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There are more things in heaven
and earth, Horatio,
Than are dreamt of in your philosophy.
—Hamlet, I,v.166-7.

Large cardinals have been around for a long time. Indeed, the last fifteen or
so years bear witness to a tremendous amount of set theoretical research invested
in their study. However, a casual foray into this extensive domain can be a bewil-
dering experience: The proliferation and fragmentation of concepts and terminology
can leave one awed by the entrancing beauty of the free flow of ideas, but also,
with some distrust and unease about the apparently quixotic irrelevance of it all
to foundational studies. An attempt is made in this paper to present a unifying
point of view concerning the development of the theory and applications of large
cardinals, as part of the mainstream of the axiomatic study of set theory. 1In doing
this, we hope to show that concepts which may at first seem arbitrary and discon-
nected actually fit into a natural and coherent schome, and that there is an abiding
inner logic in the synthesis of new large cardinal agioms.

The paper will be expository, organized around the flow of ideas in the histor-
ical development of the subject. We have had to cope with the difficult problem of
compartmentalizing and presenting in linear sequence the development of a theory
with thematic interrelationships of high genus. By tracing principal themes, each
time picking up the beginning threads but emphasizing the growing interconnections,
we hope to guide the reader successfully through the labyrinth. On the large scale,
our first four chapters deal with Statement and Development, and our last three with
Integration and Application. PRach chapter is subdivided into several sections,
which usually can be read independently with the help of various notational refer-
rals to previous sections.

We hope to be reasonably complete and precise in presenting concepts and their
known interconnections. Sometimes, however, when detailed proofs have appeared
elsewhere, rather than break the exposition we shall content ourselves with out~
lining the main ideas, and giving sufficient references to the extant literature.

In particular, there will be a natural selection in favor of presenting unpublished,
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and also, shorter, illustrative proofs, We believe that a paper of this sort which

encompasses recent developments in the theory of large cardinals is somewhat over-

due, and we will count ourselves successful if we have been able to convey to the
reader even some of the enthusiasw and splrit of adventure which we ourselves have

felt, delving into this subject.

Our set theoretical notation is standard, and the following litany should také
care of any possible variations: The letters a,B,Y,... denote ordinals, whereas
X Adl, s are reserved for infinite cardinals. V, is the collection of sets of
rank < a , often understood as the relational system <Vg,e> . In fact, the Shstt'
hand X < Y is often used for <X,e>=<¥,g>. If x is a set, |x] is its-arm
dinality, P(x) is its power set, and Px = {y ¢ 2x) | |y| <k }. 2= LJ{XGI
o < x }, and hence is the cardinality of P . 1f f is a function, then f"x =
{f(y)| y & x } is the image of x under £, and flx = £Nix x V) is the restrf,
tionof f to x . Y, denotes the collection of functions: x -+ y , SO that A
is the cardinality of ¥y . It is implicit in the notation ¢(v1,...,vn) for f?id
mulas that the free variables of ¢ are among the V,,...,V ., SO that in particua
iar, Q,F ¢la ,...,un] means that ¢ is satisfied in M with the variable
assignment taking vy to a o« domain of 6l . OR denotes the class ol ordinals,
AC is the Axiom of Choice, and-GCH is the Generalized Coninuum Hypothesis. Fxnally,
the marks F 4 bracket a proof, signalling a break in the flow of exposition. =

1f 1 is a set, then an (ultra)filter F over 1 is a (maximal) filter on’
the Boolean algebra P(I). (The preceding sentence (s) exemplifies the distinction

petween over and on.) Throughout this paper, all filters F will be assumed to

pbe non-principal, i.e.MF = ¢ . F is uniform iff whenever x ¢ F , |%| = 1.
¢ is x-complete iff whenevexr TCF and |T| <k , then TeF .

ZF denotes Zermelo-Frankel set theory, 2FC denotes Zermelo-Frankel set theory.‘>
plus the Axiom of Choice, and GB denotes deel Bernays set theory. We work in ZFC, =
unless it is made explicit that we are dlscussing a situation where the Axiom of AR
Choice fails. 1If © is a formula or term, (0)M denotes the usual relativization ‘
of 0 to the class M . An inner model is a transitive c-model of 2ZF containing
all the ordinals. There is a formula Inn{.) such that for any axiom 0 of ZF,

b Inn0n) + ()", As first introduced by Lévy[1960}, if X is a class, LIX]
denotes the inner model relatively constructible from X : L[X] = k)L [X), where
(¥ = lagr, (x)| a is Eirst-order definable in <L [X],€,XNL [x]> from para-
meters in Lulxl ], and Lylxl Jsza[X] for limit ordlnuls Yy . It is well-known
that there is a sentence o provable in ZF so that whenever <A,e> is a transi-

tive (possibly set) model of ¢ with XMNA ¢ A, then for any ordinal a € A,

(L [Xf\A]) = L, [XMA] = L, [X). 1In particular, this is true for A an inner model.

concerning our forc1ng formalism, we often find it convenient to take V as
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a relative term for the ground model and to construct extensions V[G]. The forc-
ing relation with conditions in a partial order ("the notion of forcing”) will be
used in preference to Boolcan-valued models, although we avoid deciding whether

p <q is to mean p is stronger or weaker than q by various equivocations. A
notion of forcing is A-closed iff whenever <p a < > is a sequence of i

ing conditions with y < A , there is a conditigi strolger than :3er: P .ln:::as
variation <A~closed bas the obvious meaning. In the forcing language cheloped in
V for a particular notion of forcing, X is the name for x ¢ V, and G 4is the
name for the generic object. Thus, for instance, p ”— e G . The 4 —;otation
will often be suppressed, cspecially for x an ordinal. Finally, if 1 is a
defined term in set theory, T is its corresponding name in the forcing language.
For the basic precepts about forcing, which we shall take for granted, consult
Solovay (19701, Shoenfield{1971}, or Bell{1977].

The citation of primary sources will be by author(s) and usually by the year
of publication [in square brackets], referring to the bibliography. This may be
historically misleading, however, as the results often appear in publication severa
years after they were first proved, depending on the sluggish pace of the publica-
tion process or the indolence of the author. Those primary sources which have not
yet appeared in print will be cited by the year of their first manuscript appear-
ance (in parentheses), referring to the bibliography.

There are several good secondary sources which deal with the classical theory
of large cardinals, to which we rofor for details on our first two chapters: Drake
{1974] (set theoretical and closest to our approach), Chang-Keisler([1973) (from the
point of view of model theory), and Comfort-Negrepontis[1974] (with a preoccupation
with ultrafilters). Boos[1975] contains a great deal of information about the top-
ics we discuss in our first four chapters as well as §20, but its bristling tech-
nical detail may be more appreciated by the advanced reader. Finally, the fine
expository work of Devlin is quite relevant to many of our sections: [1975] for
§§3,4,5; [1973] for §6; and [1973a) for &7,9,10,19,20,21.

We would like to acknowledge a special debt to Professor G.H.MUller, whoso

gencrous and enthusiastic support has largely been responsible for this paper's
existence.
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§0. Introduction

1t has often been remarked that the ZFC axioms for set theory have a persua-
sive, almost inevitable, nature. Indeed, they formally present, and solicit jus-
tification in, a clear picture of the universe of sets as V = %}V“ . the cumula-
tive hierarchy. Thus, the universe is to be the Lotality obtained by iterating
the power set operation through the transfinite. The Power Set Axiom is widely
recognized as a very powerful axiom. Its assertion easily implies iLs own inde-
pendence: the class of hereditarily countable sets is then a set, and a model of
all the axioms except the Power Set Axiom itself. However, the presence of the
Axiom of Replacement also plays an essential role in the proceedings, dictating as
it does that the cumulation of sets must proceed through the transfinite in a
+ Thus, the

-+t
Power Set Axiom provides the width, and Replacement, the requisite length,

real sense: without it, it is already sufficient to stop at Vw

Regarding Replacement in this way as a strong postulate of closure on the
extent of the class of ordinals, we can consider various closure operations like
the processes of Mahlo as natural generalizations. However, iterations of closure

operations (or sequences like TO = ZFC,...,Tn, T = Tn + Con(Tn),...) are intu-

n+l
1tively r.e. , and so the tecling quickly emerges that such processe:;: must be
incomplete in axiomatizing what is "true" about scts. Hence, in order to get at
fqualitatively stronger axiom systems about the nature of the cumulative hierarchy,
distinctly new ideas must be introduced: we must switch from universal to exis-
tential (and hence "theological") postulates. This is not at all far-fetched:

some existential axiom must be introduced to insure that the set theoretical uni-
verse is not empty to begin with, and in fact the Axiom of Infinity has this attri-
bute. It is in similar spirit to this axiom that Qe introduce large cardinals.

Like the Power Set Axiom, the Axiom of Infinity has the notable characteris-
tic that its assertion implies its own independence (this time, consider the class
of hereditarily finite sets). Large cardinals will also have this property, as
well as establishing further new consistency statements. Thus, our theological
intentions are fulfilled cven at the level of arithmetical statements; this conse-
quence of GBdel's Second Incompleteness Theorem is by now quite familiar, and in
fact by Matijasevi¥'s result new Diophantine equations become solvable.

What is a large cardinal? The following is a reasonable, working meta-defin-
ition: Let us say that a property is of large cardinal character if it has the
following consequences: (a) the existence of a cardinal with a property which (at
least in some inner modeol of ZFC) renders it essentially "larger" than cardinals
with weaker properties (in the sense that it is a fixed point of reasonable thin-
ning procedures, like Mahlo's, beginning from these cardinals), and (b) a discern-
ible new strength in set theory, as for example in the emergence of new combina-
torial properties. Let us say that the assertion of a large cardinal property is



a strong axiom of infinity.

The adaptation of strong axioms of infinity is thus a theological venture,
involving basic questions of belief concerning what is true about the universe.
However, one can alternately construe work in the theory of large cardinals as
formal mathematics, that is to say the investigation of those formal implications
provable in first-order logic. This being the case, there is no denying the value
of work in this area, especially in view of relative consistency results. There
is here a pleasing analogy: 1In order for a true believer to really know Mount
Everest, he must slowly and painfully trudge up its forbidding side, climbing the
rocks amid the snow and the slush, with his confidence waning and his skepticism
growing as to the possibility of ever scaling the height. But in these days of
great forward leaps in technology, why not get into a helicopter, fly up to the
summit, and guickly survey the rarefied realm--all while having a nice cup of tea?

In tracing the development of the theory of large cardinals, we will empha-
size the interplay of three major themes. The first of these is the role of those
abstract motivating principles which have led to the formulation of large cardinal
properties. We can isolate, and thereby designate, four such principles:

(i) Generalization. To the hereditarily finitc sets, o seems a tremendously
lurge cardinal; indeed, we have already remarked on the strength and necessity of
the existential postulation of w . The comparative size of w ¢an be formally
described by several properticg, and the attribution of thesc properties to
uncountable cardinals yield similar points of slLruny clusure. After all, it would
seem rather accidental if w can be characterized by these propertics. We mean
by generalization such a process of reasonable induction from familiar situations
to higher orders, with the concommitant confidence in the recurring richness of
the cumulative hierarchy.

* (ii) Reflection. The ordinary Reflection Principle in set theory says that
any particular statement true of V _is already true at some initial segment Va .
This invites generalizations to cardinals endowed with similar downward reflection
properties, thus rendering them strong closure points. 1In another approach (see
Reinhardt (19747}, what is involved is a formulation of various reflection proper-
ties the class OR intuitively ought to have, the antithetical realization that
OR ought to be essentially indescribable in set theory, and thus the synthesis in
the conclusion that there must already be some cardinal at which these properties
obtain. Note that this in itself is a reflection argument.

(iii) Resemblance. This is closely related to (i) and (ii). Because of
reflection considerations, and, generally speaking, because the cumulative hier-
archy is neutrally defined by iterations of the power set operation, it is reason-
able to suppose that there are < V“ , € >'s which resemble cach other. Such
considerations lead naturally to elementary embeddings and indiscernibility argu-

ments, the stuff of which large cardinals are made.
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(iv) Restriction. Much of on-going mathematics is involved with weakening

known assertions to gain more information, to discern the essential properties

involved in order to sharpen implications., Such structural considerations have
not only brought the landscape of large cardinals into sharper facus, but have .led

to the isolation of new principles, like the existence of the set of integers 0"

The second of the major themes which we discuss is the efficacy and esthetics

of concepts, particularly in the context of relative consistency results One of

the foundational results of proof theory is Gentzen's characterization of the

strength of Peano Arithmetic as induction up to the ordinal €_ . Many ordinals
o

have since been established as giving precise measures to the consistency of vari-
ous subsystems of analysis. In analogy, large cardinals via the method of forcing
turn out to be the natural measures of the consistency strength of ZFC + ¢ for

various statements ¢ in the langquage of set theory. 1In many cases, actual equi-

consistency results are known between the existence of some large cardinals and
natural combinatorial principles concerning the real numbers, or such small cardi-
nals as w, and W, + In other cases, the only known way to prove the consis~
tency of the statement at issue is to assume the consistency of the existence of
some larg: cardinal, and the pPrevalent view insists on the 1ssibility of being

able to prove the converse. of course, the analogy to the proof-theoretic ordinals

is nol very exact, since those ordinals correspond Precisely to the suprema of
heights of proof treoun with bottom node falsity. However, the known large cardi-
nals fit into a lincar order via consistency strength, and so provide an abiding
esthetics in neatly categorizing statements about sets.

The third of the major themes which will be discussed is the fruitfulness of
the methods introduced in the context of large cardinal theory in leading to new,
"standard” theorems of ZFC . Psychologically, work in the theory of large cardi-
nals might result in an intuitive picture of V as rich and populated by a multi-~
tude of distinctive entities, and in such a fertile landscape, glimmerings of new-
interconnections are bound to emerge, indicating possible new applications of
known methods and ultimately leading to new theorems.
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I. EARLY RESULTS

1. Beginnings

p the beginning threads of the subject in its early history. At

We pick u|

ibout the same time that Zermelo introduced his initial axiomatization of set

theory, lausdorff{1908] had already isolated the notion of a weakly inaccessible

sardinal (as a regular fixed point of the R function).
« cannot be proved in ZFC to exist {as LK |= 2FC ), but in

It is now well known

that such cardinals
the initial preoccupation with the study of cardinal functions in gencral, it is

difficult to determine whether ontological commitment was an important issue.

Further fixed points now ensue: define « is 0-woakly hyperinaccessible

iff x is weakly inaccessible; « is (a+1)-weakly hyperinaccessible iff «x is

a regular limit of a-weakly hyperinaccessibles; and for limit y , « is y-weakly

is a-weakly hyperinaccessible for all a <y . We can

hzgerinaccessible.igg K
now diagonalize, i.e. take those «
consider the regular limit of these, and so forth. This is a typical case of an
given class of cardinals to

which are k-weakly hyperinaccessible and

intuitively r.e. process which can be applied to any
The interest in such processes quickly fades as we consi-~

yield larger cardinals.

der significantly new concepts, and one was soon forthcoming in the present case:

Mahlo|1911] (1912)(1913] discovered a new progess, using for the first time
the concepts of closed unbounded, and stationary subsets of a regular cardinal
(the term "Mahlo” i8 sumctimes used for "stationary”, for example by Jensen). For
a regular uncountable cardinal x , R = { a <k | ais regular } cannot, of :
course, be closed unbounded. But we can ask for next best thing: x is weakly
Mahlo iff Rx is stationary in « . The weakly Mahlo cardinals result after one
application on the class of regular cardinals of Mahlo's Operation: M(X) =
{rkeX | X Mk is stationary in k } . We can iterate this operation to get
weakly Mahlo cardinals of higher order. Of course, the hierarchy of weakly hyper-
inaccessibles can be regarded as resulting from iterating the operation L(X)} =
{rkex | X % is unbounded in k¥ } , also starting from the class of regular

cardinals., The operation L is much weaker than M : if « is weakly Mahlo,

then x is w-weakly hyperinaccessible. Thus, we have a typical case of a new
There have been several generali-

sce Fodor [1966], Gaifman[1967a]

concept outstripping r.e. processes from below.
zations of Mahlo's Operation, some quite recently:
and Gldede [1973}.

The closed unbounded subsets of a regular uncountable cardinal k are very

important, being the natural copies of the order type  , and generating a

k-complete filter. From the contemporary point of view, it is a significant,
useful, and easy-to-prove fact that given a structure <x, £, R> where R K,

the set { ¢« | <a, e, RMNa><<k, g, R> } is closeiunbounded. Using this,
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we can get a modern characterization o we Y 0 car 1 re ctior
akl ah L dinal flect
ti £ k M als by a 2rle an

principle, in analogy with regular cardi
inals, as follows: an
: uncountable cardinal

X iy < ¢ Y &
3 reqular (weakly Mdhlo' respectively) iff for any RC k thore A <
e 18 a K

(and A is regular, respectively) so that < A e, RN >» <<
. X, €, R >

.

Considerations inv ing the width of the set th etical universe came into
d t involv. t dt h t eoretic

play when Sierpinski-Tarski [l i
r 930) introduced the notio
; n of a strongly inacce
8sible

cardinal, as a regular fixed
point of the ) function
« Thus, a strongl
y inacces-

sible carding i ! 2 < g :
cardinal is a regular uncountabl. cardinal which i8 a giro limi
5 £ on mit: il

a < then 2~ < ¢ cd,
' . (Unless distinctions are being emphasizced

: the present-day

abit of using inaccessible to moan strongly inaccessible will be
$ A €

oot thris s adopted through-

T imi é
o . he limit and Mahlo processes can be started on the class of
inaccessible cardinals, yielding the strongly hyperinacc

e et essible and strongly

and in fact the term Mahlo nowadays usually means strongly Mahl
0.

Of course
» the classes of weakly and strongly inaccessible cardinals coincid
e

unde Lhe 1 i any s 5 v
der t GCH, but without an such assumption, closure consideration involvin
g

the er set operation nee s ng 1naccessib111ty. For ex 1le X S
pow set op eed tro amp if
’ 1

strongly inaccessible, ti
; then Vx J- ZFC . HNote that Lhis property does not charac-

terize i i it i i
strony inaccessibility: 2zrc being a first-order theory, it is straightf
B straightfor-

war O see by a wenheim-5kolem argument that if thore is any which modely
d t. b & hei Sk Q Y v ) odec

ZFC at all, the least su
. ch a must have cofinali
¢ ality w However
. ¢+ WC can go on to

v |5 GB iff k i
secend ) v 8 strongl ~
sible. The "classes™ here are to be members of V Ltnacees

a second-order conscrvative extension:

1’ the point here is that «

must be regular for arbita Y "classe (o} P ement Schy . 1dt)
t £ bitar la s" L satisfy the Replac ema Width

considerations also come into play in the follcrwing reflection chaxactezlzatlo 21
ns,

since V i
« replaces a in the “weak" versions:

- x_is inaccessible (Mahl
pectively) iff for an i o
y RCV . there isa A <k (and A

is inaccessible, reg-

pectively) so that < Ve £/ R NV, >=<<v, ¢, R>
A Y

< (Now, {a] <
Bt - , V , €, RNV >
V. e R> } is closed unbounded in «.) = ¢

1 . s
naccessibility generalizes, of course, a (first-order) property of
w

Postu 1at1ug the existence of m n 5 posing 8 c-
h e of any lnaccessibles amounts to ir a superst,
ru

ture on V comprised of initia segment v where sufficicent closure pro i
- 1 nts 1 Properties

obtain yie a. . g e
to yield natural models of GB This is a first step to extendin th

3 A ¥ 1 I 1 o
axiomg of 21C; the universe is to be rich enough so that closure points exist for

basic set theoretic operations from below

1 s N . .
n a significant paper introducing several new ideas, Ulam{1930] considered
ere

the ab i
stract measure problem: is there an infinite set X and a measure on all
measure a
the subsets of X , i.e. a function u: P(X) + [0,1] so that:
(i) u(x) =1 and w({x)) = 0 for any x ¢ x
(ii) u is countably addit i
y ive, i.e. if { X [ newlcPi

disjoint, the =
n u(%¥xn) E u(xn) .

are

of course, bebesgue measure on the unit interval satisfies (i) and (ii) but is
.



108

not total: with the Axiom of Choice (ur even the existence of a (non-principal)
ultrafilter over w ) there are non-Lebesgue measurable sots. Carrying such a p
is only a property of the cardinal x of X , and it was quickly noticed that if
k is the least cardinal with this property, then any measure u: P(x) -+ (0,1} is
in fact x-additive, i.e. for any Y <k , if { Xy | a <y} C P(x) are disjoint,
then u(&{xa) = g u(Xa) [
F Suppose otherwise. Then Yy > w , and since only countably many a's are
such that u(xa) > 0 ., we can suppose by throwing these away through countable
additivity that in fact every u(xu) =0, yet u(%{xa) =r>0. It is now easy
to show that p: P(y) + {0,1) defined by p(Y) = (1/r)«u(U( X, Jaevy )) isa
measure, contradicting the leastness of « . 4
Since the ontological commitment is the same, we consider only the existence
of those « so that there are «-additive measures u on P(x) . It is easy to
see that «x 'must consequently be regular and uncountable. Say that AC k is an
atom for u iff u(A) > 0 yet whenever BCA , u(B) = y(A) or u(B) = 0 . The
following dichotomy was noticed:

(a) p__has no atoms. Then « is nowadays called rcal-valued measurable.

Ulam showed that such a x is weakly inaccessible (sce 511), and also that k < 2%
F First, a technical lemma stated without proot: as p  is not. atomic, for any
Y ¢ « , there are disjoint 2, 7 CY so that 2 UZ =Y and i) = n(2) = % niYd

Now define positive measure sets for the nodes of the binary tree: Let Xey =€

) ; n . ‘ .
and if Xs has already bheen definad for s ¢ 2 , some n , let x3”<0>' xs'kl> he
disjoint with their union XS . 80 that u(xsako>] - "(xg’kl>) = Eu(xs) . For

w i = 2 = \ w =
£e 2, if T = Qxfln s then W(T.) = 0 . However, U( 1, | £e¥2 1 =x.
Thus, Kk is not (2¥)*-additive, and so « <2v -]
(b) y_ has an atom A. Then define p: P(A) -+ {0,1} by p(Y) = :::;

p is a x-additive measure on P(A) . Since u(a) > 0 . ]A| = x , Thus, via a

. Then

bijection of A and x we can conclude that there is a two-valued measure on P(x.
A cardinal «k with such a measure is called mecasurable.

We refer to sections 5§11 and §24 for Solovay's basic results concerning
real-valued measurability, and for now proceed to discuss (two-valued) measurabil-

ity. Ulam went on to show that a measurable cardinal is (strongly) inaccessible.

Nowadays, of course, much stronger results arc known, but the converse question of
whether the least inaccessible can be measurable turned out to be an open question
for about thirty years. After the Fall, we may smile at the naiveté of Adam and
Eve, but this is a typical case of where new ideas were necessary-—and these were
to emerge, perhaps surprisingly, from linguistic considerations (see §3).

If u is a two-valued, k-additive measure on P(k) , then U ={ X C«x |
uix) =1} is a (non-principal) ultrafilter over «k , which is easily seen to be
k-complete, i.e. whenever y < ¢ and { X, | a<yl}g U, then aC} X, € u.

Since by the Boolean Prime Ideal Principle there are (non~principal) ultrafilters
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over w { which of course are "w-complete”), the assertion that there is a measur-
able cardinal is a direct generalization. The finite intersection property is
automatically preserved when taking the union of increasing chains of filters, so
that just a maximal principle is nceded to get ultrafilters over w . But k-com=-
pleteness for k > @ 1is not similarly preserved, so that the existence of a
k-complete ultrafilter over k must be directly postulated. We mention here that
Tarski(1939) approached the concept of measurability via the route of Boolean
algebras and x-complete ideals—just the dual notion.

The measurability of x 18 a third-order existential statement about V.
and gives an intuitive feel to the cardinal k as a higher order of actual infin-
ity above the elements of VK . It turns out that several theorems in various
mathematical fields are known to hold only in the 2ZFC model v: where Kk is the
least measurable cardinal. (See for example Hewitt{1948] in functional analysis,
Fuchs[1970]) in abelian group theory, and Reyes[1972) for a recent result in model
theory. For further references to results involving measurable cardinals in
standard mathematical fields, see page 272 of Keisler-Tarski{1964].) This conflu-
ence is an intcresting phenomenon in the study of infinite sets; the world v, is
well-bchaved in a sense, and to it «k is an infinity of a higher order. It
remained for Scott to use the moasurability hypothesis in a positive way, showing
that the presence of a measurable curdinal definitely leads to a richer structure

on the cumulative hierarchy.
52. Scott's Work

Though Gtdel[1938) introduced the inner model L , the class of constructible
sets, and thereby proved the consistency of AC and the GCH relative to 2F, he
only considered L a device. His skepticism about the truth of the Axiom of
Constructibility (the assertion V = L) rested in part in his distrust of the
Continuum Hypothesis itself (see G8del([1947]). V =L is quite a strong axiom in
being able to decide several combinatorial questions, but to G8del’'s mind, in a
direction against his intuition—an attitude couched fixmly in neo-Platonism. In
the present, post-Cohen era it is the nuts and bolts of the technology of forcing
to show the relative consistency with ZF of V # L , but it was Scott(1961] who
first realized the possibility, in showing that: If there is a measurable cardi-

nal, then V # L. Let us be aware of the difference: while forcing can be con-
strued as a possible world semantics in which actual realization of a generic
extension is a transcendence to a next universe, Scott's result depends on a
direct existential (and hence theological) postulation leading to a result about
the present universe,

The usefulness of the ultraproduct construction in model theory was just
becoming understood at the time, when Scott struck on the idea of taking the
ultrapower of V by a k-complete ultrafilter U over «x .
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We quickly chart the landmarks of a path well-known today: VK/U is well-
founded (as per its derived membership relation) as ¥ is at least wl—complete.
Since a strategem (known as Scott's trick) is available for construing each ultra-
power equivalence class as a sct, by Mostowski's collapsing lemma there is a
unigue isomorphism MU = v/, where My, is a transitive class, MU is thus an
inner model of set theory. The canonical embedding of V into the ultrapower
induces an elementary embedding jU into MU , which we write schematically,

Sy Vo My ® ve /U,
This notational convention for analogous situations will be adopted  in this
paper; for [: x +V , by lflU we denote the element of MU to which the ultra-
power equivalence class of f corresponds, under the transitizing isomorphism.
(The subscript U will often be dropped, when clear from the context.) Now note
several facts: by k-completeness, a < ¢ implies jU(u) =a , while «x i.[idlu <
jU(K), where id: ¥ + x is the identity function.

We can go on to establish Scott's theorem as follows: Assume k is the
least measurable cardinal, and, by way of contradiction, that V = L . Since
M, is then an inner model which by elementarity also satisfies the Axiom of

v

Constructibility, MU = L =V , But also by elementarity ju(t) is supposed to be

the least measurable cardinal, yet jU(K) > k , a contradiction. (In fact, a
stronger mechanism is known: without assuming that ¢ is the least measurable or
that V = L , it can be established that U ¢ M, . Now V=1L would still mean

that M, = L, contradicting U ¢ V - M_. See §8, 8.7.)

U Ut
It was soon noticed that Scott's construction has a direct converse: if

there is an elementary embedding j: V - M where M is an inner model and j

is not the identity. then there is a measurable cardinal:

F Let Kk be the critical point of j , i.e. the least ordinal moved by j
(there must be such an ordinal—it is the least rank of any set moved by j )

Define U by
Xecliff Xgx & x e j(X).

It turns out that U is a x-complete ultrafilter over x , and hence x is a
measurable cardinal. -

It may be surprising that non-trivial ultrafilters can result from elementary
embeddings; here, x is not in the range of j and so can be considered a
"generic" element which generates U . Thus, the really structural characteriza-
tion of measurable cardinals in set theory emerged: they exactly correspond to
elementary embeddings. An old concept dons a new guise, and this insight partially
set the stage for the further uge of model theosetic techniques in sct theory.

As an interesting sideliyht, we prove in passing a fact that will be useful

in future sections. Closure Lemma: if x is measurable, U is a x-complete
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ultrafilter over k , and J: V+ M = V&/U , then "M C M, i.e. M is closed under

arbitrary sequences of length x . 1In particular, VK+1 cM.,

[} suppose (1€, | e «x } €M, Wemust find & g: x » V so that Ig] =

<l ] <k >. Let h:k->V sothat [h] =k . For each &< k , let g(g

be with domain = h(f) , so that g(¢€) (a} = fu(i) + 'Then by Eo§' Theorem, [g] is a

function with domain [h) = « , and for each « < x , [g](a) = (£,1 . -
Scott also isolated the concept of a normal filter. If U is a k~complete

ultrafilter over «x , then « < lid]u , as was stated before, where id: ¢« ~ x is

the identity function. Equality here was desirable, and Scott proceceded as follows:

Let f: x -+ x be such that k = [[lU . Define an object £ (U) by:
Xe £, U) iff XCk & £l (x) eV .

Then f_(U) is also a k-complete ultrafilter over « , with the additional property

that « = [id) This property is equivalent to asserting that f_(U) is

normal, in thef;;g;c of the following definition:
For any A-complete filter F over acardinal A ., F is normal iff one (and hence

both) of the following equivalent conditions hold:

{a) Whenever (Xul a <X }C.F, then A%, = {B<r|a<B - B¢ X, )
€ F . (Notice that for uniform F , this subsumes A-completeness.)

(b) Whenever £: A + A is rogressive on a set of F-positive measure, i.e.
Y= {B<2A | £(R) < B ) has PF-positive measure, then thore is an « < A so that
(BpeyY | £(B) = a ] has F-positive weasure. (A set A C A has F-positive
measure iff F (U {A} generates a (proper) filter, i.e. A - A i F )

Of course, for an ultrafilter vis-a-~-vis (b), having positive measure is the
same as being in the ultrafilter. Scott saw the utility of the normality condition
in the context of elementary embeddings. ILet N be a'normal, k-complete ultrafilter
over Kk . Since Vierl Q'MN by the Closure Lemma, we have My F k is inaccessible.
But «k = [id]N by normality, so it follows from ko§' Theorem that { o < ] a is
inaccessible } ¢ ¥ . Thus, the least inaccessible cardinal cannot be measurable,.
Tarski was the first to prove this fact using ideas of Hanf (see §3), but Scott's
conclusion is stronger. (Even stronger results about normal ultrafilters are pos-
sible and will be cited, Note the apparently counter-intuitive fact that though
an ultrafilter is usually thought to consist of large sets, the sparse set [ a < «x |
a is inaccessible } ¢ N . This is illustrative of the strong reflection phenomena
occurring at measurable cardinals.) Scott also showed that if { a < | 2% = u+ }
¢ N , then 2K = K+ , the prototype of several similar results about powers of
cardinals, culminating in Silver’'s theorem (see the end of §13, and §29),

With the notion of normality made explicit, it was in a sense a rediscovery
that some work on regressive functions had already been done, and that Fodor[1956]

in fact hadslown that the closed unbounded filter CA on_any regular uncountable

cardinal ) is normal. The stationary subsets of A are just the C)-~positive
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measure sets, and the result is usually stated via definition (b) of normality as
follows: whenever f£: A + ) is regressive on a stationary subset of A, it is
constant on a stationary subset. The following is a proof (made simpler than Foder's
original proof by hindsight) via definition (a) of normality:

}  We want to show that if (Cu| a < A} are closed unbounded sets, then so is

é Cu. That it is closed is immediate. To show that it is unbounded, let R, <} .
Inductively define Bn for n > 0 as follows: given Bk . let Bk+1 > Bk and

8 € r\(cu| a < B, ) . This is possible since this last set is closed unbounded.

kt+l
Let B = sup Bn . Then B <A as X 1is regular, and B ¢ 3 Ca . -]
In n real sense, what distinguishes regular uncountable cardinals from all

others is the fact that they carry an easily defined normal filter. The closed
unbounded Eilter over a regular uncountable cardinal is contained in every other
normal filter, and the theory of several large cardinals will have as basic features
gome naturally defined normal filters. In the presence of the Axiom of Choice, the
closed unbounded filter is not an ultrafilter. But we shall see in later sections
that it can get quite close to being ultra, and that with the Axiom of Determinacy
(528) the closed unbounded filter over w, is ultra, and hence a normal ultrafilter
over a measurable cardinal. This is quite an interesting phenomenon: the ostensibly
strong, oxistential postulation of measurability is connected up with an easily

dofined filter over a small set. In this connection, see also §9 and §22.

§3. Compactness Properties of Languages

We must now backtrack a bit to pick up the development of ideas in a different
direction, ideas which in fact led to the first modern results about large cardinals.
Just before Scott's work, Hanf considered the problem of when analogues of the Com-
pactness Theorem of first-order logic holds for infinitary languages Lxx . In
general, L?u is a direct generalization of the usual finitary language, which
allos conjunctions of lengths < A and quantification blocks (homogeneous, in that
no alternations of quantifiers is permitted within a block) of lengths <4 . In
the present context, it will only be necessary to consider possible additions of
finitary function and relation symbols.

(See Karp(1963) or Dickmann(197dl for claboration on the languages L’m . 'The
study of generalized languages and logics has developed beyond this first, perhaps
naive, generalization, with more attention paid to structural considorations. Sub-
stantial results like the Barwise Compactness Theorem and Lindstrom’'s Theorem showed
that there were real secrets to be unearthed, and the present preoccupation with
generalized quantifiers is a promising venture. 1In this context, Lmiw has an
interesting theory (see Keisler([1971])), and is thought nowadays to be enough for
adequately exhibiting the mathematically significant properties of the various
L. 's.)

Au
A collection of sentences of Lxx is satisfiable iff it has a model under the
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natural interpretation of infinitary conjunction and quantification; and is k-satis-
fiable iff every subcollection of cardinality < x is satisfiable. We now define

for x > w: x is weakly compact iff whencver I is a k-satisfiable collection of

sentences of LKK using at most «x non-logical symbols, then L is satisfiable.
(Actually, Hanf had the more stringent hypothesis |Z| < ¥ . The present formulation
is more convenient since it implies the inaccessibility of « ; see Drake (1974],

page 300, or Devlin([1975]). «x _4is strongly compact iff whenever L is a x-satis-

fiable collection of sentences of LKK (with any number of non-logical symbols),
then L 15 satisfiable. (The higher order analogue is extendibility; see 516,)

Since me is just the usual finitary language, it is clear that these concepts
are direct generalizations of the usual Compactness Theorem. Hanf[l964) was able to
show that weakly compact cardinals are very Mahlo, and then Tarski[1962] showed that
a measurable cardinal is weakly compact, thus providing the first proof that the
least inaccessible is not measurable. Strongly compact cardinals were quickly seen
to be measurable. (These results will become clear shortly.) It seems remarkable
that metamathematical concepts, first studied with no thought to size considerations,
should lead to large cardinal properties.

It turned out that weak compactness has many diverse characterizations, which
is good evidence for the naturalness and cfficacy of the concept. One is already
given here, and for others see §4, §5, and the full treatment Devlinl1975]. «k is

weakly compact iff (Keisler) whenever R C VK , there is a transitive X ao that

¥ 6 X and an BC X , so that <« VvV , ¢, R >4 < X, ¢, 8 > ;
- LS

F First, assume that xk is weakly compact and that R C VK . The following is
a generalization of the use of the usual Compactness Theorem to get proper exten-
sions of models. From (our formulation of) weak compactness one can prove that «
is inaccessible. Thus, ]VKl =k . Using new constants ¢ for x ¢ v o let I

be the LKK theory of < VK, €, R, x >x together with sentences "c is an

eV
3
ordinal" and "c # cx" for every x € VK . I is then x-satisfiable, and so by
weak compactness it is satisfiable. Now well-foundedness is expressible already in
0y 0y , and since [ has a member saying ¢ is well-founded, any structure satis-
fying I is well-founded with respect to its "membership” relation. By Mostowski's

collapsing lemma, let < X, €, S8, X, a e v
r
K

be the transitive isomorph of such
a structure. ! has sentences of LKK stating exactly the members of each x e VK,
so by induction on rank, x e Ve implies x = x . Clearly, « is an ordinal > K,
so that k ¢ X . Hence, the reduct < X, €, S > satisfies all the requirements.

For the converse, first show by straightforward means that the inaccessibility
of x is implied by the Keisler property. Then, note that for any inaccessible )\ ,
the following two Lowenheim-Skolem-type theorems for Lxx are easy to prove: (i) If
o is a satisfiable sentence of L, . then it has a model of cardinality < A .

(ii) If I is a satisfiable collection of sentences of L)A of cardinality < A ,
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then it has a model of cardinality <A

Suppose now that L is a k-satisfiable collection of sentences of LKK , using
at most K non-logical symbols. By the inaccessibility of k , |Z]| <« , so let
L= (Ual a <k )] and R = (<u,au>| ¢« <k} . Weconstrue I as a subset of VK .
Using (i) above, it is easy to see that <V _, €, R > k Vu({asl 8 <o } is satis-
fiable). By the Keisler property, let < VK, €, R>=< <X, ¢, S > where X is
transitive and « £ X . Thus by elementarity, < X, ¢, S > | (oal a <k )} is
satisfiable, But < X, ¢ > is a model of ZFC, and so by (i) above, < X, €, S > F
“[oa| a <« } has a model A with universe ¢V ". Flnally, V _ is closed under
arbitrary <k-sequences and v, C X, s0 that satisfaction for A is absolute

between X and V , i.e. A really models (oal a<xk } =L, -|

Strong compactness also has several characterizations; the following algebraic

one was seen early ont: k is strongly compact iff for any set I , every

k-camplete filter over I can be extended to a k-complete ultrafilter over 1 :

F FPirst, assume that «x is strongly compact and that F is a x-complete filter
over I , Just like getting a measurable cardinal from an elementary embedding, we
want to get a “generic" element to gencrate the desired ultrafilter, So, using
constants c, for xC T, let I be the LKK theory of < I, €, % >x§} togethor
with the sentences "c € cx“ for every x ¢ P , where ¢ 1is a new constant. I is
x-satisfiable as F is k-complete. By strong compactness, let A model I . Now
define U by: xeU iff xCI & A F cec . U will then be an ultrafilter
extending # , and I has LKK sentences which assure that U is k-complete.
Conversely, let I = (oo| a <A } be ak-satisfiable collection of sentences
of LKK . We generalize the ultraproduct proof of the usual Compactness Theorem.
Recall that PX = {sg? | Is] <x) . Foramy sePX let A model é§§ oy -
Let U be any k-complete ultrafilter over PKA , extending the k~-complete filter
generated by the sets {{s ¢ PKA| aes}t | a<A} . consider the ultraproduct
A =TA_/U . Then for any u<X,.(s|As|-au}_D_{slucs)el},sothat AFca
by to§' Theorem. 4

As an immediate corollary, we have: a strongly compact cardinal is measurable.

