Vo| =8, then 2, (and hence IT.) relativizes down to V,. Moreover, it is easy to
construct a sentence @ so that Vok® iff [V,|=6. With these points in mind,
suppose now that P(x)is 3,, say Jy Q(x, y) where Q is II;. Then,

P(x) iff 3B[VyE(® &3y Q(x, y))].

Thus, :ny X, property is local (as we have defined this notion just before 2.6).
Convessely, it is well known that “x is a V,,” is II;, and hence a local property is
one gnen by a %, formula.

Theosrem ‘2.7, If « is supercompact, %, (and hence II;) relativize down fo V..

Proof. Suppose P(x) is 3y Q(x, y) where Q is II,. Let ae'V, so that P(a) holds,
and fix b such that Q{a, b) holds. By supercompactness, let j: V-— M with critical
point & so that be MMV, Note that j(a)=a. Thus, (Vj,FP(@)™, so
V.EP(e). O

Observe that 2.6 is optiraal, since the X, sentence “There is a supercompact
cardinal” feils in V, if « is the least supercompact cardinal. (Cf. 5.8 below, or
note that “x is not supercompact” is &, and apply 2.6.)

It is pertinent here to discuss the question of cardinal powers in the context of
large cardinals. Silver [42] showed that in L[4), where 9 is a normal ultrafilter
over a measurable cardinal, the GCH holds, and hence: Con (ZFC & there is a
measurable cardinal) implies Con (ZFC & there is a measurable cardinal & GCH).
Kunen [18] then showed that Con (ZFC & there is a measurable cardinal « &
2°>k") implies Yo Con (ZFC & there are o measurable cardinals). This
surprising result certainly indicated that strong assumptions would be necessary to
get a model with a measurable cardinal « so that 2“>«™.

It was Silver who first found such a model: he showed that if « is sapercompact
in the ground model, there is a forcing extension in which 2>« and « is still
measurable. (A more precise formulation of Silver’s result is possible in the
terminology of Section 5: If « is (0 + 8 + 1)-extendible in the ground model, there
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is a forcing extension in which 2“=R, ,; and « is still n-extendible if n >0, or
measurable if 5 was 0.) Combining this resuit with one further extension using
Prikry forcing (to change the cofinality of a measurable cardinal to w) yielded the
first example of a singular strong limit cardinal « so that 2" > «™. Magidor {27]
then proved the following relative consistency result, using in part Silver’s resuit.
Given a cardinal with a sufficient degree of supercompactness in the ground
model, there is a forcing extension in which 2% =R, ,, and for every integer n,
2% <R, ... Recent results of Jensen [9] and Mitchell seem to indicate that one
cannot expect to weaken the initial large cardinal assumption by very much. See
also the end of Section 7 for a result of Magidor with a stronger conclusion, but
also starting with the stronger assumption of hugeness.

Silver’s method of iterated forcing, first used to get the result mentioned in the
previous paragraph, is often called Backward Easton Forcing. It is applicable to a
variety of problems in set theory, and in particular can be used to show that the
presence of large cardinals has little effect on the cardinal powers of regular
cardinals. For example, Menas [30] shows that if « is supercompact in the ground
model, and @ is a function on regular cardinals so that

() A=<p implies PA)<P(p),

(ii) cf (B(\)) >\, and

(iit) @ is local (as previously defined, i.e. 3,), then there is a Backward Easton
forcing extension in which cardinals are preserved, 2" = ®(A) for every regular A,
and « is still supercompact.

Wher a cardinal « is supercompact, other than the technical result that there
are x measurable cardinals below k (see 3.5), little is known about the behavior
of the set theoretical universe below k which does not already foliow from the
measurability of «.

Concerning the behavior of the universe above «, several interesting facts are
known. Some of these already follow from the weaker assumption of strong
compactness (see Section 4), but one exception is the fact that the second-order
Lowenheim-Skolem Theorem holds for structures with underlying set of cardinal-
ity at least x. Magidor [26] shows that, in an appropriate sense, we need the
strength of supercompactness in this case.

In Section 4, the main consistency results involving supercompactness and
strong compactness are stated. Section 5 contains several results on supercom-
pactness in the context of extendibility, and another characterization (5.7). To
conclude this section, we mention that there are combinatorial characterizations
of supercompact cardinals (Magidor [23]), in terms of concepts first formulated by
Jech [71L Also, Prikry [37] has recently formulated a concept of real-
supercompactness in analogy to reai-valued measurability, and observed that if it
is consistent that a supercompact cardinal exists, then it is consistent that 2* is
real-supercompact. He also showed that several consequences of supercompact-
ness that we will discuss shortly (see 4.6, 4.7) also follow from real-
supercompactness.
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3. Normal witrafiliers

With the introduction of normal ultrafilters in the previous section, we now take
time to investigate them in some detail. First, some technicalities; recall that if x is
a set of ordinzls, X denotes its order type.

Propesition 3.1, {f W is normal over P\ and a <A,
() jaae=[xNa|xeP A
(i) a="Na|riPA)h

Proof. "o = "5 Nj{a) and j'a 0

Preposition 3.2, If U is normal over P A, M, is actually closed under A=*-
sequernces.

Proof. Let j: V- My,=V®Xq. By 1.7(i), it suffices to show that j(PA)e M,
since V*=|® A|l. However, j®PA)=P.("A)=(P.(j" ) € M. (Here, the first
equali y holds as j(x)=j"x for any x € A, and the second, as M is closed under
A-sequences and j"Ae M) O

We pert present another structural result about normal ultrafilters, which has
already appeared in Solovay [43]. First, a preliminary observation.

Proposition 3.3. Let k <A and G be a w-Jonsson function over A. If U is a normal
uitrafilter over P\,

{1xG|"x is w-Jénsson over x} e U.

Remarks. & eusists by 1... Qur definition of a function being w-J6nsson is slightly
stronger than the on: used in [43], but there is little difference in ths manipula-
tions.

Proof. of 3.2. By £&s Theorem (1.4), it suffices to show j(G)|“j"A is w-Jonsson
over j"A. (Here, we need not distinguish between ¥V and M, as M is closed under
A-sequences.) $o, suppose X <A and |X|=|j"A|=A. If Y=j"1(X), since G is
w-Jonsson over A, we have G"Y = A. So, given any a <A, let s€“Y such that
G(s)=a. Then j(a)= j(CG(s))=j(G)j(s)), and j(s)e“X. Thus, we have shown
J{G)Y'"X = j"), which was to be proved. [

The following is Theorem 2 of [43].

Theorem 3.4. Suppose « < A are regular cardinals and % is a normal ultrafilter over
PA.If F: P\ = A is defined by F(x) = sup (x), then there is an X € U so that F| X is
one-to-one.
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Proof. Set X ={xe P A | is inaccessible, x is closed ander w-sequences, and
G |“x is w-Jonsson over x}. By 3.1, 3.3, and further use of ¥0§* Theorem (1.4),
Xedl. We show that X has the required property.

Assume that x, ye X, and sup (x} = y=sup(y). As %, y are inaccessible and x, y
are both closed under w-sequences, a simple arg:ment shows that x Ny is cofinal
in vy, and hence |x|=|xNy|=|y]. Thus, by ike «-Jonsson property, x=
G™{(xnNy)=y. O

It is not hard to see that if Yed, {J {®?x|xe Y}=2. Thus, by 3.4 we can
conclude that if « is supercompact and « <A is regular, then A== A, This fact
aiready follows from the strong compactness of k (Solovay [43]) — see Section 4
for further remarks.

Recail now that the term “normal” is already known in another context: if « is
measurable, a non -principal k-compiete ultrafilter % over « is normal iff in M,,
xk=[id]. This, of course, just means that whenever fe“x is such that
{a <k |fla)<a}elU, there is a y<«k so that {a | f(a)= y}€%. Normal ultrafilters
turn out to be rather special, but one can always get them from eleaentary
embeddings. In fact, it is easily shown that the ultrafilter of 1.2 is normal.

We now have a notion of normality in two senses, but in fact, there is 2
one-to-one correspondence between normal ultrafilters over ?,.x and normal
ultrafilters over «. If ¥ is normal over «, U ={X < ® .k | X N« € ¥} is normal over
P .x. Conversely, if U over @,« is normal, k€. If not, then {x}x is not an
ordinal} € %. For such x, let f(x) € x be so that f(x) is the least above some ordinal
not in x. By normality, [f]=j(y) for some y <k, but this contradicts {x | y= x}e
@Y.

Deterraining the number of normal ultrafilters possible over a measurable
cardinal has turned out ot be an interesting problem. Kunen [17] showed that in
L[], the universe constructed from a normal ultrafilter Y over x, #NL{%] is the
only normal ultrafilter over . Kunen and Paris [19] showed that if « is
measurable in the ground model, there is a forcing extension in whick & carries
the maximal number of normal ultrafilters, i.e. 2*". Then Mitchell [33] more
recently showed that if x is 2*-supercompact and 7 is<« or one of the terms x*
or k**, there is an inner model in which « is measurable and carries exactly 7
normal ultrafilters. It would still be desirable to get Mitchell’s relative consistency
results starting from just the measurability of «.

In Mitchell’s model with exactly two normal ultrafilters over «, one contains the
set {a <« | a is measurable} and the other does not. In this regard, consider the
following two propositions.

Provesition 3.5, If « is 2“-supercompact, there is a normal ultrafilter % over k s0
that {& <k | & is measurable} e U. Hence, 2“-supercompactness is ulready enough to
assure that « is the xth measurable cardinal.
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Preot. Let j: V- M with critical point &, so that M is ~losed under 2"-sequences.
If % is defined by

Xeu iff XekdrejX),

A is norinal over k, as before. But since M is closed ander 2"-sequences, it is not
hard to see that every ultrafilter over « is a member of M. Hence, « is measurable
in M, i.e. {@< | is measurable}e¥ by the definition of %. [J

Propusitier 3.6. Any measurabie cardinal « carries a normal ultrafilter % so that
{a <k |a " not nuasurable}e .

Proof. By induction. Let ¥ be a normal ultrafilter over k. Set T={a <k |a is
measurabl:}. I T¢ ¥, the theorem certainly holds for «. So assume Te . For
each a € 7, by induction hypothesis let 4%, be normal over a so that { <« ] B is
not measurable}e . Define % over x by

Xeu iff {a<c|XNacute?.

It is not hard to check that % is a normal ultrafilter over x so that {a <« | & is not
measurable}ed. [

These two propositions show that if « is 2% -supercompact, there are at least two
normal ultrafilters over «. In {act, there are 2°° normal ultrafilters over i, and this
resilt is a special case of a general result on the number of normal ultrafilters over
#.A. To prove the main theorem (3.8) from which this will follow, we develop
some technical machinery of independent interest.

Conside: the following situation. x <A <g and there is a normal uitrafilter %
over P 1. For X< P if we let X |A={xNA|xe X} and set

YA ={X|A| Xeu}
it is no: hard (o see that %| A is a normal ultrafilter over ?,A. In fact,

Xemir iff XcPA&jyhej(X)
Consider the following diagram:

V-2 M, =~ VP2

N
NMI = V@KIA/%

where k is defined by

k([{f(x) | x € PMVgp) =[f(x N A) | x €2 ) e
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Proposition 3.7. k is an elementary embedding and the diagram commutes.
Proof. Straightforward.

For those familiar with the Rudin—Keisler ordaring on ultrafilters, note that
AUl A is just hy(WU), where h: P pu—P A is defined by h(x)=xNA, and k is the
associated elementary embedding.

Concerning the action of k, first note that if e s A, k(a)= « since

k(@)=k({(xNa|xe2))=[xNANa|xe® u)l=a.

Next, we show k{x)=x for xe@ A. Let y <k, and suppose h:y-—>x is
surjective. Then he M,. Since h (y)=1v, k(h) is .. function with domain v. For
E<y, k(h) (&)= k(h(£€))= h(£) by the preceding paragraph. So k(h)=h, whence
k(x) = range (k(h)) =range (h)= x.

Next, since k(P A)=PAM =), an argument using elementarity and the
preceding paragraph shows that k(X)=X for X = 2® A,

Finally, if Xe®®P ANM,, then k(X)=X, since PP <M, by 3.2. Using
these results, a straightforward argument (Menas [32], 2.6 and preceding) shows
that if g =2*™", the least ordinal moved by k is (2*™)*™. However, this particuiar
fact will not be used in this paper.

We are now is a position to prove the main result of this section

Theorem 3.8, If « is 2*™ -supercompact, X ¢ PP A implies that there is a V
normal over A so that X € M.

Proof. Let % be normal over #,(2*™") and consider the diagram:
V25 My = vojaa
iy k
M, = Vg

Argue by contradiction. Let ¢(X, , A) iff XePPP A and for any ¥ normnal
over P, X¢E(PPPANM,). Suppose 3X o(X, «, A}. Then M FIAX ¢(X, «, A}
This is so since every normal ¥ over @A is in M, and PP A\ N M, is correctly
“computed” in M;:every function P A—>V, is in M, and PPPANMy &
(Visd™ e (V,“V("))M” = jy (V).

Recall now the properties of k discussed just before the theorem. Since
k(k)=x and k(A)= A, MoEIX o(X, , A). Let X e M, so that MyF (X, &, A).
X, e PPP A so k{X,)= X, Heunce, MFe(X,, x, A). But this contradicts X,¢&
M, = M, and the definition of ¢. O

The following improves the result of Magicor [25].
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Corollary 3.9. If « is 2"~ -supercompact, there are 2*"™ normal ultrafilters over
@ A. Hence, if x is 2*-supercompact, there are 2*° normal ultrafilters over .

Proof. If ¥ is normal over ®,A, note first that |[PPP A N M, | <(2*™)*. This is so
because

(227 )M <o (k) < (22,
the first inec . 'ity because jo-(«) is inaccessible in My and the second, a trival
upper bound (sce the analogous 1.8 (iii)). Hence, since by 3.8,

PPP N = {PPPANM, |V normalover ? A},
there must be

|PPP A | =22

normal ultrafilters over 2 A. O

By examining the proofs of 3.8 and 3.9, one can check that if « is 2*-
supercompact there are 2*° normal ultrafilters over « containing the set {a <« |a
is megsurable}. But paradoxically, the following question is still open.

Open (Qrection 3.10. If « is 2%-supercompact, is it provable that there is more
than one normal uitrafilter over « containing the set {a <« | a is not measurable}?

We can also prove something about the following ordering defined on ultrafil-
ters.

Definition 3.01. If A and ¥ are w,-complete ultrafilters, U<t V'iff Ue M,.

<lon nomal uitrafilters over fixed @A is a well-founded partial ordering (by a
generalization of 1.1 of Mitchell [33]). Notice that if ¥ is normal over @A, there
are at most 2* ™" normal ultrafilters over ?, A which are<ipredecessors of ¥, by the
first fact used in the proct of 3.9.

Corollary 3.12 If « is 2" -supercompact, there is a<i chain of normal ultrafilters
over @i of length (2*™)*. Hence, if « is 2"-supercompact there is o <ichain of
aormal ultrafilters over k of length (2<)°.

Proof. Given at most 2™ normal ultrafilters, one can code them as some
Xe@®P A Thus, 3.8 can be used to find some normal ¥ over @A so that
XeMy. [

For an application of the order<a, see Magidor [22]. He shows that if gz <« are
regular, a<ichain of order type p of normal ultrafilters over « can be used to



Sirong axioms of infinity and elementary embeddings 93

define a partial ordering such that forcing with it preserves all cardinals but
changes the cofinality of « to . This, of course, complements Prikry forcing.

To conclude this section, we mention that, analogous to Rowbottom’s partition
result for normal ultrafilters over a measurable cardinal, there is the following
partition property: say that a normal ultrafilter % over P, A has the partition
properiy iff whenever f:[® AF—2, there is an X €% and an i <2 so that x, ye X,
x<y, and x#y imply that f({x, y})=i. Menas established a characterization of
this property and showed that 3.8 holds with the additional requirement that the
normal uitrafilters over #,A each satisfy the partition property. However, Solovay
has shown that if k <A, k is A-supercompact and A ‘s measurable, then there is a
nomal ultrafilter over ? A without the partition property. Also, Kunen proved
that the léast u >« so that there is a normal ultrofilter over @ _u without the
partition property is [I3-indescribable and strictly less than the least ineffable
cardinal greater than x. See Menas [31] for the details.

4. Strong compactness

The concept of strong compactness is discussed in Keisler-Tarski {12] and
historically was motivated by efforts to generalize the Compaciness Theorem of
lower predicate calculus to infinitary languages £,.. Supercompactness was con-
ceived partly in order to ostensibly strengthen the definition of strong compact-
ness in a desirable manner, but Solovay conjectured that the two concepts coincide.
Though this conjecture stood for some time, it is now known to be false (see 4.4
and after).

In view of our thematic approach, in this section we consider strong compact-
pess as formulated in terms of elementary embeddings and wultrafilters. The
connection with £, and other equivalent formulations are given in a variety of
sources,

Definition 4.1. If k<) and ¥ is an ultrafilier over 2.\, then U is fine 1T U is
k-complete and for each a <A, {x|acx}eq.

Thus, the definition leaves out clause (iii) of the definition of normality (2.3).

Definition 4.2. If x <A, « is A -compact iff there is a fine ultrafilter over A .k is
strongly compact iff « is A-compact for all A =«.