1The fact that such proofs as Lhe preceding one directly lift known techniques from
me seems appropriate. It is to be emphasized that strong compactness of « is a
global property of x affecting all higher orders of the cumulative hierarchy (see
§15 for Solovay's result on the GCH above a strongly compact cardinal). An appro-
priate weakening to a local property of the preceding characterization of strong
compactness exists for weak compactness (see the ultrafilter properties in Devlin
(1975]), and is quite natural in the context of Tarski's earlier work on ideals in
(representable) Boolean algebras. It is an interesting latter-day fact that measur-
ability can also be recast as a sort of compactness property (see Chang-Keisler([1973],

page 198): Kk is measurable iff whenever I for u < k are satisfiable
o

collections of sentences of L., (with any number of non-logical symbols) so that
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a < B <k implies I g,ta ¢ then \g Ea is satisfiable.

Much of what might be called the classical theory of large cardinals was summed
up in the lony paper Keislur-Tarski|1964). This paper presented many results about

the extent of the classes C Cl, C2 of cardinals which are, respectively, not

o’
weakly compact, not measurable, and not strongly compact. Nowadays, we tend to
think that weak compactness is a relatively weak concept, and that there are many
more interesting train stops on the way to measurability, To the set theorist of
today, flipping through the pages of Kelsler-tParski is an interesting experience,

as he repeatedly sees theorems which he himself would state in dual or contrapositive
form. The many theorcms with hypotheses of form "if Ci contains all the cardinals"”
are perhaps suggestive of a point of view that these theorems are partial results
toward ultimately establishing these hypotheses true outright.

Of course, the sky looks highly unapproachable from the ground. But in the
current climate of numerous relative consistency results and the Axiom of Determin-
acy, we are not afraid to get into our mental helicopters and, Icarus-like, soar
unashamedly in speculative altitudes implicit in forms of statements like "if there
is a measurable cardinal, then ., ., .". 1f the sub begins to melt the wax on our
wings, we can always don the formalist parachute by saying that these are interesating
implications of ZFC. It may be historically interesting to trace this change of
attitude from the days of Keisler-Tarski; does it have any connection to the switch
from prime ideal to the dual notion, ultrafilter, in model theory? Thinking big
sometimes has its advantages.

Once the concept of strong campactness became known, a nice global generalimtion
of Scott's result was soon found. We assume the reader’s familiarity with the notion

of relative constructibility; for any set x, L{x] is the smallest inner model M of

ZF so that x MM e M , and for any such M , Lix) = (LixD™ = @wixnun™ .
Vopénka-Hrb&&ek [1966] proved the following result: 4if there is a strongly compact

cardinal «x , then V + L{x] for any set x :

= Suppose to the contrary that V = L[x], where without loss of generality we can
assume x is transitive and |x[ = X > k . Using the previous characterization of
strong compactness we can casily get a uniform k-complete ultrafilter U over A+ by
extending the (k-complete) filter F = ( Y ¢ at ||)\+ Y| <A} . Let jivVveM=
+

v At . .

Now look at the substructure of V" /U consisting of equivalence classes of
those £: AY » V so that |Range(f)| < A. Call this substructure v"+/u‘ . It is
true that to§' Theorem holds for this restricted ultrapower (the induction step to

the existential quantifier must be checked), and so in particular the natural embed-
+ +
ding V =+ v /U is also clementary. v /U is well-founded with respect to its

+ -
"membership" relation, so let N be its transitive isomorph. Set k: V + N = VA /U,
and for f: AT +V so that |Range(f)| <\ , let [f] denote the element of N
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corresponding to the equivalence class of £ in Vx+/U— . Define i: N+ M by
i([f)7) = [£] . The following will then be true:

(i) 1 is elementary, and Jj e jek .

(ii) i(a) = a for every o < k(A*) , and i(k(x)) = k(x) . (One can prove
inductively that: for any f so that the transitive closure of Range(f) has cardi-
nality <A, (€17 = [£f] .)

(1i1) kQY) = sup(kla)| @ < A* } < (id] < 30*) , where id: 2" . 2% is the
identity function.

We now get a contradiction as follows: Since V = L{x], by absoluteness of
relative constructibility M = L[k{(x)]) = N , as i(k(x)) = k{(x) . Now in M , j(x*)
is the successor of j{,) , and in N , k(A*) is the successor of k(A) . So, as
kA) = i(k@x)) = J(A) by (ii), M = N implies xat) = j(k+) . This contradicts
(iii) . ] 4

§4., Indescribability

Linguistic generalization in a different direction, expressibility with higher
type variables rather than in infinitely long formulas, turned out to yield a class-
ification scheme which provides an efficient means of comparing the sizes of various
large cardinals. 1In the brief note Hanf-Scoti:[1961] was introduced the idea of
looking at higher order reflection properties that hold'for < VK, e, R > where
RCV, -

As usual, let nﬂ (Eﬂ, respectively) be the classo of formulas {in the (finitary)
language with ¢ and higher type variables) which in prenex form has at most n
alternating blocks of quantifiers of (m+l)th order variables, starting with the
universal (existential, respectively) quantifierﬂ Now define (for myn > 0) k _is
NA-indescribable iff whenever ¢ 1is IR in one free second-order variable and
RCV then < Ve & R2> F ¢(R) implies that there is an a < x so that
<Vyr € R F\VA > F ¢(R(\Va) . Define EIn-indescribable analogously. Because there
is sufficient coding apparatus in VK for k a cardinal, this definition is equi-
valent to one where R is replaced by any finite number of relations on VK , some
possibly k-ary for 1 < k < w . As the intention is for higher order variables to
have the standard interpretations, nﬁ—indescribubility could also have been defined
in terms of satisfiability of just first-order formulas in Vx+m reflecting down to
a vu+m . One can also pursue indescribability via tfnnsfinite types (see Drake
[1974]).

Many of the large cardinals « that have been investigated are defined via
some higher order property for < VK,C > ., The point of the indescribable cardinals
is that they are characterized by some degree of uncharacterizability. The degree
of closure at some height V  is to be measured by the linguistic complexity of
formulas which reflect. Thi: is a direct generalization of the ordinary Reflection

Principle; the new added feature of considering higher order statements is possible
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because aggrandizement in the éumulptive hierarchy continues beyond Vv .
The first thing to see about the definitions is that Z%+l-indeso§ibability is
equivalent to H%-indescribubillty, since we can use the RC V_ for (second-order)
existential instantiation. Similarly, Xl-indescribability jus: becomes "first-
order" indescribability, and soa straightforward argument like for the model theora-

tic characterization of inaccessibility in §1 shows that: x is B}-indeacribable

iff x is inaccessible. What about n{-lndescribability? Hanf and Scott found

that it provides a nice characterization: « is ﬂl—indescribable iff x is weakly

compact:
F First, suppose «x |is Hl-indescribable. Then x is inaccessible by the com-

ment on first-order indescribability. We intend to show that k has the Keisler
property for weak compactness. By the Ldwenheim-Skolem Theorem, < V s €, R> =
<X, €, § > for some transitive X with x € X and § C X Just ianase there is
such an X with the additional property that [x| = IVKl =k . Thus, assuming the
Keisler property did not hold for some R C vK + then < VK, e, R, x > #
(VXVEYSYJIVY (J is not an isomorphism of < X, E, S, y> to a transitive elementary
extension of the universe, which contains « , so that § is to intexpret R )) .
When properly formalized, this becomes a H{ statement, say ¢(R,k) .

By another Lbwenheim-Skolem argument, for any o < k¥ there is an
< Kooy Su, Yy ? - < VK, £, R, ¥k > so that X is transitive, V“LJ(G) G X , and
vl = Ixal . Now by a comment in §1, Cc={a <k | < Voo £/ ROV , a > -<u
< VK, €, R, x > | io clooed unbounded in Kk . Observe that for anya aeC,
<V, €, Rrﬁvu, a > < X o €0 S0 ¥, > . so that we can conclude Voo € ROV , a>
E ~$(RMAV_,a) . *

Let ¢(C) be a (first-order) statement saying that C is unbounded. Thus,
<V.e R x C> F v(c) & ¢(R,x) . By N}-indescribability, there is an & < Kk
so that <V ., e ROV, a, CNa >k y(Cm) & $(RNV_,a) . However, the first
clause insures that o € C as ¢ 1is closed, and so the second clause contradicts
the conclusion of the previous paragraph.

For the converse, assume < VK, €, R > P ${(R) , where ¢ is ni . By the
Keislexr property of weak compactness, < VK, €, R><4 <X, €, 8> for some trangi-
tive X with x e X and SC X . Since n{ formulas are preserved under restric-
tion, we have < X, ¢, S > | (ﬂa(<Vu, €, Sf\vu> E Q(S(\VG))) , since «k is such
an a and S(WVK = R (note that x € X implies vK € X , a X is a transitive
model of ZFC extending V: }. However, this sentence is first-order, so that
<V, e R > | @al<v , ¢, Rf\Vu>‘F $(RNV ))} by elementarity. This means (since
for any a < x , all subsets of vu are in VK } that for some a < « ,

<V..oE, Rﬁv(x > F ¢(Rf\vu) . which was to be proved. 4

Finally, Hanf-Scott[196l) also stated the following result: a measurable
cardinal is Nf-indescribable:
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F Suppose that < VK, €, R > F ¥X$(R) , where X is a third-order variable and
¢ has at most second-order quantifiers. Let U be a k-complete ultrafilter over
Kk, and jJ: V- M= VK/U « By the Closure Lomma of §2, VK+1 C M, so that second-
order statements about <VK.E> are absolute between V and M . But the third-
order universal gquantifier is preserved under restriction, so that M F (<VK, €, R>
F wiary), i.e. uk Ha<i k) (v . c, JRINY > E VX GRINV D) as « is
such an « and j(R)f\VK = R . Thus by elementarity, there is an a < k so that
< Vg € ROV, > F wxd(ROW ) . 4
Notice that this is the best possible, since there is a zf sentence charac-
terizing the least measurable cardinal. Nowadays, it is known that T{-indescriba-

bility by no means characterizes measurability: If U is a normal

. . foonih . .
ultrafilter over a measurable cardinal « , then { a <« | o is Mn-indescribable

for every m,n } ¢ U =

F Let §: VM=Vl . Toget the result it suffices to show that M | "k

is Hﬂ-indescribable for every m,n", for then we can apply normality and £05' Theo-

rem. The following argument works with very little restriction on the precise nature

. |
of ¢ : Suppose M | (<V . €, B> E ¢(R)) . Thus, M | Ha<j IV, €0 FRIOV >
F ‘@(j(R)F\Vu)) , a8 Kk is such an o and j(R]‘r"WK =R , By elementarity,

there is an @ < « so that <V , e, RNV > J ¢(RMY, ) . which is the same in M
e 3

P, , M o d
as in V Dbecause VK = v‘C . But then, we are done. B

Thus, for example, though the least measurable cardinal can be described easily
enough by a third-order existential statement, there are many cardinals below it
which are highly indescribable. In particular, the presence of one measurable cardi-
nal in the universe renders the theory of the hierarchy of indescribable cardinals
highly non-trivial. ‘

Unlike measurable cardinals, we should point out that the indescribable cardi-

nals are compatible with Vv =L : If k is Hﬂ-indescribable, then (k is h-indes-

cribable)L . Similarly for Ih . In particular, if « is weakly compact, then
Kk _is weakly compact in L . See Devlin[1975] for a proof. The point is that for

that there is a £] formula ¢(+) so that whenever k is inaccessible and X cL.
Xe L iff v, B odx)

structibility, and these can be used to prove the relativizations to L .

In other words, relatively simple formulas describe con-

Once the stage has been set, it is not unrﬁasopable that there should be direct
analogues between degrees of indescribability and Kleene's Arithmetical Hierarchy.
Indeed, the following enumeration theorem should have a familiar ring (Lévy{([1971];
see also Devl1in{1975)): For any m,n > 0 there is a 18 formula xlm(-,-) so_that
for any nﬂ formula ¢(:) , there is an integer k so that for any iimit o and
RQV, . |

- Voo R E dR) AL e R R ox (GR) .

(ﬂgalogbusly for In .)
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The proof, of course, uses the satisfaction predicate. wWe have the following corol-
laries:
(a) For any n > 0 there is a lIh+) sentence I so that <V 6> | T iff k is
K

Hk-indescribablc.

. m
(b) If m > 1, for anhy n > 0 there is a In (X% respectively) sentence | so

that <V ,e> F r iff « is I~ (1A respectively) indescribable.
} For (a), let T be: YRYk (x) (k,R} +dala is a limit and Voee, ROW > |
' a

x]n(k,R(\va)) . Here, is as in the previous theorem, Because of the VYR '

X
and as X1n is nh ana ;Eands to the left of the implication sign, [ is Jh+ .
(b} is like (a) , but using X instead; the seccond order VR now gets subsumed
in the proceedings, as m > 1 . 4
Let us make some further' definitions: W = the least HE—indescribable cardinal,
and oh = the least IR-indescribable cardinal. (In these and similar cases, it is
to be implicit that any theorem using this notation is actually an implication of
the type "if a lih-indescribable cardinal exists, then . . ." ‘Thus, we do not worry
over such vacuities as the baldness of the present king of France!) Since we have
already remarked that E;+l—inde5cribability is equivalent to Hh-indescribability, it
is clear from (a) and (b) above that:

o}

wl = U£ < n£ = u% < ...
m m

1

least inaccessible

on + m .,
m m m
gn < agn+l , wn+l and

m m m
wn < on+l , ®wn+l for any m,n > O .

It is still not known(in ZFC alone) whether ©h < 7h or vice versa., In this
connection we describe an interesting historical devglopment. A potentially very
fruitful spin-off of the study of large cardinals which has not been fully investi-
gated is the consideration of their various analogues in simplified contexts, such
as second-order arithmetic or admissible set theory. (See for example Harrington
[1974] for the notion of a recursively Mahlo ‘ordinal.) The theory of inductive
definitions provided a typical context:

Richter[1971], Aczel-Richter[1972}[1974] developed connections between ana-
logues of large cardinals and closure ordinals of inductive definitions. For exame
ple, if |F| dénotes the suﬁfemum of closure ordinals of (not necessarily ﬁonotone)
induqtive operations on P{w) in the class [ , it was seen that |H}| can be
characterized by a reflecﬁion broperty very much like n%-indescribability. It was
also realized that |"i| + |ﬂ}' , but it remained for Aanderaa{1973} to show among
other things that |H{| < Izil . TFinally, Moschovakis noticed that Aanderaa‘'s method

m m .
shows: If V=1L , then On < n for any m,n > 0 . See Devlin[l975]) for a proof;

the assumption V = L unfortunately seems essential to 1ift the effective aspects
of ‘Aanderaa's proof. Thus‘we‘habe come full circle: the indescribable cardinals
are complemented by natural analogues, and their study leads again to a result

. i
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about indescribable cardinals. Can the assumption V = L be eliminated from the
above result? An independence result is perhaps unlikely, but still possible,

In emphasizing the concept of normality for filters in 52, we were in part
foreshadowing the interesting phenomenon that many large cardinals turn out to carry
naturally defined normal filters over them. This becomes quite an asset in the
structural study of these cardinals, and provides new insights into similarities
with measurable cardinals and their normal ultrafilters. Lévy (1971) first discovered
this phenomenon, in the context of the indescribable cardinals:

Let us first gcneralize a definition: an X C k is called Th-indescribable
iff whenever 4¢(') ig a.lp formula and R c vK , then <VK, e, R> P ¢ (R} implies
that there is an a € X so that MY Rrﬁva> E ¢(Rf\Vm) . We then have: If

K _is Hﬂ-indescribable, then M = {xck | «x - x is not Mn-indescribable } is a

x-complete normal filter over « . (Similarly for EE.) See L&vy([1971]) or Baumgartner

{1975] for a proof; in Lévy's terminology, the members of R are called 1B-enfor-
ceable.

The Mn-indescribable sets are the positive measurc sets with respect to e '
80 they are analogous to the stationary sets for the closed unbounded filter. Note
that for any nﬂ formula $(+) and any R C Vx' the set { a < « | <Vu, €, R(\V“>
F ¢(Rf\vu) } must be in . Also, any such set must be stationary since Fa
is normal (and hence must extend the closed unbounded filter) . The following is

now a consequence of these facts, and (a), (b) above: 1f «k is nﬂ+1—indescribablew

m
then both  { o < k | a is lin~indeseribable } and { a < v | a i sh-indescribable )

are in Fﬂ+l and hence are stationary in «k . (Similarly for Zg+1 , when m > 1.)

strictly speaking, we do not need the FR's to show the mere stationariness
of these sets, but the stronger statements exhibited have an intrinsic interest, and
typifies how often in hierarchies of large cardinals, a cardinal at one level defines

for itself its transcendent largeness as compared to cardinals of lower levels.
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II. PARTITION PROPERTIES

§5. The Properties o + (8)" , and Trees

We now take up yet another stream which will flow into our developing framework.
Erdvs-Rado(1952] [1956], Erdis-Hajnal [1958] (see also the surveys Erdds-Hajnal-Rado
[1965], and Erdds-Hajnal[l971)) developed a theory of combinatorics in set theory
based on a partition calculus. For our present context, it is interesting that (as
pointed out in Erd8s-Hajnal(1962]) the 1958 paper had already contained enough results
to deduce Tarski's result that the least inaccessible is not measurable.

We first define the partition symbol in this calculus for directly generalizing
Ramsey's famous theorem. Recall that if X is a set of ordinals then [x]Y - (Y cXx f
Y has order type Yy } . Then

a+ (e)z

means that whenever f: [a]y + & , there is an H e [a]B homogeneous for £ , i.e..
|f“[H]Y| = 1 . The idea behind this somewhat arcane symbolism is that the rxelation
is preserved upon making the ordinal on the left larger, or making any of the ordi-
nals on the right smaller. Ramsey's theorem states that w + (w): for any positive
integers m,n . As we are presently assuming the Axiom of Choice, and since it is
known in this case that a + (m): does not hold for any a , we shall for the moment
restrict ourselves to the consideration of the partition é&mbol only for y < w (see
§28 for partitions of infinite tuples). .

Of their many results, what has become known as the Erd8s-Rado Theorem is the
statement that for any « ,

(A en* o+ wHi,

where we define Jﬁ(n) =k and :1n+1(K) = zln(K)

{See below for a proof.) This is
known to be the best possible (in the sense that one cannot lower the left or raise;
anything on the right), and shows in particular that for any X, n, §, there is a
k so that «x =+ (K)g . The possibility of a fixed point «x = A had already been
voiced in Erdds-Tarski(1943], and in fact it was discovered in the late fifties that
K -+ (K); is equivalent to the weak compactness of k (see below).

what lies at the heart of these matters soon emerged as a property of cardinals
involving trees (called "ramification systems" in early papers)., Let us quickly
review the terminology: A tree is a partially ordered set <T,<T> so that the
<t-predecessors of any element are well-ordered by <T . The ;gzsl_g of T
consists of those t € T so that the <T-predecessors of t under <T has order
type a . The height of T is the least a so that T has no elements in level
o . A branch is a subset of T which is a linearly ordered initial segment under

<T . Finally, ana-branch of T 4is a branch of order type © under <T . The
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connection between trees and partition relations is isolated in the following key
Lemma: If n > 2 and ] len + A , then there is a tree ordering <e with
domain x so that:
(1) If ¢ <f § , then £ < § .
(1) I8 g <p e < § ) < 8 <y then £({E.....E 1.8} =
g eeer g oD o

(iii) For each infinite « , the level a of the tree <K,<f> has cardinality

at most A|“| , For each m € w , the level m has cardinality at most Av,
The proof of this lemma involves building the desired tree by straightforward induc-

tion. (Set © <f 1 <f TRTIR PR In general, if a < x and all B < a have

been taken care of, choose one maximal branch b of the tree already constructed,

with the property that Bl g oeee < B in b implies f((Bl,...,Bn_l,Bn)) =

n
£({B) ... 8 _,s0)) , and designate B <. o for each B ¢ b . In the case that no
such branch exists, Put a into level n - 1 .) To show the usefulness of this
lemma, we outline from it the proof of the Erdds-Rado Theorem stated above:

the case n = 0 follows from the regularity of x+.

- Proceed by induction on n ;
+ n+l

Suppose now that (_:1n(x))+ + (r )K is already known, and assume f:
+ nt+2 + : .
[(:1n+1(K)) | + k. Let < be a tree on (:1n*1(z)) as in the lemma, for

this f . .

We claim that the level :ln(bc)+ of the tree is not empty (and this is precisely
where the :l-type numbers over k come into play). If this were not the case, by
(iii) of the lemma we would have :1n+1(w)+ = |T| 3 ulk uIl a < :ln[K)+) < 2:Ln(K)
< :1n+l(K)+ , a contradiction.

Thus, there is an n at.level :ln(x)+ of the tree, Consider the branch
c=1{g ¢ < n } . By (ii) of the lemma C is a prehomogeneous set for f , i.e.
for £ <. ... < B <8 allin C, £({g .-, §,,,6)) only depends on

n+l .
<§1,...,.‘;’+1> , and so g: [C] + x defined by

g({El,...,é;n_l_l}) = f({%,...,'in_'_l,(s}) for any § ¢ C
' greater than all the £ 's

is well-defined. Now the inductive hypothesis can be applied to g to extract a
subset of C of order type x+ , homogeneous for the original f . 4
As this proof shows, the existence of large homogeneous sets can be related to

the existence of long branches in trees. Ramsey's theorem can be proved in this

fashion, and the basic phenomenon involved here can be isolated as follows: A x-tree

is a tree of height k with each level of cardinality < k . The tree property for
x 1is the assertion that every k-tree has a k-branch. ’

The well-known K¥nig's Lemma is just the statement that  has the tree pro-
perty. A classical resuit of Aronszajn is that ) does not have the tree property,
and so a counterexample to the tree property for k in general has become known as

a k-Aronszajn tree. If K is singular, it is easy to see that there is a k-Aronszajn

123

tree. Specker[1951) remarked that Aronszajn's construction can be extended to show
generally that whenever AL x and x is reqular, there is a x+-hronszajn tree.
However, little is known about the existence of n+-Aronszajn trees for « singular.
That the tree property for x may not imply the inaccessibility of «k was first

noticed by Silver[1966] when he showed that: If k _is real-valued measurable, then

k__hag the tree properiy. For more on trees, see the expository Jochl1971). Wa

discuss in 521 an actual equi-consistency result involving the tree property for w, .

Combining inaceessibility with the tree property leads to the Following charac-
terizations of weak compactness, known by the early sixties: The following are
equivalent:

{i) x is weakly compact.

(ii) x is inaccessible and has the tree property.

(iii) k + (K)? for every n <w , A < Kk .

(iv) x » (x)g .

F (i) -+ (ii). To establish the trec property, let <T,<T> be a k-tree. To each
t € T associate a propositional letter Pt . and consider the collection of Lxx
(in fact LKm ) sentences consisting of: a9, - Q&qvtl t ig at level a } for each

a <k , and H(Pt & PE) for each pair t,t in T which are not <T-comparnb1e. Since
T is a tree of height « , this collection of sentences is r-satisfiable. Hence
by weak compactness, it is satisfiable, say by a model O . Clearly, { t € T |

8 F Pt } then constitutes a k-branch through T .

(ii) >~ (1ii). The proof (for all A < k, by induction on m) of this assertion
is just like the proof of the Erdds-Rado Theorcm given above; the tree .constructed
in the lemma is a k~-tree by the inaccessibility of & , and the tree property assures
that there is a x~branch, and hence a homogeneous set of size « .,

(iii) + (iv), is trivial.

{(iv) +» (i). This seems to involve a long trudge back, suitable only for the
robust and careful reader. (It seems incumbent upon us to give this proof, since

we presented proofs of all other directions!) We first show (iv) + (*) , where

. . . R
(*) says: Wwhenever <L'<L> is a total ordering of cardinality » k , there is either

an_increasing or dccreasingﬁ<L-sequence of order type Kk . To establish this, let
e: x + L be an injection and let f: [x)2 + 2 be defined by f({a,B}) = 0 iff

a<f & ala) <L e(B) . Any homogencous set of cardinality k then corresponds to
a <L-sequence of the desired sort.

We next establish that (*) implies (ii). Firstly, «k is regular since other-

wise let x = g?&xﬁ where X < x and each x6 has cardinality < « . Define < on
x by a < B iff either a < § and they are in the same XG; or aeX , BeXx |,
and y > n . Then < is a total order on «k with no increasing or decreasing subE
order of type «x , a contradiction of (*) . Secondly, «x is inaccessible, for
otherwise let A < «k be least so that « < 22 . Let << be the loxigraphic order-

. A
ingof "2, i.e. f << g iff when a < A is the least so that f(a) + g(a) , then
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£(a) < gla) . Then, the collection of functions in X3 which are eventually zero
is dense in <<, and this collection has cardinality u(2"| v <A} <k by choice
of A . Thus, << cannot have an increasing or decreasing suborder of order type
x , again a contradiction of (*) .

Finally, « has the tree property, for suppose that <T’<T> is a k-tree. If

teT is at a level a and B8 < a , denote by 1rB‘(t) the predecessor of t at

level B . Tt is straightforward to define a total ordering < of T which extends
> <

<p SO that if t and t, are at levels > 8 , then tl < t:2 implies ws(tl)

ne(tz) or nB(cl) = uB(tz) . (To do this, simply order each lecvel "left to right”
inductively up through T .) Applying (*}, let S = <s£| E < x > be a <—increasing
sequence of type k . (5 could not have been <-decreasing, as each level of T
has cardinality < x and x is regular; for the same reasons S has elements in
arbitrarily high levels of T .) For a <« , let n, be so that whenever
na < E<k, s is at a level > a . By the properties of < , note that
<"a(s 5) |nu < £ < kx > is non-<-decreasing in § , and hence cventually constant.
Let & be this constant value, Then <tu| @ < k > is a branch through T ({as
any two tu's have a common successor in T ), We have thus established the tree
property for k , and hence (*) -+ (ii).

We now complete the proof by showing that (ii) implies the Keisler property

for weak compactness. So, suppose R C v'< . We want to find an extension

<VK, e, R> < <X, e, &> so that X is transitive withx e X , and S¢g X . Let

W be a well-ordering of V‘< . By the :Fnaccesaibility of k we have (as remarked
before) that ¢ = { a <« | < Va, €, Rﬁvu, wﬁva > = <VK, c. R, W> } is closed
unbounded in x . Let <a§| £ < k>
We will now define a tree <T,<T> . First, for c:.g < 8 < ¢ , let H(E,B) be the
Skolem Hull in <V . £ R, W of V. V{B} ., so that < Vo r € anug' Wf‘l\/’q > <
H(E,B) . As we have augmented the proceedings with the well-ordering W , we can
consider (L, B) to be well-defined. Say that H(EB) ~ H(E.B) iff E= t and
and sending 8 to B .

be the ascending enumeration of C .

there is isomorphism between the two structures fixing Vc
Clearly, - is an equivalence relation, and so let [H({,B)) denote the equivalence
class of H(E,B). We define the elements of our tree T to be the ([H(E B8)]'s .
Finally, set [(H(EB)] <, (H(E,B)) iff £< €, B < B, and H(ER) - the Skolem
Hull in H(E,B) of Va EL.)['r's} . (Again, Skolem llulls c:xn be considered unique
because of W .)

That <T,<T> is indeed a tree is easy to see; note that the fth level of T
is { (H(EB)) | B <k} . That <T, <> is actually a x-tree follows from the
inaccessibility of k and the fact that there are at most 2 Vug < xk ways (up to
isomorphism) to build Skolem Hulls over V(ll with one free variable to be inter-
preted as gsome B > g .

Thus, by the tree property for « let { [H(£B.)] | E<x} bea x-branch

through T . By definition of <'1‘ , whenever £ < n < k there is an elementary
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embeddi L,.: H(ELEB.) + H(n, i
ing & Fg g) (n Bn) that fixes V4, ¢ SO that 1&](85) - Bn . From
the construction, it can be seen that £<n <p < x implies i = i i

74 n )
Thus, we can form the direct limit, and it is straightforward to see thzt i;::‘ is well-

founded, and hence that its transitive isomorph <X, ¢, S, W is an elementary

extension of <VK, €, R, W> . Finally, note that the Bi's get identified together -

to correspond to an ordinal B8 ¢ X with g 2 x . As X is transitive, we have

k € X , and laying the good warrior W to rest, the reduct <X, €, 8 1is as

required. The proof is (finally!) complete. 4
Perhaps some technical remarks concerning the preceding proof are in order.

The proof of (ii} + (iii) deployed on w establishes Ramsey's theorem, and thus,

weak compactness can be seen as a generaliz;ation of a property of w in this rather

precise way. It is interesting that a more direct, combinatorial way of showing

(iv) + (iii) is not known. Finally, in the process of establishing (iv) + (i) we

also isolated a principle (*) equivalent to weak compactness and interesting in

its own right.

g 3 <
§6. The Properties o + (5)5"’ ,_and Rowbottom and Jonsson Cardinals

It remained for partition relations of a stronger character to invite the infu-
sion of model theoretic techniques even more directly into the study of large cardi-
i <w n
nals, Recall that (k) = U (k] . Erd¥s, Hajnal, and Rado also considered the

nEw
following symbol in their partition calculus:

u (B);w

<
means that whenever f: [a]) s , there is an 1l ¢ [(x]B homogeneous for £ , i.e
: g .
for every n , If"[H] I = 1 . For any ordinal a , the Erdds cardinal k(a) is
: <w .
the least cardinal A so that A » (m)2 - Finally, a Ramsey cardinal is a fixed

point of the sequence of Erd¥s cardinals, i.e. a cardinal A so that X - (l)?m
5

Thus, a Ramsey cardinal is weakly compact. (The appellation. "Ramsey" suggesting a

generalization is perhaps inappropriate, since it can be shown that o - (m)<w is
false—however, the term has stuck.) :

: m m . .

As with on and wn , it is to be implicit in the use of the term x{a) that

we are considering a situation in which there is some A so that A + (u.)<"J
. 3 2 )
Erd¥s-Hajnal {1958] showed by direct combinatorial arguments that w < a < 8 implies
x(a) is regular and k{e) < k() , and that for & a limit ordinal, «(a) is inac-
cessible, (Silver[1966]) later showed that for a a limit ordinal, in fact

<w : N
k{a) + (u)u for every u < x(a) , showing model theory to good advantage in proving
a combinatorial result. For these and-more results, see Drake(1974) or Baumgartner-~
Galvin (1977) ,6§1). What brought this hierarchy into the greater scheme of things

was their further result that a measurable cardinal is Ramsey. This result is nowa-

days conceptually seen as a corollary to the following important strengthening, due
to Rowbottom[1964]: If xk is measurable and U is a normal ultrafilter over « f

<
then whenever f: (x] Y4 A where A <k ¢ there is a set X ¢ U homogeneous for f:
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b Given such an £, let f = £[[x]" . If for each n we could find sets X,
¢ ¢ homogeneous for fn , then X = Q X e U would be as required. Thus, it
auffices to cutablish the following for overy n e w ¢ whenover g [K]n + X and
A < x , there is a set H ¢ U homogenecous for g .

Proceed by induction on n . The case n =1 is immediate by the x-complete-
ness of U . So, assume the statement is true for n , and consider g: [K]n+1 + A
where L < ¢ . Define roelated partitions qq: [l’ln + X for vach a < k as follows:

g{{adUs) if a <MNs ,
ga(S) =

0 otherwise.
py inductive hypothesis, let ”a ¢ U be homogeneous for 9y * Notice that by
k~completeness and A < k , there is exactly one y <X so that T = { a <«
N n _ : - .
g, (M.} (v} ) eU . Finally, set H=TN 4H . Then H¢ U by normality,

n+1={

and we claim that g"{H] v} , so that H is a homogeneous set for g , as

desired: Suppose t ¢ [Il]n+1 , written bt = {alUs where a < Ms . Then g(t) =
gu(s) =y, as 8 € [Hu]" and ae T . 4
We remark that a typical indescribability argument can be used to show that the

least Ramsey cardinal is not measurable: If « iy measurable and U is a normal

ultrafilter over k , then (o <k | o is Ramsey ) e U,

b Let j:voemM-= v“/U. As « is Ramsey and V) S by the Closure Lemma
in §2, it can easily be seen that M }- Kk is Ramsey . The conclusion now follows
as usual by normality: use k = {id]) and Lo$' Theorem. —|
We now describe Rowbottom's basic discovery of the equivalence of certain
partition relations to model theoretic principles, which set the stage for further
investigations into applications of model theory in set theory in the work of Silver.
The ultimate isolation of the set of integers 6# in the context of Silver's results
on L and large cardinals is a landmark achievement, but Rowbottom the precursor was
not just a voice in the wilderness; his influence was felt throughout, and the con-
cepts he isolated were later seen. t.o be closely intertwined with a problem of Jonsson
in universal algébra {see below).
First, some model theoretic definitions. A structure ® = <A, R,...> , where
RC A, appropriate for a countable language with a distinguished unary predicate,
is said to be type <k, A> iff |a| = x and |R| = A . wWe say <x,A> 4 <i,X> iff
whenever a structure Ol has type <k,A> , there is a T < ® of type <k,X> . (We
use the double arrow —++ here to distinguish the' pr'ésent concept from the (better
known) concept <x,A> + <k,A> , defined analogously but with "“fi < & replaced by
the weaker "fiw®" .) Variations on this symbolism should be self-explanatory. We
can now state a version of Rowbottom's results

Let Kk >\ > > w and k %K >\ . The following are then equivalent:

(a) <k, A> > < g, <} >,

(b) Whenever f£: [K]<“" + A , there is an X C k_ so that |x] = k¥ " and

e <X
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} First, assume (a) and suppose that f: (1“5 A . Foreach new, set
b1} - N
fn: Kk + A by fn(<f,l feeen En>) = f({ F’l PR fh]) . Consgider the structure (l=

<k, A, i . By hypothesis, there is an X C x so that [X| = x and |xMa| <

_ I’I>IIE(LI n

A, and <X, XMA, fn| x>new—< a. Clearly, X is as desired, establishing (b).
Conversely, assume (b) and suppose that Ml = <k, A,...> is any structure of

type <k,A> . The basic idea is to use the combinatorial hypothesis (b) by Skolem-

izing a. So, let {hnl new) bea complete set (closed under functional

composition) of Skolem functions for & . 1f hn is k(n)-ary, by augmenting the

list with at most k(m* ™ veee b 3)

% (n)

only depends on (fq S eens F’k(n)] . We can further assume, by possibly introducing

new functions, we can assume that h (<t;l
n

trivial functions and trivially altering domains, that h : [|<]n + »x . Define f:
<w n
[x} + XA as follows:

b (s) ifns= |s| and h_(s) < ,
£(s) n

n

0 otherwise .
By hypothesis (b), there is an X C x so that |x| = k¥ and |f"[x]<w| <X . Let
B = {hn((cl,..., Eﬂ))| Qoeea g€ X} . Then |B| = x and generates a structure
<B, BNA,...> < . Also, as BMN\X C f"[x]<"’ we have |BMA| < X , and the proof
is complete. |
In light of this result, the conspicuous feature of a Ramsey cardinal that
concerned Rowbottom was the following, now given his name: an uncountable cardinal
r is vu-Rowbottom iff whenever f: (k1% > & where A <& . there is an X € s so
that |x| = « and |f"[X]<w| S
bottom, With the reminder that Silver{1966]) showed that if « is Ramsey, then

<uv ., x 1is just called Rowbottom iff it is ) ~Row~-

<w <
K -+ (|<)u for every u < k , we have immediately that a Ramsey cardinal is Rowbottom

(the converse is not true, as a Rowbottom cardinal may not eyen be regular; see
below). With his model theoretic characterization in hand, Rowbottom went on to
sharpen considerably Scott's original result on the incompatibility of V = L with
with some large cardinal axioms. We state the following as a typicality: If there

is a Rowbottom cardinal, then (i) there arc dnly countably many constructible subsets

of w , and (ii) w, is inaccessible in L . This result will soon be subsumed (see

§7, §10); we now go on to consider a related concept.

In a real sense, model theory can be considered the amplification of universal
algebra through the infusion of the syntactical methods of logic. It seems appro-
priate that Rowbottom's model theoretic interpretation of partition relations turns
out to be closely connected to a well-known problem in universal algebra. By an
algebra we simply mean a structure R=<p€ >

I NEw
operation on A into A . (Allowing infinitary functions is an interesting possi-

where each fn is a finitary

bility, and leads to another tale of large cardinals; see §17.) A Jonsson algebra

is an algebra without a proper subalgebra of the same cardinality. Finally,-a

Jonsson cardinal is a cardinal «k such that there is no Jonsson algebra of cardinal

K . Note that we are only concerned with a very gross property of algebras; the
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domains A might as well be cardinals. Jonsson's Problem is: are there any

e ——

Jonsson cardinals?

Through Skolemization, one gsees that «x is Jonsson iff any structure of cardi-

nality r_ (for a countable language) has a proper elementary substructure of cardi-

nality x . Hote that w 1is not Jonsson, and that a straightforward argument shows

that if k is vu-Rowbottom for some v < k , then x is Jonsson. Indeed, an analo-

gous argument to Rowbottom's (above) reduces the guestion to one of partitions:
x is Jonsson iff whenever f: [»cl<“’ + v , there is an X C Kk so_that lxI = ¢ and
£ xg .

For illustrative purposes we prove the following facts: (i) If x is not

Jonsson, neither is .:+ . (ii) The least Jonsson cardinal is either weakly inac-

cessible, or has cofinality w .

]- For (i), by hypothesis and the previous result, whenever « < a < K+ let £,:
[m]«u + a be such that for X C a with |X| =r, fu”[xl<m = a . Define g: [n<+]<w
> K+ by g(s) = fa(s - {a)) where a = max(s) . Then g establishes that K+ is
not Jonsson.