Trivially, if « is A-supercompact, x is A-compact, and « is measurable iff « is
k-compact. If k <A <, k is p-compact, and % is a fine ultrafilter over # p, then
q| A is a fine ultrafilter over @A, so that % is A-compact. The reader is cautioned
that there is a different, equally natural notion of A-compactness often seen in the
literature.

We proceed immediately to the characterization
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Theorem 4.3, If x < A, the following are equivalent:
(i)  is A-compact,
(ii) therc is a j:V—M with critical point k so that: X € M and |X|:=< X implies
there is a Y e M so that X< Y, and ME|Y|<j(«).
(it} if  is any k-complete filter over an index set I so that $ is generated by <A
sets, then § can be extended to a k-complete ultrafilter over L

Proof. (i}—(ii). Let % be fine over ?.A, and consider j:V—>M=V®q. If
X={f.] e <A}le M set G(x)={f,(x)|a€x} amd Y=[G].

(ii)—(iii). S..ppose # is as hypothesized, and generated by elements of T<
@(I), where |T]<A. By (ii) let Y2j"T so that Ye M and MF|Y|<j(x). In M,
J(#) is a j(x)-complete filter and j($F)N Y is a subset of cardinality < j(«). Hence,
thereisaceMsothatce ) (J(F)NY). Set Xeuiff Xl & cej(X). Then Uis
a xk-complete ultrafilter which extends 4.

(iii}— (i). Extend the x-complete filter over P, A generated by the sets {x | @ € x}
for @ <A to a w-complete ultrafilter. [l

4.3 (ii) thus shows the weakness of A-compactness; with A-supercomnactness
one cin always assert that X = Y. We mention here that Ketonen [13] has another
characterization: if k <)X are regular, « is A-compact iff for every regular p so
that « =" p <A there is a uniform «-complete ultrafilter over u. For a further
discussion of fine ultrafilters, normal ultrafilters, and connections involving the
Rudin—-Keisler ordering, consult Sections 2.1-2.3 of Menas [32].

The following result indicates that strong compactness and supercompactness
are not the same concept.

Propuosition 4.4, (Menas [32] (i) If « is measurable and a limit of strongly compact
cardinals, then « is strongly compact.
(ii} if x is the lec st cardinal as in (i), then «k is not 2"-supercompact.

Proof. For (i), iet % be a2 non-principal k-complete ultrafilter over « so that
A ={a <« |a is strongly compact}e . If A = «, for e € A let %, be fine over P,A.
Define ¥, by

xe¥, i XcPA&{a|XNPAcU e

Then ¥, is fine over 2@, A.

For (ii), argue by contradiction, and suppose x were 2“-supercompact. Let
j:V—=M with critical point « so that M is closed under 2"-sequences. By
definition of « and elementarity, we have in M that j(«) is the least measurable
cardinal which is a limit of strongly compact cardinals. But M is closed under
2*-sequences so that « is measurable in M, and also, if o <« is strongly compact,
jla) = a is strongly compact in the sense of M. Hence, in M, « is also measurable
and a limit of strongly compact cardinals, which is a contradiction. [l
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It is a consequence of the existence of an extendible cardinal (by an easy
strengthening of 5.9 of the next section) that there are many cardinals as in 4.4 (i).
Menas was able to establish the following result.

(a) (Menas [32]) Con (ZFC & there is a measurable cardinal that is the limit of
strongly compact cardinals) implies Con (ZFC & there is exactly one strongly
compact cardinal k, and « is not even «"-supercompact).

The following are results of Magidor.

(b) (Magidor [24]) Con(ZFC & there is a supercompact cardinal) implies
Con (ZFC & there is a supercompact cardinal with no strongly compact cardinals
below it).

(c) {(Magidor [24]) Con (ZFC & there is a strongly compact cardinal) implies
Con (ZFC & there is a strongly compact cardinal with no measurable cardinals
telow if).

Though Kunen [17] has shown that the existence of a strongly compact cardinal
implies the existence of inner models with any specified number of measurable
cardinals, the results (a), (b} and (c} indicate that strong compactness is a rather
pathological concept in the hierarchy of large cardinals. Perhaps it should uvlti-
mately be revarded as a generalization of weak compactness in the same spirit
that supercompactness is a generalization of measurability.

In connection with these considerations, recall that in the previous section we
showed that if k is supercompact there are many normal ultrafilters over k.
However, the following is still open.

Open Question 4.5. If « is strongly compact, can it be proved that there is more
than one normal ultrafilter over x?

4.6. Concerning the effect of the existence of a strongly compact cardinal x on
the behavior of the set theoretical universe, Solovay [43] has proved thatif A=«
and A is a singular strong limit cardinal, then 2* = A*. As noted by Paris, Prikry
and probably others, this result now follows from the easier result of {43] that if
A=A and A is regular, then A== A, and Silver’s recent solution to most cases
of the singular cardinals problem:

Assume A=k and A is a singular strong limit cardinal. X cf (A)<k, it is
‘mmediate that 2" =AM< (AN M =" But if cf(A\)=k, S={a<i|a is a
singular strong limit cardinal of cofinality < «} is a stationary subsetof A and ¢ € §
implies 2% =a™ by the previous sentence. Silver’s result states that if p is a
singular cardinal of uncountable cofinality so that those o <puwith 2% = o™ forms
a stationary subset of p, then 2* = u*. Thus, we can conclude 2* = A",

However, we note that the further results in [43] on powers of cardi.:alc cannot
ostensibly be simplified in this way.

It is also proved in [43] that if x <X and « is A*-supercompact, then Jensen’s
combinatorial principle [, fails (see Jensen [8] for the result that it V=1, (J,
holds for every infinite cardinal u). Since then, Gregory proved that the failure of
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O, aiready follows from the A™-compactness of k. His proof used the notion of a
A-free Abelian group, but a direct combinatorial proof is possible. Following a
comment cf Kunen, we present the ideas involved in general context.

For regular A > w, let us call the following principle E, :there is a set Sg
{a < |:f (¢)= w} stationary in A so that for all limit ordinals £<A, SN ¢ is not
statiopary in £ Jensen [8] proved that if V=1L, then E, fails just in case A is a
weekly compact cardinal. The following proposition is well-known.

Proposition ¢.7. Suppose A>w and O, holds. Then E,- holds, and in fact,
whenever T+ .1 stationary subset of ™, there is a stationary S< T so that for any
limit ordinal £ <A™, SN & is not stationary &.

Proof. Let us firet recall the principle [, : there is a sequence {(C; | £<<A™) so that
for any €< A”, we have
(i) C;c & and if £ i a limit ordinal. C; is closed and unbounded in ¢

(ii) The order type of C; is<A,

(iii) If vy is a limit point of C,, then C,=C,Ny.

Suppose now thet T is a stationary subset of A*. Without loss of generality, we
can assume that T consists of limit ordinals. For a <}, set S, ={ée T| C; has
order yype af. Then, as the S,’s partition T into A parts by property (ii), there is
some ag<A so that $=S,, is still stationary in A*. We now claim that for any
limit ordira! £<A™, SN§ is not stationary in £ There are three cases.

(a) cf(¢1=w. Then as § consists of limit ordinals, § is disjoint from any
sequernice of type w of successor ordinals, cofinal in &

(b) «f (£)>w and C, has order type<a,. Let C, consist of the limit points of
C.. Then as ¢ (§) > o, (_Zé is closed and unbounded in £ and (SN&N 6‘6 =@ by
property (iij.

(c) cf{£)>w and C; has order type>a,. Let ye C; so that C;Ny is of type
«y. Then if (:‘g is defined as in (b), we have by property (iii) that (SN&)N
(Ce—=(y+1)=9

Thus, the claim is proved, and the proposition follows. [

The following theorem establishes the connection to large cardinals.

Theorem 4.8. If A is regular and there is a uniform, «-complete ultrafilter over A,
then E, fails.

Proof. Let % be uniform, w,-complete over A. Let f:A—A so that
sup {j, (@) | @ <A}=[f],. Such an f exists since the supremum in question is <[id].
Set

V={XcA|f(X)enu}.
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It is not hard to see that V" is a uniiorm, wy-compleie ultrafilter over A, whick is
weakly normal in the following sense: if g:A->A so that {a | g(e)<a}e ¥, then
for some 8 <A, {a|gla)<8}e¥.

Let us first prove a preliminary

Fact. {a|cf{a)>w}e¥.

Otherwise, for almost every a, let (&, |new) be cofinal in a. By the weak
normality of ¥, for every n€w there is a §, <A so that X, ={a} e, <&} V.
Then Y=[) X,€¥, but if & =sup §, <)\, notice that « € Y implies a <4, con-
tradicting the fact that ¥ is uniform. The Fact is thus proved.