For (ii), suppose x is the least Jonsson cardinal. Then {i) shows that
x is a limit cardinal, so assume to the contrary that w < cf(x) = X < ¢ . Let
{uul a <)} be aclosed set of cardinals cofinal in x , with vy > A . For each
@<k, let £ ™

-+ ua witness that "u is not Jonsson, i.e. whenever X c u,
with |x| = u, ve have fu“lx]<w =n, Define f: (k]

<K + x by:

£f (s - {a}) 4if s < p , where o = min(s),
f(s) = @ @

0 otherwise,
Also, let g: [A]<m + A witness that A is not Jonsson, and let h: k + A be
defined by h(B8) 1-

Consider ® = <k, £, g, h, {A}> . The claim is that @ is a Jonsson algebra,

th i a so <8<
e unique that u, <8 Yoy

which would yield the required contradiction. So, suppose X « with [X| =k ,
and X is the domain of a subalgebra of . As |d = k, by the use of h we have
[Xﬁ)\| = A . Thus, by the use of ¢ we have XMA =X ., Assume now that 8 < g
is arbitrary. Let ao < )2 so that B < uo , and by induction let a 2 LY <A
s0 that Ixn““nﬂl luan . Finally, as weoar‘c assuming A = cf(x) > w , we have
a = sup a <\ . As the ua's are a closed set of ordinals, |xﬁua| = Mg Finally
since fa"((xﬂ ua) Y R ue by definition of f ~and the fact that G ¢ A =
XMA , we have B € X . Since the choice of 8 < k was arbitrary, we have shown
X = x , as desired. —I
Concerning (i) above, ErdSs-Hajnal-Rado[1965] showed that if = |<+ , then
K+ cannot be Jonsson. However, without the GCH it is not even known that a suc-
cessor cardinal cannot be Jonsson. Recently, Shelah[1977) generalized the construc-
tion of Erd¥s-Hajnal-Rado to show that there is a wl-Jonsson group (a Jonsgon alge~

bra of cardinality w; which is a group), answering questions of Kurosh and Mackenzie.
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We have already remarked that any Rowbottom cardinal is Jonsson. Kleinberg

[1973a] (1973) established the following fact: Con(2FC & there is a Rowbottom cardi-

nal) {ff Con(ZFC & therc is a Jongson cardinal). He first showed that any Jonsson

cardinal «x has the Rowbottom-type property that for some v < ¢ , <K,v> ++
< x, <v > ; that if «k were the least Jonsson cardinal, ¢ is y-Rowbottom for such
a v ; and then went on to prove the full result by foreing., This is certainly an
interesting result: it moasures exactly the difficulty of Jonsson's problem in
universal algebra via an ostenaibly more siringent property that arose through main-
stream large cardinal considerations.

None of the results thus far disallow the possibility that 4 can be Jonsson.
Indeed, this is a thriving open question. Prikry{1970] had estab?ished (via Prikry
forcing; see §23 that: Con(ZFC & there is a measurable cardinal) implies Con(ZFC

& there exists a Rowbottom cardinal with cofinality w ). So, it is hoped that this

by: gls) = sup{fa(s)l £.(8) <u

situation can be transferred down to w,, by forcing, for example by some variant
of techniques used recently by Magidor in connection with the Singular Cardinals
Problem (see 529). Jonsson and Rowbottom-type cardinals are the first cardinals
that we have come across which may not in themselves be very large. However, their
existence will have drastic consequences for 1 , and imply the existence of many
large cardinals (as 0” then exists; see §7, §10), and thus they heartily qualify
as properties of large cardinal character.

A 1974 result of Silver has a significant bearing on these matters. He estab-

lished the following theorem: Set «k = w, . TF 2 <\ . and « is Jonason, then

k_is measurable in an inner model. This result shows that, with one power set

cardinality restriction, producing a small, Rowbottom-type singular cardinal essen-
tially necessitates having started with actual measurability. Though we shall be
jumping ahead of ourselves, we sketch a proof of Silver's result for the experts,
a proof which becomes more natural in the context of iterated ultrapower technigues,
discussed later in this paper.
L First of all, a Kleinberg result cited in the penultimate paragraph assures
that, since k must be the least Jonsson car(iinul, K must be wn-llowbottom for
some n . As we are assuming that 2“ < ¢ , we can take w > 2 . our ultimate
goal will be to get a sequence of cardinals <xi| i <w> cofinal in k so that
if F is the filter over x generated by this sequence (i.e. X ¢ F iff xc«x
& 3ju'.>j(:i € X)), then in L{F] , the universe relatively constructed from F )
FOL(F] is a normal x-complete ultrafilter.

We first need to make a comment on structures with many functions: If kcCA
and Ol = <p,f >

o’ acty, <
is a Tt =<p,...> < O so that [BNk] = k ana [Bﬂwm_ll 2w, . To show this, we

is a structure (with the £ 's finitary functions), then there

can certainly assume that among the fu's are a complete set of Skolem functions, and

that the fals are closed under functional composition. Now define g: [m‘?" -+ ©o1

< . 3 -
s &0 wn) As x is w, Rowbottom,
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let BCx so that |B| =« and |9“[§]<“’| <w,. Set B= U{fa“[ﬁl(w| a < wl,
Then clearly B is the domain of an elementary substructure of Ol , and we have
B P'mn+1 c sup(g"[§]<”) <Cwge This is as was required.

We now say that a structure of type (U= DLy, WIED K C A admits
sequence of cardinals <s:i| i e w> cofinal in x iff there is a 4 = ® so that:
i1 is the xith ordinal of o for every i e w . The claim is: (*) There is a

sequence admitted by vvery structure of the above type. Well, suppose not. Then

for e¢very w-gequence s of cardinals cofinal in k, there is a structure <)\s,f:>°<w
which does not admit s . Without loss of gencrality, we can assume As = K+K, "
using the second set of k ordinals to code anything neccasary beyond the filrst x
ordinals of A%, Fix a coding g: kxk + k where g{(8,¢) is a bijection B+ |B].

3
Now set Gl, =< A, &, fa' g >a<w s * where A D«k+k and <A,e> models enough of
nt

ZF to talk about cardinality. fThus, for 8 < k, 6 }= “8 is a cardinal” Jjust in

case @ really is a cardinal.

. X . w
® is a structure with at most mn functions (as there are at most 2 < w,
wesequences s of cardinals cofinal in k; this is where we need the cardinality

assumption). Thus, by the remark of the penultimate paragraph, let ‘6. = <B,...>= @
be so that |BMx| = k and 'ann*‘l
= Eith element of BNk (= &

| < My bDefine inductively: Ky = wn+l and in

general K th element of any AS) . Thus, K

i+l i 0 €Ky <.

1f we can show all the Ei's to be cardinals, then we can get a contradiction of the

. 28 oS = ot . : : ;
choice of <A 'fu)a"m : where s = <:ci| i e w >, as this structur. is encoded in A,
i

To thiz end, let n:J : R -0l be the transitization. As €9 1is a cardinal,
F E "ky is a cardinal® , i.e. O "n(;ﬂ) = E] is a cardinal® so that by the
aforomentioned absoluteness, ¥ really is a cardinal. Now repeat this argument
to show «; a carxdinal, and so forth! This establishes (*).

Let us now fix a <Ki| i e w> satisfying (*), and, as anticipated above, let
F be the filter over k generated by this sequence. We conclude by showing that:
LiFl kE "F o= FOL{F] is a normal {(k-complete) ultrafilter over x". For instance, sup-
pose F were not ultra in LIF], and let X be the least subset of x (in the can~
onical well-ordering of L{F]) so that X ¢ F and (x - X) 4 F. notlce that X e L _[F]
by the standard proof of L(F] }- “2® a ¢t we can suppose mutatis mutandis tha:
Ko € Xo By (%), let n= LV+IP| be so that |BNk| = « and K41 L8 the k th element

of BNk for every i ¢ w. Let #: T = B be the transitization; thus, TI’(Ki) =x

for every i. But then for Y C x in the structure T, Y e F iff n(¥) e F, as © ;::-
serves final segments of <KiI ie w>. Hence, by the relativized condensation lemma,
T = LélF] for some §, i.e. wm: Lle] -+ LK+[F] is elementary. As X was definable,
X« L6[F] and n(X) = X. But Xg € X and hence «x; = w(kg) € W{X) = X. We can now
reprut Lo establish that K, ¢ X, and so forth! This shows X & /', yielding a con=-
tradiction. Analogous arguments finish the proof, e.g. if F were not normal in L[F),

let f e L[F] Dbe the least regressive function counterexample, assume f(x,) = y<k

3 3

13

and then proceed to show f(ni) =y forevery iew with j <i. -I
For the sake of thematic unity, we have strayed chronologically ahead with this
proof; let us now return to 1966, and the story of Silver's Hauptsatz for L .

#
§7. Indiscernibles and the Story of 0

Coming quickly on the scene following Rowbottom, it was Silver who realized that
Ramsey and Erdds cardinals were intimately bound up with the notion of a set of

indiscernibles for a structure. Rowbottom had seen the drastic consequences for L

of the model theoretic consequences of strong partition relations, but Silver con-
siderably sharpened these results by demonstrating a trivialization of the generation
of L , via indiscernibles from a fixed blueprint of formulas to be true of their
ascending sequences. Thus, in the presence of a suitably large cardinal in the uni-.
verse, many strong results about the uniform generation of L now follow from this
intrinsic structural characterization, and L takes on the character of a very thin
inner model indeed, bare ruined choirs appended to the slender life-giving spine
which is the class of ordinals. That blueprint, after some refinement, has been
designated via Gddelization to be the (unique) set of integers 0* . It will become
clear that the existence of o“ is a large cardinal axiom, and the isolation of
this concept is certainly a significant achievement, adding force to the importance
of set theory in foundational studies, as the source of g@nuinely new principles. )
In addressing themselves to the problem of getting models of theories with a
large number of automorphisms, Ehrenfeucht-Mostowski[1956] introduced the notion
of indiscernibility, and brought Ramsey's theorem into model theoretic prominence.
If Ol is a structure and X is a subset of the domain of O, linearly ordered

by < (not necessarily a relation in &), then X {(with € ) is a set of indiscerni-

bles for 6l iff whenever %y <...< X and ¥y <...< Yo in X , then

QF ¢x.....x 1 1iff ak Ply)ie-eay]

for every formula @(vl,...,vn) in the language for ® . The following is the basic
result of Ehrenfeucht-Mostowski([1956]), the basis of so much to come later: Suppose -

T is a theory with infinite models, and <X,<> is a linearly ordered set. Then
there is a model 81 of T sgo that X is contained in its domain and X is a set
of indiscernibles for a .

|~ Expand the language by introducing new constants cx for x € X , and consider
the theory T =T U (cxﬂ,‘cy| xty in X) U { $lo, .eecy ) ¢(cy1f...,cy |

n n
¢lvi,ees,v ) is a formula of the language of T and x, <,..< X and yl Civa< Y
1 n n n

in X } . It certainly suffices to show that T is ionsistent, which by the

Compactness Theorem amounts to showing that every finite subset of P jg gatisfiable.
so, assume T c T is finite. Let ¥t be an infinite model of T ,and A =

{ail i €w )} pe a countably infinite subset of the domain of . Let necw be

the number of new constants appearing among the members of I' , and for k < n let
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fk with domain IA]k be defined by:

fk({ail,...,aik}) = o vyiee ) |6 ¢[ail,...,aik]

and p{c. ,v.0,c, )= dlc ,..00c ) € T}
*1 *k 41 Yk

when i, <....<i Since T is finite, the range of f£ is finite, and so we can

apply Rimsey's theorem n times, successively whittlingkdown A to get an infinite
B C A homogencous for each fk .

It is now straightforward to see that . satisfies I , with any n elements
of B assigned to the new constants appearing in T in corresponding ascending
order, Thus, [ is satisfiable, and we are done. 4

Thus, partition relations first entered model theory; notice that the proof
gives a method of passing from a given model to a new model by a typical compact~-
ness argoment, and so little information can be culled about the new model. Silver
saw that strohg partition relations can be characterized by sets of indiscernibles

already existing in given structures:

7.0. Theorem: gk -+ (q);m iff whenever 0L is a structure for a countable
language and x 1is a subset of the domain of @] , then there is a set of indis-
cernibles X Ck for O , of order type a .

F Let (@nl n e w ) enumerate the formulas of the language, where without loss

<
of generality ¢n has at most the variables v ...,vn free. Define f: [k] Y2

l'
cors =0 i el < N . . ,
by £(a, a ) = 0 iff a < a and A= $ Loy eenia ) Then, as before
a set humoyeneous for [ would be a set of indiscernibles for R .
Conversely, suppose £: h<]<“J + 2 4dnd X 1is a set of indiscermibles for the

structure <k, ¢, fl[x]n>nem . Then X is homogeneous for f . 4

We now cast Silver's work into a series of lemmata ultimately leading to 0#.
Note that for ease of exposition, we are doffing some of our informality and number-
ing our definitions and results. Silver first stated his results in general model
theoretic terms, and then derived fhe particular consequences for L , but we shall
content‘ourselveé with working in the sharpened context of 'L directly.

We assume in what follows that languages are automatically augmented by a

complete set of Skolem terms closed under functional composition, and that any

theory in the language has been augmented with sentences giving the usual role of
these terms. Thus, all Skolem Hulls will be well-defined. By [ L}{cn| new) we
mean as usual the expansion of the language I DBy the addition of new constant
symbols {cn| newl .

7.1, Definition: An Ehrenfeucht-Mostowski (EM) blueprint is a complete consis-

tent theory in a countable language of form LLJ(cnl new)} sothat T includes
ZF + V=L together with sentences asserting that the cn's are an increasing sequence
of indiscernible ordinals, Thus, T includes "¢(ci ,...,ci ) d{c, ,e.a,0. MW

: R 1 MRS o)
< aee < eee<) g

1n' 31 jn as well as

for every formula ¢(v1,...,vn) of L and il

133

0 “ c]". Hence, to every model M (for a countable lan-

"c0 is an ordinal” and "¢
guage L ) of ZF + V=L and infinite set of indiscernibles X g_ORM , there corres-

ponds a unique EM Blueprint T (in LLJ{cn| neuwl}) so that

#c),vei) €T AEE M e #lx,,..0,x | for any (all)

X, <<% in X
1 n

7.2, befipition: If T is an EM blueprint and <X,<> is an infinite, linearly
ordered set, let M(T,X) Dbe the unique (up to isomorphism) model M of T such
that: (i) <X,<> is order-isomorphically embedded in ORM.

(ii) For any x1<...<xn in X, M F ¢|xl,...,xn] iff ¢(cl,...,cn) € T.
(iii) M = Skolem Hull in M of (the isoworphic copy of) X. (Recall that we
are assuming that a fixed complete set of Skolem terms is available, and so we mean

here the well-defined Skolem Hull with respect to these.)

This definition is justified since (the proof of) the Ehrenfeucht-Mostowski
theorem above yields a model with (i) and (ii), and then (iii) renders M(T,X)
unique. Note that for any elemeﬁt a in the domain of M(T,X). a = t(xl,...,xn)
for x. ... X in X and t a Skolem term; we shall use this sort of description

1
with this understanding, throughout. The following is immediate:

7.3. Lemma: Suppose ' is an EM blueprint, x1 and x2 are both infinite, lin-

early ordered sets, and 1i: X1 -+ x2 is an order-preserving injection. Then i
extends uniquely to an elementary embedding i: M(T,xl) > M(T,xz) .

When M(T,X) is well-founded, we henceforth identify it with its transitive
isomorph, which must be of form L6 . Note that in this case, by 7.3. we might
as well assume that X is an infinite ordinal with the natural ordering. Those
EM blueprints T so that H(T,c) is well-founded for every infinite o naturally

interest us:

7.4. Lemma: The following are equivalent for an EM blueprint T :

(i) Property I: for every infinite a < w M(T,0) is well-founded.

l ’
(ii) for every infinite o , M(T,d) is well-founded.
F To prove the non-trivial direction, assume that M = M(T,a) is ill-founded

for some a . Let (xn| newl} be elements of M so that x for every

n+1 S xn
n . Each xn = tn(sn) for some finite set Sn of indiscernibles and tn a Skolem
term. Let S = L}{snl newl} , and set N = the Skolem Hull in M of S . Then

N is ill-founded, yet clearly N = M(T,8) where B < w,  is the order type of §,

1
contradicting (i}, 4
7.5. Definition: If M(T,a) is well-founded (and hence by our convention of

form L, for some &}, let rfe . (Yz'ul £ <ol be the set of generating indis-

8
cernibles for M(T,a) .
With the reduction in 7.4., we can now call upon a partition property strong

enough to produce an EM blueprint which yields well-founded models. Though the
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existence of a Ramsey cardinal will do, we shall be more parsimonious and use the
much smaller cardinal K(wl)' which we remind the reader is the least ) so that
A (ml);m. Let fsz [6]<"u + 2 for § < x(ml) be counterexamples to & - (ml);m,
and consider the structure:

= <
7.6. @ Lr(m])

ceo (<S8 8 < klw) & sl =n s £.(s) =0} >
(Incorporating the E6'5 into the structurce is a technical device that will come in
handy later.) By 7.0., therc is a set of indiscernibles for O of order type w o
Henceforth, fix such a set of indiscernibles X , and let T0 be the corresponding
EM blueprint,

7.7. lemma: TD has Property 1.

r Given any B8 < w it is clear that the Skolem Hull in Ol of the first g

1 r
elements of our fixed set X of indiscernibles is isomorphic to M(TQ'B)' and

hence M{T,.B) is certainly well-founded. s
Note that the existence of 'I‘0 already yields Rowbottom's conclusion:

7.9. Lemma: If there is an EM blueprint T with Property I, then there arc
only countably many constructible subsets of w .
F Let a be any ordinal > m] . Then M(T,a) = L6 for some § > w Thus by
Gtdel's proof of the GCH in L, Plw) N L = Ply) N H(T.ad.
Now if x is any subsct of w in M(T,a), x has form :(yz;“,...,yz’o) R
n

but each 1 ¢ w is definable, and so by indiscernibility, i € t(v]‘ sesesY,.' ) Aff
3 2

n
T T a
i t(y]'u....,T;'u) . Hence, x = c(yf'“,...,yﬁ' }. There are only countably many

such forms, so we can hence conclude that Pw)ML is countable. -

Thus, the existence of f(w]) is already a very strong property, though it is
2 weakening of the Ramsey property in a different direction from Rowbottomness.
Silver (1970} showed that in the hierarchy of Erdds cardinals, x(w‘) is the exact

breaking point of L :

< <
7.9. Theorem: If « ~ (u)zw and a < mlL , then (v -+ (m)zm)L.
F Suppose f: [r:].‘m « 2, with f g L. We want an X ¢ L of order type a ,
homogencous for £ . Since o = wlL, let gt wera with o ¢ L , Set D=

[d[ d is an order-preserving injectlon: g"n - « for some n , whose range is homo-
geneous for f } , and define a partial ordering on D by d <3 iff 4 extends d.
As ot L and ([~]<m)L = [K]<w, we have D e L. It is gtraightforward to see that
che following is a theorem of zFC: < is ill-founded iff there is an X of order
type « , homogeneous for [.

1t thus follows from . -+ (m);“j that & is ill-founded in V, i.e. there is
no order—prqserving injection from &  into the ordinals. But then, there cannot
be any such map in L either, so & is ill-founded in L. Finally, the relativization

of the above stated theorem of ZFC to L now yields the desired result. -
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It turns out that there are even further sharpenings in the search for the
exact breaking point of L in the gap between sup{x(a)| a < wl } and n(ml) .
Baumgartner-Galvin (1977) define a generalized version of ErdBs cardinals which is
sensitive to the possible EM blueprints they produce, and show that assumptions
weaker than x(ml) in their cosmology still yield 0# . Roughly, the starting
point of their work is the remark that n(wl) yields sets of indiscernibles of
type ml , whorcas 7.4. only required sets of indiscernibles of all types < wy
as long as they cohere with the same blueprint.

Well, let us get back to Ty and go on with the story of 0“ . We gradually
unveil further properties of EM blueprints, and show that these properties have

interesting consegquences.

7.10, Lemma: T0 has Property 1I: For any temm t, "t(cl,...,c ) € OR +
—_—— n

< W oie
€.," isin To -
F Suppose on the contrary that "t(cl,...,cn) EQOR & ¢

t(cl,...,cn)
il iyt(cl,...,cnf" is
in To . Let xl<...<xn be the first n members of our fixed set X of indiscen

ibles for Ol . Set Y = X - (xl,...,xn) and 6§ = X raea X ) < K(wl) . 1t follov

from our assumption that Y C é+1 . However, as f6+l was encoded in # , it fol-
lows that ¥ is homogeneous for f6+1 . As Y has order type wy this clearly
contradicts the choice of £501 * .

.
7.11. Lemma: If an EM blueprint T has Properties I & II, then whenever a
A T
is a limit ordinal, I'"*® = {Yc'a| £ <a} is cofinal in M(T,a) .

F Immediate. 4
7.12. Lemma: T has Property III: For any term t, "t{c_,.
. —(_ ° Property y { 1ree €GeS
c + E(C pe0esC_,C, gena,C, ) = tle,,ee.,€ ,C c, )" is i
e, 1 i ' 1C_¢Ce yesseCy in T for
n 1 i, 1 n'7d, iy 0
an <i <...< 1 < j. <...% 3 .
Yy n 1 - and n Jl . i
F For our mutual convenience in this and similar preoofs, let ; denote a strict)
. . -+ -+
increasing sequence, and let x < y mean that every element in x is less than

every clement in ; .
-> n - -
Assume now that x € X and y € mx, x < ; , and t(;,;) < x_ , the last

element of x . We must show that t(;,;) = t(;.g) for any 3,3 in mx 80 that

> E

x < a,b . A typical argument shows that it suffices in fact to establish this for
E m - - + - > -+

a,b in X 8o that x < a < b (for then, given arbitrary e,f> x , let g e mx

»> -
so that e,f < g ; by indiscernibility, t(;,z) = t(;,;) = t(;,?)). Thus, argue by

R - -+ -+ R » >
contradiction and suppose x < a < b , yet t(x,a) + t(x,b) . There are two cases

to consider:
- -+ - B
(i) t(x,a) > t{x,b) . Then any sequence % < Bl < Ez < 33... with each

"
bi e ™x generates by Ilndiscernibility an infinite descending sequence t(;'gl) >

> >
t{x,b,) >... of ordinals, a contradiction.
. -+ > > > . -+ . '
(ii) t({x,a}) < t{x.,b) . Then if <ba| o < wy > is a sequence of elements

of ™ so that o < B < wy implies % < gu < 38 . then clearly {t(;,gu)l a < w, }
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is an increasing set of indiscernibles for Ol , with t(i,'ﬁ“) < x_ for every a <uw .
This clearly contradicts the choice of f6 for any xn < § < x(ml) ., as before in

7.10. ~

7.13. Lemma: If an EM blueprint T has Properties I-III, then:
(a) For any « , lyg'al = |g] for every w < £ <a .
(b) For any uncountanle cardinal A , M(T,6}) = L)‘ .
}- We drop the superscripts on the indiscernibles in what follows.

ey, )
& em

with the indiscernibles in ascending oxder and 5" <g < ;1 . By Property 11I, we

For (a), consider an arbitrary 8 < YC . Then B = c(y‘s reeenYg Y
1 n

have g = t(yd ""'qun'Yﬁfl""'YE;m)' Thus there are at most |£| = l[Ydl § _<_€)|&
1

ordinals altogether, below 7y,  ,» by a counting argument using such Skolem forms.
For (b), note that by Property II, {YEI £ <A} 1is cofinal in M(T,}) . Also,
since A is a cardinal, we have that for any § <X, ¥, < lel* <2, by (2 .

Thus, M(T,A) CL, . But for any infinite a , it is obvious that M(T,a) D L

A
and so we are done. 'I

7.14. corollary: With the hypotheses of 7.13., whenever w < A < u are
cardinals, then LA“ Lu4 L , and in particular L, E zFc .

We now gpecializae a bit to capture a fourth property. Let X be a set of

for our @ (see 7.6.), with the extra proviso

indiscernibles of order type Wy

that ite wth olement is the lcast possible among all such sets of indiscerniblea.

Let Tl be the corresponding blueprint; this Tl surely has Properties I-III .

7.15. Lemma: T has Property IV: For any term t, "t(cl,...,cn,cn+l,...,cn )

1 +m
<c . t(cl'....cn.ci reesecy ) = t(cl,....cn.c. ,...,cj )" is in T, for any
1 m 1 m
< i <,,.< 1 < 3, €...C F .
n 11 N 1m and n 31 Jm )
|— Let X be the first n elements of our X . We suppose that T 1is such

-+ . R + &> . -+ mn=
that t(x,a) < the first element of a for any a > x , with ae X . Argue by

<> b >

contradiction and assume that x < a < b , yet t(x,d# t(x,b) . (As in 7.12. it
> -+

is only necessary to consider those ';,i; > x so that x < ; < b .) There are

again two cases to consider:

(1) t(;,;) > t(;,'ls) . Then as in 7.12., we get an infinite descending
sequence of ordinals and hence a contradiction. i}

(ii) t(;,;) < t(;,'l;) . In this case, let go = the first m elements of
X after x, b) = the next m elements, and so forth; then by the assumption of
(ii), (t('i,sa)| a < w } is an increasing sequence. It is easy to see that this

set in fact constitutes a set of indiscernibles of order type w., for Ol . However,

1 .
by our construction the first element y of iSm is the wth element of X , and

t(;,-l;m) < y by our underlying assumption about t . This is a contradiction of the .

choice of the set X of indiscernibles as having the least wth element. -~ 4
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7.16. Lemma: If an EM blueprint T has Properties I-IV, then for all infinite

a, ) e
T

(i) A e T

is a closed set of ordinals.
[¢
‘“  for every cardinal A < a .

|- Again, we drop the superscripts from our indiscernibles. To cstablish (i),

suppose to the contrary that § is a limit, yet p = sup{y

E<C,<Yc. We

write p = &:(yl‘:l bees ,nd,ycl, ,ycm) with the indiscernibles in ascending order

and £ <[ < . But then -t v
n 2 e P (751 'YEn'YCn*l""'YEnﬂn) < YEnﬂMl <p .

(Here, the equality is by Property IV, the first inequality by Property II, and the
last inequality by definition of p .) This is a contradiction.
(ii) follows from (i}, 7.11,, and 7.13. -|

7.17 Lemma: If EM blueprints T and T both_have Properties I-IV, then T = T.

|- For any regular uncountable A , [‘T'l and 1"T'X are closed unbounded in A

T A~ T
by 7.11. and 7.16. Thus, C =T nr A is infinite (in fact, closed unbounded
in A ). It is now clear that T = T : Given any formula ¢(cl,...,c ) . let
n
§) Ceeec g
NC‘L...,Cn] iff O(cl,...,cn) e T . (Note that by 7.13.(b), we have M(T,\) = L,
= M(T,}) .) 4

be any n elements of ¢ ., TI rese i
hen  §(¢) e ) e T Aff L f

Hence, there is at most one EM blueprint satisfying I-IV . Perhaps for this
reason, the collections of sentences specified in I1-IV have been called "remarkable"
by some. We keecp the reader in suspense for just a bit more, bufore naming our

unique blueprint.

7.18. Lemma: If T is an EM blueprint with Properties I-IV, and a < 8 with

a a limit ordinal, then the Skolem Hull of { y§’8| € <a} in M(T,8) is pre-
cisely L B
)
-l
} Let N be the stated Skolem Hull, It suffices to show that OR® = yieB
a

T.8

Again, we drop the superscripts from our indiscernibles.

First, if 6 is an ordinal of N , then for some El <...< En < a , we have

) < Yeptl < Y, by Property II and as a is a limit,

§ = feees
thrcl ch

Conversely, if p <y , then p = E(y seessY, Y. sese,Y_ ) with indiscer-
a 3 tn L Tm
:xihles in ascending order and cn <a < T, . We then have by Property IV that p =
t(Ygl,...,Yen,YEn+l,...,Y€n+m) . and surely this is in N as a is a limit ordinal
greater than ;n . .{
7.19. Corollary: With the hypotheses of 7.18., we have:
(1) M(T,a) = L, .8 °
(Yq' )
. T, 12
(ii) YE B=Y'§a for every £ < a .

I- (i) is immediate. For (ii}, note that {Y:’B| € <a} is the generating set



138

of indiscernibles for (the transitized) M(T,q) = L .8 * -
o5

The climax is now upon us:

7.20. Definition: Assuming that it exists, the unique EM blueprint T satis-

’

Fying I-IV is designated 0” . For every £ , we define YE = Yg % for any o > & ,
a a limit ordinal (by 7.19(ii) this is well defined).

7.2l. Theorom(Summary): If there is a A so that A -+ (m]);m, then there

i

exists exactly onc EM blucprint satisfying I-IV. This blueprint is called 0" ,

and to it corresponds a canonical, closed unbounded class of indiscernibles

| E ¢ OR } for L containing every uncountable cardinal, so that for o < B

both limits, L _ is the Skolem itull of {y ] £ <a} and L —= L =1L .
Yo : 3 Yoo Y
If we assume some fixed recursive Gbdelization of our language so that, in par-

ticular, a théory becomes identified with a set of integers, then note that "X is
an_EM blueprint with Properties I-IV" is a l1} predicate on Pluw):

F The “"remarkable” conditions II-IV are just arithmetical, and we can state I as:

VR € wxw(R is a well-ordering + M(X,R) is well-founded). M(X,R) is, of course, to
be encoded as a structure on w , and to say a relation is well-founded or well-

rdered is N1} . Hence, our statement is nj . -

Thus, 0“ as a set of integers is the unique soluéion of a ﬂ} predicate ¢ .
tience, 0” is a A} set of integers :
ne 0“ Aff HX(@(X) & n e X)
iff ¥X(#(X) + n e X} .

0“ is obviously not constructible, and since Shoenfield's Absoluteness Lemma implies

that all E{ sets of integers are constructible, | 0" has the least possible complex-
ity of a non-constructible set of integers. Strictly speaking, one does not have to
assume a large cardinal axiom to obtain the existence of a non-constructible A} set
of integers. Jensen-Solovay(1970] used a method, now known as "almost disjoint"
forcing, to get the consistency of the existence of such a set, relative to just
2ZFC. (Solovay was also deeply involved in the formulation of 09 ; sce his [1967]).
Almost disjoint forcing turns out to be a powerful tool for getting small scts to
code a great deal of information; see Harrington[1973) (and later work) for applica-
tions to descriptive set theory, Miller[1977| for applications to the theory of
Boolean algebras, as well as Jensen({1975) which we shdll mention again shortly.)

In the presence of O' , the extent of the trivialization of L can be further

cmphasized beyond 7.21. by pointing out that the predicate "L F ¢(;)" is defin-

able in ZFC by reflection, since for any limit a , L -{ L . Also, it is clear
that {n] n is the G8del number of a sentence o and L s s } is recursive in 0“ .
and hence is A&_L Finally, note that if x Cw is constructible, thon x =

t(YE ,...,ch) say, and so i e x iff "i e tleyreee,c )" is in o* + i.e. every

cons%ructible subget of w is recursive in 05 , and hence is A!. (For the
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recursion theorists: as our G¥delization is recursive, the function f(i)
e
"ie t(e,,. "o i i
(gl, _.,cn) 1s rocursive and so any constructible subset of

many-one rceducible to 0“ )

is in fact

Also, it is not unexpected that the presence of 0#

of large cardinal character:

should lead to consequences

7.22. Theorem: If 0" exists, then:
i {a) There is an elemantary embedding: [ + I (which is not the identity)
b} B ; m_ . . o ’
(b} Each Y( 18 lin-indescribable in L for every m,n g w .
(c) For every a >4, [PlaynL] = Ja]

F For (a), note that the shifting map j(Yg) =y

for ever £ e
. ) ) . +1 Y L extends unique-
ly via the Skolemization to an elementary embeddingE 3- L+

For (b), it suffices by indi i a i
’ Y scernibility to show that Yo is Hﬁ—indescribahle

£ . 3 . .
or every m,n ¢ w . Take the J given in the proof of {(a); it is not hard to see

that Yo must be the first ordinal moved by j

+ The result now follows b
argument of the sort in §4. e

For (c), observe first that for any ¢ , |y |
2

= |Y€+1| ¢« and that IYOI = w

In particul i3
o2 ar, we need only consider q z_yo - Then, since the YC'S are a closed

class of ordinals, let N be the unique ordinal such that vy
n+l *

P, + L
:P:u:r\L: Jw™ ™| < LA n+1 18 inaccessible in L by (b) . Thys,
@0l < fryl = fool = fal 4

n fac<y Then

as vy

1A

Note that (c) above subsumes 7.8, Also, (a) implieu 0# exists: sae §10

7.23. : # i
3. Theorem: If 0 exists, then there are Cohen, random, etc generic

Also, no (set) notion of forcing over L yvields 0”
' The first statement follows from [Pwins) = 4

reals over L .

For the second, su

: : . v Ppose that
e L were a notion of forcing with ¢ a P-generic filter over Since P i

a set, there is a A so that p has the At .

nal-in LIG) ., If O# € L[G]

IPaynL] = [a] .

- : . +
"C.C. in L, i.e. (A )L is a cardi-
+ this would contradict 7.22.(c), since l(l+)Ll =

with sufficiently strong large cardinal assumptions,

we can relati :
construction of 0” to L(x) T the

« the universe relatively constructible from

. X .
Hence, can be construed as an operation on sets, O‘

being appropriate for L =

+ It turns out that we need
. a language
with names o for every a < X (so that we can o

LIO) . To be more Precisc, suppose x c A

preserve x and A by requiring

for any sk "
y Skolem term t that t(cl,...,cn) <A+ tfc

l,...,cn) =a" is in the
This necessitates having available a cardinal «

((D]) at least, to be able t a 31 7.0.
that « -+ e to prove version of 0. for structures

for languages of cardinality < A

blueprint, for some a < A .}
s0

All further details now go through
a bl int # ' -
ueprint x « Traditionally, x

theorists; note that in this case,

and we get
for x C w hold the main interest for get

the language need only be countable, g0 we have:
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: < .
7.24. Theorem: If there is a ) so that A - (wl)zm, then x" exists for

every xCw .

The assumption that x” exists for every x C w provides a rich landscape
for the study of degrees of constructibility: confining ourselves to subsets of
w , we write x fc y tomean x c¢ L[y] , and <c and =, are to have the appro-
priate derived meanings. =c is then an equivalence relation, and its equivalence

classes are called degrees of constructibility. There is a minimum degree, the

degree of any constructible set, and the degrees form an upper semi-lattice. Since
x <c x“ ' ¥ can be regarded as a “jump” operation on deqrees. ‘Thus, every x is
the start of an infinite chain. Paris, by looking at the relative density of indis-
cernibles, was able to prove: if y 5c X < y# . then xﬂ =c y# . (The analogous
statement for Turing degrees is false.) Call an x Cw L-generic iff x is in
some generic extension of L via a (set) notion of forcing. Thus, 7.23. asserts
that O# is not L-generic. Much of the work on degrees and i (by Kechris and
Harrington, for instance) was motivated by various conjectures formulated by Solovay
about 0“ being in some sense the ﬁc-least non-L-generic set. Then Jensen (1975)
addressed himself to these matters and showed in fact that if 0” exists, then
there is a non-L-generic x <c 0“ . Actually, his main result was that if 0#
is not in the universe, there is a (proper class) notioh of forcing so that any
generic extension by it satisfies "V = L{a)" for some a Cw . This is an impres-
sive "coding of the universe in a rcal", which employsvariations of the almost
disjoint forecing alluded to earlier, and preéetvea many properties of the ground
model (for instance, 0# does not appear in the extension, and all cofinalities
are preserved).

An even more impressive result is Jensen's Covering Theorem: If 0# does not

exist, then whenever X is an uncountable set of ordinals, there is a Y e L so

that XC ¥ and |X]| = |¥|. This is a deep structure theorem about the close rela-
tionship between V and L in the absénce of O# ., and shows in particular that much
of the uniform beﬁavior of cardinalities and cofinalities in 1L 1lifts to V . See
529 for a more detailed discussion.

All in all, the study of the principle "0" exists” has led to profound insights
on the nature of sets. The initial isolation of this principle was an important
achievement in set theory and foundational studies in general, and Jensen's recent
work has transformed it into a focal point for the' stﬁdy of basic structural prin-
ciples about the set theoretical universe. We are eons away from Cantor's Garden
of Eden; would not he himself have marvelled at the subtle structure of the universe
he had fathered, now after a sea-change, even more rich and strange?

We close this section with the statement of a beautiful theorem;vit is a list
of equivalences, much deeper than the confluence seen at weak compactness. In the
theoxem, (A) -+ (C) is 7.22,.(a), and (C) - (A) is established in 5§10; (A) -+ (D) is

obvious, and (D) + (A) is a corollary to Jensen's Covering Theorem (sce §29);
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and finally, see 527 for (A) - (B) . Let us now gaze—silent:

7.25. Theorem: The following are equivalent:

{n)
(B)
[{s)]
(D)

0“ exists.
(lightface) H}-Determinacy.
There is an elementary embedding j: L -+ L (which is not the identity).

@, is regular in L.
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III. ASPECTS OF MEASURABILITY

$8. Iterated Ultrapowers

In the late sixties, thc concept of measurability was further elaborated in
terms of iterated ultrapowers, inner models, and the approach from gsaturated ideals.
The sections of this chapter deal with the somewhat technical ﬂevelapment aof these
theme:s ., ) )

About the same time that Rowbottom and Silver were deriving their beautiful
results about L in the presence of strong partition properties that follow from mea-
surability, Gaifman (see [1967] and the final exposition [1974]) was proving similar
results fFrom measurability through a method of iteratiné ultrapowers. He developed
a general theory of "self-extension" operators which is alsé relevant to §17, but
in the context of measurability it was Kunen who in a tour de Force refined Gaifman's
method to provide an elegant and powerful format for reproving Silver's results as
well as deriving decp structure theorems about inner models of measurability.

Let us start, inauspiciously perhaps, by considering how to take products of
ultrafilters:

I[f ¢ is an ultrafilter over 1 and V over J , then
XeUxV iff xgtxd & [i|(3]<i,j> ¢ x)
= U ana M =y ",

is indeed an ultrafilter.

8.1. Definitions:
UxV over 1 x4
eViev. U

It is not hard to see that ¥ x V

is defined by:
is defined inductively:
Suppose now that
Then following Scott, we can define a transitive class

. Note that (V)

U and V are ml—complete.

N, = VI/U and an elementary embedding Jj: V + N is an ultra-

1 1

filter over J{J) in N so that within N, we can construct an ultrapower N2 using

1’ 1
j(V} . fTracing through the definitions, it turns ocut that N2 is isomorphic to
N : s . e J I
VI * J/U x ¥ . (A note of warning: VI x J/U x V is also isomorphic to: (V /V)"/U ,

i.e. iterated from the outside in the model theoretic sense, and in the reverse order.
Keisler took this route; see Chanq—-Keisler[1973l,§6.5:‘gWe stick with the approach
of viewing successive iterations from within.) The main inferest lies in the case
U =V , and this then amounts to considering V I/Uz , and for the n-fold iteration,
to considering vnI/Un .

Gaifman showed how to extend the process through the transfinite, roughly by
taking direct limits over finite supports. At first,‘one may not think that any-
thing new would come out of éhis, but Gaifman graspeé‘the uniform definability of
the process, and saw that the system of directed embeddings can yield well-founded
direct limits.

Realizing the significance of Gaifman's idea, Kunen formulated the minimal con-
ditions that still permit the construction of iterated ultrapowers of a transitive

model M . He noticed that one need only have an ultrafilter U on the Boolean
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algebra P(k)MM, and U need not be a member of M as long as an essential itera-

bility condition was satisfied. In particular, this showed that in M one need not

assume actual measurability, and opuned the door to new results on 0# and saturated

ideals. We refer to Kunen[1970] for an efficient, though somewhat Spartan, exposi
, -

tion, and content ourselves in this section with presenting the special case when
U e M ; the modifications for the general case are discussed in §12

We have seen how taking finite ultrapowers amounts to taking one ultrapower

by a product ultrafilter; in what follows, the idea will be to similarly view infi-

nite iterations, using finite support. The advantage lies in the fact that we shall

still be working in the initial model M rather than in successive ultrapowers, and

will be able to cull more information from the consequent uniformity of construction

8.2, Definitions: Let ¢ be an arbitrary ultrafilter over a cardinal « and
- e ——— r

o any ordinal > 0 ,

(i) £: %+ V has finite support y iff yc a
depends only on sy , i.e. £(s)

is a finite set so that f£(s)
tly .

its characteristic function has finite
y c o is a finite set so that s|y = Lly implies s € X iff t e X.

= f(t) whenever sly =
(ii) xC % has finite support y iff
support y :
(iii) 1f X ¢ % has finite support y = {u],...,a 1 with a.<...< g set
PSee- ,
Xy = {<s(ul),...,s(a >l sex ). !
{(iv) If f: K -+ V has finite support y = [ul,...,a } with « < set
n ‘ n 1 n'
fy, K +V by fy(<s(ul),...,5(an)>) = f(s) . (This may be confusing, but is
well-defined by support considerations; any n-tuple from «k

eee 1

can be written as

<s(a1),...,s(an)> for some s ¢ ax.)

a
v) Fna(K] = {fl f: "x + V with some finite support }
. 11 . o
(vi) PG(K) = {x| X C k¥ with some finite support }
‘. _ s - - :
{vii) Uu {x e -a(K)' X has a finite support y with |y| = n, so that xy € Un}.
Pa(x) is a field of sets, i.e. it is closed under finite union, finite inter-

section, and complementatién relative to GK .
if xe Pu(K) has finite supports
X e " iff x e U7 .
y == Tz

on the field of sets

Some sweat must go into showing that

y and z . where ]yl =m and ’z| =1 , then

Using this fact, we can conclude that U
N
Pu(K). Note that Un ="

is an ultrafilter

for O <n<uw.

Observe that for any formula ¢ in n free variables and

fl""’fn [4 Fna(K),
we have (s e Kl b (£, (s),...,f (s))]E B (k). Hence, we can take an ultrapower of
vV via Ua if we only use functlona: K + V in Fnu(x) - An appropriate version
of Eo§’

Theorem goes through, and so we can make the following general definitions:;

8.3. Definitions: Let M be an inner model of ZFC and in M + suppose U isg

an ultrafilter over a cardinal k . (Thus, Kk is not necessarily a cardinal in v

this is somewhat of an abuse of our notational conventions, )

define U as

| £ern (x)}

(a) Carry out the following construction completely within M
before, and take the ultrapower of M with it, i.e. set N = {[f]
a
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and Eu the usual 1lifting of the membership relation (mod Uu) . Here, [f]m denotes
the usual equivalence class of f (mod Ua)' construed as a set in M , by Scott's

trick of taking only members of minimal rank. ‘Then Ulta(H,U) = <Nu'Eu> ig the ath

iterated ultrapower of M _by U . Henceforth, whenever Ulta(M,U) is well-founded,
we identify Nu with its transitive isomorph, and Ea with € . By convention,

we take Ultu(M,U) = <M, e> = <N0,E0> .

. 3
P : E <
{b) For 0 <u< B, define i N >Ny waihﬂlﬂu)=[ fis|a)| s e k1,
set i, : M- N as usual by iy (x) = (I<x| s ¢ K>]“) .
The following are now easy consequences of the structure theory:
8.4. Lemma: Whenever 0 < a < f <y, i is an elementary embedding, and

aB

For limit 6 > 0 , N, is isomorphic to the direct limit of the

i =1 i .
ay By’ Tep
system < NaB' lGB |

Finall&, we would like to relate all this apparatus developed with the product-

§
a<B<S>,

type ultrafilters Ua to the original idea of successive iterations. The following

result is gtraightforward, but takes some work to trace through the definitions.

8.5, Theorem: In the situation of 8.3., if Na is well-founded, then for any

B there is an isomorphism e _: Nu

B > Ulte(Na’iOG(U)) so that the following

+B

diagram commutes:

_‘iéglr UltB(Nu,loa(U))
N t e
a af
i
at+f N
o, B
(Here, iéz) is the elementary embedding defiped within Nu corresponding to ioa(U)

which in Na is an ultrafilter over ioa(r).)

It naturally transpires that those ultrafilters which yield well-founded iter-
ated ultrapowers become particularly interesting. The following lemma is perhaps
expected; its proof illustrates in particular the conceptual usefulness of having
developed the Ua in the initial model M .

8.6, Lemma: If in the inner model M , U is a w]—camplete ultrafilter over
a cardinal «k , then all the corresponding Na are well-founded.
F The following argument is carried out entirely in M , to show that M 3 N
is wall-founded. This will suffice, as M itsélf is an inner model.

Suppose to the contrary that [f lfn]u for every n € w . Thus, Xn

n+1la Eo
= {s ¢ aKl fn+](s) € fn(s)} € Um for every n . The idea is to build a function
te c}xn . Then ...fz(t) € fl(t) € fD(t) would be an infinite dgscending chain,
and we would have before us a contradiction.

Let us fix n for the present paragraph, so that we do not have to worry about

appending subscripts in the discussion: If X  has support y = (01,...}Um} listed
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lin ascending order, then 27 = {<s(al),..-,s(0m)>| s e Xn} e U™ . We thus want our
Yt to have the property that <t(al),...,t(um)> € 42 . 1In general, how can one
[*"inductively" obtain an element of % ? Well, in the non-trivial case m > 1, we
‘have .2 ¢ U iff {e] {xl<a>™x e 2z} € Um—l} € U by the definition of the m-fold
product. So, we can first choose such an & . Then (x]<e>™x ¢ 2} ¢ U™ %, and
presuming m-1 > 1, we have {B|{y|<a,p"y € 2} ¢ Um-z} € U . Thus, we can proceed
to choose such a f# , and so forth, After m steps, we will indeed have an m-tuple
in %2 , having made certain along the way that we can always keep choosing the next
element from a set in U , which of course would be non-empty.

Now the procedure for constructing our t becomes clear(er): we can use the
‘wy-completeness of U to perform the above procedure simultaneously for every n .
,Suppose that t|B has already been defined, having made sure inductively for any
Itypical n that, in the notation of the previous paragraph: if BNy = {ul,...,ak)
‘where 'k < m, then <t(al),...,t(ak)> was chosen as in the previous paragraph. Then
we can choose t(8) as a member of an appropriate set in U . The point is that
QB might be in the support of infinitely many of the Xn's—-but this will not cause
‘a difficulty as we can take a countable intersection of the sets in U from which

‘'we need simultaneously to choose an element to keep the induction going. 4

We now specialize to the case which holds the main interest: For the rest of

|
Lot : .
this section, assume M is an _inner model of 2ZFC, and in M , U is a K-complete

ultrafilter over a measurable cardinal k . The previous lemma assures that the

corresponding Na are all well-founded. Also, by elementarity, N F iou(U) is
a

an ioa(n)—complete ultrafilter over iou(K) . We would now like to state a theorem

giving more structural information, but we need a preliminary lemma (first estab-

lished by Scott) on further aspects of the initial ultrapower construction given
in §2, ’

8.7. Lemma: Suppose V is a A-complete ultrafilter over a measurable cardinal
A, and j: V+ N = vA/V . Then
W 2t < N < @YY
(i) v én .,
F For (i), note first that if [f] < jJ(A) , then we can take f g AA , s0 that

.j(A) = order type of {[f)l fe AA) . Thus, j(A) < (2}‘]+ . Also, by the Closure

Lemma of §2 , we have P(A\) C N, so that 2A

< (ZA)N. Finally, by elementarity
j(A) is measurable and hence inaccessible in N, so surely X < j(A) implies
MY <500 .

For (ii), assume to the contrary that V e¢ N . Then as lx C N by the Closure
Lemma, we can carry out in N the bounding of j(\) from above as in (i) to show

. + : :
that j(A) < ((2A) )N. This contradicts the inaccessibility of j(A) in N . .

Now we can state:




146

8,8 Theorem: If o < g , then:
(i) &< ioa(K) implies iuﬁ(g) =t .
(ii) 108(100(K)) = 1DB(K) > 1°u(x) .
(iii) P(lou(K))r\Na = P(iOQ(g))rwqu .
v) i ) ¢ Ng -

(v) N DN, and N $ Ng -

(vi) 1f 8 Bis a limit, L,.(k) = aup(ioY(K)l y<8l.
} By 8.5. we can construe N8 as an iterated ultrapower of Nn by iOu(U) .
Thus Lf B = a+l , then (i},(ii), (iii), and (iv) are just (the relativized versions
of) Ffacts about ultrapowers corresponding to measurable cardinals, wherc in parti-
cular (iii) follows from the Closure Lemma of §2 and (iv) is B8.7.(ii). For B > w+l
just proceed by induction, using 8.5, at successor stages and the direct limit char-
acterization of B.4. at limit stages.

For (v), note that Nm ] NB follows from B8.5. as the construction of NB can
be considered carried out entirely within Nu ; that equality cannot hold is evinced
from (iv).

Finally, for (vi) if £ < i

(x) , then £ = i _(n) for some n < ioy(x) by

08 8
the nature of direct limit. Since iTB(n) = 5 by (i), we have £ < iOT(x) . 4
All this is already quite interesting; we next want some information on how

ordinals are moved:

B8.9. Theorem: wWith cardinalities and cofinalities taken cither in M or V :
s . K g
CUIE %) (¥1%1a ",
(1) If A is a cardinal > 2%, then i) =2

(iii) If & is a limit ordinal so that cf(8) > k , then 107(6) =
sup{ioy(5)| E<s.

(iv) If A 1is a strong limit cardinal of cofinality > ¢ then whenever
Y <X, ioy(x) =X . .
F (1) is proved by a counting argument like for 8.7.(i): If [f] < iOu(Y) then
we can take f£: %k > ¥ . Each finite y C a can be the support of at most IylK
such functions, and so there are at most |7|K-|u| such functions in Fnu(K) . Thus
the successor of this cardinal strictly bounds the order type iouty) .

To establish (ii) note that by (i) and 8.8, (vi}, iOA(K) - uup{ioa(K)| a <)<

mnp((2'<-|u|)+| @ <X} <X . But clearly for any ordinal o we must have iM(K)

>ao, as the i a(K)IS form a strictly increasing sequence of ordinals by 8.8.(ii).

0
Hence, (ii) follows.
For (iii), note that if [f]T < ioY(G) , then we can take f: Yx + 8§ , and

|Range(f)| < x by looking at its finite support. Hence f: Y

x + & for some £ < §
by cf(§) > k , and the result follows.
Finally, for (iv) observe that by (i) and (iii), A < ioY(x) = SUP(iOY(€)| £<r}

< sup{(lElK‘|Y|)+] € <A} <), and hence equality obtains throughout, : 4

|
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‘ The point of (iv) is merely that we have arbilrarily large cardinals ) such
!that A is fixed by any iDY for y < A . We could have gotten away with weaker
‘hypotheses on A , but there was no need. The next section will reveal how the
ltachnique of iterated ultrapowers was used by Kunen to prove fundamental results

about inner models of measurability.

59. Inner models of measurability

One of the main plausibility arguments for measurable cardinals is that they
have natural lnner models. Indeed, if Y 1is 4 normal ultrafilter over a measurable
‘cardinal k , lat L{yl be the usual universe relatively constructible from y .
1€ we st U = UNLIY] e LW , it is easy to sec that L[] F U is a normal ultra-
filter over k . As we shall see below, Kunen established that L(y) € M for any
inner model M in which « is measurable; in particular, this characterization
lonly depends on x and not on U .

‘ We thus have a canonical inner model which plays a role for the theory (zF &
'k is a measurable cardinal) directly analogous to the role L plays for ZF . That
{the uniform generation and combinatorial clarity of L is also mirrored to a sub-
'stantial extent in L[U) is evidenced by such gross structure results as L{{] F
IGCH (see below), as well as work of Solovay and more recently bodd-Jensen{1977] on
the fine structure of L(U}] . Remembering that measurability entails the existence
of a plethora of indescribables, Ramsey cardinals, and so forth, L[] is still a
rather complicated class, and so we have a detailed vision of a rich but uniform
world.

The model L[U] was not hard to find; the first hint of its uniformity was
the result of Silver([1971] that L[U] E GCH . Of course, the GCH does not generally

hold in arbitrary LiX], since for example X could be coding o subsets of .

ilver saw that measurability allows model theoretic arguments which\push through
the proof for L[¥/] . It is historically interesting that Jensen had also estab-
lished the consistency of the GCH with the existence of a measurable cardinal, by
a forcing argument which anticipates Silver Forcing (see §25).

The proof of the GCH in L[Ul devolves into two cases. If a > Kk , a version
Lf Gddel's original argument for L works to establish in fact that Pl)NLIYl ¢

L +IU], since a Condensation Lemma holds. Thus, the proof relativized to L[] shows
o

ithin LY thats 2% < | +[U]I f_u+. If a <k , the problem is that many new
a

subsets of a may first appear at rather high levels < K+. For example, the impish

L
set of integers 0 is in L [ - Lx+m[ul . However, Silver saw that an indis-

K+w+l
cernibility argument establishes that whenever x Ca <k with x¢ L3+1[U] - LGIU]'
iP(u)(\L6+1[U]| < la] . The argument then carried out within L{U] shows that:
there are at most |a| subsets of a constructed before any new subset of a is

+

ronstructed, and hence 2% = a .

There is also a way to prove Silve;'s result using iterated ultrapowers, which
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has the advantage of allowing a conceptual generalization to show that the GCH holds

in the models of Mitchell[1974), Silver[1971b] also showed that there is a A%-well-
ordering of the reals in L . Ag is the best posasible here, in view of Shoenfield's

Absoluteness Lemma and the existence of non-constructible reals in LYV) .

Why the normality of U ? Well, it actually came into play already in Silver's
proof of the GCI below k in L[V, essentially in the use of Rowbottom's partition
theorem. The penetrating analysis of L{U] Dy iterated ultrapowers in Kunen|1970])
revealed much deeper phenomena concerning the canonical nature of normality, and a
surprising connection with that most basic of all normal filters, the closed un-

bounded filter. We need some definitions to encapsulate an important situation.

pDefinition: A x-model is an inner model M in which there is a normal ultra-
filter U over a measurable cardinal x so that M= L[U] . Sucha UVeM is

called a constructing ultrafilter for M . Finally, a filter F over an ordinal

p is strbng iff LfF) is a p-model with constructing ultrafilter FNL(F) .

It is important to remember that although there may be a x-model, k need
not actually be measurable (in V), nor indeed even be a cardinal. Thus, we shift
the emphasis to the relativized universe. Typically, a constructing ultrafilter
for a x-model will generate a filter F in Vv , but F as viewed in V may no
longer retain any properties of large cardinal character.

The following important lcmma is the beginning of the harvest from the seeds

sown in G§B.

Lemma: Suppose that M is a k-model with constructing ultrafilter ¢ . Then

if a is a limit ordinal > 0 and the corresponding ath iterated ultrapower N
A3
is well-founded, X € lOO(U) iff X e P(10u(x))(\N“ [ 38(0((107(K)l B<y<a } C X).

I Wote first that if y <a ., then N is also well-founded as i, isan

elementary embedding. For such -y , by elementarity NY F iOY(U) is a normal

ultrafilter over ioy(K) . In particular, if X ¢ P(ioy(K))f\NY . we have X € ioY(U)
iff {8] 8 e x}e 10Y(U) iff i,
from 8.5, and %0§' Theorem since N

y+1 0
identify well-founded ultrapowers with their transitive isomorphs.

(x) € i (X) . This last equivalence follows
Y Y, YEl ! d

= Ultl(Ny,i Y(U)) , remembering that we

We are now able to prove the desired equivalence. Suppose first that X e

Oa
and Y € ioﬁ(U) . Then for any Yy such that 8 < y < a , we have iBY(Y) [ 10Y(U).

i () . Then by the direct limit characterization, X = 1Ba(y) for some B < a

Thus, i Y(x) e i (Y) by the previous paragraph. But clearly iB Y+1(Y) C X,

a by 8.8.(i). We have thus proved

0 B,y+l

as every member of iB,Y*l(Y) is fixed by 1Y+1r

one direction.

Conversely, suppose for some B < a that Uhy(K)l f<y<u } C X . Let

i (Y) = X where we can assume B <y . But then i  (x) e X + i (¥) and since
a = oy Yo

fixes i. (k) by B.B.(i), we have iOy(K) € i (Y) by elementarity.

la oY Yoyl
Thus, by the penultimate paragraph Y e iDY(U) and so X = iYu(Y) € iOG(U) . 4
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This lemma says that iOQ(U) for limit a > 0 is externally generated by a

“"generic" sequence, which is comprised of just the iterates of «k . This nicely

generalizes the fact that normality means x ‘“generically” generates U . It is

quite crucial that the generating sequence is closed unbounded in 10 (x) :
a

Strong Filters Theorem: Suppose that M _is a k-model with constructing

ultrafilter U , and_p is a cardinal in M greater than (7). 1f (the

real) cflp) > w_and & is the closed unbounded filter over p , thon F is
a strong filter, with: L|F] =

ultp(M,U) ' iop(x) =p , and i_ () = FNL(F] .
' F That iop(x) = p follows from 8.9.(ii), noting that (x+)M = (ZK)M. It is
immediate from the Lemma that i, (U) ¢ PNAULE (M,U) , as {i )| yY<p ) is a
0 = [4 Oy
closed unbounded subset of p . Thus, equality must hold, as i0 () is an ultra-
p L=ty
filter on P(p)ﬂUltp (M, U} . We then have: Ultp(M,U) = L[i0 (1)) = LIFNULLt (M, )]
P P

= L[F] . From this also follcws that iDp(U) = FOLIF] . -

Wwith this theorem, Kunen established an unexpectedly close connection between

measurability and the closed unbounded filter. That such an easily defined filter

when relativized to an inner model can actually witness measurability was a pro-
found insight. We now see that normality was, after all, an intrinsic aspect of
Ulam's concept of measurability.

The assumption cf({p) > w in the theorem is not sacrosanct; it was only used

so that we could call upon the closed unbounded filter over p . To bring in the

T N—

cagse cf(p) = w , at least for a limit cardinal ¢ , define the cardinal filter

over p as the set (X p | An<p¥y(n < v = |y| < p implies ¥y € X)} . Then the
above theorem also holds if "(the real) cf(p) > w" 1is replaced by "p a (real)

-~

A T e s S e AL

limit cardinal"”, and "“closed unbounded filter" is replaced by "cardinal filter".

(The only nicety to notice is that now, a final segment of cardinals < p appear

among the ioY(K)'S for y < p , by 8.9.(ii).) This version can be viewed as the
ideological source of Silver's proof given at the end of §6. It is only a minor
irony of this paper that Silver's proof was presented first!

We are now in a position to present the. major results on the canonicity of

L(¥) . First, a preliminary

Definability Lemma: Let M be a k-model with constructing ultrafilter U .

Suppose that S is any set of ordinals all greater than x so that S has order
type > (K+)M , and 0 is a cardinal greater than every member of S . Then every
element of P(x)MNM is definable in LB[U] from a finite subset of «k\USyU{lU} .
F Let A be the collection of sets so definable. Since LQ[U] has a well-
ordering definable from U , A= LO(U] . Let i: A =T be the transitizing

=,
-~

re

—

isomorphism. Since Kk C A, 1 1is the identity on k and so i(x) = x for any
x € P()NA . Thus, i(U) = UNT and so T = L6[Ul for some 6 . Since S has
order type > (K+)M , we have 6§ > (K+)M . But then, by what we mentioned about

the proof of the GCH in L[U) , we have that P(x)NM g.leU] « Thus, P()NMCA

S

—
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as i was the identity on P(k)MNA , which was Lo bo proved, -

Unigueness Theoxem: Let M and N both be k-models, with ¢ a constructing

ultrafilier for M , and V_a constructing ultratilter for N . Then ¢! =V and

80 M =N,

F Let X be a regular cardinal > x+ , and F the closed unbounded filter over
A . By the previous theorem, UltA(M,U) a L(F) = Ultx(N,V) and igA(U) = FAL[F]

U v s
10A: M- UltX(M,U) and LOA: N - Ultx(N,V) are the appropriate
iterated ultrapower embeddings.

- iZA(V) . where

The idea of the proof is to usc this wedding of iterated ultrapowers, together
with the Definability Lemma. So, let S be a set of ordinals all greater than «
so that S has order type > <+ , and let @ be a cardinal greater than every
element of S . Furthermore, we can assume by 8.9.(iv) that 6 and every element
of 8 is fixeé by both igx and igl .

We will now establish U C V; since the argument is symmetric in U and V ,
this will complete the proof. So, assume X ¢ U/ . By the Definability Lemma,
there is a formula ¢ so that X = { < « | Ly (U] kB (€. a, U)) for some finite
agkyS . Nowset Y=1{E&<x | Ly 1V E o6, a, M) . as igl and igk both
fix every element of a , we have igx(x) ={f<r| LOIF] F $(E, a, FALIF]) )} =
iKA(Y) . In particular, as X ¢ !/ , it follows that igA(X) - igx(Y) e F, so
that Y € ¥V . Pinally, as iV and ig

0A A
igx(x)r1x = igA(Y)f\K =Y ,andso X¢e V. -

both fix every element of ¥ , X =

Corollary 1: If -V = L({], where [/ is a normal ultrafilter over k , then

U _is the only normal ultrafilter over « .

Corollary 2: If M is a x-model, then Kk is the only measurable cardinal

in M . ’

F This is a version of Scott's original proof of the incompatibility of V = L
and measurability. Argue by contradiction and let M F A is the least measurable
cardinal 4 k . Choose any A-complete ultrafilter V over A . Then if j: M+
Ultl(M,V) is the éorresponding embedding into the (transitized) ultrapower,
Ultl(M,V) is a j(x)-model with constructing ultrafilter j(U), so that Ultl(M,V) =
L{j(U)] . However, by B.9.(iv), as «x is inaccessible in M , we have j(x) = k.
Thus, by the previous theorem j(U) =V and Ultl(M,V) = L[j(U)) = L{U] =M, But
by elementarity, Ultl(M,V) E 3(0) is the least measurable $ x ., and this is a
contradiction of A < j(A) . : 4

With more attention to detail, Kunen also proved:

(a) If p is the least ordinal so that there is a p-model M and U is the
constructing ultrafilter for M , then any o-model for o > p is of form Ulty(M.U).

(b) If M is a k-model with constructing ultrafilter U , then the following '
holds in M : whenever V is any k-complete ultrafilter over «x , V is i up to

a bijection between the index sets x and " , for some n ¢ w .,
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(c) If M is a g-model and V is an arbitrary k-complete ultrafilter over
v , then L[V] =M.

(d) In any k-model, a cardinal is Jonsson just in case it is Ramsey.

These various results have an attractive clarity, with strong Bruckneresque
architectural lines. The extent of structure found in k-models, their uniqueness
of construction, and the hidden global regularity of their generation by iterated
ultrapowers show what possibilities lay hidden in the lode of elementary embeddings,
just waiting to be tapped.

One of the main problems with large cardinal hypotheses much stronger than
measurability (see the next chapter) is that no corresponding natural inner models
suggest themselves (we shall discuss this source of perplexion later)., At least
some sign of encouragement are the models of Mitchell[1974). Let us define a partial
order 4 between ml—complete ultrafilters, by: UagV iff U is a member of
(the transitive isomorph of)} the ultrapower of V by V . That.the order a is
non-trivial is consistency-wise a stronger assumption than measurability and fol-
lows, for example, from the existence of a strongly compact cardinal, as recently
shown by Mitchell. Mitchell fashioned a coherency condition on ultrafilter sequences
in the ground model that mirrors long «d~chains of normal ultrafilters over various
measurable cardinals, somewhat reminiscent of the approach in §8 of carrying out
the iterated ultrapower construction directly in the ground model. Finally, he
showed that constructing from coherent sequences yield inner models which exhibit
the major uniformity propertics of k-models such as the GCH, a A;-well-ordering
of the reals, and corresponding versions of the Definability Lemma and Unigueness
Theorem. Dodd-Jensen(1976) has recently introduced "mice” into the fine structure
study of L[{/J, in conneaction with establishing the Covering Theorem for the Core
Model K. (see 529). Mitchell showed that this rodent’ infestation was also poss-
ible in his models.

§10. A Mixed Bag

This section is devoted to three disparate results, all proved first by Kunen
in the framework of iterated_ultrapowers. Although some of these results can now
be proved without iterated ultrapowers, the technique looms large in the background
as having fashioned the climate wherein the results were first conceived. Typically
a powerful mathematical idea creatss a unifying framework, and this imposition of
structure then leads to new mathematical intuitions and ramifications in several
directions.

The first result involves the size of 2 when « is measurable. As we
mentioned in §2 (see also §13), Scott had tied 2 to 2% for a < « by establish-

ing that if { a <« | 2® = a* ) is a member of a normal ultrafilter over « .
then 2% = K+ . We know the GCH to be consistent with the existence of a measurable

cardinal, so the problem remained of how to ever get 2K > K+ to hold, yet preserve
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the measurability of «k . RAny forecing technique which achieves this must be parti-
cularly sensitive, since the measurability of «x involves all subsets of « .

It is historically interesting that it was precisely this problem which moti-
vated Silver to invent his method of forcing (see §25). Once formulated, this
method has a persuasive character as being arguably the natural one forx iterating
forcing to adjust powers of regular cardinals, while preserving a great deal of the
structure of the ground model. Thus, it is to the credit of the theory of large
cardinals to have motivated this new technigue of general applicability to set
theory.

In any case, Kunenfl97la)had already realized the strong consistency strength

of the violation of the GClU at a measurable cardinal: If there is a measurable

cardinal k _so that 2° > n+, then for any ordinal o there is an inner model

with o measurable cardinals. The conclusion also follows from any of the follow-

ing assumptions: (a) every k-complete filter over k can be extended to a x-com-

: s : +
plete ultrafilter over ¢ ; (b) there is a uniform k-complete ultrafilter over g ;

and so also {c) x is strongly compact. The proof of this result involves a

refined use of iterated ultrapowers, and we content ourselves by giving a glimpse

at the possibilities by showing: If there is a measurable cardinal & so that

+ s et :
ZK > k , there is a transitive set model of (ZFC & there is measurable cardinal):

F Let U be a normal ultrafilter over k , and set ‘U = yNLIY] . For any
ordinal a , define iou: Liy] + Ulta(L[U],D) to be the usual elementary embedding
om(K) € X)) .
Then by §9, Ultw(L[U],U) =L[F)] is a iuw(K)-model with constructing ultrafilter
FOLIF] .

Now set Jj: V+ M = VK/U . By the Closure Lemma of §2, <i n(K)' new > £ M,

0
and because F is definable from this sequence, we have FMM e M . Thus L[F] C M.

into the ath iterated ultrapower. Set F = {X g;iOw(K)| dn¥Vm (n<m<w + i

Now observe that j{k) is inaccessible in M , so it follows that j(k) is
inaccessible in L{F], as L[F] models GCH and is an inner model of M .
. + . :
Finally, by 2° > &, 8.7.(i), and B.9. (i), we have:

iom(‘) < ((ZK)+)L[U] - K++L[U1 5.K++

Thus, we can ultimately conclude that:

< 2 < J k) .

£2] F 2FC & FAL[F] is a normal ultrafilter over i, (k) . -]

Lj(KJ

Having seen in the preceding proof the strong techniques available to us, the

Ow

\
full result of Kunen[197la)already seems guite plausible.
The second result of this section is one direction of 7.25., a characterization

of 0# . As with 7.22,(a), the existence of 0#

implies the existence of a multi-
tude of elementary embeddings: L + L . In fact, they correspond closely to order-
preserving injections OR + OR , as the action of such injections on the canonical
indiscernibles in turn lifts via Skolemization to an elementary embedding: L - L .

Kunen showed that a converse was possible: If there is an elementary embedding of
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L into L which is not the identity, then Of exists. If one looks at the least

ordinal p moved by such an embedding, then it generates as usual an ultrafilter
on P(p)MNL . This ultrafilter will not be constructible, but adding further con-
ditions to be able to generate well-founded iterated ultrapowers of L ("from the
outside”) from it, Kunen saw that elementarity considerations indicate that the
clags of iterates of p , [iou(p)| « € OR} , act as indiscernibles for L . ‘The
ideas herein introduced, primarily the emergence of critical points of embeddings
as indiscernibles and the need to retain classes of ordinals fixed by embeddings,
were then combined with the unifogm aspects of L to get proofs of Kunen's theorem
which do not use the machinery of iterated ultrapowers. The following proof is

due to Paris; another due to Silver is given in Devlin([1973),pp.199-205,

F Let k: L+ L be elementary, with p the first ordinal moved. We can define
an ultrafilter U over the constructible subsets of p by: X e U iff X € P{p)NL
& p € k(X) . The embedding k is not itse&f very informative, so we switch to
the embedding corresponding to an ultrapower construction using U . First, note
that for any formula ¢(xl,...,xn) and fl""’fn € LNPL , we have

{a < pl L F ¢(f1(u),...,fn(u))) £ L . Hence, we can form the ultrapower of L
with respect to U , using only functions in LOPL . The appropriate version of
208' Theorem holds, and the ultrapower is easily seen to be well-founded. 1Its
transitive isomorph must be L , being an inner model of the Axiom of Constructi-
bility. Hence, let 3j: L + L be the elementary embedding induced by this ultra-
power consatruction. Note that, as usnal, we will have 3jp) > p , vet 3J(§) = &
for £ <p .

Set M= {x ¢ L| j(x) = x } . Then M—=L . This is so since M is the
Skolem Hull of itself with respect to the definable well-ordering of L , since
anything definable from parameters fixed by j is again fixed by 3j . The reason
why the switch from k to j was made was to insure that M is large: If (in V)

A is a cardinal of cofinality > |p| ., them §(A) = A . (To show this, note first

that if € < A , a counting argument shows j(g) < |95|+1E'A . The full result
then follows, as cf(A) > |p| insures j(d) = sup(j(E)| £ <A} .) Bya stationary
class is meant a class of ordinals which meets every closed unbounded class of ordi-
nalss Thus, the foregoing shows in particular that MMOR is a stationary class.
M must thus be a proper class, so M = L . The following process is reminiscent
of iterating ultrapowers:

For every ordinal o , we will define classes Mu to satisfy: (i) Ma-< L,
(ii) MulW OR = MM C NOR for some closed unbounded class ¢ of oxdinals, and so
MG(W OR is a stationary class, and (iii) a < 8 implies Ma oM

8 °
Initially, set M0 =L . At limit stages § , simply set MG = QCE Mu . Then
MstOR satisfies condition (ii), and M6-4 L, as MG is its own Skolem Hull.

Finally, at successor stages, having already defined Ma-( L, let T: L = Ma be

the inverse of the unique transitization map for Ma , and set Ma+ = T"M

1 . Then
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since M < L , we have Ma+l = 1"M < 1"[, = Ma—< L . Note also that if the station-

ary classes MMOR = <n ] £ € 0R> ana MufWOR = <§F| £ € OR > are listed in
ascending order, (10R = <Ly | £ ¢ OR > , which i; easily seen Lo satisfy (ii).
flence, this inductxve deflnltlon satisfies all the clauses required of it.

We now define many new elementary cmbeddings. For any ordinal o , let

T ¢ L ® Mu he the inverse of the unique transitization map for Ma Then for
a

a< B, set jaﬂ = Tﬁ'Tu—l . Thus, juR: Mu - MB is an isomorphism, and a < B < ¥y
| j j f j M i M > M is _an
Jay*dap = Jay Juﬁj—u+y-—u+y—ﬁ+y

isomorphism. (By induction on v . The limit casc follows immediately from the

implies Claim: For any y ,

induction. For the successor stages, assume true for vy . TEEE, if juB = juﬁlMu+Y
Y -+ i isomorphism, It follows that j T =1 as
jaB MmLY MB+Y is an i ph s ]aBo aty gy !

both are inverses of the unique transitization map for M . However, by defin-

then

B+y

ition M =T "™ and M M , and hence the result follows by

=1 ™
a+y+l ety Bty+l B4y

tracing through the various embeddings.)
We are now in a position to define our proposed class of indiscernibles. Set

p =p , and for any o« > 0 , set p (p}) . Let us establish the following

0 « Joa
several facts:
(a) For any o , pu = least ordinal in Mn - Ma+1 .
(b) If a < B , then Py < jua(pu) =p
(¢) If a<B, qu\Ma = puf1MB
(d) If a<8B, jua("aw) = Pgay

(e) If ﬁl <iee® Cn =n=2g and ¢ is a formula in nimtl free

B

ia

.

variables, then:

L §+1.---,p;+m) .

To show (a), recall first that Mo

L |=¢(951,.--.p£n.p SETTLE R g A ,---.an.pt.p

=L and M, =M, so that pp = ¢ = least

ordinal in M, - M. , since p 1is the least ordinal moved by j . By the Claim

o 1

above jo [M): M +m

ward argument. (b)  follows from the fact that whenever o < f , Py ¢ MM

is an isomorphism, so {(a) now follows by a straightfor-

B

by (a), and the fact that jaB is order-prescrving on ordinals. (¢) follows by
induction on # , using (a) and (b) along the way. (d) follows from the Claim
above, and the characterization of (a) .

It-is (e) which is the gateway to indiscernibility. To establish it, let us

assume for notational simplicity that m=n =1 and §'= 51 . It then suffices

to show L F ¢(pg,pn n+l + 4¢(p ,p; C+1) , since the converse direction follows
from considering —¢ . So, suppose to the contrary that L F ¢(pg n’ 1) &

3 ' . As th arameters
W PpipP ). SOL E Facp (@lawp 0 1) & la.p.0 ) s the P amete

appearing in this formula are all in Mn-( L , we can pick an o € pnfiﬂn so that

Lk (Mu.n . Y &_‘M“'pc"’cﬂ

abovethat;()=u. (p)= ,andJ(p
|= $(a,p ,an) me.l:.es that M T= ${a, p ,p

)) . However, it readily follows from (c) and (d)

1_I+1) = C*l . Hence,

) . This is a contradiction of

L+l
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M~ L.
4

We can finally establish that {p | @ ¢ OR } is a proper class of indiscern-
o

ibles for 1, : That it is a proper class is immediate from (b). Suppose ¢ is a

formula in k+1 free variables, and a <...< oy - To establish indiscernibility
for ¢ amounts to using (e) k+l times:
L “en if -
F o¢pgreeeip)  iff L | l’(pao'pa[)“-l' P

iff L R '“"ao"’al")u,»rl"“’pa,*-k-l]

-
oews
n

L |e 4»(0“0,0“1,---,9“'() .

The rest is an anticlimax. To actually get 0“ , we can proceed for instance

as follows: Note that [pml a < w]} is a set of indiscernibles for L . Hence
[
1
there is a B8 so that LB has a set of indiscernibles of order type w, . Let
E be the least such B , and let H be a set of indiscernibles of order type wy

for 1_ so that the wth element of i is the smallest possible. We can now
8

establish exactly as in the succession of lemmas in §7 that the corresponding EM

blueprint has Properties I-1V, and hence must be 0# . B

We remark that the preceding result is the route to Ou in the proof of

Jensen's Covering Theorem (see §29). In Jensen's scheme, one works with Xo—em-
beddings (i.e. embeddings preserving bounded formulas) and, depending on the species
of argument, those with domain only some initial segment LCl . Then gome details
involving cofinality must be attended to, but in the versions when the ,-embedding
is extended to all of L , there is no problem, as a j: L + L is elementary iff
it is ED-elementary, by an easy reflection argument. See Gaifman{1974],Part 1I,
for general remarks about I;-embeddings of fragments of ZF .

As once foretold, we can now establish: If there is a Jonsson cardinal, then

a4
0" exists:

F If k is Jonsson, let X < Lx be such that |X] = |Lnl =k and X + LK .
Then X = LK and thus the inverse of the unique transitization map for X induces
an elementary embedding Lm -+ LK which moves some ordinal p < k . We are now
exactly in the position of being able to define an ultrafilter on P{p)NL as in

the proof of the preceding theorem, as P{(p)NLC L . I‘g; LK . 'Thus, that proof

shows that 0# exists. ) -

We close this section with yet another result of Kunen, a further dividend of
iterated ultrapowers. The principal result of Kunen([1973]) is that in the theory

(ZFC & therc are w, measurable cardinals) one can show that the Axiom of Choice

1
w w
fails in C ! , where C 1 (due to Chang[1971)) is the least inner model M so

that “M C M . This creates somewhat of an obstacle to an obvious, naive approach
to constructing natural inner models with closure properties appropriate, -say, for

supercompactness (see §14). Toward demonstrating his result, Kunen established a
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rather striking lemma, using iterated ultrapowers. Let us first reactivate some

notation from §2: if ¢ is a wl-complete ultrafilter, then is the elementary

j
v
embedding of V into (the transitization of)} the ultrapower of V by ¢ . Kunen

showed: For any ordinal n , (K[ X _is measurable and there is a k~complete ultra-

filter U over x so that n < j,(n) } is finite. This Lemma was also used very
W

recently by Dodd-Jensen (1976). in connection with the Core Model K , (Specifically,
they used it to establish that if J: K + K is elementary, « is the least ordi-
nal moved by J , and j(x) is (really) regular, then j(x) is measurable in an
inner model.} We hope for further applications in the future. The following is an
attractive proof of Kunen's Lemma which does not use the paraphenalia of iterated
ultrapowers, due to Fleissner:

F First of all, if U is a k-complete ultrafilter over « , designate that a

half-open interval of ordinals [o,f8) is a moving interval for U iff jU fixes
cofinally many ordinals < a as well as 8 , yet jU moves every ordinal in [a,B) .
It follows that if [a,B) 1is a moving interval for U , then: (a) cf{a) = x , and
(b) B = 5up[j3(€)| new} whenever a < £ < B, where Jg is the nth iterate of
Iy

To show (a), first establish in general that if cf(y) # x , then jU(Y) =
sup(jU(6)| § < ¥ } ; this involves a k-completeness argument for cf(y) <« and a
cofinality argument for cf(y) > k . Since jU fixes cofinally many ordinals < a,
we have sup{jU(G)l § <a )} =a, and so the fact that a < ju(a) necessitates
cf(a) = k . To show (b) is easy enough, noting that j(sup(j3(5)| new }) =
sup{j2+1(E)| new } .