We now proceed with the main proof. Let S be a stationary subset of A so that
Sc{a|ct (@)= 0}. To show that E, fails, we establish in fact that
*
{&€]| SN € is stationary in £}e V.
Let us suppose to the contrary, and derive a contradiction. Then for almost
every ¢, there is a closed and unbounded C; < £ so that SN C, =§. Define

C={a|{|acCle ¥}

Because ¥ is w-complete, and as almost every £ has cofinality >w by the Fact, C
is w-closed: given a,€C for neow,sup a,c C. Also, we claim that C is an
unbounded subset of A. To show this, let B, <A be arbitrary. Using the weak
normality of ¥, for each integer r we can define functions f, : A - A and ordinals
B. by induction so that

(a) AAn ={§ l fn(f)e C§ & fn(§)> Bn}e oVa
and

(b) -Bn = {f i fn(é) < Bn+1}e DV'

Since ¥ is w,~-complete, X =) (A, N B,)e ¥. But then if B =supB,, it is not
hard to show using the set X (and the Fact proved earlier) that for almost every &,
BeCe

We have just established that C is w-closed and unbourded in A. Since S is a
stationary subset of {& <A | cf (a) = w}, we must have CN $# . Having arrived at
this contradiction, we have thus established (*) and the theorem. [J

The following is now immediate from 4.7 and 4.8.

Corollary 4.9. (Gregory) If « is A" -compact, then T, fails.

We remark that the main idea in the proof of 4.8 is due to Jensen, Prikry and
Silver, and is stated (somewhat obscurely) in Theorem 20 of Prikry [39]. Let E}
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for regular - <A be like E, but with the required stationary S<{a |cf (@)= «}.
The methad of proof actually shows (see [39]) that if there is .. uniform ultrafilter
U over A which is «-descendingly complete, then Ej fails. Prikry had to assume
some form of the GCH to get a weakly normal ultrafilter related to such a %, but
it is now known that no such hypothesis is needed (see Theorem 2.5 of [10]).

The referee has cutlined a proof of 4.8 (which similarly generalizes for E}) that
does not use weak normality. Suppose that S A witnesses E,. For ac S, let
{va|new) be cofinal in a. Call a function f:S— w a disjointer iff whenever
a#feS, m>fla) end n>f(B) implies y2 # yz By the regressive function
lemma, there is no disjointer for S. However, one can skow by induction on é<<A
that there are disjointers | for SN £ using the fact that SN ¢ is not stationary in
£ If U were uniy m, w-complete over A, one can obtain a disjointer for S (and
hence a contradiction) by taking the ultraproduct of the f,.

5. Extendible carsdinals

We now consider an axiom which implies the existence of many supercompact
cardinals. The notion of exterdibility is motivated in Reinhardt [40] by considera-
tions involving strong principles of reflection and resemblance formalized in an
extended t1eory which ailows transfinite levels of higher type objects over the set
theoratical universe V. Essentially, Cantor’s (2, the class of all ordinals, is
hypcthesized (o0 be extendible in this context. With the natural reflection down
into the rzalny of sets, we have the concept of an extendible cardinal. (As
Reinhardt [4(] points out, however, this sort of internal formalization within V
rather begs the question if we want to discuss fundamental issues about the nature
of Vand £}

More simplistically, recall that Kunen’s Theorem (1.12) showed that ore cannot
embed V intc too fat an inner model. As a natural weakening one can instead
consider embedding initial segments of the universe into larger initial segments,
J:V,—» Vg where « <t 8. (As before, implicit in this notation is the assertion that j
is not the identity.) This approach may be conceptually helpful, but the exact form
of the following defimtion owes its origin to the considerations of [40].

Definition 5.1. If >0, « is n-extendible iff there is a { and a j: V., — V, with
critical point «, where k+n<j(k)<{ « is extendible iff k is n-extendible for
every 11> 0.

Remarks. (i) Since n2 k-« implies «+n=mn, the exact form of the above
definition is distinctive only for small 7.

(ii) When 7 <k, it is not hard to see that { = j(x)+n. This fact will be used
without further reference. Note that in such cases and especially for 5 an integer,
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it is clear that n-extendibility is just a postulate of resemblance: With j:V,,, —
Vityen Yo and Vi, are indistinguishable as far as (n + 1jth order properties are
concerned.

(iii) If « is m-extendible and 0<& < 7x, then « is $-exiendible. Since the term
V. is definable from a, if { and j are as in 5.1 for the n-extendibility of «, then
i1 Viers:Viss = Vs is also an elementary embedding, as

VK+S L ‘P(x)evx+'q "_(VK+5 ““P(x))
«> Vg "’(V,'(K+s)"' ‘P(](x)))
9V;(K+S)“_(p(j(x))'

That restrictions of elementary ambeddings in this way are also elementary will be
assumed in what follows.

(iv) For the related concept of complete m-extendibility and some results
concerning it, see Gaifman [4].

(v} The requirement j(k)>«+n in 5.1 can be regarded as a natural one,
reminiscent of the definition 2.1 of A-supercompactness. It is a useful, brt not
stringent, condition; in fact, if it were ever the case that j(x)<«k+ 7, we would
have a much stronger axiom (A, (k) of Section 8). In this connection, we remark
that the definition of extendibility given in [40] contains an equivocation (pointed
out by Wang) between statements E; and E in 6.2¢, which leaves Axiom 6.3
unclear. We take this opportunity to resolve this ambiguity: what was intended
was E, rather than E, (this corresponds to including the condition j(x)>«+7 in
our Definition 5.1}. This should not affect the ensuing discussion in [40], since it is
argued there that the additional condition is natural, though not forced by the
guiding idea. (In 6.3 of [40], it is suggested that the critical step in arriving at
Kunen’s contradiciion is the treatment of V.., as a universe in itself, which
moreover is absolute in a strong sense (in our formulation, this amounts to setting
k+m={), rather than anything in the guiding idea behind extendibility as
expressed in E or E;.) The following result shows that (full) extendibility as a
concept is not affected, in any case.

Proposition 5.2. « is extendible iff for every 6>k, there is a { and a j:V; >V,
with critical point «.

Proof. The forward direction is immediate. For the coaverse, it suffices to show
from the hypothesis that if 4>« - , then « is n-extendible.

Given such an 7, first get an auxiliary ordinal y > 5 so that

(a) cf(y)=wy,

(b) whenever there is a k:V, — V, with critical point k so that k(x)< v, there
is such a k (with the same value for k(x)) for some { so that {<+.

We can use a reflection argument to get (b), and (a) can easily be arranged.
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By hypothesis, let j: V., —V, with critical point . Set ko=« and for ne o,
Kne1 = j{r,) whenever possible (i.e. whenever k, <vy). If «, is defined for each
integer n, then sup {k, | n€ w) <y since cf (y)=w;. But then, we can now get a
contradiction using Kunen’s argument (1.12). Thus, it follows that there is an n so
that «, <7y <K, ;-

To conclude the proof, it suffices to establish P(m) for every m<n+1 by
induction on m, where P(m) states: there is a { and an i:V, — V, with critical
point « so taat i{k)=k,,.;. This is so, since n-extendibility would follow from
P(n) and > " y<=k, ..

Define j = j|V,. Then j:V, — V., with critical point x so that j(x)= k;.
Hence, we have P(0). Now assume P(m), where m < n. Then, because «,,, <7,
by tte property (b) of v, there is an iV, — V, for some { <+, with critical point
k so that i{«)=k,.,. Thus, by the elementarity of j, we have that in V, (and
hence in V), there is an i: Ve, —> V;, with critical point j(k) so that 1(j(k))=
](K" 1) = K, +». Recalling the definition of j above, we can now conclude that

-] 1V, =W, with critical point k so that /- j(x)= k., Hence, P(m+1)
holc %y and the proof i, complete. [

If « is supercompact, it is consistent that there is no strongly inaccessible
carcinal >k, since if there were onc, we can cut off the universe at the least one
and sti!l have a model of set theory in which « is supercompact. However,
suppos: that « is even l-extendible, with j:V, ., — V,. 1. Then by elementarity
j{x) is inaccessible in V.4, and hence in V. Similarly, if «x is 2-extendible with
71 Vo2 Vs, by clementarity j(x) is measurabi: i Vj,.», 2nd hence in V.
Thus, the extendibility of a cardinal x implies the existence of large cardinals >«.

These considerations begin to show how sirongly the existence of an extendible
cardinal aflects the higher levels of the cumulative hierarchy, and why A-
extendibility cannot be formulated, as A-supercompactness can, merely in terms
of the existen:z of certain ultrafilters. They alse point to the close relationship
between exten libility and principles of reflection and resemblance. See the end of
this section for an elaboration in terms of the Lévy hierarchy of formulas.

We now proceed to investigate extendibility, particularly in connection with
supercompactness. Ultimately, we will establish that any extendible cardinal « is
supercompact and is the xth supercompact cardinal, and that the lcast supercom-
pact cardinal is not ¢ven 1-extendible.

Note first that 1-extendibility is already quite strong.

Proposition 5.3. If « is 1-extendible, then « is measurable and there is a normal
ultrafilter U over « so that {& <« |a is measurable}e U.

Proof. Let j:V ., — V.. with critical point «x. Then 9 defined by Xe ¥ iff
X ¢« & ke j(X)is normai over «. Certainly U € V.1, 50 V.1 Fx is measura-
ble, i.e. {o <k |a is measurable}e . O
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We now proceed to establish some connections between degrees of supercom-
pactness and degrees of extendibility.

Proposition 5.4. If « is |V, |-supercompact and n <k, there is a normal ultrafilter
U over k so that {a <x | a is n-extendible}e .

Proof. Let j:V— M be as in |V, |-supercompactness. Then V, .. €M, since
V. .q is hereditarily of cardinal <[V, | Similarly, if we set e=j|V,, . eeM.
Nowin M, e:V, ., > j(V,.,) is an elementary embedding with critical point « and
e(k)> w +m, since this is true in V. Thus, « is n-extendible in M. If we let U be
the usval normal ultrafilter over « corresponding to j, then it follows that
{oa <klais n-extendible}e . O

Thus, supercompactness implies the existerice of many cardinals with some
degree of extendibility. One conjecture which expresses confidence in even
2-extendibility is the following.

Open Question 5.5. Does Con (ZFC & there is a 2-extendible cardinal) imply
Con (ZFC & there is a strongly compact cardinal)?

Of course, by 5.4 an affirmative answer to this question would imply that the
consistency strength of strong compactness is very weak compared to that of
supercompactness.

The following proposition reverses the process of 5.4,

Propositien 5.6. If « is n-extendible and 8§+ 1 <, then « is |V, ;|-supercompact.
Hence, if « is extendible, then it is supercompact.

Proof. Suppose j: V.., — V, is as in n-extendibility. Since j(x) is really inacces-
sible and j(k)>k +8, j(«)>|V,;|. Hence, since § + 1 <n so that PPV, =V, ...
we can define a normal ultrafilter over #V,_,; as usual:

Xe¥ iff j'V..sej(X). O

Incidentally, the methods of 5.4 and 5.6 yield ancther characterization of
supercompactness, which was also noticed by Magidor {26].

Theorem 5.7. « is supercompact iff for every w>«k there is an a<k and a
j: V.=V, with critical point vy so that j(y)= k.

Proof. For the forward direction, fix n>« and let j:V—=>M be as in the
[V, |-supercompactness of k. Then justasin 5.4, [V, :V, — Vi is an elemen-
tary erabedding which is in M. Thus, M models the following: “theie 15 an
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o < j{«} and an ciementary embedding e¢:V, —> V,, with a critical point v such
that e(y = j(x).” The result now follows from the elementarity of j.

For the converse, fix >« and let j:V, ., — V., for some « <«, with eritical
point y so that j(y)=«. As in 5.6, since PP.acV,,,, J determines a normal
uhirafilter U over P,0. But UeV,,, and so j(U) is a normal uvltrafilter over
Pipila)=Px. O

The f .l wing proposition on supercompactness will be used in the next
theorem, but is interesting in its own right.

Proposition 5.8. If « is o-supercompact for every « <\ and X is supercompact, then
K is supercompact.

Proof. Let = A We must get a normal ultrafilter over @, . For each x e P, so
that |x|=x, let 4, be normal over #.x. Such %, exist since |x|<A. Let ¥ be
ncrmal over P, u, and define U over P u by

Xexw ff xePu|PxnXcule?.

Since jg, " =[id] ., it is not hard to see that ¥ is a normal ultrafilter over P, .u. O

Theorewm 8.9, 1 « is supercompact and 1-extendible, then there is a normal
ultrafiller U over x s¢ that {a <w|a is supercompact}c. Hence, the least
supercompact cardinal is not 1-extendible.

Prool. Ler ji1V, ;= V. be as in l-extendibility, and let % be the usual
normal ultrafiliey over x corresponding to j, as in 5.3. Now V,,.,Fk is 8-
supercempact for all 8 <j(x), since j(x) is inaccessible. Hence, A =J{a <« |a is
d-supercomgact ior al! 8 < «}e%. But by the previous proposition, @ € A impiies
@ is supercoiupact. [ “

Note that if « is extendible, yo= k + 1, and v,,, = least ordinal { so that there is
aj:V, —>V,asin y,-extendibility, then if y =sup v,, we have V_Fx is #xiéndi-
ble. However, V. may not model ZFC. In contrast, consider the following.

Proposition 5.10. If « <A, « is extendible and A supercompact, then V,Ek is
extendib.e.

Procf. Suppose that k- k <a<A. We must show that V,F« is a-extendible.
Since « is w-extendible in V, there isa j:V, —» V, with critical point «, so that
j(k)>«. i B <A, we are done, so assume = A.

Let k:V— M be as in the [Vg|-supercompactness of A. Then MEj:V, -V,
with critical point k, and j{«)}>« and 8 <k(A). So, by elementarity, in V there is
a 8<A, and j:V,—V, with critical point k, and j(x)>e. Thus, V, Ex is
e-extendible. O
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One can also prove 5.10 using the fact that the property “« is extendible” is I,
in the Lévy hierarchy and so reflects down to V, for A supercompact, by 2.7.

We thus see that the extendibility of a cardinal « can already be comprehended
in V, where A is a supercompact cardinal > «. This shows in particular that it is
consistent to assume there zre no supercompact cardinals above an extendible
cardinal. Perhaps, 5.10 may serve to allay suspicions about extendibility, which
might arise from the fact that it has as a consequence the existence of proper
classes of various large cardinals.

In terms of the Lévy hierarchy, this last fact about extendibility can be
expressed as follo'vs. Any local property (i.e. 3,, see Section 2) of an extendible
cardinal x holds for a proper class of cardinals. The example of supercompactness
shows that one cannot prove in ZFC that every II, property of an extendible
cardinal « bolds for some A > «. Finally, it follows readily from 5.10 that “« is the
least extendible cardinal” is 1T} (being equivalent to “k is extendible & Yu <
k (V. Ep is not exiendible)”’) — and certainly holds for no A > «.

Theorem 5.11. If « is extendible, then 3, (and hence II,) relativize down to V..
(Recall 2.6 for this notion.)

Proof. Actually, we only use the fact that there are arbitrarily large inaccessibles
A> Kk with V, <V,. Suppose P(x) is 3y Q(x, y) where Q is IT,. Let ae V, so that
P(a) holds, and fix b such that Q(a, b). Let A >k be inaccessible so that be 'V,
and V,<V,. Since, by a remark just after 2.6, II, relativizes down to V,, we have
V,EQ(a, b). Thus, V,EP(a) and so V. FP(a). O

Note that the X, sentence “There is un extendible cardinal” is false in V, if A is
the least extendible cardinal (by 5.6 and 5.10). Thus, {, in 5.11 is optimal.

6. Vepéuka’s principle

We next consider an axiom of a different character both from supercompactness
and from extendibility. Bearing in mind our theme of elementary embedding and
considerations of resemblance, the motivation behind the following statement is
evident, especially in the context of model theory.

Vopénka’s principle. Given a proper class of (set) structures of the same type,
there exists one that can be elementarily embedded in another.

This concept was also considered independently by Keisler. It may not be
immediately clear that Vopénka’s Principle is a very strong axiom of infinity at all,
but we shall prove that the principle implies the existence of many extendible
cardinals in a strong sense. In Section 8, it will be shown that the principle
actually has a natural place in a hierarchy of strong axioms of infinity.
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Vopérka’s Principle definitely canuot be formulated in ZFC, and in this section,
we will freely use guantification and comprehension over classes. However, all the
raanipulazions can be carried out in ZFC within some V,, where « is inaccessible
(indezd, this is how A, of Section 8 is stated). Forinulated in this way, note that
Vopénka's Prirciple is a second order statement about V,, whereas even
measurability is third order. Indeed, one significant way in which Vopéiika’s
Principle differs from our previous axioms is that it does not merely assert the
existence of a Jarge cardinal with higher order properties, but provides a
framework 1. which many such cardinals can be shown to exist.

We now assume Vopénka’s Principle hroughout this section. The approach
here is reminiscent of Lévy [20] in that a natura! filter is developed and used as a
tooi. Recall that () is the class of all ordinals. Call a sequence of structures
(M, |oc) 2 natral seuence iff each M, is of the same fixed type and
specifically of form (V. ; €, {a}, A,), where A, codes & finite number of relations
and «<f implies x<¢,<§&. The specification of {a} in ., insures that
whenever o <8 and j:/M,— My is elementary, | moves some ordinal, since

j(a) = B.