We next observe that if U is a k-complete ultrafilter over x and V is a

A-complete ultrafilter over A > k , then Jj,, and j,, commute: For example, for

any ordinal vy , ju(y) = order type of YK/U . But since A 1is the bigger measur-
able cardinal, x and U are fixed by jV , and thus jV(jU(Y)) = order type of
. Ky _ =
Gyt /0 = 5,6, . o
Now note that,if [a,B) is a moving interval for ¢ and [a,B) 1is a moving

interval for V , then they-are either disjoint or strictly nested: This means

that if a < a < B , we must establish that B < 8 . To this end, first choose

a y=3,(y) sothat a<yc< o ; this is possible by ﬁhu nature of @ . By

(b) above, there is some n e w so that a < jZ(y) < f . By the previous para-
graph, we know that ju and jV commute, SO jV(jZ(Y)) = j;(jv(y)) = jZ(Y) + Thus
B < j;(y) by definition of a moving interval, and we conclude that <8,

We are finally in a position to complete the proof. So, suppose to the contrary
that n is an ordinal so that there is an infinite number of measurable cardinals
{Kil icw]l} with Ki-complete ultrafilters Ui over <y for each i ¢ w , and
jU.(") > n . Clearly, for each i ¢ w , n is then in some moving interval [ui,ei)
fo; Ug . However, from (a) above follows that i 4 j implies a, % oy . Thus,

we can assume (by possibly taking a subsequence) that i < j implies aj < ay -
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But then, as the lai.Bi)'s all econtain n , by the previous paragraph they are
nested intervals, and so BU > B] > By .. is a descending sequence of ordinals.

This 18 a contradiction. 4

§11. Saturated Ideals

We have deferred (from §1!) until now any detailed discussion of the other
branch of the bifurcation emanating from the pioneering paper Ulam(1930], the con-
cept of real-valued measurability. It was Solovay[1971) who did the substantial

modern work in this areca, proving in particular that the existence of a incasurable

cardinal is equiconsistent with 2* being a real-valued measurable cardinal. (See

§12,5§24.) Although his results were proved before Kunen formulated his scheme of
iterated ultrapowers, we have delayed until now the discussion of this whole area
of research in order to incorporate some aspects of iterated ultrapowers {(see §12),

It was Tarski who early on studied a property of real-valued measurable cardi-
nals which conveys many of its strong consequences. We need to establish some

definitions, so let x be a cardinal and I an ideal over k . An X C k is of

I-positive measure iff X 4 I . I* = (X c k| k-X € I} is the dual filter to I .

I is non-trivial iff it is x-complote (i.e. whenever y <« and {X | a <y } C I,
RLCLml=3 L T e 22 8 a =

then %{xu € I), and {a) € I for cvery o < . Throughout this paper, by "ideal"

will henceforth be meant "non-trivial ideal”. I is A-saturated iff whenever

(xal a < A} consists of I-positive measure sets so that a < B < y implies
XGFWXB e I, then y < X . I has saturatedness A iff J is A-saturated but not
c-saturated for any o < A .

If x is real-valued measurable, and p is a measure, then (X g'xl p(X) = 0)

is a (non-trivial) w,-saturated ideal over k . (If u(xu) > 0 for every a < Wy,
then we can suppose without loss of generality that there is an n € w so that
u(xu) > é for every a < wyi but then, clearly there must be a < g < w, 5o that
u(xur\xa) > 0 .) As Tarski and later Solovay noticed, most of the large cardinal
aspects of real-valued measurability can already be culled from the existence of
saturated ideals. One can already see the piausibility of this in light of ktwo—
valued) measurability, as the dual filter to a saturated ideal is rather close to
being ultra. In this section, we initially develop the combinatorial theory of
saturated ideals. However, one should keep in mind that being real-valued measur-
able is a rather special property over and beyond merely carrying a ml-saturated
ideal (see Kunen[1968] and Prikry[1970]), and also the end of this section), and
there are still interesting open questions distinctly concerning real-valued mea-
surability. At the same time, the study of saturated ideals has broadened the
horizon beyond their original raison d'étre, and has even led to significant clar-
ifications about such standard set theoretical concepts as stationary sets.

We should make some initial comments about saturated ideals, First, if I

is a {(non-trivial) ideal over x , then if e <«x , ac T by k-completeness, and
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hence an easy argument shows that x must already be regular. A trichotomy then
exists in the theory depending on whether the saturatedness of I is <k, Kk, or
K+. ginge J must in any case be (ZK)+-saturuted, this covers the interesting
cases. If the saturatedness of T is <w , then I is a prime ideal, and hence
k is a measurable cardinal. We shall sce that a cardinal carrying an ideal which
is sufficiently saturated has many properties of measurable cardinals.

one of the main points about the existence of a saturated ideal over « is
that the (strong) inaccessibility of k need not be a concomitant; K may even be
¥ , and then significant statements about sets of reals are being made. The fol-
lowing result makes a basic reduction when strong power set hypotheses are imposed
on « ; (a) is a result of Tarski[1939], and (b)' was observed by Silver to follow
similarly: if I is an ideal over k such that either (a) J is A-saturated

<
for a A < k so that 2 A <k ,or (b}l I is k-saturated and k is weakly com-

pact, then «x is a measurable cardinal.

F Suppose first that I had an atom, i.e. an I-positive measure set A so that
if B and € are disjoint sets so that BU C = A , then either B or C is in
I . Then as in 81 , {XxC k| XNA ¢ I } can be shown to be a k-complete ultrafil-
ter, and hence k would be a measurable cardinal. Thus, we can assume by way of
contradiction that I has no atoms. Then inductively’build a tree T with nodes
(Xf| fe J?L %3 ) as follows:

Set X __ =k . If a<k, and f g aZ, and X_ has already been defined,

> £

let X =X so that X and X are disjoint, and have

£~cos Y Bemers T ¥ £7<0> £7<1>
I-positive measure whenever xf does. That J has no atoms makes this possible.
Finally, at limits &8 <k , if f e 8, . set X, = g:k xf'B . The tree T thus
built has the following property: (*) If y <k and g ¢ Y2 then the "offshoots"
{x

gla”<i>| a<ye&gla) +1i<2]} consists of disjoint sets.
Consider now the subtree T = {xfl Xe ¢ 7} . In case (a) of the theorem, (*) ,

A and by look-

and A-saturation indicate that T has <A levels. Hence, |§| < 2°
ing at the tips in T of branches through T , it is straightforward to see that

k is the union of at most 2<A < k sets in I , contradicting the k-completeness
of I .

In case (b) of the theorem, note first that if T had height <k then by the
strong inaccessibility of x and the argument of the previous paragraph, we would
again have a contradiction of the k-completeness of AI’. Thus, we can suppose that
T is a k-tree, and so the weak compactness of Kk implies that T has a x-branch.

However, by (*) this would violate the k-saturation of I . 4

The preceding proof is perhaps the earliest example of the use of trees (“ram-
ification systems"). If k is inaccessible and not measurable, it thus follows
that any ideal over « must have saturatedness > « . Kunen-Paris[1971] established
the consistency of having an inaccessible (in fact weakly compact} , yet not measur-

able, cardinal k carrying an ideal of saturatedness K+, starting with a
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measurable cardinal. Using in part Silver forcing (see §25), Kunen(1974) answered
the remaining technical question by establishing the consistency of having an in-
accessible nonmeasurable cardinal k carrying an ideal of saturatedness kK , again
starting with a measurable cardinal,

This more or less takes care of the cases where the (strong) inaccessibility
of « is assumed. We now turn to see what can be achieved when no such assumption

is made. We shall progressively consider n+, Kk, and <x  saturation to see how
stronger hypotheses sharpen the focus, and to illuminate those aspects of measur-
ability which really are consequences of these restricted hypotheses. Generally,
anyone working with saturated ideals soon realizes that the k-saturation of an
ideal I over k is a relatively easy concept to grasp and manipulate, since it
just means (by k-completeness) that Kk cannot be partitioned into « disjoint
I-positive measure sets. However, K+—saturation has no such clear intuitive feel.
What we can do is to look at Boolean algebraic equivalence classes. If I is an
ideal over « , P(x)/I is the usual Boolean algebra consisting of equivalence
classes (X] for X C k, where [X] £ (Y] iff X -Ye I . Note that [X] = 0,
the zero element of the Boolean algebra, 1iff X e I . (We shall usa the [X] nota-
tion without explicit mention when the I involved is obvious from the context.)
The following result of Smith-Tarski|1957] was the first significant comment

+ . . +
made on x -saturation: If I is a k ~saturated ideal over «k , then B = P} /L

is a complete Boolean algebra:

F Complete means that whenever S C B , the least upper bound LS exlsts we

divide the proof into three cases, depending on |S| H

case 1: |§] < k . wWrite § = {[xu]| o<y} where Yy <k, Then [UX] =

: 2 : s <

IS . This is so since if [Y] > [X ] for every a <y , then U (x - Y? I *
[+ oy a -

(u%gxa) - Y €I by k-completeness, i.e. {Y] Z-[aExxu}' i

Case 2: [ I = . i ;= i
S Write S {bul @ <k } . Using Case 1, we apply a stand-
ard contrivance to disjointify the elements: Set = -
a ba Egabﬁ for every

a ¥ . Then a straightforward argument shows that: (a = Vi
< a
g (a) A 8 0 whenever

_ i
a a ; (b) if = ; i
4 (b} if B <k then  Foa = Eb ; and () if Fa, exists, then

aﬁkau " ugzbu -

We now work with the aa's instead, which we can take without loss of generality
toall be 4 0. EBxtend {a | a<x} toamaximal family A4 such that x } y
both in 4 implies x$ 0 and xa y = 0 . By k' -saturation, we must have
4] <k . So, we can write 4 = {[AGII § <k} . Now observe that we can actually
take_the As's, not only the [A6]'s, to be disjoint. (If necessary, replace A
by A, = Ay - EE%AE = Ag - E%%(AEFWAG) , noting that the subtracted set must be fn
I by k-completeness.) Finally, set E = LJ{Aﬁl [A6] = one of the original a 's}.
We finish Case 2 by showing: [E) = agKau = QEKbG s ¢

Suppose that [E] > a, for every a < k . We want to show that [E] > [E],
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i,e. E-E e I. So, set b= [E-E] . Certainly b,\aa=o for every a < x
by hypothesis on E . Also, for (A, % an a, « A(NE =g, 50 ba[A])=0.
Thus, if b > 0 , we would have a contradiction of the maximality of A4 . Hence
O=b=(E~E , i.e. E-E €1,

Case 3: S| > k : Here we can proceed by induction on |S| . S0, suppose
it is true for all T C § such that |7| < |8| . that IT exists. Write S =
(bul a <X} . As before, we can sget a = bu - €£0b€ for every a < A , using

the inductive hypothesis. Since a % a implies a A a_ =0, there are at most
&

+
K au's not zero, by «x -saturation. Thus, u’é)\am exists by Casc 2, and observe
that B " ofaPa ¢ 4
v

+
The preceding result has a partial converse due to Solovay: If 2 < 2 and

I is an ideal over k so that plx)/I is a complete Boolean algebra, then [ is

. + :
x+-sat\xrated. (Suppose not, and let {bul a <k } CP(x)/I be different elements

: . +
so that a $ 8 implies b oA bano. 1 Xxgk o, set a = Eb . Then xbvy

implies a, 'F a, . But then 2'(Jr < |P(K)/1'| < 2 , a contradiction.)

Indeed, the modern results on saturated ideals are due to Solovay([1971]. The
renaissance of measurability in the early sixties invited similar possibilities for
saturated ideals, and the new ideas of Scott, Rowbottom, and others were duly lifted
by Solovay to the generalized situation.

Solovay's first order of business was to produce normality, in analogy to

Scott's original work on measurability. We first need to establish some definitions

so suppose I is an ideal over ¢ and XC«k . A function f ¢ K¢ is g-infinite

on X iff {£ ¢ X| £() =a} €I for every a < «x . A function fe¢ ¥x is incom-
pressible on X iff f is J-infinite on X, yet whenever g ¢ K¢ and {t¢ xl

g(E) < £(g)} ¢ I , then g is not J-infinite on X. By I being a normal ideal
we mean, of course, the dual to the filter notion in §2, i.e. if {f < K| £(£) < E)

¢ I then there is a y <« s0 that {£ <«| £(6) =y} § I,

. . +
Theorem: Suppose I 1is a k -saturated ideal over x . Then:

(a) Whenever X C x and X ¢ I , there is an incompressible function on

some Y C X with Yil’.

{b) There is an incompressible function on g .

(c) 1f £ 1is an incompressible function on g , then £ (I) = {X gx[

f_l(x) eI} is a normal x+~saturated ideal over « .

l- We use Tarski's result on the completeness of the Boolean algebra P(k)/I .
To show (a) , argue by contradiction and assume: (*) whenever Y C X with
Yy ¢ I and f is I-infinite on Y , there is an I-infinite g9 on Y so that
(Eey|ale) <£6) ) ¢ 1. '
Let fo ¢ < be any function I-infinite on X , like the identity function.
By n<+-saturation, let {Au [ x| a < K} be a maximal family such that: A& ¢ I but
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a < B <k implies AunAB e I , and there is an I-infinite g, on )\u so that
(€ ¢ Aul g, (&) < fo(E) } $§ I for every a < x . Then by assumption (*), we must
have agxmu] = (X] .

As in Smith-Tarski, we can take the Aa's to be disjoint (eclse replace A
by A, - BtEJaAB). Now set fl = u%gﬁll\u and extend fl arbitrarily to all of « .,
It is not hard to see that £1 is J-infinite on X: if to the contrary (£ e XI
£,6) =y} ¢ I for same y < k , since [X] = odeB) o (e “ul g9, (&) = £1(8)
=v ) ¢ I for some a—but this contradicts the I-infiniteness of g on A
Also, if Xy = {§ ¢ X| £1(8) < £45(6) } , then (%) = abe[A,) = (x] 0 :

We can now similarly define for every n >0 an f infinite on X so that if
n
xn = (£ e X| fn(E) < fn_l(i) } , then [Xn] = [X] . But the rest is easy: we
must then have r;lxn ¢ I since X - an eI, yet any £ ¢ an corresponds to
a descending sequence ...fz(E) < £,(5) < £,{8) . Thus, (*) was contradictory,
and (a) is proved.
+

To show (b), by k -saturation let {Bul a <k ) Dbe a maximal family so that:

B0l J I but a < B <k implies BuﬂBB e I, and there is an fa, incompressible

on A“ . By (a), we must have u’ér [Bu] = [k) = 1 . We can assume that the Ba's

are disjoint just as in (a), and set f unyulAu . Any extension of f to all
of x 1is then an incompressible function on « .

(c) is straightforward. _l

s +
Thus, we can "normalize” k -saturated ideals over Kk , much like v-complete
ultrafilters over Kk . Solovay showed that strengthening to k-saturation opens the

door to results about the large size of « :

Theorem: Suppose I is a normal x-saturated ideal over ¢ . Then:

(1) 1f x ¢ I and E e X implies £(E) < £ , then thexe is a Y C.X
with [¥]) = [X) and a y < k, so that € ¢ Y implies f£(E) < Y . -
(ii) {o < k] cf(a) =a ) € I* . -
(iii) If X € I*, then M(X) € I*, where M is Mahlo's operation: M(X) =
{a € x{ XNa is stationary in a } .

F For (i), let A= {€ e x| £(£) =a } and consider T = {a < x| A ¢ I). By
k-saturation |T| < k , Bo y = supT < k . It is not hard to show by normality
that (X = aLI:JTAG) cJ , and hence Y = uleJTAu and Y are as desired.

For (ii), first recall that I* is the filter qual to I , and in particular
is normal. Assume to the contrary that {e < k| cf(a) <a } § I, so by normality
for some y <k, T={a<«| cf{a) =y} $I. Foreach acT, 1et<6§|g<y>
be cofinal in a . We can then define regressive functions for £ < Y by g _(a) =
a : ¢
65<u for a € T . By (i), for each £ <y there is a T CT with |[T.] = [T)

Weps
go that gE '15 is bounded, say by ‘)E <K . Let p= sup{pgl £E<yl<k. as

usual by k-completeness of I , [EQYTEJ = [T) . But if a e , then o < p,

N
£<y'g

contradicting the non-triviality of I .
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For (iii), assume to the contrary that X ¢ I* yet W = x - M(X) # I . 8o,

for each o € W there is a C(l closed unbounded in o so that CuFNX =@ . For
every £ < k , define f, e e by:
£th element of Cu if this is possible,
fE(u) =

0 otherwise,

Then £ is regressive on W , so by (i) let W _CW with (W) = |W] so that

2 3
EC“WF is bounded, say by 1£ <K .
“set W= l(ac w| € < n implies fc(u) i ). Then we claims [W) = [W]. Well,

suppose not, Then {a € Wl ah{a) < a with £ (a} > Yh(u)) * I , so by normality

K= {ac wl fg(u) > Yg } ¢ I for some E < tha)uowever, KﬁwE =@ , and this
contradicts [WE] = [W] .

We now set C = {a < K‘ @ is a limit and € < a implies YE <al . Since C
is closed unbounded in « and I* is normal, C € I* . Finally, let 8 ¢ XNC € T*

and B & W with B> B8 . By (ii), we can assume in addition that B is regular,

and so in particular that CB has order type § . Claim: B = fs(ﬁ) = fth_element
of C_ : First, EB(E) > B is obvious. But also,

£ (R) = sup £, (B) < sup v, < B .
B 5<B 8 5<B [
(Here, the equality follows since B is a limit ordinal, the first inequality,

since B ¢ W , and the last, since B c C .) Thus, the Claim is proved, but we now

have a contradiction, as B ¢ Céf\x -3 . -

The combination of (ii) and (iii) above shows that « is weakly inaccessible,
and must moreover be of very high order in the weak Mahlo hierarchy. «k is k-weakly
Mahlo, and using the normality of I , we can kecep going a long way further in the
hierarchy by diagonalization. (Of course, the same phenomenon obtains for k-com-
plete ultrafilters over a measurable cardinal x , and in fact for the Hi—indes-
cribable filter (see the end of §4).). Since we shall see that possibly « 5_2” .
this is about as much as we can ask.

It is to be remarked that just as Ulam[1930] was already able to establish
combinatorially that a measurable cardinal is inaccessible, he showed that (in the
present-day terminology) a «k carrying a k-saturated ideal is weakly inaccessible.
The stronger results that we now know ultimately owe their origin to the infusion
of model theoretic techniques into set theory. It }s a tribute to the fecundity
of Ulam[1930] that the Qevice introduced to prove the initial k-saturated ideal
result has become a standard tool in combinatorial set theory, nowadays known as
Ulam matrices. This must surely be the first example of an idea introduced in the
context of large cardinals readily seen to be of general applicability 'in set theory.

By weakening the saturation hypothesis, the possibility that there could be a
K++—saturated ideal over x+ was conjectured for scme time. Then Kunen(1974)

established that if a very strong large cardinal hypothesis is consistent, then it
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is also consistent that w, carry a mz—saturated ideal (see 517 for a discussion).
The interest in this result lies in the possibility of such phenomena occurring in
the low orders of the cumulative hierarchy, as it had alrecady been known (Kunen
[1970])) that the existence of such an ideal over w, implied the consistency of the
existence of many measurable cardinals.

What about partition properties? Strengthening even further to <k satura-
tion, Solovay proved the following generalization of Rowbottom's theorem on normal

ultrafilters: Suppose I is a A-saturated idcal over k wherec A is a reqular

cardinal < ¢, Then if f: [K]<m s ¥y whero y < k , there is an X ¢ I'* so that

e x1 <

k Just as in Rowbottom's proof, it suffices to establish the above statement

with "<u" replaced by "n" for every n e w . So, proceed by induction:
If n = 1, then essentially f: x +y and if T = (El fhl((E)) ¢ I}, |T| < A
by A-saturation and clearly éz%f-l((g)) e I* .

Suppose already known for n , and assume f: [K]n+1 + Yy where Yy < k., Define
partitions Eq: [x]" + y for every o < x by:

f({alus) if a < Ns,
fu(s) -

0 otherwise.
By inductive hypothesis, let H e I* be such that fu"[llu]n =S and lsul < AL
We now whittle down further. First, let g: x + A be given by g(a) = ISQI.
By tho case n = 1, let K ¢ I* so that |g"k| < A . As A is assumed regular,
sup(g"K) = X <A . For each ae K, let saz x> Su be a surjection. Then de-
fine gE: K+y for every £ <1 by g_(a) = sa(E) . Again, for every £ < x
there are K. ¢ K with K. e I* such that |gE”Kg| < A . By regularity of A ,

if E= "Ke |E] <A .

]
esx 9 A .
Finally, take X = g<X KE F\GQKHG . X e I* by normality, so to finish the

+ .
proof, it suffices to show f"[x]n 1 CE . So, suppose t ¢ [x1“+1, written t =
n
< . The .
{a}Us where « Ns Then £(t) = fa(s) € Sm as s ¢ [HQ] , and as a € g:&KE

we have S CE . 'l
a &

Notice that if k carries a A-spaturated ideal over K for some X < k, by
replacing A by A+ to obtain regularity if necessary (as 2t is still <« ),
the preceding theorem establishes that x is at least Jonsson, and thus o" exists
(by §10). In fact, Solovay showed that in an inner model, Kk is measurable. This

was the first proof of any such result, though we now know stronger structural

theorems along these lines (see §12).
A recent result of Prikry(1974) makes an interesting application of Solovay's
partition theorem, of particular applicability to real;valuéd measurable cardinals:

Suppose I is a A-saturated ideal over 2“, where A is regular and v < A implies

2% = ¢ . Then for every v < Zm, Zv =2 .
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}. We first remark that the non-triviality of I insures that 2% is regular.
Argue now by contradiction, and let v < 2¥ be the least cardinal such that 2; >
2%, In particular, v > % . Simple cardinal arithmetic insures that v most be
regular.

Wwe now employ a standard sort of device for enumerating initial segments of
sets. For each ¢ < v , let fa: Plu) - 2" be injections., Then for arbitrary

al

XxXcv, let Gy 3+ 2% be defined by: Gyla) = £ (XNa) . As 2 is regular,

let px < ¥ with GX"; c px. Surely there is a fixed p < 2* 30 that for some
S ¢ MY with |s] > 2% we have X £ $ implics Py =P -

Let us now define F: (Sl2 + v by F(HX,Y}) = least a such that Gx(a) +
GY(u) . By Solovay's partition theorem, there is an HC S with [Hl = 2¥ and
|F"[H]2| <X. let n= sup(F“lH]2) . As v > 2 and v, is regular, we have
n<v .

We can now derive a contradiction, using the injective aspects of the fu.s .
Given any X 4 Y ¢ H , say F({X,¥}) =8 . Then by definition XMB # YNR . But
g < n, and so also XMn $ YNn . Thus, Gx(n) 4 Gy(n) < p . (This is where we
needed n < v , to insure that n is in the domain of the Gx's.) We have just
demonstrated that different X's in H give rise to different ordinals Gx(n) <p.

Thus, [H] = 2" < p < 2¥ , a contradiction. B

An inspection of this proof shows that we could h.;ve started with somewhat
weaker hypotheses, but they become rather awkward to state. Though combinatorial,
perhaps the peenliar ;int@rplz\y botwnen cardinalg and thoir powers needed for this
result made it of relatively late vintage. We have as an immediate corollary: If

2% is real-valued measurable, then v < 2% implies 2% = 2” . It is well-known

that the same conclusion also follows from Max:tip's Axiom, MA(2"); this is interest-
ing, since MA(2%) is known to contradict the real-valued measurability of 2Y
(see Kunen{1968] or §5 of Martin-Solovay({1970]).

We have cmphasized in the introduction how aspects of the investigation of
large cardinal concepts have led to clarification of standard set theoretical con-
cepts. Perhaps the prime example of this is Solovay's solution of an old problem
of Fodor on splitting stationary scts. To clarify the interplay of concepts, let
us make some definitions for I an ideal over k . If ACK ., I|ln = {x (4 K|
XMA € I}, the ideal generated by JU{k - A} . I is an M-ideal iff whenever
X e I%, so is (a < k| cfla) >w & XMNa is stationary in a } e I%, i.e. I*
is “closed" under Mahlo's operation. ("cf(a) > m'; is thrown in to avoid trivial-

ities.) By a previous theorem, if I is a normal k-saturated ideal over « , then

I is an M-ideal. Finally, NSK denotes the normal ideal of non-stationary subsets
of k , the ideal dual to the closed unbounded filter over x ., Now for Solovay's

result: If «k is a regular uncountable cardinal and A C x is stationary, then

A can be gplit into k_disjoint stationary sets.
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l  Assume that this is not true for some stationary A . Then NS |a is a (non-
trivial) normal ideal over Kk , as these properties are inherited fr;m NS . But
also, by hypothesis on A, NSK|A is seen to be k-saturated. 7o obtain : contra-
diction, it suffices to establish:

1f I = NSNIS for some S 4 I _, then I is not an M-ideal: Assume to the

contrary that I 4is an M-ideal. Since S ¢ I* , it Lhen Follows that M(S) e I*,
i.e. for some C closed unbounded in x , we have CMS C M{(S) . Let C be the
set of limit points of € other than x , so that € is also closed unbounded in
k . Let o be the least clement of SMNC . Thus, CMN¢ must be closed unbounded
in a . Also a € M(S) , so an easy limit argument using cf(a) > w shows that
CNa is also closed unbounded in a . However, (CNa)NS# @ as SMNa is sta-

tionary in a , contradicting the leastness of a . -]

It is true that one can give the proof of Solovay's theorem without first
developing the theory of saturated ideals, and ending up with a specific splitting
of the stationary set. However, there is no denying the historical context in
which the theorem was first proved. Solovay's result has become a standard tool
in set theory for the study of regular uncountable cardinals. It is a good example
of how results on one plane can be proved by mathematical contemplation at a higher
plane., Recent uses of it in foundational studies are seen in the work of Kueker
[1977) and Barwise-Kaufmann-Makkai [1978] in stationary logic.

so, NSK cannot be k-saturated for regular uncountable x . An entirely basic
combinatorial question soon arose as to whether NSK can ever be K"—saturated.
Those who know OK will immediately see that it implies that NSK is not 2*-
saturated. Recent work of Baumgartner-Taylor-wWagonil9?7) sheds some light on the

question. They established: Suppose I is a normal ideal over k . Then I is

+ : < .
x -saturated iff the normal ideals extending I are ‘exactly thoge of form IIA

for some A é .

) +
|- suppose first that I is r -saturated, and let J DJZ be any normal exten-

sion. Let § C P(k) be maximal with respect. to: if A + B both in S , then
Aegd-I and ANBe I . By ' -saturation, Is| < k , s0 write s = {Aul a < k).
Now k - A ¢ I* for each uw<x , 80 A= A (x-A)cC I* by normality. The
maximality of $ can now be used to show that I|A = J, For example, if X ¢ J,
then (xﬁ}\){"ma c AnAa C atl ¢ I for every a < k , so by maximality of s,
XNA € I, i.e. XeIln.

For the converse, suppose that I is not K+-saturated, and let 7¢ P(k) - I
be maximal with respect to: A + B both in T implies AMB e I . We can suppose
|T|_>_x+. Define J by: Xed iff xck & |[{aeT|lxna¢ I} <«

Then J D ITUT . '

J must also be normal: Suppose Y = {a < n<| £f(a) < a} & J . Setting K =
(Ae? ¥NA $§ I}, wehave |XK| >k . For any A € K , by normality of I there
is a y, <k so that Aﬁf-l({yn}) § 7. Then for some K g K with |K| > x and



a fixed y < « , we have A ¢ K implies vy = Y, - This demonstrates that £ lt{y )
$J .

Finally, observe that if A § I , we have J § I|A : This is so since by
maximality of 7 ., there ig an A ¢ I so that ADA § 1 . But then A ed , yet
Ad IIR by definition. -

Notice that the proof of Solovay's theorem showed in particular that no M-
ldeal is of form NSKIA for any stationary A C « . Baumgartner, Taylor, and
Wagon were led to define a cardinal « to be greatly Mahlo iff «k carries a

normal M-ideal. (Sec also Glvede(1973].) Thus, the above theorem has the corol-

lary: If « is greatly Mahlo, then NS is not K+-saturated. Weakly compact
cardinals are greatly ﬁaﬁlo, siAéé the ;%-indescribable filter is dual to an M-
ideal, and the greatly Mahlo cardinals below a weakly compact cardinal in fact com-
prise a stationary subsct. However, greatly Mahloness is inevitably & large cardi-
nal property, and so we still know very little about the possible :+-saturation of
NSK for accessible: k . Although we had mentioned that Kunen(1974) proved the
consistency of the existence of a normal mz-saturated ideal over w, from a very
strong large cardinal assumption, his ideal was not NSm . That strong hypotheses
which impose some distinctive character to weakly inacceésiblc cardinals decides
basic combinatorial questions about them for which cumparaple facts are virtuanlly
unknown for successor cardinals is a noteworthy circumstance.

For recent work on the combinatorial theory of ideals, we refer to: Baumgart-
ner-Hajnal-Maté[1975) (for results on another question of Fodor: if [Sal w < v}
are stationary subsets of-a regular uncountable « , are there stationary Au c su
s0 that o % B implies that AurﬁAS = { ?); Taylor(1977) (for a general structural
approach to Fodor's question making important connections to the theory of regqular-
ity of ultrafilters); Jech-Prikry(1977) (for applications to powers of cardinals);
and a forthcoming paper of Baumgartner, Taylor, and Wagon on a theory of (non-tri-
vial) ideals and partitioms.

We conclude this section with an early relative consistency result on satura-
ted ideals, due to Prikry[1970). First, the following lemma of Silver is of inde-

pendent intereat: Lemma: If I is a A-saturated ideal over x _and A _is a

regular cardinal < x , then given {X | a < A} subsets of k of I-positive
s i - - N

measure, there is a K C A_with |K| = A so that RS +0.

F Arque by contradiction. Then for each § < k , we have 8 = sup{a < A|

[ xa) < A . If we then set EE = {8] s;=¢& } for each £ < A , the Eg's

partition k into A parts. Thus if T = (£ < A Eg § I}, then |r| <X by

A-saturation, and the usual argument establishes é;& EC € I* . However, choose

any £ so that supT < € <A . Then (X_ (\é#T EE) must have J-positive meca-

sure, yet it is empty--a contradiction. -
Prikry simply noticed that: If I is a A-saturated ideal over k with A a

reqgular cardinal < « , and if P 1s a A-c.c. notion of forcing, then in any

167

generic extension through P , I generates a (non-trivial) A-saturated ideal:

F In any generic extension V[G] , I generates the ideal T = (X ¢ VIGINPI(xk) |
XC Y for some Y ¢ I } . We want to establish itsg non-triviality and A-saturation
For non-triviality, we need only check k-completeness, and the argument is

rather standard: Suppose y < x and p IL T: Yy > f . For each a < y let Q be

a maximal family of mutually incompatible conditions so that for oach q ¢ Q
(a} q extends p , and (b) there is an xq € I such that q |F T{a) = x‘ Since
|Q | <« A <k by the A-c.c, of I, we have Y, = L){xqf 969 ] I Thus also
&QY € I and it is now straightforward to establish p “- Uty c ¥ .
For X-saturation, suppose p |F (t: X + P(K) & Range{t) consists of pair-
wise disjoint sets) . P =
o 3 ] ets) or each o < A , set 2, = (£] q |- € e v{a) . for some q
extendin .o i it i
i S p hen it is clear that p [l t(a) g}za - If it is true that for a
a < A, za e I , then we are done. Thus, assume by way of contradiction that
z, ¢ I for every a < A . By Silver's Lemma, there is a K c X with |K| =
such that n e J;kzu for some n . However, by definition of Zu , there are ¢
extendin fo 3 *
. g p r each a ¢ K , so that a, F n e tta) . clearly (qu| aes}
consitute a collection of A mutually incompatible conditions, a contradiction of
the A-c.c. |

The general form of Prikry's result can be used to advantage. TFor example, if

we start with a measirable cardinal «k , and force with the usual g -c.c. notion
of forcing for adding « subsets of w , we get a model M where t;ere is a
w;-saturated ideal over (the new) 2* . we can also perform a further W) -extension
to arrange Martin's Axiom, ua (2 ), to hold. (For this last extension, the usual
way of forcing ma(2”) needs that M satisfies: 2" is reqular and whenever
v s 27 < 2 | But this is true in M either by the initial forcing construc-
tion for getting M , or by a Prikry result presented ea}lier.) Thus, Con(ZFC &
there is a measurable cardinal implies Con(ZFC & MA(Zw) s 2% carries a w_-sat-
urated ideal)., The point about including MA(2“) is that it is known to coitra-

dict the real-valued measurability of Zw (Kunen[1968]). Hence, to get P to be
real-valued measurable, some care is needed in the forcing construction (sce §24).
Recently, Laver has investigated fdeals with stronger saturation Proporties,
If I is a (non-trivial) ideal over x |, say that I is (A,p,v)-saturated iff
whenevoi S ¢ P(k}) 1is a collection of )\ subsets of I-positive measure, th;;;
is an S § with |§] = u so that: whenever T7cS and |7| < v, then N7 stjil)
has J-positive measure. Laver(1976) established for example that if a measurable
cardinal exists, there is a forcing extension in which there is a (2w,2w,m)-5atur-
ated ideal over 2" . Laver goes on to show that the existence of such an ideal
implies (for those who know the terminology) that 2% + (2w,u)§ for every a < u

This was formerly known to follow from the real-valued measurability of 2¥ (Kunen)
but Laver s construction is generally appl;cable, and works to get, for instance
'

(2 “1 /2 l,w )-saturated ideals over 2 ! and 2 “ s (2 l,u)g for every a < w,

t
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he next section is devoted to producing a strong converse to Prikry's rela-
tive consistency raesult; we shall see that espousing certain ideals necessitates

having faith in measurablility.

§12. Precipitous Ideals

we bring together in this sec;ion several ingredients which will then produce
inner models of measurability from ideals with sufficiently strong properties. The
first example of such a possibiliiy was the initial result of Solovay proved in the
mid-sixties (sce Solovay[1971]}, to which Prikry's relative consistency result of

the previous section was complementarys: If A<k and I is a normal )-saturated

ideal over k , then k _is meagurable in LII). Solovay's proof did not provide

much information, and Kunen(1970] considerably improved the result by using itera-
ted ultrapowers in conjunction with another idea of Solovay to establish: If I is

a K+—saturated normal ideal over « then in_ L{I], JINL[I] is maximal and hence

dual to a normal k-complete ultrafilter over « . Finally, Jech and Prikry isola-

ted a property of ideals even weaker than x+-saturation which seems just what is
necessary to carry out Kunen's argument. This property precipitated during the
spate of activity spurred by Silver's result in 1974 on the Singular Cardinals
Problem (see §29). The property turns out to have rather ncat combinatorial char-
acterizations, and moreover can even be satisfied by the ideal of non-stationary

subsets of w This section deals with this whole development.

First, ii is a significant remark that our trcatment in §8 of Kunen's tech-
nique of iterated ultrapowers was actually a special case of his general scheme.
Xunen saw that to take iterated ultrapowers of an inner model M via an ultrapower
I/ , it was not even necessary to assume that U € M , as long as an essential iter-
ability condition was imposed on U , tying it closely to M . This was an impor-
tant technical generalization, and the insights gained in this richer formalism
ultimately led to the results of §10 as well as of this section.

Following Kunen, if M is an inner model of ZF, call U an M-ultrafilter
over k iff U is an ultrafilter on the Boolean algebra P(x)MM so that: (a) U is
M-k-complete, l.e. whenever Y < k  and <Xu| a <y>€eM sothat ecach xu [/ .
then J? X, € ¥ ;: and (b) U is M-iterable, i.e. whenever <Yu| a<xKk>eM,
then (uT Yu e VU )eM. Thus, it is not assumed that UeM. k may not pe a
cardinal (in V), but it will be the case that M F v is weakly compact. (This
can be established by showing «x -+ (K)g in M , using conditions (a) and (b) and
imitating a standard ultrafilter proof of Ramsey's Theorem.) There is a sort of
convarse: If P(K)NM is countable and M E « is weakly compact, then there is
an M-ultrafilter over x . (Construct an M-ultrafilter of form U.B E{Fn where
each F" e M is, in M, a k-complete filter generated by « sets, and m < n
implies Fm c Fn . Since there are only countably many "conditions” to be met, an

adroit use of weak compactness in M will provide an inductive construction of the
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Fn'a which will assure that U satisfies (a) and (b).) The point is merely that
the existence of an M-ultrafilter is consistency-wise much weaker than measurabil-
ity.

With any ultrafilter on P(x)MM , we can construct an ultrapower of M by
using only those f: k *M so that f € M . The condition (b) is just what is
needed to carry out the iteration of ultrapowers. The point is that for any M-ul-
trafilter U over «x , the product ultrafilters U" can be defined: For U2 ,
we would like typically X c 2 iff X e Pk x ©)NM & Ty = {«|(B] <a.B> € X}
€ U} e U, but for this we need Tx ¢ M , something that is assured by M-iterabil-
ity. It can now be checked that U? also satisfies the M-iterability condition,
and so we can define Y3 g'P(Ka)F\M such that U3 = U x Y2 in the appropriate
sense, and so on to get every Un . The entire construction in §8 can now be car-
ried out with appropriate modifications. (Indeed, this was the original formula-
tion of Kunen(1970].) Set:

v)' Fn (1) = (£ ¢ Fna(x)| f has a finite support y so that £ e M }.

(vi)' P (M) = {x e Pa(K)l X has a finite support y so that X_ e M }.

(vii)"’ Uu s {X ¢ Pu(M,K)l X has a finite support y with |y| = n, 8o that
xy c " ).

These can now be used for the definitions of the iterated ultrapowers Ult (M,V)
and embeddings iaB . When U * M, these definitions can no longer be carriedaout
within M , but in any case structural facts like 8.4. still hold. The isomorphism
result 8,5. must be recast somewhat; since we do not assume U e M , ¥OG(U) no
longer makes any sense. We can however define the appropriate "outside” version:
say x e 0@ iff x e PG ) Nule () & if X = (£] , then {s ¢ %]

f(s) e U ) e Uu . U(u) turns out to be a Ultu(M,U)-ultrafilter over iOQ(K)' and

8.5, goes through with iOu(U) replaced by U‘“’ . 'wWhen all the Ultu(M,U) are
well-founded, 8.8. (except for the inappropriate (v) and (vi)) holds as well as 8.9,
(with cardinalities and cofinalities calculated in V only).

What about well-foundedness? Condition (a) in the definition of M-ultrafilter
is too weak to guarantee the well-foundedness of ultrapowers, since there could be
infihite descending sequences outside of M . It turns cut that to impose on an
M-ultrafilter the additional condition that all its iterated ultrapowers are to be
well-founded is to bolster its consistency strength from that of weak compactness
to something at least on the order of the existence of 0# . Indeed, Kunen had an

initial characterization of the existence of 0“

as equivalent to the existence
of an L~ultrafilter U so that all the Ulta(L,U) are well-founded. Later, it was
realized that only the first ultrapower Ultl(L,U) need be well-founded because of
the uniformity of L ; the characterization of 0” in 510 can be construed as a
restatement of this fact. It is interesting that, reminiscent of 7.4., Gaifman had
essentially already established that if U is an M-ultrafilter, then Ult (M,U) is

well-fqunded for all a« < wy iff Ult (M, U) is well-founded for all a . In

BN
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practice, however, the following sufficient condition is more useful {this attests
to a recurring phenomenon in mathematics: one often proves much more than one

needs to prove!): If an M-ultrafilter U has the property that arbitrary counta-

ble intersections of its elements arc non-empty, then all the ult (M,U) are well-

founded. {(The proof proceeds much is for B.6.)