DPefinition 6.1. If X< Q is a class, X is enforced by a naturzl sequence (M, |a e
) iff whencver o <p and j: 4, — Mg, the critical point of j is a member of X.
Xa} .z enforceable it X is enforced by some natural sequence.

Proposition 6.2. The enforceable classes form a proper filter over (1.

Prool. Clearly, if X is enforceable and X< Y =, then Y is enforceable. @ is not
enforcezble since we are assuming Vopénka’s Principle.

Supnose now that X and Y are enforced by (M, |aeQ) and (X, | e )
respectively. Set o, =(V,; €, {a}, (M, N,)) where V. is the union of the
underlying sett o M, and #,. Then XNY is enforced by (d,|ac): If
joof, ~ sz with critical point «, j | #, and j| N, both have critical point «, i.e.
keXNY., O

Propositive 6.3. Every closed unbounded subclass of §1 is enforceable.

Proof. Suppose C< Q is closed unbounded. For each crdinal « let vy, be the least
limit point of C greater than «, and set

M, =V, e, {a)l, CNy,).

We show that C is enforced by (M, | a € Q). Suppose j: M, — My with critical
point «, and assume «€ C. Then p=sup (CNk)<ik and if 5 is the least element
of C greater than p, k <mn <1, since vy, is a limit point of C. As 7 is definable
from p in M, and j(p)=p, i(n)=n. But, as usual, A =sup {j"(x) | ne o} is the
least ordinal greater taan « fixed by j, so that A =<m. We can now derive a
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contradiction by Kunen’s argument (1.12), since v, is a limit ordinal > . Thus,
xeC. O

In fact, the enforceable classes form a normal, Q-complete filter over Q, see
[11}. This paper discusses strong versions of Vopénka’s Principle related to
n-hugeness (see Section 7 for this coacept), which are analogous to the n-subtle
and n-ineffable cardinals studied by Baumgartner.

Proposition 6.4. {a € Q| a is extendible} is enforceable.

Proof. Define F:Q— (O by

o if a is extendible,
F(a)=<{ a+f where § is the least so that « is not
L B-extendible otherwise.
If C={8|F:8— 8}, Cis closed unbounded. Define (A, | « € ) for this C, just
as in the previous proposition.

It suffices to show that if j: ., — #f; with critical point k, ther « is extendible.
If not, let F(k) = p > «. Since k < v, and v, € C, we have p <1, by definition cf C.
So, j| V,:V,— V,,, is elementary with critical point . Finally, by the proof of
the previous proposition, k€ C and so j(x)e C (recall that CN 1y, is a specified
relation in 4{,). Hence, k <j(x) implies p <j(«). This also implies p <2 j(p). If
p = x + B, all these facts show that « was S-extendible after all, which contradicts
the definition of F. [J

Proposition 6.5. If X is enforceable and Y ={a | a is measurable and for some
normal ultrafilter U over ¢, X Na €U}, then Y is alsc enforceable.
Proof. For each ordinal «, set

Ma = (Va+w; E? {a}’ {Xn a})‘

It suffices tc show that if j:J#, — 4, with critical point k and k€ X, then ke Y.
Let % be the normal ultrafilter over « corresponding to j. We have

Xny=jXNank)=jiXNa)Njk)=XNENjx)=XNjlk).
But ke XMj(k), so XNkeu. O
Theorem 6.6. Assuming Vopénka’s Principle, the class of extendible cardinals «

which carry a normal ultrafilter containing {« <« | a is extendible} 1s stationary in

Q.

Proof. See 6.3, 6.4, and 6.5. O
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All in all, Vopénka’s Principle seems (o have an unbridled strength, and the
relative ease with which strong consequences can be derived from it may lead one
to be rather suspicious of the principle. However, it is the weakest of the
hierarchica. list of axioms we will consider in Sections 7-8.

In the remainder of this section, we present two alternative characterizations of
Vopénka’s Princ'ple. In addition to their intrinsic interest, these results will be
useful in the discassion of Backward Easton forcing in & projected sequel to this
paper.

Let A be a class. "We are going to relativize the notions of supercompactness
and extend: 1. ‘y to the class A.

Definitien 6.7. A cardinal « is A-extendible iff for every a >k, there is an
elementary embedding

Ji Ve €, ANV, ) > (Vg 6, ANV,),

with x the critical point of j and a <j(x)<B.
A rardinal « is A-si¢percompact iff for every >k there is an a <k, and an
elementary embedding

jilVase, ANV, )= (V, €, ANV,)
with critical point vy such that j(y)=« (cf. 5.7).

We can also give a characterization in terms of normal ultrafiiters. Let ¥ be a
normal ultrafilter over @, V,. Recall (2.5) that if n=[(n, | xe®,V,)], for almost
ali xe@,V,, there is an elementary embedding j,:V, —V, with x=jV_.

We say that % is A-normal iff for almost all x,

jx“ na\—yAnV )"’(Vn,c AﬂV)
is elementary. Evidently % is A-normal iff % is (A NV, )-normal.

Proposition 6.8, « is A-supercompact iff for every n=«, there is an A-normal
ultrafilter over 2.V .

Proof. We show that if « is A-supercompact and n = «, there is an A-normal
ultrafilter over @,V.. The other implication is left to the reader. (Cf. the proof of
5.7

By the A -supercompactness of «, let & <« and
j :<Va+w; e? A nva«l»m) i <V-q+m; e) A r‘\/'rg+m)

with critical point y such that j(y)= k. Note that j(ANV,)= A nv.,.

Define % over #.,V, by Xe iff j"V, € j(X). Then, as usual, % is a normal
ultrafilter over #,V,,. Let « =[{a, | x €2,V )y, and recall 2.5(i) in what follows.
For almost every x, {x; €, ANx) is an elementary submodel of {V_;e€, ANV, ).
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Thus, % is A-normal iff the transitive collapse m,:x=V_ “preserves A” for
almost every x iff the transitive collapse o :j"V, =V, “preserves A”. But this last
formulation is evident since w(j(x})=x for xeV,, and j “preserves A”.

Thus, % is an (ANV,)-normal ultrafilter over #,V,. But tken j() is an
ANV, }-normal ultrafilter over .V, Since j(ANV,)=ANV,, j@) is the
desired A-normal ultrafilter on #,V,. O

Note that if A ={y}, then vy is not A-supercompact or A-extendible. However,

Theorem 6.9. The following are equivalent:
(1) Vopénka’s Principle,
(2) For every class A, there is an A-extendible cardinal,
(3) For every class A, there is an A-supercompact cardinal.

We remark that our proof will show in fact that if (1) helds, the classes of
A-extendible cardinals and A-supercompact cardinals are enforceable.

Proof. The proof of 6.4 adapts to show that (1) — (2). Also, the proof of 6.8 can
be used to show that every A-extendible cardinal is A-supercompaci. Thus
(2)—(3).

Finally, let (M, | £€Q) be as in the statement of Vopénka’s Principle. Let
A={(¢ M| E€ Q). Let k be A-supercompact. Let 6>« be such that:

(i) é<0—> M. eV, and

(i) [Vo|=86.
Let a <k, and

j:<va;€!Anvcx>——><ve;€7AnV9)

be an elementary embedding that maps its critical point y onto «. Then j induces
an elementary embedding of M, into A,. 0O

7. On the verge of inconsistency

Having examined several axioms increasing in strength and motivated with
different but definite plausibility arguments in mind, we now take a more
pragmatic approach. Kunen’s result (1.12) sets an upper bound to our efforts in an
essential way, but it is still of interest to see what weaker principles can possibly
be retained without inconsistency in ZFC. In this and the next section we work
downward through weaker and weaker axioms that suggest themselves, are at
least as strong as Vopénka’s Principle, but are not directly ruled out by Kunen’s
argument.

Tacit in this section is the assumption that if j is some elementary embedding
with critical point k, then k, = « and for each integer n, k,.; = j(x,) if , is still in
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the domain of j, and «, = sup {k, | n € w}, again, if definable at all. (Of course, the
k. ’s depend on j, but the j being discussed should t clear from the context.)

If there were a j:'V, = V, with k, < a, note that we must have o <«,, +2. This
is so uince what is needed to get Kunen’s contradiction is that a function
w-Jonsson over «,, i.e. a certain function: “k, —> k,, be in the domain of j — but
all such functions are in V, ,,. When a function w-J6nsson over k, is in the
domain cf an elemeantary embedding as in, say, j:V—> M, then by Kunen’s
argument we must have V,_,; & M. However, we can still consider the following
stutements.

i1, There isa j:V, 41—V, 41
I2. There isa j:V-—->M with V,_ & M.

I3. Therzisa j:V,_ —7" .
Notice that in [1 we have specified the range of j to be included in V., but this
is true since j(k,)= «,; similarly for I3. In fact, I1 and I3 are the only possible
forms that an axiom of the type “there is a non-trivial elementary embedding of
some V, into itself” can take.

The proof of the next proposition uses iteration and limit ultrapower techni-
q i€s.

Proposition 7.1. (Gaifman). I1 implies 12.
Proof. Sce IV. 8 of Gaifman [4]. O

Propositicn 7.2, 12 imglies I3.

Peoof. If j is as in 12, then j(V, ) )=VM =V, so that
iV Vo —V,.. O

Next, it is natural to consider postulations with weaker closure requirements on
the rvnge of the embedding.

Definition 7.3. If n is an integer, x is n-huge iff there is a j: V-— M with critical
point « vo that Mg M. « is huge (Kunen) iff « is 1-huge.

Note that « is O-huge ifi « is measurable, and k is n-huge implies «, is
inaccessible in V itself. It is interesting to note that, reminiscent of A-
supercompactness, a characterization exists in terms of the existence of certain
ultrafilters,
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Theorem 7.4. « is n-huge iff there is a x-compiete normal ultrafilter U over some
PA, and cardinals k=A,<A;<---<A,=Ai so that for each i<n,

Proof. If j:V— M as in n-hugeness, define ¥ over P«, by
Xeu it j"«,e€j(X).

Then as in 2.2, we can show that % is normal and x-complete. Also, note that

"k, Nj() = "=, for O<i<n,

so that we can set ;= A,
Conversely, take j, M the ultrapower as usual. Then, as in 2.4, [id]=j"A and M
is closed under A-sequences. Also, as in 3.1, we have that for 0=<i<n,

i =Kxna,, l x€PN)= Ay 3

Theorem 7.5. If I3 or x is n+ 1-huge, then there is a normal ultrafilter U over « so
that {a <« |a is n-huge} €.

Proof. Suppose, for example, that j:V-— M as in the n+ 1-hugeness of k. Since
“sM c M, M certainly contains the ultrafilter described in 7.4 for the n-
hugeness of «, arising from j. Hence, MF« is n-huge, and we can take % to oe the
(usual) normal ultrafilter over « corresponding to j. T

It seems likely that 11, 12 and I3 are all inconsistent since they appear to differ
from the proposition proved inconsistent by Kunen only in an inessential technical
way. The axioms asserting the existence of n-huge cardinals, for n> 1, seem (to
our unpracticed eyes) essentially equivalent in plausibility: far more plausible that
13, but far less plausible than say extendibility.

Kunen’s work [16] relates 1-hugeness (i.e. hugeness) to the theory of saturated
ideals. He shows that Con (ZFC & there is a huge cardinal) implies Con (ZFC &
there is a countably complete, w,-saturated idezl on «, containing all the
singletons). Kunen also indicates a heuristic argument suggesting that the consis-
tency of something slightly weaker than hugeness (Ai(x) of the next section)
should follow from the consistency of the existence of such a non-trivial w,-
saturated ideal on w,.

More recently, Laver has announced a refinement of Kunen’s argument to get
an ideal over w, with an even stronger property, which has as a consequence the
following polarized partition relation:

() (s
xl R1 Ry
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Since the GCH cun also be arranged in this particular case, this answers problem
27 of Eradr~Hairal [3] in the negative (at least if we assume the consistency of
the existence of a huge cardinall). Prikry [38] had previously shown that there is a
combinatorial princip*e which implies, in a strong sense, that the partition relation
does not hold, and that this principle can be made to hold by forcing. Jensen then
showed that this principle holds in L.

An ultrafilter 4 is called (w, A)-regular iff there are A sets in U any « of them
having empty intersection. This concept was formulated by Keisler in the context
of model theory some time ago. Recently, it has been shown that the existence of,
for instance, a unifcrm ultrafilter over ; which is not (w, w;)-regular leads to
consequences of large cardinal character (see Kanamori [10} and Ketonen [14]).
In this context, == state he following result of Magidor [28], proved by using a
variation of the wunen {16] argument: Con (ZFC & there is a huge cardinal)
imphlies Con (ZFC & ‘here is a uniform ultrafilter over w, not (w,, w,)-regular). At
present, there is no cther known way to get uniform ultrafilters with any degree
of irregularity over any w,.

Finally. the most recent relative consistency result involving hugeness is the
following, due once again to Magidor {27]: Con (ZFC & there is a huge cardinal
with a supsrcompact cardinal below it) implies Con (ZFC & 2" =R,,,,, yet for
every infuger n, 2™ =R, .,). This, of course, solves the so-called singular cardinals
problem it X,. Previously, we had remarked (end of Section 2) that Magidor had
found a mwodel in which 2% =R, ,,, and R, is a strong limit cardinal, assuming the
consistenvv sirength of the existence of a cardinal with sufficient degree of
supercompa. tness. To get the exactitude of the GCH actually holding below R,
Magidor found it necessary to start from his stronger assumption.

It is tempting to speculate on the further relevance of huge cardinals in
considerations involving the lower orders of the cumulative hierarchy. After all, it
is such empirica! evidence which gained for measurability a certain respectability,
if not accaptance

8. Below huge

This secticn contains the rest of the new axioms to be considered in this paper.
They are inwwnded to £l in the gap between the concept of hugeness and the
relatively wea, one of extendibility with a spectrum of statements. Though we are
thus continuing to take a pragmatic approach, hopefully these further axioms will
prove interesting in their own right. At least, their motivations should be clear in
the context of th's paper. By a natural model of KM (Kelley-Morse) we mean one
of form V_,,, where « is inaccessible and elements of V, are to be the “sets”.
The axioms are as follows.

Aq(x). There is a j: V— M with critical point «, so that M/ < M. (x is huge.)

A,y(x). There is a j:V, =V, with critical point «, so that j(«)<a.
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A,(x). There is a j:V— M with critical point , so that *M ¢ M for every
A< j(k).

A,(x). There is a A >« and a normal ultrafiiter % over @ A so that if
M=V?Xjo and fe*x, then MEj(f){x)<A.

As(x). There is a normal ultrafilter % over k with the following property.
Suppose (M, |&E<«) is a sequence of structures of the same type with each
M, eV,. Then for some X, whenever o, B e X and « < B, there is an elemen-
tary embedding #, — M, which fixes any element of V,, in its domain and moves
a if « is in the domain.

Ag(x). V., is a natural model of KM and Vopénka’s Principle: given a proper
class of (set) structures of the same type, there exists one that can be elementarily
embedded into another.

A¥(k). V.., is a natural model of KM and the following: there is a stationary
class § so that for any integer n and ap<a;<---<a, <Bp<B,;<---<B, all in
S, there is a j:V, — Vg with critical point &, and j(e;)= §; for O0=i<n.

A4(x). k is extendible and carries a normal ultrafilter containing {a <« |« is
extendible} as a member.

It is convenient in this section to use the following terminology: if ¢{-} and @{(-)
are both formulas with cne free variable, say that ¢{x) strongly implies ¢(x) iff
¥(x) implies @(k) and also that there is a normal ultrafilter over « containing
{a < |ela)} as a member. We shall prove that 3k A,(x) imples 3k A,(x) in a
strong sense, A(x) strongly implies A, (k) for 1<i<5, and that A (x) and
A¥(«) are both strongly implied by A(k). In Section 6, we showed that I« Ay(x)
implies Ik A,(x) in a suitably strong sense; in this section, we show that Ik A¥(k)
similarly implies 3« A,(x) in a strong sense. However, the exact relationship
between Ag(k) and A¥(k) is as yet unclear. The rest cf this section is devoted to
the task of establishing these implications.

In terms of relative consistency, we are dealing with very strong principles.
However, it should be pointed out that, except for A, all of these various
assertions about «, as well as the notion of n-hugeness, are local properties, and
so do not even imply that « is supercompact. By 2.6, if any one of these
properties hold for some cardinal at all, then it holds for a cardinal less than the
least supercompact cardinal. On the other hand, as remarked by Morgenstera
[34], a straightforward application of work of Magidor shows that, for example, it
is consistent for the least huge cardinal to be larger than the least sirongly
compact cardinal.

Theorem 8,1. A,(x) implies that there is a normal ultrafilter % over « so that
fa<x|Aya)}eu

Proof. Let j:V— M show that « is huge. As in previous arguments, V€ M
and j | V,., € M. Hence, as j| V! Vi = {Vjw), this is aiso true in M. Thus, it
foliows that if % is the normal ultrafilter over « corresponding to j, {a <« | there
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are B, v. and e so that e:V,— V., with critical point « and e(a)<p}ea. But
from th's, the result follows. [J

For the passage from A, to A; some auxiliary notions are needed. If k<A, say
that a sequence &, | k <n <A) is coherent iff each %, is a normal ultrafilter over
@.n and k<y=<{<) implies U, |n =%, If (U,|k<n<A) is coherent, for
convenience iet M, = My, , and j, : V— M, the canonical elementary embedding.
Recall that by 3.7, there exist elementary embeddings k.. : M, — M; for k<sy<
{<A\ so that k. |7 is the identity. In this notation, consider the following
statement.