The second ingredient for our scheme is the notion of a generic ultrapower,

first ugsed significantly in Solovay[lé71]. (With the emergence of the two power-
ful techniques of forcing and ultrapowers, it was porhaps inevitable that they
should be amlgamated!} Musing over saturated ideals, with the paradigm of measur-
ability in mind Solovay wanted to construct some sort of ultrapower to establish
strong reflection properties. He devised the following scheme: given an ideal I ,
one can oxtend (the dual of) I generically to an ultrafilter, which can then be
used to take an ultrapower of the ground model. Hopefully, this process would
carry the imprint of strong properties initially imposed on I .

Let us attend to the details. (The whole technique is given general exposi-
tion in the recent Jech-Prikry(1977), to which we refer.) Fix a (non-trivial)
ideal I over a cardinal k . To I corresponds a natural notion of forcing,
which is essentially the Boolean algebra P(x)/I minus the zero element, con-
strued as o partially ordered set: Define R{I} to be the notion of forcing
with subsets of x of I-positive measure as conditions, with the specification:

X i& a stronger condition than Y iff {X) < (Y] (iff X - Y ¢ . Suppose nhow

that G is an R(I)-generic filter over V , considered in this context as the

ground model. Then in V(Gl, G is a (non-principal) V-k-camplete ultrafilter on

P{k)N\V such that GNI =@ .

F For instance, to establish V-x-completeness it suffices to show that if v < «

and Kk = u%qu is a partition of « so that <x;| @ <y >¢ V, then there is an
a so that X ¢ G . However, pecause I is k-complete, D = {Y ¢ P(x) - T |
YC xa for some & < Y } is dense in B(I), and so the V-genericity of G assures
the result. The other clauses are evident. 4
It may be that G e V ; for example, I could be a maximal ideal in which
case G is just the dual ultrafilter. However, the case that really concerns us
is when I does not have an atom, clse we know (from §1!) that «x would already
be measurable in V . Indeed, applying a baslc precept of forecing, when I is

atomless, G g v (gtherwise, (P(x) - I) - G would be dense in R(I) , a contradic-

s -

tion).

Let us continue. In V[G], we can construct an ultrafilter of V with G,
using only those f: x =+ V sd that f € V . Let us call this (possibly ill-found-
ed) ultrapower the generic ultrapower, and extend our notation Ultl(Y,G) to
denote it, even though it is not clear how to iterate ultrapowers as G may not
satisfy the V-iterability condition. 7

There is a fine point tﬁat should perhaps be made explicit. We intend that

mnm

tl 3 Cd e 'ithi :
w construction of Ultl(V,G) be carried out within VI[G], but it is not generally
true that the ground model is even definable in a generic extension. However

there is a familiar device available: one simply adds a new name ¥ to the fore-
ing language, specifying that for any term 7 and condition p , p |- 1 ¢ V iff
for any g stronger than p there is an r stronger than g and an x ¢ V so
that r |- v = X . (In Boolean terms, ([t & VN =xit=%7 | x . v 1.) Thus,
we forcibly make the ground model V a class in generic extensions, and so in our
particular case Ultl(V,G) can be defined from V. and G entirely within VI(d].
As always, the crucial question with respect to the possible infusion of large
cardinal techniques is whether the ultrapower is well-founded. Solovay's basic

. : s +
realization was that: If I is a k -saturated ideal over « , then we have that

K |FR(I) vlt, (V,) is well-founded. (Here, as always, G is the canonical name
in the forcing language for the generic filter.)
F Since x is the weakest condition in R(I) , the conclusion is just saying
that in any generic extension the generic ultrapower is well-founded. Let us argue
by contradiction and assume for some condition X that X ”- "<t ]I new?> is
a4 . : bt " n

an e-descending sequence in Ultl(v,gp'. In particular, for each n ¢ w ,
x |- T, € ¥ . By the formal definition of V we can suppose that for each n ¢ w
there is a set wn of conditions all stronger than X , maximal with respect to:
(a) for each Y ¢ wn there is a function [: e V such that Y "- T = E&

o ) n n
(b) YNZ e I for distinct Y,Z ¢ wn, i.e. wn consists of pairwise incompatible

: and

conditions.
+
B ~ :
y x ~-saturation, we must have |wn| <« for each necw . By a familiar
strategem from §11, we can then suppose that the elements of each W_ are pairwise
- - v s n
disjoint. Let us define a function fn € V with domain x by: f_ = fY onYeW
. n n n
and arb =¥ 3
arbitrary elsewhere. Then surely X IF L En' for every n e w , by a typi-
cal forcing argument using the maximality of W .
n
Eft T, = {a < k| £aple) < fn(c) } for each n € w . Then by assumption
X |F Tn € G for every n € w , which by definition of generic object means that
X i tr -
is a stronger condition than T i.e. X Tn eI . Thus, X N QQ Tn must
still have I-positive moasure, but any element in this set gives rise to an infinite

e-descending sequence, and hence a contradiction. -

It was this result that Kunen used to get inner models of measurablility. Jech
and Prikry observed that simply the conclusion of Solovay’s result is enough to
push through a variation of Kunen's argument. Thus, they designated: a (non-tri-
vial) ideal I over «k is precipitous iff «k ”—R(I)Ultl(v,g) is well-founded.
One feature of Kunen's argument was that he started with a normalized K+—saturatod
ideal I over x, and indeed shows that in L(J] the dual to INL[I) is a Aormal
ultrafilter over x, It is not known that if there is a precipitous ideal, then there
is a normal one. Jech and Prikry realized that x can still be proved to be mea-

surable in an inncr model, and we shall see how the proof can incorporate Kunen's



172

version.

Precipitous ideals thus precipitated out of an examination of method. The
concept is best defined in torms of its original meta~mathematical motivation, but
once isolated, it was seen to have some rather neat combinatorial characterizations,
For one, whenever I is an ideal over « and S C« is of I-positive measure,
say that W is an I—gartition of 5 iff WCP(S) - I is maximal with respect to:
YAz ¢ I for distinct Y,Z € W . For two I-partitions W and W of § , write
W< W iff any wember of W is a subset of some member of W. Then I is pre-

cipitous iff whenever 5 C k 1is of I-positive measure and W, > W > W, ... are

I-partitions of S , there exist xn € wn for every n € w S0 that xo o) )(l D oeee
and Q xn + # . Actually, there is a game theoretic characterization which in
some sense is more natural than this one—see §27.

Wwe shall now proceed to establish through several steps the main result of

this section (see Jech-Magidor-Mitchell-Prikry{(1977)): If there is a precipitous

jdeal I over x , then k is measurable in an inner model.

2 First, let K = {v| v is a strong limit cardinal with cf(v)} > x }. The
salient property of the class K is that for any inner model M and U an M-
ultrafilter over k all of whose iterated ultrapowers of M are well founded,
the corresponding embeddings have the following properties: (i) 10\) () = v for
every v £ K, and (ii) ioy(v) =v for any v ¢ K and Y € v ., These facts fol-
low from 8.9. (ii) (iv), remembering our earlier remarks about their generalization
to M—ultrafilters. Fix for the duration of the pracf an inereasing Requence
a= <)\n| new> of cardinals An € K so that Ixﬂlnl = Xn , and set A = sup An.
We first show that L{a] is uniform enough that:

Step 1. There is an Lla]-ultrafilter U over k so that all the ultrapowers

ult (L[a),y) are well-founded.
_ W

Let id: k + k be as usual the identity function on k . By precipitousness,
there is some S of I-positive measure and an ordinal y so that S ||- (fa] =

in (the well-founded) Ultl(V,Q) . Set
U= {xcPlxyNLlal| xNs ¢ I'} .

We want to establish that { is an ultrafilter on P(k)MNLial, and so we Claim:
whenever X ¢ P(k)L[a), either XNs e Tor S - x'c I . This is the main idea of

the proof. By precipitousness, we can already procure enough knowledge of a well-
founded ultrapower in one condition S so that 'S bécomes an atom for I , >ac
least for sets in .a stable inner model.

To establish the Claim, we first show that every X € P(k)NL[a]l is definable
in Lla] from a finite subset of xUKU{a). This is just like the Definability
Lemma of §9: Let A be the elements of Llal so definable, so that A=< Lla]. If
i is the transitizing isomorphism, since ‘|Kr‘|).n| = )‘n for every n , ifa) = a

so that i: A= Llal. But Kk C A, so i is the identity on k . Hence -i(X) =X
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for X e P(x)NL[a)., so that X e A, which is what we wanted to show.
Let us proceed to establish the Claim. Suppose that X ¢ P(x)NL{a) so that
XNs % I . We want to show that S - X e I . Let jC‘ be the name in the forcing

language for the natural embedding of V into the generic ultrapower. Since
- gt ~,
(xNs) |F X e 6, by Lo§® Theorem (xNs) |- y = [id] € J x) . By the previous

paragraph, there is formula ¢ and a finite E g kUK 8o that X = {f < K| L[a]l-
¢$(E.E,a) }, But any condition forces jG(E) = and jG(K) =¥ by 8.9.(ii) and
the definition of K , so: - -
~
a

xNs) - (wiE Foéty,Ean.

But the statement forced here is a standard one of V , which in fact is absolute
between models containing a . Thus, L(a] |= ¢(y,E,a) , and therefore any condi-
tion forces ¥y € jG(‘}f) . Hence, S |- tial =vye jGGE) so that 5 |- X € G. This
just means S 1is a stronger condition than X, ie. S ~XelI.

We have thus established that U 1is an ultrafilter on P(x)NL[al. ThatV
is L[a)-k-complete is immediate, as I is x~-complete. Let us next turn to the
Lla)-iterability condition., If F: x » Llal , we want to check that {a < Kl
F(a) e U } ¢ L{a) . But by our work above, S [- f{a < k|F(a) € J} = {a < «|

v
ye jE(P(n))) . However, any condition forces: (a < k| y e jG(F(a))) =

fal v & jG(F)(u))r\x I3 jGu?) € Lij5 (2] = LIZ] . Thus,

s |Flo<x| Fla)ed} e nidl .
By absoluteness, this just means that the forced statement holds in V . We have
thus established that U is an Lla)-ultrafilter.

The preceding argument is due to Kunen, but augmented by Jech and Prikry in
the relativization to a condition § . The remaining steps are due entirely to
Kunen. Let ¥ be the filter over ) generated from the sequence a , i.e. X e F
iff XxXCA s :m»hpn(km € X) . Hence, L(F] c Llal. Properties of the U found
above are used to establish:

Step 2. F is a strong filter, i.e. in L[F], F = POLIF) is a noxrmal ultra-
filter over X , and hence L{F] is a A-model.

For any a < $8 , let iuB: ult (L(a] Yy > UltB(L[a],U) be the usual embedding.
We first establish some facts about 100 when a < A . It is then the case that
iOu()‘n) = )‘n for every n so that a < An . as An ¢ K . The point is then that
the filter P is essentially preserved by i[m : whenever X is a member of
P(MNLlalNUlt (Llal.¥) ., then X e FNLla] iff X e iy (FNL{al) . Thus, the
middle equality in the following sequence can be checked level by level in the

usual generation of a relatively constructible universe:

1, WD = iy @IFNLEal) = Ll el a0« nr o @ - uim
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secondly, notice that whenever n < m < w , since Xn, xm € K , we have:

(a) A" = loxn(ﬂ) is the critical point of iln*m by 8.8,.(i); and (b) anAm(A")
= i)\nlm(lmn(“) = imm(uc) - Am .
We can now use these facts to establish that in L{F], F is a normal ultra-

filter over A . For example, to ostablish normality assume to the contrary that
{a <\ fa) <a)eF yet {a <) f(a) =n ) ¢ F for any n< i, and £ € L[F]
is the least (in the canonical well-ordering of L{F]) with this property. Since

f is thus definable in L[P), the important point is that ius(f) = f whenover

a < B <A by the penultimate paragraph. By assumption, there is at least one

n € w so that f(xn) < xn . Then for any m > n ,

f(hn) = ilnkm(f(ln)) by (a) above,
= ixnxm(f)(lxnxm(ln))
= f(Am) by (b) above.

Thus if n= f(kn), surely {a < A| £(a) = n} € P, which is a contradiction.
The other requirements for F can be similarly cstablished, or the proof can

be completed directly as follows: 1f k = u%%xn is a partition of x g0 that

§<r and < |a<8>cLFl, lot Ec ASALIF] be defined by £(5) = a iff
E e xu . Then {a < Al £(a) < a} ¢ F, so by the previous paragraph there is an «

so that Xu e F .

step 3. There is a k-model.

This is estabiished by pulling back the A-model L[F], using some facts about
the i0a.s' Let H be the (proper) class of ordinals fixed by iOQ for every
a <A . Let A~ L[F] the Skolem Hull in L[F] of H . Finally, let t: A =T
be the transitization. First of all, xUI{A} g B . Yet, if k < 8 <X, then
8 4 H . (For example, if we set g = least a so that iOG(K) > B, then B < io;(s)')
Hence, for such @ ., we have B # A , as any sct definable from ordinals fixed by
an iOu must itself be fixed by iOu . It follows that t(A) = x , and so by
elementarity T is a k-model and we are done. ‘ 4

The main result is established; therc is some k-model. Kunen had noticed the
very special nature of a normal ideal, which in the present context can be cast as:

If I is a normal, precipitous ideal over k , then in L(I), INLII] is a

maximal ;deal and hence dual to a normal ultrafilter over Kk .

F We outline a demonstration of this, which amounts to tracing normality through
the steps of the previous proof. First,in the proof of Step 1, when I is normal
we can take S = k and y = x , so that U= (P(x) -~ IDNLial . This U would
then be a normal L[al-ultrafilter (in the appropriate sense: if f € KK(\L[a] and
{a < k| £(a) <a } e U, then for some n<«x , f{ac< k| £{a) = n} € V). Then

Step 3 is augmented with the following argument. U is also a normal T-ultrafilter
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since t fixes every a < x and so TMP{k) = Lla)JNP(x) . Let j: T+ Ulr (P,U)
be the usual embedding. Taking U(u) as defined earlier in this section in czn-
nection with M-ultrafiltersand assuming X ¢ U, j(X) ¢ U(A) By normality of [
the L?:?a just before the Strong Filters Theorem of §9 holds with ioa(U) replaced
by U

lence, j(X) is in the constructing ultrafilter for the A-model, and so by elemen-

. S0 thus we can assert j{X) ¢ § , where ( 1is the cardinal filter over A.

tarity X is in the constructing ultrafilter for the x-model, which is T . Since
X was arbitrary, U 4is the constructing ultrafilter for the k-model, which is

what we set out to prove, 4

It is not true that all preciplitous ideals I over g vyield maximal JNL{I]
in L{I]l. Wagon(1975) gave a characterization of those that do, assuming that the
k-model exists.

As discussed in §11, it is still unknown whether the ideal of non-stationary
subsets of wl can be wz—saturated. Jech-Magidor-Mitchell-Prikry(1977) gives a
proof of: Con(2ZFC & there is a measurable cardinal) is equivalent to Con(ZFC &
Nsm1 is precipitous). Mitchell had noticed that the dual of a normal ultrafilter
over x generates a normal precipitous ideal in any generic extension by the Lévy
collapse (see 618) of x to w, - Magidor was then able to make a further forc-
ing extension to make a normal precipitous ideal the NSml of the extension. This
involved shooting through new closed unbounded sets, iterating a standard forcing
technique for generically adding closed unbounded subsets of w, (see Baumgartner-
Harrington-Kleinberg[1976]), and essentially used the fact that a Lévy collapse
had previously been carried out. It turns out that w; is not a typicality here,
but a speciality; adding closed unbounded subsets of v > wy involves difficulties,

so it is not known for example whether Nsw2 can be precipitous.

We have ridden on a train of thought that started with real-valued measurabil-
ity and developed through saturated ideals, and have now come to an actual equicon-
sistency of measurability with the existence of a certain ideal over wy. The ideal
essence of measurability has precipitated, and it was found to be intimately bound
up with well-foundedness of ultrapowers.

§513. Soma Remarks on Ultrafilters

We comment in this section on how large cardinal concepts have impinged on the
theory of ultrafilters, (For a good secondary reference hereabouts, see the book
Comfort-Negrepontis(1974]. We remind the reader that all ultrafilters are to be
non-principal.) A basic relation used in the study of ultrafilters is the Rudin-

‘Keisler (RK) partial ordering on ultrafilters defined as follows: Suppose U is

an ultrafilter over I and V is an ultrafilter over J . Then V < U iff there
is a function f: I +J so that £,(U) = V , where f£,() = {xcJ| £1x) ¢ v}.
Thus, Scott's normalization process in SZ’Qas simply a canonical way of relating

to any k-complete ultrafilter U/ over k a normal ultrafilter ¥ < U . As usual,
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there are the derived relationships: U =V iff U<V and V<U; and V< U
iff V<U yetnot ULV M.E. Rudin proved Rudin's Lemma: U = ¥ iff V < U

and whenever f£: I - J go that f (U) = V , there is an X ¢ U so that flx is

injective. This gives a rather clear picture of the RK ordering: maps between
index sets induce the ordering, and an equivalence class under the ordering con-
sists of those ultrafilters which are generated by one-to-one relabelings of the
index sets.

There is an extensive, attractive theory on (non-principal) ultrafilters over
w 1 thoy comprise a collectlon of objects which can be identified with BN - N
(where BX is the Stone-Cech compactification of a topological space X and N
is traditionally w with the discrete topology), and after all,BN is the simplest
non-trivial example of a Stone-Tech compactification that one can study. Since
these ultrafilters are just the "w-complete” ultrafilters over w , one would
expect the study of g-complete ultrafilters over x in general to have definite
analogies and yield similar dividends; see Kanamori[1977] for such a study with spe-
cial attention to distinctive features when «x > w ., like the use of the closed
unbounded filter. Both the cases x = w and k > w turn out to depend heavily
on additional set theoretic assumptions beyond ZFC.

A development in the general study of ultrafilters in which the above cases
naturally arise is the consideration of minimal points'in RK. An ultrafilter U
is RK-minimal 4iff there isno V< /U . This notion is certainly well defined
for RK equivalonce cla‘sgofz and so in looking at RK-minimal ultrafiltexs U we can
without‘léss of ganerality assume that U is over a cardinal, say «k , and more-
over that U/ is uniform. (This last assertion is justified since we could always
have considered instead [ = {xr\y|'x € U) where Y e U is of minimal cardinality;
U = U by Rudin's Lemma.)

The first thing to notice is that if U is a RK-minimal, uniform ultrafilter

over « , then U is x-complete, and hence « is w or a measurable cardinal.

(Otherwise, we can get a X < x and a partition u%&xu =k so that each X du.
Then if f: x » A is defined by f(§) = a iff § € X , we have £, (V) < U.) Thus,
RX-minimal ultrafilters are already quite special. Xunen[1970a] probably had Row-
bottom's partition theorem for normal ultrafilters in mind when he established the

following attractive characterizations:
i

Theorem: The following are equivalent for a,uniform ultrafilter U over K :
(1) U is RK-minimal. '
(ii) U is selective, i.e. whenever f ¢ "x so that f-l({E})* U for
every £ < x , there is an X ¢ U so that flx is injective.
(iii) ¢ is quasi-normal, i.e. whenever {X“| a <kl ¢l | there is a
Y elU so that n < { both in Y implies C € xn.
(iv) vy is Ramsey, i.e. whenever f: [k]2 + 2, there is an X € U homo-

geneous for f .,
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F (i) + (ii) is almost immediate from the definitions, using Rudin's Lemma
above.
(1ii) + (iv). Given f: [k]12 - 2, for each a < k there is an i < 2 so
a

that X = {8 < x| £({a,B}) = i} e U. surely there isa Ze U andan i< 2 so
that (a < xliu =i}lelU. Let YeU be as in quasi-normality for the family
[xal a <k}, Then YNZ e U is homogeneous for f .

(iv) » (i). Suppose f (U) = V < U, where f£: x + OR., Then define g:(x]% + 2
simply by g({w,B}) = 0 iff f(a) = £(B) . Let X c U be homogeneous for f . If
g"[x12 = (0) , then "X = {y)} for some ¥ < k , and s0 (Y} ¢ V contradicting
the non-principality of V . Thus, g"[X] = {1} . Clearly flx is one-to-one, so
by Rudin's Lemma V = U .

(ii) »+ (iii). This is really the only non-trivial part, and we have saved it
until last. So, suppose (Xal a <k} g U. Using (i) + (ii) and the comment just
before the theorem, we can assume that U is k-complete, and hence that a < 8 < g
implies X, ;?xB « Also, if Q?xa ¢ U , this set can be taken as our desired Y ,
so without loss of generality assume § = k - CPXG e U.

We now use selectivity to thin down to the desired set Y . Define £: S + x
by f(f) = least a such that ¢ ¢ xu . £ cannot have any constant value a on any
set in U as xCI € U, so by selectivity there is an S C S with S e U so that
fls is injective. Now let g ¢ “¢ be any strictly increasing function such that:
g(aj > sup{&| £ ¢ S & £(§) < a). This is possible since £|S is injective, and x
is regular (as ¥ 1s k-complcote). Finally, define h ¢ “y by iterated applica-
tions of g , i.e. h{(0) = 0 , h(a+l) = g{h(a)) and at limits y , h(y) = goe h(a).

We can certainly partition « into ordinal intervals with p ¢ e by:
p(E) = a iff h(a) < E < h(u+tl) . By selectivity, let T e U so that p|T is
injective. Let T ¢ I/ consist of alternate elements 6f T . (This is possible

since if {6 ] £ < k) is the ascending enumeration of T we can take T to be

‘either [65| ¢ is an even ordinal < k } or (65| € is an odd ordinal < x } , which~-

ever is in U .)

Set Y =SNT ¢ I/ . We claim Y is as desired. Indeed, let n < { both be
in Y . By our construction of T , n < g(a) < gg(a) < for somea <Kk . As g
is increasing, g(n} < gg{a) . So by definition of g , we have £(Z) > n, i.e.
Cex  as required. 4

Wwhen k > w , we could also have added U = N for some normal ultrafilter ¥

over Kk , by Scott's original normalization idea, and (iii) above. Normal ultrafil-

ters over k > w are in fact the unique representatives of their RK equivalence

classes: If N‘ = N2 are both normal, then l.’l - N2 » The characterizations (iii)
and (iv) are particularly interesting, especially for k = w . These are indeed
aspects of normal k-complete ultrafilters over x > w which are immutable under

permutations of the index set. However, when k = w , we cannot have actual
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normality, essentially becausc there are no limit processes taking place boelow w,
what does remain is the near approximation (iii) to diagonal intersection and, of
course, tho nice Rowbottom aspect (iv). It is certainly not unreasonable to say
that these properties for ultrafilters over u emerged through the study of mea-
surability. With CH or even MA(2Y) an inductive comstruction of a Ramsey ultra-
filter over w is possible. Kunen[1976]) firat showed that it is consistent with
ZFC that there are no Ramsey ultrafilters over w . In 1977, strong versions of
this result were established by Miller, and particularly by Shelah, who constructed
a model of ZFC without even p-points in its fN - N , solving a well-known topolo-
gical problem.

In any case, we have seen that for k > w whenever [/ 1is a k-complete ultra-
filter over y there is an RK-minimal one < { , namely a normal one. Another

pleasing aspect of large-cardinal-type ultrafilters is the following result of

Solovay: The RK orxdering on ml—complete ultrafilters is well-founded.

F For each n g w let Un be a w,-complete ultrafilter over index set In, and

1

for n <m let £ : I -+ I such that fmeW) =V, and £ of Thus

on = fom -

cedlly 2 Uy < Uo . We must show that U v, for some n, and for this it cer-

tainly suffices by Rudin's Lemma to est:;iish that for some n , fn,n+llx is
injective for some X ¢ Un .

Congider an equivalence relation = defined on &0 by x =y Aiff there is
an n so that f0n(x) = fon(y) . Pix one element in each equivalence class as a

ropresentative, and for x ¢ LO saot f(x) = the least n such thatr f n(x) =

[}
fon(r) and r = x is the representative of the class of x . By ml-completepess
there is an n such that X = {x ¢ IO| £(x) =n)e U0 . Then it is simple to see
that f_ _ is injective on £ "X ¢ U_ . 4
n,n+ on i

One begins to see how imposing strong hypotheses on ultrafilters introduces
nice new structural features into a known framework.
We now briefly look at hypotheses on ultrafilters weaker than w,-completeness.
puring the period of initial preoccupation in model theory with ultrafilters in the
"sixties, Keisler formulated several related concepts: An ultrafilter U is
(x,A)-regular iff there are X scts in U any «x of which have cmpty intersec-
tion, An ultrafilter (/ is A-descendingly incomplete iff there are [qu a < A}

chat a Nx = Lx
C ¢ so that a < B < X implies X, 2 Xﬁ , and u<Axaf @ . An ultrafilter I} ovexr
an index set I is A-decomposable 1ff there is a pdrtition I = d?kyu into
JE%YO tu.
Thus, an ultrafilter ¢ over 1 is \A-decomposable iff there is an £:I + A

disjoint sets ¥ = so that whenever S C A and Is| <&,

so that £, (U) is a uniform ultrafilter over ) . Straightforward arguments estab-
lish that: (a) A-descendingly incomplete is equivalent to cf())-descendingly
incomplete; (b) w-decomposable is the same as w-incomplete; (c¢) A-decomposable
implies A-descendingly incomplete, and (@) the converse holds if 1 is regular.

A-decomposability can be regarded as a more general notion than A-descendingly
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incompletoness, since the former can be distinctive for singular A . Finally,

observe that if U is (g,)\)-regular and v is a regular cardinal so that

<v <A, then U is v-decomposable.

U(xalygu<vl for every Yy < v . Then YYcU and Yy < & <v implies

L4
k Let (xa| a <X} CV such that any x of them has empty intersection. Set
Y
Y

YY 27Y, . Finally,

N Y = yovu(xul y<a<vl=s Ul Nx |t e ¥y and f(a) > a for every a < v),

Y<v oYy a<v f(u)
and this last union is the union of empty sets, by the regularity of v and
kK £V . Thus, YCL YY = @ , and this finisles the proof by comment (d) above. 4

Regularity is a measure of width for ultrafilters, studiéd in general after
an initial use was made in giving an ultraproduct proof of the Compactness Theorem.
sufficient regularity assumptions on ultrafilters yield ultraproducts of large
cardinality and model theoretic universality (see Chang-Keisler(1973],4.3.). Note
that for every X there is a (w,A)-regular ultrafilter over A . (Instead of A
itself, for convenience we take P\ = {x ¢ Al x| < w} as the index set: Set
A = {x ¢ Phk[ aex) for every a < A , and define S = {Au| a<\A). S has
the finite intersection property, and any extension of $§ to an ultrafilter over
wa will have S witnessing its {(w,A)-regularity.)

Regularity anq decomposability can be regarded as hypotheses ahout the oxist-
ence of nice scalings for ultrafilters, It was somewhat unexpected that their
denials turn out to be properties of lurye caxdinal character. The first inkling
of this was in Chudnovsky-Chudnovsky[1971], which showed for example that if there

is an ultrafilter over a regular uncountable k which is v-indecomposable for

arbitrary large v < x , then «x is w-weakly Mahlo.

Prikry(1973] then carried out a more systematic study, having discovered a
way of incorporating some aspects of the theory of normal ultrafilters over a mea-
surable cardinal. Let U be an ultrafilter over a cardinal x . f e "k is
unbounded (mod U) iff (& < x| £(£) >a el forevery a<x . fe " is a

least function for U iff £ is unbounded (mod U) but there is no g unbounded

fmod U) so that (€ < x| g(§) < £() } € U . Finally, U is weakly normal iff
the identity fuction k + k is a least function for U, i.e. if {a < Klg(a) < a)
e U, wo have [(u < Kl gla) <y ) e for some y <k . Without k-completoness,
this is as much of normality as we can hope to achieve., Clearly, if f is a least
function for U then £, {(U) is weakly normal. Of course, if U is a wl-complete
ultrafilter, then there is a least function for U . Somewhat unexpectedly, Prikry
established that with some weaker indecomposabiltiy coaditions on U and some power
set hypotheses, U can also be shown to have a least function. Thus, a weak nor-
malization of U was possible, and this opened the door to some interesting struc-
tural theorems reminiscent of the formalism attendant to normal ultrafilters over

a measurable cardinal.
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Stronger least function results were soon forthcoming. Kanamori(1976] estab-
1ished: Suppose ¢ is a uniform ultrafilter over a regular cardinal ¢ . (a) If
k=", then y is mot (A,k+)-regu1ar iff there ig a least function f for U
so that {a < k| cf(f(a)) = A }J ey . (b) If U is not (w,v)-regular for some

v < k , then there is a least function for I/ . Ketonen's ideas figured prominently

here, and in particular (b) was proved by him independently. {b) subsumecs Prikry's
result alluded to earlier. Least functions were thus firmly established as a pos-
sible feature of ultrafilters which may not be wl-complete. It is questionable
whethear these‘results about irregularity could have ever been formulated without
the experience of measurability.

A direct road to large cardinals was paved when some ingenious ideas of Silver
[1974] were imaginatively combined by Ketonen[1976) with a restricted ultrapower of
the Vopé&nka-HrbiZek type (see the end of §3) to yield: If there is a weakly normal

ultrafilter bver a regular uncountable cardinal k which is not (v,k)-regular for

any v < k., then 0# exists. Jensen (in Jensen-Koppelberg(l1977)) saw how to

amend the argument with definability considerations to establish: If there is a

<
weakly normal ultrafilter over a reqular uncountable cardinal » and 2 K w K

then.. Oquexints.

It has not yet been shown that in L overy ultrafilter over a regular cardi-
nal A is (w,\)-regular, though the various results ‘above come rather close. So
far, Prikry{1971) established that in L every uniform ultrafilter over w, is
{w.w,)-regular, and Jensen amplified the argument to show that in L , for every
n ¢ w every uniform ultrafilter over w is (w,wn)—regula:. Then Benda (in Benda-
Ketonen{1974]) discovered a clearer argument for achieving these results. Nothing
is known in L about regularity or decomposability for uniform ultrafilters over

'

w, or indeed any singular cardinal.

Benda's argument has actually become widely applicable in the study of requla:-‘

ity; it is a kind of argument using what in combinatorial set theory is called

almost disjoint transversals. We illustrate it , and the sort of possibilities

with weak normality that we have been talking about all along, in the following:

If U is a weakly normal ultrafilter over a regular cardinal ¥ > w which is
4

not (v,k)-regular for any v < k, then: if T = {a < k] P mat Ve , then

X +
2" =k .

F It should be kept in mind that a weakly normal ultrafilter is in particular
uniform, since the identity function is unbounded modulo the ultrafilter, Through-
out the proof, we shall use the shorthand £ < g (mod ) for {a < k| £(@) < g(a))
el.

Argue by contradiction, and suppose {x£| £ < K++) are distingt subsets of «.
For eiih aeT, let woz 2% a+ be an injection. Define fE: T + ¢ for each

£ <k by: fE(u) = ¢u(x5(\a) . Then {£€| £ < «*}  constitute «** functions

which are eventually different on T, i.e. whenever § 4 E there is a Yré <k so
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that a e T - vep implies fg(u) + EE(Q) .

Now observe that there must be a EO < K so that if g = fr . then f. < g
(mod U) for at least K+ many €'s. By a sultable relabeling, we ;gn agsgume ¢
fE < g (mod y) for each §£ < K+. Since gla) < u+ for each a ¢ T, there must be
injections o,* g{a) + @« for each a € T. Now define 9. T+ x for & < K+ by

g (f_(a}) if E_(a) < q(ttf '
ga(m) = { a’g £

0 otherwise.

We can now apply weak normality. Since each gE is regressive, there is a
pE < k #o that (o < KI qE(a) < pE) € / . By a cardinality argument, we might as
well assume that OE =p < Kk for every E < x+. Also, in what follows, we can
assume furthermore that p is a cardinal. (For this, let t: p =+ |p| be injec-

tive, and define: é
_ t(gg(m)) if gE(a) <p ,
g {(a) =

£ g, (a) othexwise.

Then the ag's are bounded by |p](mod¥), and it will be seen that they can be
used in place of the ge's in what follows.)

We again cut back: There is some ;1 < x+ so that if h = gE, then gE < h
(mod [/) for at least k many E’s . Again, by a suitable relabeling we can assume

gE < h (mod U) for each £ < x . Finally, define YE for & <k by:
&-{u<n|u>swhdlg<ﬁ) & f (@) <gl@ & ggla) <hia) <p ).

Each YE ¢ U , oo by the denial of (p,r)-regularity, le¢l S C Kk 80 that |S| >p
and a € é;gyg for some a . Then by tracing through the injections and using
eventual difference, we find that (gE(E)l £ €S ) comprise p different ordinals

all < h{a) < p . This is a contradiction. -

This theorem is a typical example of reflection phencmena that one begins .to
expect for large cardinals. As mentioned in §2, the prototype of this sort of
result is due to Scott, with "U is a normal ultrafilter over x" replacing the
weaker hypothesis on U above. It was this type of least function argument that
led Silver to his solution of most cases of the Singular Cardinals Problem (see
§29), See also Jech-Prikry(1977) for many related results about saturated ideals.

of relative consistency results, Prikry[1970] had established (via Prikry for-
cing on a measurable cardinal) the consistency of the existence of a uniform ultra-
filter over a singular cardinal k of cofinality w , which is v-indecomposable
for @ < v < k » Then more recently Magidor (1977), using a variant of an argument of

Kunen, established (see also §17): Con(2PC & there is a huge cardinal) implies

Con(2ZPC & there is a uniform, weakly normal ultrafilter over w, which is not (wywy) -

regular). Whether there can be a uniform ultrafilter over w; which is not (m’wl)'
regular is still a prominent open question. Magidor also established (see also §14):
Con (ZFE€ & therxe is a cardinal ¢ which is,é‘-superccmpéctl implies Con(ZFC & therxe

is a uniform ultrafilter over Yt which is v-indecomposable for w < v < ww), and
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also the analogous conclusion with o '
"

Just as saturation of ideals can be considercd a weakening of measurability

replaced by W, o

where p-completeness is retained but ultrafiltration is no longer assumed, irrequ-
larity and indecomposability of ultrafilters can be regarded as weakenings of mea-
surability where ultrafiltration is retained but w) -completeness is no longer
assumed, That real-valued measurability led to the former concept and model theo-
retic ideas led to the latter are interesting developments in the flow of history.
k-completeness rather than ultrafiltration is the stronger hypothesis; it can be

shown that: (i) If I is a normal k-saturated ideal over k , then any extension

of the dual filter to an ultrafilter U is a weakly normal ultrafilter which is

not (v,k)-regular for any v < k . (ii) If in addition I is v-saturated for

some regular v < x , then U will be v-indecomposable. Closer connections between

saturation and irregularity are established in Taylor(1977). It is remarkable how
so many aspecés of measurability, even in such weakened strains as irregularity,

have spread across the canopy of set theory.

183

IV. LARGE LARGE CARDINALS

§14. Supercompactness

We now embark on a study of axioms of infinity stronger than measurability.,
The atmosphere becomes at once rarefied, as we leave behind the considerable ela-
boration of measurability in the previous chapter, and study global principles
based on gross features of elementary vmbeddings. Realizing that most of the strong
reflection properties of measurabkf cardinals can be culled from the Closure Lemma
(§2), in the second half of the 1960's Reinhardt and Solovay formulated several
principles by imposing strong closure conditions on the range inner models of ele-
mentary embeddings. There was already a principle stronger than measurability
known, that of strong compactness, but somehow its elementary embedding formulations
were not very malleable. So, a crucial closure assumption was added by Solovay, in
the spirit of "what if we also know this?". Then all the desired fruit, suddenly
ripened, were easily plucked, and appropriately enough the new concept was dubbed
supercompactness. Initially, it was thought that the new closure assumption will
eventually be shown to follow fram strong compactness, but it is now known that
supercompactness and strong compactness are not the same concept. The emergence
of supercompactness is a good contemporary cxample of the discovery of new princi-
ples through the formal investigation of set theory.

Much of this section as well as this whole chapter follows the exposition of

Solovay-Reinhardt-Kanamord [1978), which we henceforth refer to as SRK. Let us

(re}activate some definitions. The notation 9: Vv + M signifies that i 1is an
elementary embedding, not the identity, of the universe into an inner model M. The
critical point of such a j 4is the least ordinal & such that j{a) > &« . When

U is an w,-complete ultrafilter over I , we denote by jU: v+ MU = VI/U the
corresponding elementary embedding of the universe into the transitive isomorph

MU of the ultrapower by U . Finally, [f]u denotes éhat element of HU corres-
ponding to the ultrapower equivalence class of f . (The subscripts U will often
be dropped when clear from the context.)

In the study of elementary embeddings, it will be the case that several pro-
perties can already be rendered by embeddings into ultrapowers. Mo}eover, these
have concrete features which aid their investigation; for example, as in Paris®
proof in §10 they fix a stationary class of ordinals. Further characteristics can
be discerned:

Generalized Closure Lemma: Suppose U is an wy~complete ultrafilter over a

set I, j = ju , M= MU , etc.:
(1) If j"xcM and yCM is such that |y| < |x| , then yem.

) 31t ¢
(1i1) U ¢ M.
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[— (i) is proved just as the Closure Lemma of §2 is, by producing a g so that
in M, [g) is a function with domain j"x and range vy .

For (ii), let [f] ¢ M be arbitrary. If A= {ic 1| |[E(1)] < |1]} c ¥, we
can certainly find an e € |I|+ - UffW)| i e A ) . Thus, j(a) § [£) . If B =
{1 € 7] |£()| > |1] } e U , we can certainly define an injective function h on
B so that h(i) € £(i) for every i ¢ B . Thus, |h]l ¢ [f], yet h is not con-
stant on any set in U . Hence, in either case we have established that [f) +
sz

For (iii}, assumc to the contrary that {f c M . It follows that P(I) C M and
II C P(I x I) Cc M. Note that for any ordinal a , jla) = the order type of {[f]]|
fela }. Thus, 3"|I| € M, since j"|I| is just the collection of such order
types for o ranging over ordinals below |I|, and can be properly defined in M
as UeM and ‘1= (D™ By (i), it follows that M is "closed under Jz]-
sequences”, and in particular 1t = (I|I|+)M. Using this, we can now show

similarly that j“(|I|+) e M, contradicting (ii). -

(i) is an important structural fact about ultrapowers; if |x| = ) there, we
simply write AM C M to indicate that M is closed under the taking of arbitrary
A-sequences. (ii) and (iii) (which in a special case has already been seen in 8,7,

(ii)) impose limitations on the breadth of ultrapowers. ,Perhaps they can be inter-
preted as saying: whatever ultrafilters seem to be capable of, they are still only
sets.

(ii) says for a k-complete ultrafilter U over a meapurable cardinal k that
MU is not closed under k+-sequences. The following concept, formulated by Solovay
seems the proper generalization of measurability: If k <A, «k is A-supercompact
iff there is an elementary embedding j: V + M so that:

(a) J has critical peint x and j(x) > X , and
(b) AM cM. . ’
« is supercompact iff «x is A-supercompact for all \ 2K .

Here, (b) is the crucial closure assumption, implying in particular that M
contains all sets hereditarily of cardinality < A . Comparison with the analogous
characterization of A-compactness (see §15) will indicate the strength of (b). In
(a) . the addition of j(x) > A is merely to be more defin:ltt:e; in any case, whenever
j:+ VvV + M with critical point x so that A
these same properties, and j"(x) > X (Kunen[1971): follows from §17). Note that
k is k-supercompact iff k is measurable. It will shortly be shown that if k is

MC M, then some nth iterate 3" has

ZK-supercanpact, then «x 1is already the kth measurable cardinal.
Let us now turn to the task of getting a characterization of A-supercompact-
ness which is more concrete. If j: V+ M is as in the dofinition of the A-super-

compactness ©f «, the lemma above suggests considering the following ultrafilter:

- XelU iff 3"X € j(X)
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We now embark on a short course of discovery: First, what is an index set for y 2

Let us remember the notation PI = {x¢g 1] x| < v} . wote that since [§"A] = A

< jlk) in M, j"r e (Pj (K)j()\))M - MHence, P A c Y, and we can consider this
set to be the underlying index set for ¥ . We can also check that ¢ has the
following properties:
(i) U is a ¥-complete ultrafilter.
(ii) For any a€ X, {x|] aex)e V.
(Lii) If £ is a function defined on a set in U sdo that [x| £(x) e x}
€ U, then there is an a e A so that (x| £(x) = a) ¢ U .

By (i) and (ii) if y ¢ PKA . (x| ycx) c V. For a proof of (iii), note
that if J(£)(3"2) € 3"x then F(£)(j")) = jfa) for some ae A
designate:

Definition: If « < A

« Let us now

¢ an ultrafilter U over PKA is normal iff it
satisfies (i), (ii), and (iii) above. More generally, an ultrafilter ¢ over
PKI, where I is any set, is normal iff it satisfies (i), (ii), and (iii) with
A replaced by I . Finally, without reference to «x , an ultrafilter U over
P(1) (i.e. U c PP(I) ) is nommal iff it satisfies (ii) and (iii) with A
replaced by I .

Hence, an wy-complete ultrafilter ¢ over P(I) is normal iff [id]U = jU”I
where id: P(I} + P(I) is the identity map. To anticipate a possible source of
confusion, we remind the reader that the index sets of these various ultrafilters
consist of gubsets of a given set I , not its elements.

Just as in §2, we now take an ultrapower of the universe: Let U be a normal
ultrafilter over PKA and congider the canonical j: V -+ M = VP”A/U . We have:

A
(a) MCM: This follows from ({id] = j'A and (i) of the Generalized

Closure Lemma.

(b) «x 1is the critical point of j and j(k) > A : We have
] [x] <x) evso [(da]] = [3*A] < 30c) . But [3°A] = A in M, since M is
closed under A-sequences.

We have established: If k<A, then x is A-supercompact iff there is a

normal ultrafilter over PRJ\ . Thus, A-supercompactness is equivalent to the exist-
ence of a certain set. This reduction by Solovay makes possible many structure
theorems, and introduces a new and interesting set, PKA « The following observa-
tions-are also due to Solovay: If U is normal over P‘A , the;xz (a) M,  is

<K
actually closed under A\ "-sequences, and (b) if F: P(A) + A is defined by F(x)

= gub x , then there is an X ¢ U such that le is injective. See SRK for

proofs,
We shall seon see in several typical arguments how supercampactness is a strong
reflection property. In abstract form we can formulate this as follows: for any

transitive class X , say that L, (respectively, II,) relativizes down to X iff
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whenever P(.) is L (Respectively, nn), if a € X and P(a) holds, then <X,e>
 P(a) . Note that I relativizes down to X iff I . does. According to
Lévy [1965], if |VG| = § , then Kl (and hence JI,) relativizes down to V . We

have the following result: If x is supercompact, I, {and hence M,) relativize

down to V _:
-——-——————K—

F Suppose P{x) 1is dyQ(x,y) where Q is N . Let ace vK so that P(a)
holds, and fix b such that Q{a,b) holds. By supercompactness, let j: VM

with critical point « 8o that bc MMV, This is possible by previous remarks,

I3
by taking a j corresponding to A-supercompactness for o A suffiliciently large.
Note that 3j(a) = a . Thus, (vj(x) k P(a) )M since Iy formulas are preserved
under restriction. It follows by elementarity that VK F P(a), as desired. 4

§16 contains a corresponding result for extendibility. Certainly, a more exact,
level-by-level analysis of the preceding result could have been given in terms of
A-supercampact&ess. However, it is typical of the global postulation of supercom-
pactness that we do not want to tie our hands beforehand, though any particular
application will of course only use A-supercompactness for some A sufficiently
large. A related result of Magidor([1971) establishes a characterization of super-
compactness as a second-order Ldwenheim-Skolem property. Finally, we give an illus-

trative corollary, interesting in its own right: If k <X , K i3 a-supercompact

for every a < A , and ) is supercompact, then x is supercompact.

} By the characterization of supercompactness via normal ultrafilters, the hypo-
theses certalnly show that VA k k 15 supercompact. Now "x is supercompact" is a
nz property of x , again by use of normal ultrafilters. Hence, by the previous

result « (really) is supercompact. -

It is possible to establish this result by a' level-by-level construction of
normal ultrafilters; see 5.8. of SRK. Note that this corollary shows in particular
that the I, sentence "there is a supercompact cardinal” does not hold in VK if
¢ is the least supercompact cardinal. Hence, I, was optimal in the penultimate
result.

The new notion of normality turns out to be the natural generalization of the
familiar one. In particular, there is a one-to-one correspondence between normal
ultrafilters over P‘x and normal ultrafilters over «k : If V is normal over K,
U= {X¢c PKK| XMk ¢ V } is normal over PKK . Conveggely, if U over PKx is
normal, then ¢ ¢ U: If not, then {x ¢ PKKl x is not an ordinal } e U. For such
x , let £{x) € x be so that f(x) is the least above some ordinal not in x . By
normality [f] = j(y) for some y < x , but this contradicts x] ycx} el ..

pDetermining the number of normal ultrafilters possible over a measurable cardi-
nal has turned out to be an interesting problem, a focus for the intréduction of
new methods. We saw in §9 how Kunen established that if U is normal ultrafilter
over x . then UNLIy] is the only normal ultrafilter in L[] . Kunen-Paris[1971)
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showed (see §24) that if x is measurable in the ground model, there is a forcing
extension in which « carries the maximal number of normal ultrafilters, i.c 22K
. 1l.c, .

Then Miltchell([1974| showed that if k is 2K-supercompnct and T

+

! ! ls < k or one of
the terms «x or x , then there is an inner model in which «

is measurable and

carries exactly 1 normal ultrafilters. (Mitchell's models were described at the

end of §9; he has recently succeeded in getting a version of the result from just
strong compactness.) It is still not known whether one can get Mitchell's conclu~

sion starting from just the measurability of k . In Mitchell's model with exactly

two normal ultrafilters over k , one contains the sel (a < k| a is measurable)

and the other does not; in this regard, consider the next two results:

. K
Theorem: If x is 2 -supercompact, there is a normal ultrafilter U over k

so that {n < k] a is measurable} e U . Hence, k is the kxth measurable cardinal

} Let j: V + M with critical point « so that M is closed under 2K—sequences
If Y is defined by:

Xel iff XCk & ke jiX),

then ¢ is a normal ultrafilter over «k , as can easily be verified (recall §2).

But since M is closed under ZK—scquences, it is not hard to see that cvery ultra-
filter over x is a member of M . Hence, Kk ius measurable in M ¢ doe. {a < K|
a is measurable} ¢ ¢ by the definition of U . -|

Theorem: Any measurable cardinal «k carries a nommal ultrafilter U so that

{a_< k] a is not mweasurable ) e U.

F By induction. Let V¥ be a normal ultrafilter over k . Set T = {a < k] a
is measurable} . If T ¢ ¥V , we are done, so assume T e V . For each u‘e T
.

by the inductive hypothesis let Ua be normal over « so that (g < u] B is not
measurable} ¢ Ua . Define U over «k by:

XeU iff (a<K|xﬁueUu)eV.

This "fusion” of ultrafilters is then a normal ultrafilter over k as can easily

be checked, and moreover {a < x| a is not measurable} ¢ V . 4

The preceding results show that if x is ZK-supercompact, there are at least
two normal ultrafilters over k . In lact, there are 22K normal ultrafilters over
x , and this is a special case of a general result on the number of normal ultra-
filters over PKA . See SRK for proofs; the reflection phenomena in these proofs
are so strong that, rather paradoxically, the following question is still open: If
x is 2K-Bupercompact, is it provable that there is more than one normal ultrafilter
over k containing the set {a < x| a is not measurable) ?

One can already well imagine the strength of supercompactness as a structural
principle about the existence of a multitude of embeddings. Given this view, it
is notable that supercompactness can be given characterizations which have a com-

binatorial flavor (see Magidor[1974) and DiPrisco-Zwicker(1977)). We should also
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mention here that Menas[1975) has investigated partition properties for normal
ultrafilters over PKA in analogy to Rowbottom's result for normal ultrafilters
over a measurable cardinal; the interesting thing here is that not all normal ultra-
filters over PKJ\ may possess the partition property.

Many of these results hinge on a combinatorial study of PKA initiated in

Jech([1973]. Jech in particular formulated the following “two cardinal" versions

of well-known concepts: Suppose k 1is regular and A > «x . An X gPK)\ is closed
iff whenever y < k and (XCI E<y ) C X so that £ < E implies xg C x- ., we
have EL<JYxE ¢ X . (Jech's original definition was slightly more complicated, but

equivalent to the one given.) An X C PK). is unbounded iff whonever vy € Px)‘ ,
there is an x ¢ X so that y C x . Finally, an 5 g_PKA is stationary iff
SNC $ @ for every closed unbounded C C PA .

For any Y ¢ PKA , the set ({x ¢ PK)‘I yc x} is closed unbounded. Jech estab-
lished that the intersection of < x closed unbounded subsets of PKA is still
closed unbounded. Thus, the closed unbounded subsets of PKX generate a k-complete
filter. Jech also proved that this filter is normal in the following sense: when-
ever {(x e PKA| fF(x) ¢ x } 1is stationary, for some ¥ < X , [x ¢ PK)\| f(x) = y }is
stationary. This 1s certainly an interesting development. A’ closed unbounded
subset of PK)« can be collectively considered a close .'approximation of A through
< K cardinality sets, with some attendant apparatus. (See Kueker[1977] for an
implementation in model theory.) We hasten to remind the reader that the idea of
PKA arose directly from the fount of large cardlnal theory,

On the one hand, Pn)‘ has an engaging appeal as a generalizing concept. On
the other hand, without a natural well-ordering, it is much more difficult to work
with, and many easily stated combinatorial problems remain unsolved. One crucial
difficulty from the standpoint of large cardinals is that if U is a normal ultra-
filter over PKA , then this property does not relativize to UNL{U) e L[] . This
of course is because PKAF\L[U] may.be comparatively small (¢ompare: for any ordi-
nal a , aNL[Y) = e trivially). Thus, unlike for measurability no natural inner
models for supercompactness seem to immediately suggest themselves. ’

In forthcoming sections we shall see the efficacy of supercompactness, espe-
cially in the establishment of relative consistency results, some of which are known
to necessitate a hypothesis stronger than the existence of many measurable cardinala
The weaker concept of strong compactness, though p‘r:o‘}.i(.ding interesting direct conse-
quences (see §15, §21) does not presently enjoy any similar confidence in its consis-
tency strength. We shall clarify the relationship among measurability, strong com-
pactness, and supercompactness in a succeeding section (§26), showing in particular
that strong compactness is a varying concept which does not fit necatly into the
hierarchical plcture. Finally, refer to §16 for further results on supercompact-

ness, including a characterization.
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§15. Strong Compactness and the GCH

As discussed in §3, strong compactness was historically motivated by efforts
to generalize the usual Compactness Theorem to infinitary languages [ . We pre-
sent here the modern characterization of the concept in terms of elemeﬁzary embed-
dings and ultrafilters, the approach which in part inspired the formulation of
supercompactness. In addition, an interesting result of Solovay on the GCH above
a strongly compact cardinal will be discussed.

Definitions: 1f x <X and VU is an ultrafilter over P X\ , then U is
fine iff U is k-complete and for each o < A , (x| o e x } Z U. (Thus, we leave
out the crucial clause (iii) of the definition of normality in §14,) If x < A ,

« is A-compact iff there is a fine ultrafilter over P X . -

Trivially, if k is A-supercompact, then «x is A-cgmpact; and Kk is measur-

able iff x is x-compact. Let us proceed forthwith to some characterizations.

Theorem: If k < A , the following are equivalent:

(i) K is A-compact.
(ii) There is a j: V » M with critical point k so that: X c M and

IX] <A implies that there isa Y c M sothat XCY, and Mk |v| < ji) .

(iii) If F is any k-complete filter over an index set I sgo that 7 ig

generated by < A sets, then P can be extended to a x-complete ultrafilter over I.

E (1) + (ii). Let U be fine over PKA . and consider j: V -+ M & VPK)‘/U . If

X=(If ] acr}cm, set G = (£, (x) wex) and v =161 . Then xg¥,
and M F |Y] < j(x) , by Eo§’ Theorem.

(ii) + (iii). Suppose F is as hypothesized, and generated by elements of
T C P(I), where |’1‘| <X . By (ii) let Y D3"T so that Y e M and M |= |Y| < j(x).
In M, j(F) is a j(x)-complete filter and jF(FINY is a subset of cardinality
< j{k) . Hence, there is a ce¢ M so that c e NGF)NY) . We can now use .this
¢ to genmerate an ultrafilter in the usual fashion: Set X e U iff XC1I &
ce j(X) . It is easy to show that U 1is a k-complete ultrafilter over— I , which
extends F .

(iii) -+ (i). Extend the k-complete filter over PK). generated by the sets

{x| a € x} for o <A to ax-complete ultrafilter. .|

Notice that by (iii) above and a characterization in &3, we have: « is

strongly compact iff k is A-compact for all X > x . The weaknoss of A-compact-
ness which Solovay sought to correct is illustrated in (ii); with A-supercompactness
we can always take X = Y . Ketonen{1972]) gives another characterization: If x < A

are both regular, k is A-compact iff for every regular p such that «x < <A

there is a uniform k-complete ultrafilter over p . This demonstrates a conjecture
of Kunen, and seems to say that finc ultrafilters over PKA are not that hard to
come by. Normality is another story; the following result of Menas[1974]) indicates

that strong compactness and supercompactness are not the same concept.
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Lemma:

(i) If x is measurable and a limit of strongly compact cardinals, then

x _is strongly compact.

'3
(i1) If g is the least cardinal as in (i), then k_is not 2 -supercom-

pact.
l— For (i), let U be a k-complote ultrafilter over «k s@o that A = {a < Kl a

is strongly compact} g U . (This is casy to achieve; if V is any K-completo
ultrafilter over ¢k and f: k + A s an injection, then f, (V) will do.} If
x>k , for ae A let Ua be fine over PuA . Define V, by:

XxeV, iff XCcPX & {al xNPXcy Yev.

Then it can be checked that VA is fine over PKX . .

For (ii), argue by contradiction, and suppose Kk were 2 -supercompact. Let
j: V-+ M with critical point k so that M is closed under 2K—sequences. By
definition of k and elementarity, we have in M that j(x) is the least mecasur-
able cardinal which is a limit of strongly compact cardinals. But M is closed
under ZK-sequences so that k is measurable in M , and also, if o < x is strongly
compact, j(a) = a is strongly compact in the sense of M . This contradicts the

leastness of Jj(x) > x . -'

1t is8 a consequence of the existence of an extendfblc cardinal that there are
many cardinals as in (i) above (see §16). The preceding lemma was the conceptual
beginning point of M‘gnas' [1974]) congistency result on the least strongly compact
cardinal not being supercampact, since subsumed by work of Magidor (see §25).

Of consistency results involving strong compactness, not much is known beyond
Kunen's result, cited in §10, though recent work Aof Mitchell seems to reveal some
unexpected strength. Some interesting direct results, however, are known; the
Vop&nka-Hrbatek result has already been outlined in§3, and a relatively recent
result of Solovay[1974] states in particular that if « is strongly compact. then

2)\ = ).+ for every singular strong limit cardinal A > k¥ .. It is interesting to

observe that the conclusion, for all singular strong limit A , also follows from
the hypothesis "0“ does not exist” by Jensen's Covering Theorem (see §29). Jensen's
result says something about the L-like quality of V in .the absence of large car-
dinal perturbations. Solovay's result, on the other hand, says that a large car-
dinal hypothesis imposes a superstructure on V , whic;'h/then provides new controls.
We now embark on a proof of Solovay's result.‘ A'fter seeing ‘an argument of
Ketonen{1972] for establishing the regularity of certain ultrafilters, Solovay
realized how the argument could be applied to establish: If x <X are regular
and k _is A~compact,. then A<K =) , .
}  Let U be fine over P s oand j: VM= Wry L set (g] = sup{d)]
@ < A-} - We make the following important Claim: {x| g{x) < A & c£(g(x)}) <x Yel

To establish this, it certainly suffices to show that {x| g(x) = sup(xMNg(x))}
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¢ U . If this were false, by definition of g there would be some a < A such
that (x| sup(xMg(x)) <a } e UV . But clearly, (x| aex & a<g(x) }eu,
which is a contradiction. Thus, the Claim is proved.

We now produce certain sets (Xa[ a < A} gV (this was Ketonen's idea in a
similar context for getting a particular family to witness (k,A)-regularity). PFor
avery o« < A let a, €« be cofinal in a of type cfla). Thus, {x| Ing(x)l < k)
£ I/ by the Claim. Inductively define for every < )\ inereasing disjoint ordi-
nal intervals [nu,pa) C A, with Ny < pu < XA, and functions h ag follows:

If defined already for B < a , let n, = sup(98+1| B<al}. Let hu be

defined by: hu(x) = least element of greater than or equal to n  whenever

a
this is possible. hu is defined at leazt(:xln a set in U as j("n) < [g] . Now
[hu] < [g) , so by definition of [g] , let pu = least ordinal > “a such that
[hu] < j(pa) . This inductive definition will proceed through all o < ) as X
is regular. Clearly, for every o <X, X = {x] n, £ hu(X) < e, lev.
Solovay's idea now is as follows: we will find a set S¢C P A so that: (a)
|s| < A ., and (b) whenever y e PKA there is an s ¢ S so that Ky C s . This
will then Einish the proof, since P )¢ U{P(B) [ 8 e S}, and so 1% < Ak < AL
For each x ¢ P\ . set t = {a] x ¢ Xa] = {a} n, < hu(x) <P, } . We show

that s = (t | x¢ P & |a )| <k } works: Firstly, for any x¢ P A , we
x

g{x

have tx € PKA . This is because ha(x) Ea , different a's in t_  pepper

g(x) x
their hu (x) into disjoint ordinal intervals, and |ag(x)| <k . 'Thus, SCP A .
_ ="k
Secondly, if g(x) = g(x) then surely tx = 1:)_‘ » and tince by tho Claim we can
suppose Range(g) ¢ A , we have |S| < A . Finally, let y ¢ P A be arbitrary.
[

Then N X € U by x-completeness h x

NARS ¥ P , so choose same X € (quxan(xl lag(x)| <k}
e Y. Hence yC t’_‘ , and S has all the properties desired. -[

We are now in a position to prove Solovay's GCH result: If i« is A+—canpact
A

and A _is a singular strong limit cardinal > g, then 2" = A+.

} Note first that A = \SE)

for singular strong limit 2 by cardinal arith-
metic, There are now two cases:

£0) 4. ef
22 = ) oM EER) Lt the last equality

Case I: cf(d}) < « . Then
following from the previous result.

Case II: cf()) > x . We here call upon the following important result of
Silver (discussed in §29): if y is singular with cf(y) > w so that {qa < v|
2% = (x* } is stationary in v , then A v+- In the case at hand, S = {gq < A|
a is a singular strong limit cardinal of cofinality < x } is stationary in ) . By

. . +
Case I, o e S implies 2* =a¥ . Thus, by Silver's result, 2)‘ = A+. -i

Silver's result, proved after Solovay's, provides a simplification in Case II
of the original proof. However, the further results in Solovay[1974] on powers of

cardinals cannot ostensibly be simplified in this way.
The scaling on power sets that strong compactness imposes also affects combin-

atorial principles; see §21.
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516. Extendibility

At the same time that Solovay was formulating supercompactness, Reinhardt, a
few doors down the hall at Berkeley, was first considering extendibility. That
such closely intertwined concepts should be independently arrived at in such close
proximity is quite a coincidence. Supercompactness has the flavor of generalization
from measurability, but extendibility reflects more ethereal ambitions. Reinhardt
[1974] motivates extendibility via considerations involving strong principles of
reflection and resemblance formalized in an extended theory which allows transfinite
levels of higher type objects over V . Essentially, OR is hypothesized to be
extendible in this setting. With the natural reflection down into the realm of
sets, we have the concept of an extendible cardinal.

If n >0, a cardinal k is called n-extendible iff there is a ¢ and a
3: VK+n -+ VC
iff «k is n-extendible for every n > 0 .

with critical point k , where «+n < j(k) < § . k is extendible

Thus, we consider embeddings which are sets, but whose range structures have
the ultimate closure property—they are initial segments of the universe. Since
n > ¢k implies K+n = n, the exact form of the above definition is distinctive
only for small n . The condition K+n < j(k) is for definiteness, in analogy
with A-supercompactness; (full) extendibility as a concept is not altered if we
do away with this condition (see 5.2. of SRK), When n < k , it is not hard to
see that ¢ = j(x) +n . Note that in such cases n-extendibility is just a postu-
late of resemblance: with 3j: V , vV and V,

>V,
Ktn j(k}+n 3 3 (k)
able as far as (ntl)-order properties are concerned. Finally, observe that if «

are indistinguish-

is n-extendible and 0 < § < n , then k is 6-extendible: Since the term Va is
definable from a , if ¢ and j are as in the definition of np-extendibility, we
have that )IVK+6: Vers ™ Vg (cap) IS clementary.

l-extendibility is already quite strong: If «k is l-extendible, then k is

measurable and there is a normal ultrafilter ! over x so that {a < KI a is

measurable} e U .

F o oret j: Verr * V50041
Thus U, defined by X e U iff XCk & k¢ j{X), is normal over k , as usual.

with critical point k . Notice that Pk} CV _,,.

Certainly U e v, . 80 V, [ x is measurable, i.e. {a < k| a is measur-

jik)+l Jle)+d
able} € U . .

If K is supercompact, it is consistent that'theére is no inaccessible cardi-
nal > K , since if there were one, we can cut off the universe at the least one and
still have a model of set theory in which k is supercompact. However, suppose
K iy even l-extendible, with j: V +1 + vj(x)+1' Then by elemgntarity jlk) is

K

inaccessible in vj(K]+1 rhence in VvV . Similarly, if « 1is 2-extendible with
Ve,

Vj(K)+2 . by elementarity j(x) is measurable in Vj(K)+2 . and heéce in
V . Thus, the extendibility of a cardinal « implies the existence of large
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large cardinals > k . These considerations begin to show how strongly the existence
of an extendible cardinal affects the higher levels of the cumulative hierarchy, and
why n-extendibility cannot be formulated, as A-supercompactness can, merely in terms
of the existence of certain ultrafilters. (Recall (ii) and (iii) of the Generalized
Closure Lemma, 514.)

We have seen several times how the various large cardinals can be characterized
by aspects of recurring and unifying themes. It was a pleasing discovery of Magidor
{1971] that extendibility can be cast as a direct analogue of strong compactness for
higher order languages. First, the inevitable definitions: By L: wa denote the
nth order logic using I, , L.e. < k¢ conjunction ' L
sentences of I is satzzfiable iff it his a ;ZEZlarzn::iO::z.n ot e

« iff ’ atural interpre-
tation of infinitary conjunction, in the sense of full nth order logic (e.g. if X
is the (first-order) domain, then second-order variables are to range over all of
P(X)}, and is k-satisfiable iff every subcollection of cardinality < « ;;-satis-
fiable. A cardinal k is Ln-compact iff whenever I is a k-satisfiable collec-
tion of L: sentences (with any number of non-logical symbols), then I is satis-
fiable.

Observe that k is strongly compact iff k is L:—compact. {A technicality:

the characterization of strong compactness in §3 shows that [ can replace L )
Kw kK ”

We now establish: k is extendible 4iff » is Ln-compact for every n e w iff
K _is Lz-com act . "
F First, suppose that «k 1s extendible, and assume % is an arbitrary, x-satis-
fiable collection of L: sentences. We can suppose that § 1is coded as a set,

via a Gvdelization where the logical symbols of LE are coded by some eleménts of
V. > Let A >« be sufficiently large so that [z| <} and vy E £ is x-satis-
fiable. By A-extendibility, let j: VA - VE with critical point k and A < Jic).
We have by elementarity that V_ [ 3j(£) is j(x)~satisfiable.

Now note that j"I ¢ J(E) and |3"f| <A < j{k) . Thus, inV_, "I has a
model A , whence A really is a model of 3F"I (in V). However, CR is then a
model of I , since the formulas of j"I are like those of I with at most the
non-logical symbols renamed. Thus, we have established that x is Lz—compact.

To finish the proof, it suffices to establish that if ¢ is L:—compact, then
x is extendible., First of all, it is well known that there is a H% sentence o
so that for any transitive set X , x_k g iff X = Va for some o . (Roughly,
¢ would say that X is closed under the definable function F(a) = v , and that
a "class" which is a subclass of an element is itself an element.) Segondly, there
is a H% sentence T saying that the membership relation is well-founded.

Now let X >k . We seeka L and a j: VA -+ VC with critical point «k so
that A < j(x) . Let I be the union of : (a) {g,t}, (b) the LE theory of

> i :
<Vx,e,x xEVX , using constants c, for x € VA , and (¢) the sentences “da is an

ordinal and dy < dg < c " for every a < B < A, where {d4| a <X is a set of

i
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new constants. By L%—compactness, k 1s regular, being at least strongly campact.
Thus, by a judicious assignment of ordinals < x to constants dn , it is clear

that any subcollection of § of cardinality < x is satisfiable in <v ,clx>x

A cV

itself, A
£ is thus k-satisfiable, and so by hypothesis it is satisfiable. By (a)} we
can suppose that [ is satisfied by a structure of form <VC'E’X’Ya>er ash

i
where Yu interprets da . Clearly, the map j(x) = X is an elcmentari embedding
Js VX -+ VC . L has LK‘ sentences specifying the members of cach x & V'< , 8o by
induction on rank, x ¢ VK implies j(x) = x , Finally, j(k} > XA since (Yul o < A}
congtitutes a subset of j(x)

of order type A+l . The proof is thus complete. 4

This result is an example of a recurring phenomenon: going from first to
second order logic involves a definite strengthening, but there is no further dif-
ference among the nth order versions for n > 1 . 1In the next several results we
shall see how closely interlaced are the local versions of supercompactness and

extendibility.

Lemma 1l: If k is |VK+n|—supercompact and n < k , there is a normal ultra-

filter U over «x so that {a < x| a is n-extendible) ¢ ¥ .

F Let j: V-+ M be as in |VK+n|-supercompactness. Then V € M, since Vr

K+n

. +n
is hereditarily of cardinal < ,vk+n| . Similarly, if we set e = j|V

s @ EM.
K+n
Now in M , e: VK+n -+ j(vx+n) is an elementary embedding with critical point «

and w«+n < e(v) , since this is all true in V . Thus, «x is n-extendible in M .

Define U by: Xe U iff XCk & x € j(X) . Then U is the usual normal

ultrafilter over «x corresponding to j , and {a < Kl ¢ is n-extendible) g U , as

= . 1
Lemma 2: If k is n-extendible and 6&+1 < n , then k is |Vk+n|—5upercom-
pact. Hence, if «k 1is extendible, then «k 1is supercompact.

F Suppose j: V -+ V_ 1is as in n-extendibility.

K+n 4
inaccessible and k+6§ < j{k) , we have IVK+6| < j{k}) . Hence, since &+1 < n so

that P(PKVK+6)Q Ve

Since j(k) 1is (really)

, we can define a normal ultrafilter over PV as usual:
+n K K+6

e - . N
XelU iff j VK+6 c j(X) . |

Note that this rcsult establishes in particular that: If there is an extendi-

ble cardinal, then Con{2FC &' there is a supercompact cardinal). {(Let « be
—

extendible, and X > x any inaccessible cardinal; then VA k K is supercompact.)

The methods of the preceding two lemmas yield a characterization of supercompact-

nesg, noticed in Magidor[1971]: k_is supercompact iff for every mn > k  there

is an’ a <k and a j§: V_+V with critical point Yy so that j(y) = k.
o n
I For the forward direction, fix n > k and let j: V+M be as in the |Vn|-
M
J|V_ s v+ (V,
3l non (J(fl)

supercompactness of k . ) is an
Thus, M f “there is an a < j(k) and

Then just as in Lemma 1,

elementary embedding which is in M .

\
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an eclementary embedding e: va -+ Vj(n) with a critical point y such that e(y) =
j(x}*. The result now follows from the elementarity of j

For the converse, fix n > « and let 3: vu+w+ v for some o < k , with

ntw
critical point ¥y s0 that j(y) =k . As in Lemma 2, since P{(P a) c V N
="a

'
j determines a normal ultrafilter U over Pya . But Yev and so j({U) is
o

a normal ultrafilter overx Pj(Y

‘fhe next result shows that the combination of even l-extendibility with super-

)j(u) = PKn . -

compactness transcends supercompactness: If x  is supercompact and l-extendible,

then there is a normal ultrafilter U over k  such that [a < k| o is supercom-

pact}l e U .
FoLet j: v

Hence, the least supercompact cardinal is not l-extendible.

e+l T vj(K)+l be as in l-extendibility, and let U be the usual

normal ultrafilter over k defined from j . Since j(k) is inaccessible,

Vj(K)+1 F x is §-supercompact for every & < j(x) Hence, A = {a < k| o is

§-supercompact for every § <k } ¢ ¥ . However, by a result in §14 (the corollary
to the "relativizing down" result), since «k 1is supercompact, a € A implies «

is supercompact. 4

On the other hand, the next result shows chat supercompactness c¢an control

extendibility to some extent: If k < A , k_is extendible and A is supercom-

pact, then VA |« is extendible.

g The formula “x is extendible" is L

A is supercompact, by a result in §14. -

» and so relativizes down to VA as

We thus see that the extendibility of a cardinal « can already be compre-

hended in VA . where A is a supercompact cardinal > x , In particular, it
is consistent to assume that there is no supercompact cardinal above an extendible
cardinal. Leapfrogging from large cardinals to larger cardinals, this remark may
serve to allay initia) suspicions about extendibilitQ which might arise from khe
fact that it has as a consequence the existence of proper classes of various large
cardinals.

Finally, the next result is the analogue of a result in §14, from which the

terminology is carried over: If «

is extendible, then I_ (and hence ﬂ“) rela-
3

tivize down to V
K

} Actually, we only use the fact that there are arbitrarily large inaccessibles
A > Kk with VK-< VA - Suppose P{x) is 3yQ(x,y) where @ is I, . Let ace v,
so that P(a) holds, and fix b such that Q(a,b) holds. Let XA > k¥ be inacces-
sible so that b ¢ VA
remark in §14 just after the notion "relativizing down" is introduced.

and VK-< VA « Now N relativizes down to Vy + by a
Thus,

v, E ota,p) . Hence, v, l P{a) , and by elementarity v, F ra) . -

This result is optimal, since by the result before, the Zu sentence “there

is an extendible cardinal” is false in Vk if A 1is the least extendible cardinal.
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All in all, supercompactness and extendibility have many similar features,
especially in the local versions. The characterization of supercompactness given
in this section graphically illustrates how it is a sort of "pull back" version of
extendibility. In the next section we steer suddenly upward, surveying the heights

toward the ultimate inconsistency.

§17. liighexr Principles and an Inconsistency Result of Kunen

We now embark on a course that culminates in a result of Kunen, which will
delimit our further efforts. The way is charted with principles which have an even
grosser character, and appeal less to basic motivating idecas. Once the possible
spectrum was delineated by Kunen's result, at least in one possible direction guid-
ed by our motivations, landmarks along the way were established with principles
perhaps somewhat ad hoc but nonetheless of some interest.

We shall first make an approach to Kunen's result from below, although the
concepts to be initially discussed were clarified only in light of Kunen's result.
This is historically inaccurate and will be less well motivated, but is done to
avoid a dissolution into anticlimax. (Hopefully, this aside will be adeguate to
answer the question: Quo Vadis?)

The following principle first arose in the context of model theory: Vop¥nka's
Principle: Given a proper class of (set}) structures of, the same similarity type,
there exists one that can be elementarily embedded into another.

This is a principle about the comparative richness of proper classes: at least
one member should be injectible into another, while preserving some structure.
Vop¥nka's Principle can also be viewed via Skolemization in terms of universal
algebra. It may not be immediately clear that the principle is a very strong
axiom of infinity at all. Indeed, it was a significant latter-day realization
that the principle was amenable to investigation via large cardinal techniques, and
that it aétually has a natural place in the emerging hierarchy.

One way in which Vop#nka's Principle will differ from our previous axioms is
that it does not ﬁerely assert the existence of a large cardinal with higher order
properties, but provides a framework in which many such cardinals can be shown to
exist, To carry out a study within set theory, we shall consider inaccessible &
s0 that VK l vop¥nka's Principle. The following treatment is from Kanamori[1978)
and 56 of SRK.

For definiteness, let us define a sequence of str;;cuxes <Mu| a <K > to be
natural iff each M = <vf(0),:,(n),Ra> where R C vf(n) ,and a < B <«
implies a < fla) £ £(B) < k . Clearly, we can construc as natural those sequences
where R, is replaced by a finite number of relations. ‘he specification of (a)
in M insures that whenever a < B and j: M + M, is elementary,’ j moves
some ordinal, since j(a) = B . Finally, any sequence <Mu| a < k > of structures

of the same similarity type so that each M, ¢ V. . can be augmented to be a natu-
ral sequence, whenever x is inaccessible.
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We now define, for « inaccessible, a notion of a large subset of x : X c
is Vop¥nka iff whenever qval & < x > is a natural sequence, there is an elemen-

tary embedding of one into another with critical point € X . The following is a
typical definition of a filter relating to a large cardinal (recall for example the

r k §4): v, ;- :
emarks at the end of §4): FK {(x c x| K - X is not Vop&nka} . We have: F: is

a (proper) filter iff V'< l vop¥nka's Principle iff & is Vop&nka. Weo now

L ) v
establishs If K is Vopbnka, FK is a normal g-complete filter ovor K {and hence

contains every closed unbounded subset of K),

F It suffices to show that if (XY] Yy<k)cg F: + then the diagonal intersection

\Y : :
Y= exy € FK + (This is part would also establish K-completeness.)
AY
) Assume to the contrary that Y ¢ F_ . Thus, « - Y is Vopinka.
tion F: (k - Y) -+
E ( ) +x so that F(§) <§ and & 4 Xp(s) - For each y <« , since
XY € Fx . choose a natural sequence <Mz| a < Kk > s0 that:

Fix a func-

whenever there is an
elementary embedding of one into another with critical poeint p , then p ¢ X
Now define a natural sequence <y | a < x > by: v
a
= Y
‘v(! wg(u)mr e, {a}, <M(1| Y <a>, FI(U -Y) >,
where vg(a) is the union of the domainsg of MZ for y < a

- Since by assumption
x - Y is Vop¥nka, let n ¢ (k - ¥Y) so that n is the critical point of a

SIS Ng - Using F , we have that if Y=F(n) <n, then F(j(n)) = JF(n)) =

F(n) =y , as n is the critical point of j . However, we then have that

TO SRR ]
j|MuA Mu = MB is eleomontary with critical point o , contradicting the dullnition
of F . 4

The above result is the case n =1 of a larger scheme in Kanamori([l1978), which
owes a direct debt to Baumgartner([1975). We can now establish: If « is vop#nka,
then {a < x| vk a is extendible} ¢ 7' .
F Define F g KK by: "

s if Vv | & is cxtendible,
F(g) = N
§4n

where n is least so that
v, [ 6 is not n-extendible,
otherwise.
1f c=1{p <xk| Flpsp+p } . then C is closed unbounded. C e F' by the previ-
K
ous result, so let, <ﬁg| @ < x > be a natural sequence so that whenever there is
an elementary embedding of one into another with critical point p , then p ¢ C

Consider the natural sequence <N | a <k > defined by:
o

N =<V ¢, {a}, M. ey, > .

a
where Ya is the least limit point of C greater than every ordinal in tho domain
£f M . i js iti
o ' It suffices to show that if j: NL > NB with critical point ¢ , then ¢
is extendible. Well, assume not, so that F(r) =& > ¢ . Since [ < Y andy ¢ C
: : : Iy o a ’
we have ¢ < Y, by definition of C . So, JIVC: v, >V, is elementary with

£ i)
critical point { . Also, note that [ ¢ C , as ¥, is encoded in N, . Thus,
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jg) € € as CNyy is encoded in ¥, . Honce, § < J(r) implies E=F(g) < J(g).
But if £ = g+n . all these facts show that V L ¢ is n-cxtendible, which contra-
dicts the definition of F . _|

Although ¥ being vopénka is a Illl property of \."c and hence does not even
imply the weak compactness of K , we have thus established that Vop&nka's Princi-
ple implies the existence of extendible cardinals in an appropriately strong sense.
For Further results, including some characterizations, see 6 of SRK.

We now turn to strong principles which should at least have a familiar ring
from the experience of supercompactnuss. Let us first establish some notation which
we intend to be in effect through the rest of this section: If j is some ele-
mentary embedding with critical point X , then we shall set K, =K and for each
integer n , Kn+l = j(xn) if <. ig still in the domain of j , and Ky =
sup(xnl n e w} , again, if definable at all. Notice that, when defined, K is the
least ordinal > ¢ fixed by 3 ., as Jjlk ) = sup{j(xn)l new) =k, . (Of course,
the Kn‘s depend on j , but the j being discussed should be clear from the text..)

We now formulate: If n is an integer, ¥ is n-huge iff there is a
j: V> M with critical point « so that K"M CH . «x is huge (Kunen) iff «x is
1-huge.