A¥(k). There is a strongly inaccessible cardinal A >« and a coherent sequence
@, | k=n<A) so that if k< <A and n<p<j,(k), then there is a { so that
nsg{<xrand k (p)=1.

A¥(k) is a technical statement that we show is actually equivalent to Az(k), and
then we prove that A,(x) strongly implies A¥(k). Ostensibly, A¥(x) involves
proper ciasses J, and k., but actually it can be considered a statement in j, | V,
and k., | V,. Hence, A¥(x) can be expressed in the form 3\ > «k (V,, Fe(x)) for
some suisble set-theoretical formula ¢. This aspect of A¥(«x) becomes significant
i 8.3.

Theorem £.2. A («) is equivalent to A¥(k).

Proof. Suppose ¥rst that As(k) and let j:V— M with critical point k, so that M
is closed under <!j(k)-sequences. If we set A = j(x)}, then A is inaccessible. For
k=q <A tet Y, be the (usual) normal ultrafilter over 2.4 corresponding to j.
Then it is not hard to see that (%, | k<75 <A} is coherent.

Assume now that k =n <4, f:@.q— «, and n<[fly, <j,(x). (We are using
the notation ceveloped for coherent sequences just after 8.1.) Then by definition
of U, we Lave g = s (O < j(x) = A. Let £ =j()(j"n). But then, j"¢{={=
iNHG"ENj(n, and so {xe L | X =fxNn)}e Uy, ie. k (fla,)={ by the defini-
tion of k,; (sec 3.7 and before). Thus, A¥(x) holas.

Supnose now that A¥(x). Continuing to use the notation developed for coher-
ent sequences, note that (M,, k,, | k <</ <\) forms a directed system. Since A
is regular, the direct limit of this system is well founded, so let M be its transitive
collapse. There are canonical embeddings k, : M, — M and j:V —> M, where for
KEN<A, j=k, o,

It suffices to show that M is closed under < A-sequences, and that f(:c):/\.
First, aote that if s=1{x, | @ <y}< M where y <A then by regularity of A there is
an n<\ so that t={y,|a<ytecM,, where for a<vy, k,(y,)=x,. We can
certainly assume that y<n so that te M, and hence k,(f)=se M.



Sirong axioms of infinity and elementary embeddings 113
To show that f(K) = A, note first that if n <A, since 1 <j,(«),

N =< k() <ky(j(x)) = jik).

Hence, j(x)= A. Conversely, suppose p < [(«). There is an 1 and a p' <jn(x) so
that k, (p') =p. The case p'<m: since k,, fixes p' for n<E<A, p=k, (p)=p'<
intx). The case n=<p': by A%(k) there is a { so that n<¢ <A and k,(p)=§;
thus, wherever {<£<A, we have k,(p)={, so tha: p=k,(p)={<j k). In
either case, there is some 8 <A so that p <js(«), and heuce,

p<js(k)<(2°7)" <A

as A is inaccessible. Thus, j(x) = A.
‘rhe proof is complete.

Theorem 8.3. A,(x) strongly implies A¥(x).

Proof. Suppose j:V,—V; as for A,(k). Since A=j(«) is inaccessible and
j(k}< a, by using an argument entirely analogous to the first part of 8.2, it can be
shown that A¥(«) holds -— note that j need only be defined on V,. It now follows
that A¥(x) holds within V, (recall the observation made just before 8.2). Thus, if
a is the normal ultrafilter cver k corresponding to j, {a <« | A¥(a)jea.

Theorem 8.4. As(x) strongly implies Ai{k).

Proef. Let j:V— M with critical point « so that M is closed under <j{x)-
sequences. Since j(k) is inaccessible and f e “x implies j(f}(x) <j(x}, let u be such
that sup {j(f)(x) | fe*k}<p<j(x). Let ¥ be the normal ultrafilter over P,u
corresponding to j. Then

Hk)<p i {x|fxO<ze¥
iff (NG NN <]k

it j(H()<p.
Thus, A4(«) holds, but then it also holds in M. That Aj(x) strongly implies Ay(«)
follows, with % the normal ultrafilter over k corresponding to j. [

Theorem 8.5. A,(x) strongly implies As(x).

Proof, Let j:V-> M be determined by a normal ultrafilter over #,.A as provided
by A,(k). Let & be normal over « corresponding to j. We first show that As(k) is
satisfied with this U.
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Suppose (M, | & < k) are structures of the same type so that each M, eV,. We
may assume that the underlyirg set of #, has the form V,, for n a limit ordinal
> ¢, and that € is a predicate of JM,. (If not, replace M, by (V,, €, {#}) where 7 is
the least limit ordinal greater (han max (& rank (#;)).)

Claim. If @ <k and X, ={¢| there is an elementary embedding M, — M, with
critical point o}, T={a <k |X, sUlecu.

To show *Re claim. first set
Jlotte | E< KDy = (ME| £ <j(K)),
JUAME ] E < jk))) = (M| £ <j(x)),
JX, ‘ a<<)={"", | < j(k)).

Note that § <« implies M, = M} If a <k, X, e ¥ iff « € j(X,) iff M, is elementar-
ily embeddable into Jf, with critical point «. So if & <j(k), X/ ¢ j(@) iff in M, M.,
is elementarily embeddable into ., with critical point o. Hence, Te% iff
kej(t) ift X ej(U) iff in M, M/ is elementarily embeddatle into M7, with
critica. point «.

Nov j| ML M — Mo = j(M)) is elementary, so it suffices to show that | | 4
M. Define. fe“k by f(§)=|M,|. By the A (x) property of j, j(f)(x)}<A. Thus, since
M is closcd under A-sequences and j | M/, is just a set of ordered pairs of elements
of M of cardinality [#.]=j(f)(x), j| M, € M. The claim is proved.

Having shown that Ted, by the diagonal intersection property of normal
ultrafilters we have that {ae T|B<a & BeT implies aeXz}e U. This set
satisfies A,(x) for (M, | £ <«).

Fina.ly, another application of the A, (k) property of j shows that 2*<(2")M <
A, so thar our U e M. Thus MEA(x), and so {a <k |As(e)leU. O

Theorem 3.6. A («) strongly implies A(x).

Proci. A 'x) is immediate from As(x). But if j:V— M corresponds to any
normal ult.filier U over «, then MEA4(x), as V, ;€ M. Thus, {a <« | Agla)}te
Q. O

Theorem 8.7. As(x) strongly implies A¥(k).

Proof. It suffices to show A¥(«), for the result would then follow as in the proof
of 8.6. Let U be as in As(x). It is sufficient to find an X, € U satisfying the
condition for the S of A¥(k) for a fixed n, as we can then take a countable
intersection. Define a function F:[x]?"*?>— 2 by

F«a():-~-sam§05~'-53n>)=0 lﬁ L¥0<"'<:(Xﬂ<30<'“'<;8"
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and there is a j: V, — V, with critical point a, so that j(e;) = B; for i < n. By the

partition property for normal ultrafilters, there is a Ye % and an m <2 so that

FTYP""? = m. It suffices to get a contradiction frorm the assumption that m = 1.
Fora insucha Y, let «’, ..., a” be the first n members of Y after «, and set

"“a = (ch"; e’ {0{}, {(11}, Ly {a71~1})'

By the hypothesis As(«), there is an Xe U so that o, B X and a < implies
there is a k:.#, — My with critical point a. But this would be contradictory for
any o, B€ XNY so that >a". O

Theorem 8.8. Suppose A¥(x) and let " be a stationary class as provided. Then
() if @, BeS and a <P, the inclision map V, — Vg is elementary,
(i) xeS->V, <V,
(iii) a €S-V, FA ().

Proof. For (i), let a <B <y, <y,<y;allin S. Let j:V,, — V,, with critical point
o and j(a)=1y,; and let k:V, — V_ with critical point B and k(B)= vy,. Now
jlVa:Vo—=V, and k|Vg:V,—>V_ are elementary, and both are identities.
Hence, V, <V, and V,<V_ so that V, <V,

(ii) follows from (i) by union of elementary chains.

To show (iii), work within V. Note first that each element of § is an extendible
cardinal. Also, if o <y;<vy,<wvyjallin §, let j:V,, — V_ with critical point « and
j{@)=v,. By 5.10, V_, Ea is extendible. Hence, if % is the normal ulirafilter over
« corresponding to j, {8 <a | B is extendible}e U. O

Open Question 8.9, What is ihe relationship between A¥ and A/?
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