Observe that « 1is O-huge iff x is measurable, and K is n-huge implies
Kn is (really) inaccessible. The n-huge cardinals certa‘inly have an analogous
flavor to A-supercompact cardinals, but there is an important difference: While
A-supercompactness is hygo\:hesized with an a priori A in mind as a proposed deqree
of closure for M (and results in X < j(x)), n-hugeness has closure properties
only a_posteriori: M here is to be closed under « ~sequences, how ever large
the Ko turn out to be. This is a strengthening of an essential kind. Indeed,
it is not clear how to motivate n-hugeness as a postulate of reflection at all.
However, we have not left behind everything familiar: n-hugeness can be given a

characterization via the existence of certain ultrafilters: x__is n-huge iff _

there is a x-complete normal ultrafilter U over some P()), and cardinals k = )‘D

A<= A so that for each i < n, {x ¢ Al xO) =AY el . (We use here
that 1f y 1is a set of ordinals, then § denotes its order type.)

I- First, if j: V-+ M as in the n~hugeneus of « , define U over P(Kn) by: -
: o 1,
XelU iff XCPKk)) & 9 L 0.
Then it is straightforward to show that U is normal and k-complete. Also, note

e (e Y = 3% -
that j Knﬁj(lci) 3 Ki Ki

for 0 < i < n , so that we can set Ki=li.

Conversely, take Jj: V -+ M = Vm/U . Then [id] = j"A and M is closed under
A-sequences. Alse, by hypothesis we have for 0 < i <n , '
I = x| x'c A

Map ot -4

= 3"AN) (Ai+1)
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We can also prove the usual sort of hierarchical result: If , is n+l-huge,

then there is a normal ultrafilter U over x so that {a < x| a is n-huge} ¢ U :

F suppoge that j: V -+ M as in the ntl-hugeness of x . Since M ls closed

under « -sequences, M certainly contains the ultrafilter described in the pre-

n+l
vious result for the n-hugeness of g , arising from j . Hence, M |= k is n-huge,
and so we can take U to be the usual normal ultrafilter over x corresponding to

3. -

Finally, the following result will establish the transcendence to the concepts

that came before: If x 1is huge, there is a normal ultrafilter U over ¢ such

that: whenever <M | a < k > is a natural sequence, there is an Y ¢ U so that
@

w < f both'in Y implies that there is an elementary embedding: M -+ M with
— & 13

critical point o .

}- Let j: V + M witness the hugeness of k , and let U be the usual normal
ultrafilter over x corresponding to j . We show that this U works:

Let <Ma[ a < k > be any natural sequence. Claim: If a < Kk and we set
xu = {£ < Kl there is an elementary embedding Mﬂ e MC with critical point a },
then T = {a < x| X, €U } € U . Suppose for the moment that the Claim has been
verified. Then by the normality of U , we have Y = {a ¢ T| (B<a &8 ¢ T imply
a e xB] € U . Clearly this Y satisfies the conclusion, and we would be done.

Thus, it remains to establish the Claim, First, some notation:

j(<Hu| @ < kK> = <M;| a 4 j(x) >

[§

j(<M;l a < j(K)>) <M;’| o < 32(x) >

1]

j(<xa| a < x >) <xa| a < jk) >

Notice that o < k implies M; = Mu . Now for any a < «x , x(x el iff ke (X))
—_— a

iff Ma is elementarily embeddable into M; with critical point « . So, if ’

a < j({k) , by elementarity, Xs € jy iff in M, Ma is elementarily embeddable.

into M‘;?K)

iff in M, M; is elementarily embeddable into M;*(K)

Now jll-{"(: M; -+ M;?n) is elementary. Also, jIM; is just a set of ordered

with critical point a . Hence, T c U iff x € 3(T) iff Xt e W)

with critical point « .,

pairgs of M of cardinality lM;| < j{k) . Thus, since M is closed under j(K)-

sequences, we have le; € M , and the Claim is proved by the previous paragraph. -]

Notice that in the above, surely M ¥= (vK F Vopé&nka's Principle) . Hence,
{a < |<| vu F vop&nka's Principle} € M . Though we have thus established the
comparative strength of hugencss to Vop#nka's Principle, the proof typically shows
much more. In fact, in 68 of SRK are isolated many principles which spread across
from one concept to the other. We mention only one: a cardinal « is almost huge
iff there is a j: V + M with critical point X so that )‘M C M for every
A < j(xk) . This is A,(k) of SRK, and it is there established that the principle
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is equivalent to the existence of a sequence of normal ultrafilters which satisfies
a coherency property.
Hugeness has begun to make itself folt in various ways in set theory. As we

mentloned in §11, Kunen(1974) established that Con(2FC & there-is a huge cardi-

nal) implies Con(ZFC & there is an w,-saturated ideal over w,). Laver then

amplified Kunen's conclusion to:

Con{zFC & there is a (u,.w,,w)-saturated
ideal over ml)(sce the end of §11 for the terminology). The cxistence of such an

jdeal has as a consequence the following polarized partition relation (for those
familiar with the terminology):

(2)-(2).

This shows that it is consistent that the answer to Problem 27 of Erdos-Hajnal(1971]
is no (relative to the existence of a huge cardinal!). Magidor also used a variant
of the Kunen étqument to establish the relative consistency results about weakly
normal, irregular ultrafilters cited at the end of §13. The following significant
result on the Singular Cardinals Problem is also due to Magidor: Con(ZFC & there
is a huge cardinal with a supercompact cardinal below it) implies Con(ZFC &

.y W,
2% u Y vet 2 7 = R for every n ¢ w) (see also §29).

At present, it is unclcar how strong consistency-wise these various propositions
about the lower orders of the cumulative hierarchy are. 1Indeed, hugeness may not be
necessary, but the very fact that some upper bound on consistency strength has been
established is cquite significant, both as a plausibility argument for these propo-
sitions and as empirical evidence about hugeness. After some vicissitudes, Kunen's
result is known to proceed already from almost hugemess. In this regard, it is
interesting that the existence of a wy-saturated ideal over w, implies that
has a property which might appropriately be term "generic almost hugeness”. This
at least suggests the possibility of the converse to Kunen's result, i.e. the demon-
stration of the equiconsistency of the existence of an almost huge cardinal and the
existence of a w,-saturated ideal over wy. Of course, this would make an clegant
and unexpected direct connection betwecn two ostensibly disparate large cardinal
concepts. '

We now discuss Kuhen's result on the inconsistency of a possible extension of
our guiding ideas.  supercompactness and extendibilityrwere formulated with the
realization that strong reflection properties can:be aéhieved by imposing stringent
closure properties on range structures ;f elementary embeddings. In the first flush
of experience with these ideas, Reinhardt speculated on the possibility of an ulti-
mate extension: Could there be an elementary embedding j: V » V ? Notice that by

the Generalized Closure Lemma of §14, such a j cannot be rendered Sy an ultra-
power. Partfal results indicated that Jj would have extremely strong properties,
and then Kunen[1971] was able to prove that there can be no such j , at least in

the theory ZFC. To do this, he used a simple case of a combinatorial result of
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Erdos-Hajnal [1966]. However, we present a proof of the general case, as it shows
in particular that if we allow infinitary operations, there are Jonsson algebras
(see 56) of every infinite cardinality. fThe proof relies on the Axiom of Choice,
and so the result will constrast with certain Choice-less situations which we shall
encounter in which "infinite exponent® partition relations hold (see §28) .

For any set x , a function f is called w-J6nsson over x iff £: “x + x and
whenever y € x and |y| = |x| , then "y @ x ., The Erdbs-Hajnal result is: For
every infinite cardinal ) , there is an w-Jdnsson function over A . The follo;z;;

‘elegant presentation of the proof is due to Galvin-Prikry(1976).

} For the special case )\ = @ , there is a aimple inductive argument available:

Wy w
Let {<xm'nu>| o < 2Y) enumerate (w]® x w. (Remember that [w]® is the collec-

tion of infinite subsets of w.) By induction on a < Pt pick s ¢ Wy so that

sa + sB for every 8 < a and set f(su) = na . Then any extension of f to all

of Wy is w~J6nsson over w .

Suppose now that X > w . Let S be a maximal collection of subsets of A
so that members of S have order type w and are mutually almost disjoint (i.e.
x + y both in s implies xMNy is finite). By the special case above, we can

assum § | ;
e that for each x¢ 8 there is a function fx w-Jénsson over x . Define

now a function g: Yy A by:

fx(s) if the range of s is infinite
g(s) = and s ¢ Yx for some xeS,
o] otherwise.
Then ¢ is well-defined by the maximality of § .
It suffices to find an A g A so that |A| = A, yet whenever BC A and
|a| =), then g"wB DA . For such an A , an w-J6nsson function ove;. A can

easily be derived from g . 50, assume that no such A exists. Then there are

sets A DA DA

’ o 1 2 A, --. each of cardinality i, and a e (@ - A 1) so that
a to AL - If y= {anl n ¢ w}, by maximality of S there is an xe¢ S so

that xMy is infinite. Let xMNy = {ano,anl,...} , where ny <N < ... . Now

t={a ,a ,...}CA . But by definition of fx , there is an 5 ¢ ®t so that

n nz - n]

g(s) = a . Hence a
o "o
We now establish Kunen's result. He actually showed: If j: V+ M with cri-

tical point k , then Plc) ¢ M .

e g” A"l , which is a contradiction. 4

}  consider the set X = j"k, . It suffices to establish that X¢M . So, agsume
to the contrary that XeM . Let f be w-Jénsson over Ky - Then in M, j(f) is
w-J6nsson over jlk,) = Kk, . So in M we havo: since |X| =k, there is an

x e “X so that J(E)(x) = x . However, if x(n) = j(an) for ne w , then x =
jly) , where y ¢ “'xw with y(n) = a . Hence, k= JE)(3{y)) = J(£(y)), contra~
dicting the fact that the critical point of an elementary embedding is never in its

range. -|
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As Kunen himself remarks, aince Ko is a strong limit cardinal of cofinality This section 18 concluded with an illustrative result: Supposc 13 holds, i
w , the argument for the special case A =& in the proof of the Erdos-Hajnal there is a_ j: v, > vy with a critical point K 8o that ) = NI E'w)'e'
result already suffices to produce an w-Jonsson function over Ko * Then there is a k: v"‘ - V,\ with critical point j(x) and A = sup{k"(j( o =
Well, there we have it. That there is no j: V * V is cast into fairly speci- ‘ Thus, we are dealing here with a large cardinal property for : XN n e wl.
fic form, and it is now readily seen how the n-huge cardinals fit into the scheme very same large cardinal property for j(x) > x . This inustzat::1::ei:f:::s the
of things: they assert stronger and stronger closure properties, until their natu- strength of I3, especially in the context of our cxperience with extendibility
ral w-ury oxtension turns out to be inconsistent. It Ls perhaps approprlate that ! |- Given the J and « , the idea behind the proof is simply to look at what.;
once the “trick" was found, an inconsistency result should have a fairly simple ‘ would be 3(j) , which exhibits all the desirod properties. };las o N’;' 5
form. Yet, Kunen's proof has a fortuitous feel, not being very closely tied to in the domain of j , ©o we cmploy a piecing togather arqument. 4 3 is not
structural aspects of the elementary embedding. Forx cxample, the following asser- . Let us revert to the notation Kn - jn(x) for necw. Set j = j|v for
tions are not known to be inconsistent with 2FC: cach new . sothat §:V v s elomentary. The 3 ¢ n Xn
. s are ¢
Tl. There is a J: V"w"‘l v v"w”‘ ) members of V. , so by a: ap::icatzzzlof j we h i ! fttainly
12. There is a j: Vo M with V. CM . 50 0e v _);v ts etomant . J. avevln V., (and hence in V) that
- Kpy - n Kn+l Kn+z ary with critical point Ky - Set k" = j(jn) .
I3, There is a J: VKm - VKm . Then observe that kg€ k) Ck, ... . Consider k = Ln)kn . It now suffices to
Notice that in Il we have specified that the range of j be included in establish the Claim: k: V) + V, is elementary with critical point k. so that
Vx 41! but this will be true since Jlk,) =x, . similarly for I3. To motivate k("n) = Kn+1 for every n > 0 . !

these propositions, note that Kunen's argument establishes that there is no Only elementarity need be checked. For this purpose, notice that by elemen-

. This follows from the observation that what was needed for the tarity of j , we have v, = v.<1 . It follows by repeated application of j that

j: v -V
K,t+2 Kyt+2

argument to work was to have an w-J6nsson function over «, in the domain of the v"n—< V,(m_l for.every n ¢ w . Hence, Ve =<V, for every n et w by union of
elementary embedding. But such a function is of form "’y:w + Ky o and so occurs elementary chains. Now argue as follows tonfinish the proof: If V |= ¢la
first in VK‘“z . In truth, I1 and I3 are the only possible forms that an axiom let n be sufficiently large so that @pievaia v . Since vX ~ vl,-..,am]
of the type "there is a non-trivial elementary embedding of some ch into itself" v }: ‘oL, al by an appis ‘ . Xn4l, Kn+1 A’
can now take. Kool 1% pplication of kIVK a = k_ . we have
That Il implies 12 follows from a self-extending technique of Gaifman{1974); VKn+2 k Nk(al),...,k(am)] . Thus, vy E Mk(al)"]""k(am” L oas v < v, . 4
. n+2 -

see its IV.8. That I2 implies I3 follows from the fact that if 3j 1is as in 12,
: . _ 5 _ M _ R i

since jilk,) = Ky o+ J(V"w) = VKw . VKw , so that j|VKm. VKN - VKm . Finally,

that 13 implies there is a cardinal which is n-huge for every n e w is clear,

since the ultrafilters which characterize n-hugeness are all retreivable from the ,
embedding of I3.

In any case, I1, I2, and I3 ostensibly seem to differ in an inessential way
from the proposition proved inconsistent by Kunen. Perhaps there is a more intrin-
siici argmﬁent about elementary embeddings which would ﬂisallw these propositions
and possibly more., Or is the w-Jonsson function’ an”essential ;ngredient which
incorporates the Axiom of Choice in its role of negating infinite exponent partition
relations? Indeed, can one prove that there is no Jj: V + V without the Axiom of
Choice? The situation at this veritable Gotterd&nmertlng for large cardinals needs
to be clarified, but pending an answer to this last question, we can perhaps best
view Kunen's result as a limitation imposed by the Axiom of Choice on the extent of

reflection possible in the universe.
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V. CARDINAL COLLAPSING AND COMBINATORIAL PRINCIPLES

§18. The Lévy Collapse, Lebesgue Measurability, and Scattered Sets

Having dealt in the preceding chapters with the formulation and elaboration of
large cardinal concepts, in the rest of this paper we shift our focus of attention
to their relative consistency rosults, tracing the history through the post-Cohen
era. The present chapter in particular deals primarily with consistency results
involving interesting combinatorial hypotheses on the lower orders of the cumula-~
tive hierarchy.

We have already secn, for example in 56 and §12, how the method of inner models
provides a way of getting the consistency of the existence of large cardinals. Some
interesting existential assumption is made about an accessible cardinal X say, and
somewhat unexéectedly, K assumes enormous proportions in some inner model, as the
assumption translates in the slender inner domain into a clear, large cardinal asser-
tion. The mothod of forcing provides a converse process. A large cardinal hypothe-
sis imposed on the ground model can often be transmuted into a non-trivial combina-
torial property in a forcing extension, typically by a forcing which collapses the
large cardinal to some accessible cardinal like w, . It is a noteworthy phencmenon
that actual equiconsistency results have been established in this fashion, between
natural but ostensibly disparatc hypotheses. The crystalline clarity of an inner
model reveals a large cardinal, and forcing adds the needed camouflage to view it
in a combinatorial guise.

This is perhaps the main source of empirical evidence for the efficacy and
inevitabillity of the theory of large cardinals. The spectrum of large cardinals
provides a linear scale, which acts as a standard to measure the consistency strength
of many hypotheses superposed on ZF and intended to further elucidate the nature
of sets., (We remind the reader of the obvious analogy to the ordinals which mea-
sure the proof-theoretic strength of various subsystems of analysis.) Not only can
consistency strengths be campared in this way, but upper bounds can be established
on the spectrum, and this provides definite plausibility arguments. In the absence
of convincing philosophical reasons for accepting various new set theoretic axioms
or combinatorial principles, we can at best provide mathematical elucidation of such
formal interrelationships as these.

Soon. after Cohen established forcing as a general meta-mathematical technique,
Lévy devised a basic method of generically collapsing a limit cardinal which, signi-
ficantly enocugh, necessitates an inaccessible cardinal. This method has strong uni-
form properties which makes it widely applicable, and in particular was used by
Solovay already in 1964 to establish a result which even today rivals any other as

the most mathematically significant result cbtained by forcing since Cohen's initial

e
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work: the demonstration of the consistency, relative to the existence of an inac-
ceasible cardinal, of the proposition that every set of reals is Lebesgue measurable.
In the context of large cardinals, we have alrcady cited a fairly typlcal use of
Lévy's method at the end of §12 in connection with precipitous ideals.

Let us turn forthwith to the definition of the notion of forcing which in a
special case gives the Lévy collapse.
By Col(A,X)

So assume A is a regular cardinal and X is

any set. we denote the notion of forcing where the conditions are

partial functions f with domain € AXX so that: f(<a,x>) € x for every <a,x> €

pomain(f), and |f| < A . A condition f is to be stronger than a condition g

iff £D2g .

Pirst note the preliminary Fact l: Col(),X) is <A-closed, i.e. whenever y < A

and <f€| E <y > 1ig a sequence of conditions such that § < ¢ implies fc is
strongexr than fE , then there is a condition stronger than all the fE's-just take
the set-theoretic union, using the regularity of A . Thus, by standard forcing

lore, A is a cardinal in any generic extension via Col(A,X).

We now proceed to the principal case X = x an inaccessible cardinal > A ;
then Col(A,k) is a notion of forcing for a Lévy collapse.

if 6

The intent of the Lévy

collapse is clear: is any Col(A,x)-generic filter over V construed as the

A<B<x,

is a surjection of A onto B , so that
+V{Gl

ground model, then UG is a function in VI[G].

£, defined by f_(a) = (UG) (<a,8>)
B
|8 "1 = x

v[G], and this is where the inaccessibility of «

Moreover, whenever

It follows that «x < A We would like k to be a cardinal in

in V 1is essentially invoked:
Fact 2: Col(A,k) has the k-c.c.

X = A+V[Gl).

{(and hence k, being a cardinal in VI[G],

F The argument is of a familiar sort, the prototype of which is due to Cohen
himself, but with an essential use of inaccessibility. Suppose that @ G Col(Aik)
o] < x . To

show this, we inductively construct a sequence <Qa| ax < A > so that cach Qu cQ

consists of pairwise incompatible conditions; we must establish that

with lQul <k ,and a < R < A implies Qu c QB . The construction will be aided
by setting s = U{pomain(p) | p ¢ Qa) along the way, so that in particular Isul
<K .

To begin, set Q, = {q) where q e Q@ is arbitrary. At limits vy < A , just
set Q = LJ(Qal a <y } 5 by the regularity of « and inductive assumptions,
lQYI < k . Finally, at successors < A , having already defined Qu with the corres-
ponding 8y first consider an equivalence relation on Q by: p i iff p,qeQ
and p|su = qlsu . Then let Q ., consist of members of Q  together with exactly
one member from each ‘;—equivalence class. By the inaccessibility of «k , a count-
ing argument shows that o | < fo | + 218l ¢ ¢ | Tne inauctive definition is
complete.

The claim is now that Q = kJ(Qul @ < 2 } , and by the regularity of « this
le| <« .

would surely cstablish To demonstrate this claim, suppose p ¢ Q |is
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arbitrary. I1f we set s = lJ{Sal o <A} » then since |pl < X and X is regular,
it follows that pIs = p‘su for some o < A, So, by the construction of Qa+1 '
there is a p € Que1 80 that ﬁlsa = plsu . To complete the argument we nced only
observe that p = p . 1f there were not true, then p and p would have to be

4, and p|su+1 Cpls = plsa , and so p

and p must disagree on Sy - This contradicts Elsu = p|sm , and we are done. -

incompatible. However, Domain(p) C s,
Hlence, forcing with Col(A,k) preserves cardinals < A and > k , and closges the
gap precisely by making Kk the successor cardinal of X in the extension, One of
the endearing qualities of the Lévy collapse is that it is amenable to a simple
product analysis. For any § so that A < § < k , we bave Col(d,k) = Col(x,8) =
Col(A,k-8) under an obvious isomorphism (where a product of partially ordered sets
is understood to carry the natural partial order defined componentwise). A basic

precept of forcing can then be invoked to show Fact 3: If G is Col{i,k)-generic

over V , then GMCol(A.8) is Col(A,8)-generic over V , GMNCol{),k-8) is
Col{A,k-8)-generic over V[GMcCol(},8)}, and VIG] = V[GNCol(\,8)]1[6NCol(A,k-8}].

Intuitively, this is saying that forcing with Col(A,k) can be divided into two steps,
one which first adds the genceric surjective maps: A + B for every B < § , and then
one which adds the rest. This component analysis is useful in conjunction with the
following, proved by a chain argument like in the pregeding proof: Pact 4: If G

is Col(A,k}-generic over V , and in VIG] , f: A - a where a €t V , then f ¢

VIGNCcol(A,8)] for some & < k .

Sulovay went further to establish an important lemma. Taking A = w , notice
that since Col(w,k) consists of finite conditions, it is absolute for transitve

models of set theory containing k . Solovay proved the Factoring Lemma: If G

is Col(w,k)-generic over V_, and in VI[G] , f: w+ a where a e V , then V[G]

= V[f]lHi for some H which is Col{w,k)-generic over V[f]. He also noticed the

following "homogeneity" result: If ajreeesa € V and ¢ is a formula in the
forcing language for Col(w,k) with.no constants and n free variables, then the
empty condition forces @[51,...,5n] or ~¢[51,...,5n] .

(There is an attractive characterization of Col(w,k) in Boolean algebraic terms
which incorporates these features. Jensen showed that the usual complete Boolean
algebra corresponding to Col(w,k) is a unique k-saturated structure of cardinality
x in a precise, model-theoretic sense. See Mathias[1977], Theorem 3.17.)

Combining these facts about the Lévy collapse with further genericity and
definability arguments, Solovay was able to achieve his impressive result. Say

that a set x is real,ordinal definable iff there is an ordinal « , a set a Cw,

and a formula ¢(<,*) so that: y € x iff va F ¢{y,a) . This definition within
set theory adequately captures the intuitive notion, by the Reflection Principle.
Let HROD be the class of hereditarily real, ordinal definable sets, i.e. those
x such that every element in the transitive closure of {x} is real, ordinal

definable. HROD can be shown to be an inner model of 2F , much as the better
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known HOD is, in Myhill-Scott[1971). Now for the considerable harvest of Solovay's
efforts:

If there is an innaccessible cardinal k in the ground model V and G is
VIG}

Col(w,k)~generic ovexr V , then (HROD) is a model of 2F satisfying:

(1) Every set of reals is Lebesque measurable.

{B) Every set of reals has the Baire property.

{P) _Every uncountable set of reals contains a Perfect subset.,

(DC)} The Principle of Dependent Choices.

Some definitions for the uninitiateds A set of reals X has the Baire pro-
perty iff there is an open set 0 so that the sywmetric difference of X and 0O
is of first category. A set of reals is perfect iff it is closed and contains no
isolated points. For good measure, we might as well state that a random real is
a real generic for the following notion of forcing: conditions are Lebesgue measur-
able sets of reals of positive measure, and X is a stronger condition than Y iff
X - ¥ has Lebesque measure zero. Solovay introduced the important concept of r;;:-
dom real to establish (L) in the model, and companion arguments using Cohen-generic
reals instead establish (B}, (P) is a significant statement about the structure of
sets of reals, which we shall discuss at some length bulow.

The Principle of Dependent Choices states that whenever R is a binary rela-
tion so that for every x there is a y so that <x,y> € R, there is a function
with domain w so that for every ne w , <f(n),f(n+l)> ¢ R . Tt is just the
restricted choice principle needed to demonstrate the existence and main properties
of Lebesqgue measure. It is well-known that various other choice principles must
fail in Solovay's model; For instance, there can be no (non-principal) ultrafilter
over u , as such an object, construed as a set of reals, cannot be Lebesgue mea-
surable. A poignant failure of AC is the result of Mathias[1977] that: w - (w)g

holds in Solovay's model. Infinite exponent partition relations of considerably

stronger consistency strength will play a key role in 528.

It is generally thought that the consistency strength of inaccessibility is
not needed to get the consistency of (L) + (DC) . But barring any fast-breaking
developments, concerted efforts have not thus far overcome this obstacle. However,
even if this were surmounted, Solovay's ideas will no doubt remain basic cornex-
gtones.

One can measure partial successes along the projective hierarchy. 1t is a clas-
sical result of descriptive set theory that Zj sets are Lebesque measurable.
GUdel's demonstration of a A;—well-ordering of the reals in L indicates that this
is as much as the outright provability strength of ZF can muster, since any well-
ordering of the reals in type w cannot be Lebesgue measurable in the plane, by

1
Fubini's Theorem. Part of Solovay's windfall was the following elegant characteri-

. . 1
zation of the Lebesgue measurability of L, sets: For any real a , every Zl(in a)

set of reals is Lebesgue measurable iff almost every real (in the senge of
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lLebesgue) is a randam generic real over Lfa). This condition follows, for example,
L(al
1.

from the assertion that w is countable. A forcing argument (via MA(Zw) &

wy < ¥ if Qesired; see Martin-Solovay[1970),p.169) yields: Con(ZF) implies Con

(ZFC & every L; set of reals is Lebesgue measurable). AL present, it is not known

whether Eé here can be replaced by Ag .

The bearing that all this has on this paper is simply that the existence of a

measurable cardinal (or just the existence of a" for every a g w ) certainly

implies m]L[a] is countable for every real a by §7 . Thus, if there is a mea-

surable cardinal, then every E; set of reals is Lebesgue measurable. This result

is an elegant and unexpected foray of measurability into descriptive set theory.
Even then, Silver's demonstration of a A;-well—ordering of the reals in L([U), where
U is a normal ultrafilter over a measurable cardinal, establishes this as a limit
on the provability strength of (2F & there is a measurable cardinal).

We conclude this section with a discussion of aspects of the proposition (P).
It is an interesting thread through history that (P) is the ultimate statement of
the sort that Cantor himself sought in his initial efforts to affirm the Continuum
Hypothesis, after observing the simple fact that any perfect set of reals must have
cardinality 24, Unfortunately, Cantor could only proveed as far as the Cantor-
Bendixon Theorem, which shows in particular that every closed uncountable set of
reals contains a perfect subset. It is well-known nowadays that (P) violates the
Axiom of Choice. In a result remarkable because of its early date, Specker(1957]
52,32 established that (P) implies that w, _is inaccessible in L . Hence, Solo-

vay's result combines with this to show that (in contradistinction to the prevalent

opinion about (L) + (DC)): Con(2FC & there is an inaccessible cardinal) iff Con (ZFC

& (P)). This is the earliest significant equiconsistency result concerning large
cardinals. With the plethora of relative consistency results now available to us,
there is perhaps a tendency to get a bit jaded by it all, but through fresh eyes
this is undoubtedly a striking statement about the structure of sets of reals,
indicative of how far set theory has progressed since Cantor.

Let us call a set of reals scattered iff it has no perfect subset. Thus,
(P) says.that every scattered set of rcals is countable. Of partial versions of
(P) along the projective hierarchy, it is a classical result that every scattered
E: set of reals is countable. Again, L delimited the provability strength of ZF :
Godel[1938] established that in L there is an uncountable, scattered n: set of
reals. (More recently, Guaspari(1973), Sacks[lQ?é] and others have observed that
there is a largest scattered (lightface) Hi set of reals, i.e. a set Cl which is
scattered and Hi , yet whenever X is also scattered and ni , then XC C,. This

set has the characterizations () = (a| ac L(w“) } = {al for every real b, uf < wf
1

iff a is hyperarithmetic in b } , wherc m? is the least ordinal not recursive

in a . The first characterization makes it clear that () C L , but the second
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is more amenable to recursion theoretic arguments. See Kechris[1975] for details
'
as well as generalizations under Projective Determinacy.)
; . 1

Since dec:, scattered El sets have been fully investigated: We might as

well look at ), sets, since an argument using ‘ﬂi—uniformization shows that every
1 : <
scattered ﬂl set is countable iff every scattered 55 set is countable. In a
germinal paper for contemporary descriptive set theory, Solovay[1969] established
the following elegant characterization: For any real a , every scattered Xl(in a)
P

: .Y : L(a]
set is countable iff ml is countable. Fox the forward diraction, if to tho

L)
1

contrary w = ) , then the Aé(in a)-well-ordering of the reals in L[a],
being especially good, can be used to concoct a scattered Hi(in a) set which is
uncountable. The converse direction was given a clear formulation by Mansfield

B 1 ; ;
{1970): If a 22(1n a) set contains a real ¢ L[al, then it is not scattered. Mans-

field's argument really brings out the essence; in modern terminology, it uses the
fact that E;(in a) is wl-Souslin over Lla).

Again, measurability impinges on the theory. Since the existence of a measur-

able cardinal (or even a" for every a C w ) implies that wlL[a] is countable

for every rcal a , we have: If there is a measurable cardinal, then every scat-

tered Eé get is countable. And again, if U 1is a normal ultrafilter over a mea-

gurable cardinal, then L[U] sets a delimitation: If wlL(U] =, , then the A;-
well-ordering of the reals in L[U}, being especially good, can be used to concoct
a scattered n; set which is uncountable.

As with Lebesgue measurabillity, questions about scatteredness can be decided
exactly one level further on the projective hierarchy by adding the strength of
measuxability to ZF . Further results in descriptive set theory attest to this
phenomenon; see for example Martin-Solovay[1969]. That such a precise state of
affairs can exist about definable sets of reals and large cardinals was quite a

revelation about the structure of the set theoretical universe.

§19. Kurepa's Hypothesis and Chang's Conjecture

A classical question posed by Kurepa[1935] {1936) provided a topic for discus~
sion which eventually led to an early independence result, essentially involving
large cardinals, concerning a transparontly combinatorial assertion about infinite
sets. Kurepa asked whether there can be an F c P(w;) with [P| > w, so that
(x(\u| X ¢ P} is countable for every a < w; . Such an F is nowadays called

a Kurepa family, and Kurepa's Hypothesis (KH) is the assertion that there is 3

Kurepa family (although apparently Kurepa himself conjectured that Ki was falsel),

There is a convenient formulation of KH in terms of trees. Let us define a

Kurepa tree to be, in the terminology of §5, an ml-tree with at least w,

w,-branches. Then KH holds iff there is a Kurepa tree.

F Suppose that F is a Kurepa family. For each X [ ml let fx: w, *+ 2 denote
its representing function. Then the tree with elements {fxlu | XePF &ac ml]
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ordered by inclusion is a Kurepa tree. Conversely, if <T,<T> is a Kurepa tree,
we can inductively reconstitute it so that T C w, and a <'I‘ g implies o < B .
It can then be checked that the w, w)~branches of T comprise a Kurepa family. -|
Intcrestingly enough, the first consistency result bearing on KH employed the
Lévy collapse. As early as 1963, Lévy and Rowbottom (independently) observed that
if there is an inaccessible cardinal « in the ground model V , and ¢ is Lévy
collapsed to a; (l.e. force with Col{w,k)). then P(K)v is a Kurepa family in the
extension. Actually, the inaccessible cardinal turned out to be a red herring here,
as Stewart[1966] was able to concoct forcing conditions for adjoining a Kurepa tree
to models of just ZFC. Where inaccessibility became essential was in astablishing
the independence of KH. 1In 1967, Silver (see silver[1971al) showed that if there

is an inaccesBible cardinal k and k _is Lévy collapsed to wp (i.e. force with

Collm, ,x)), then KH fails in the extension.

|- The proof uses the product analysis of the Lévy collapse explicated in Fact 3
of §18. Let G be Col(ml,n)-qeneric over V , so that in particular w, = le[G]
and k = mzv (6 by Facts 1 and 2 of §18. We must extablish that in V([G] there
is no Kurepa trec.

le[G] there can be no

So, suppose <T'<'l‘> is an wj-tree in VIG]: as w, =
ambiguity here or hereafter in the proof. We can assume as in the previous proof
that T C w, and <T [ @ Xwy and hence by Fact 4 of '518, that <T,<T> €
viGNcol(w ,8)) for some & <k . Now [coltw, 8) | < x , so forcing with Col(w,,$)
preserves the (strong) inaccessibility of « ., by standard arguments. Thus, within
V[Gf'\Col(wl,é)] + <Tosy> has < K ml—branches.

By Fact 3 of §18, VIG) = V[GﬁCol(wl,G)][GﬁCol(ml,K-—s)) where Gr\Col(m],x—é)
is Col(ml,K-SJ-QGDEIiC over V[GnCOl(ml,S)] . Notice that Col(ml,z—d) is a
w-closed notion of forcing. So, the following lemma will complete the proof (if we
apply it with V[GﬂCol(ml,s)] in the role of the ground model V )3

Lemma: If in a ground model V , T is an ml-r_ree and Q is a w~closed
notion of forcing,, then every w,-branch through T in any generic extension via
Q is already in V .

To show this, suppose q e @ and q |} b is a J)l—branch through T. Assume
that there is no p stronger than g and cc V so tha_t q H— &=Db , elsc a
standard density argument will insure the result. We derive a contradiction from
this by building a perfect subtree of T in V . For every s ¢ n\é)wnz define
conditions 9, ¢ 0 and elements t_c T as follows:

Set q. =9q. 1f q, is already produced for some s ¢ nLchnz , let t
and ts~<)»> be at the same level of T and conditions
stronger than q, so that:

87<0>

- <o and 9 <1> both

v

g~<0> ”’ ts"<()> cb, and 5<15 ”- ts"<l> eb.

(If this were not possible, then we could define in V a c¢CT by: te c iff
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r |l- :. € b for some r stronger than qs . Then ¢ would be an wl-btanch
through T in V , and clearly q |F & =b , contradicting our assumption about
q .)

Since [ts| s € n\t:Jm"2) is countable, there must be a y < w; so that all the
r.s are at levels < y . By the w-closure of Q , for every f € Y3 there is a
condition q; stronger than qfln for every n e w . Since all these conditions
are stronger than q , there must be a Pe stronger than g and a t_ at the
yth level of T so that: p, |k Et’ ¢ b. Clearly, f $ g implics te 4 ty 80
that the yth level of T hags 2% cloments, contradicting the fact that T is an
w, -tree.

This completes the proof of the Lemma, and hence of the theorem. -I

Constructibility considerations completed the picture, Solovay's construction
of a Kurepa tree in L , together with Jensen's demonstration of the failure of Sous-
lin's Hypothesis in L , were the earliest examples (after Godel's!) of the use of
the constructible universe to establish the relative consistency of combinatorial
propositions. Solovay's construction (like Jensen's) was so uniform that in fact

he was able to show: If V = L[A] for some A Cw, , then K holds. (For a proof

sce Jech{1971), which is a good reference for this section. Jengen's study of gen-
eralized versions of KH holding in L is discussed in §20.) The point of Solovay's

general version is that we can derive from it that: If KH fails, then w, is
2

| inaccessible in L .

}- Suppose by way of contradiction that w, is not inaccessible in L . In any

| case w, is still regular in L , so as L models GCH, there must then be a P < uw,

so that (p+)L = w_ . Surely we can find an AC w, coding enough maps so that
mlL(M =w = |p|L Bl It follows that w, = (o"')L < (D+)L[M = sz[A] fw, , so
equality pervades. By Solovay's result, there is a Kurepa tree T in the sense.
of LIA]. However, mlLlA] = w, and mzL[M = w, , 50 that T (really) is a

Kurepa tree, contradicting the hypothesis. -

We can now conclude with the attractive: Con(ZFC & there is an inaccessible

cardinal) 1iff Con(ZFC & KH fails). This is an exact measurement of the strength

of the failure of KH, Even before this result, Prikry had established a direct
connection between a large cardinal property and the fallure of a woak form of KN.

By the weak Kurepa's Hypothesis (wKi) let us mean the assertion that there are

w s s s
functions {f“| o < w, }c !y which are eventually different, i.e. whenever

a <B<uw, there isa Y o < w; so that £,(8) 4 £5(8) for Y g < 8§ <w . EKH

easily iml?lies wKH (yet r:gently Baumgartner established that Con(ZFC & there is an
inaccessible cardinal) iEf Con{ZFC & wKH holds yot KH fails)). Prikry's early
result was that if there is a (non-trivial) uz-saturated ideal over w; , then wKH
fails. However, the hypothesis here is unduly strong, with consistency strength
at least that of the existence of many measurable cardinals (as cited in §11).

Silver then showed that the failure of wKH is a consequence of a Rowbottom-type
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property, and investigated its consistency strength. Because of several thematic
connections, we take time to deal with this property in some detail.

Recalling the ideas and notation of 56, among the non-trivial -+ relations stu-
died by Chang and others in the context of model theoxry, the one at lowest level not

known to be refutable in ZFC has come to be called the Chang's Conjecture: Sy gy >

++ <w;,w>. By a version of Rowbottom's model theoretic characterization (56},

< .
Chang's Conjecture holds iff whenever £: [w, ] “ ., w,_ there is an X C w, so that

|x| = w, and |f"[x]<m| < w_. The chief interest in Chang's Conjecture lies in the
possibility of such a strong partition property obtaining at a low level of the cumu-

lative hierarchy. Silver (and probably others) observed that: If Chang's Conjecture

holds, then wKH fails, and 0# exists.

|- A weak version of the partition formulation of Chang's Conjecture already serves
to disallow wKH. If (fa| a < u, l¢c wlw were a collection of w, eventually diff-
erent functions, then define G: [wz]z +uw, by G({a,B}) = least y so that
£ 18) ¢ £g(8) for y<é<w

that [G"IXI?| <w . Let n

y + Assume that there is an X Cw, with %] = W, so

1

sup (6" [x1%) < vy + Then {fa(n)| @ e X ] constitute

w) different ordinals < w , a contradiction.

To get ol from Chang's Conjecture, let <A,R,E> < <Ly ,w, re> , where |a| = w,
2

and |R| = w . Let 3J: <Ly'6'5> “ <A,R,E> be the inverse of theunique transitization

map, where § < w <Y - So  js <LY,6,c> * <Ly sw.e> is elementary and shifts some
- 2
orxdinal < w, , as j(8) = w; . Hence, if p is the critical point of j , then
Pp)NLC L + L ci, ¢ LY ;, 80 we are exactly in the position of heing able to
() 1 =

define an ultrafilter on P(p)L as in the proof in 8510 for the existence of 0#. -

With this last result in mind, the following theorem of Silver establishes a
reasonable upper bound on the consistency strength of Chang's Conjecture: Con(2FC &

there is a Ramsey cardinal) implies Con(ZFC & Chang's Conjecture). For the experts,

we give a sketch of Silver's attractive proof, which is a cocktail of many ideas:
|- Suppose that A is Ramsey. Then by results cited in the second paragraph of
§6, A 1s inaccessible and A -+ (A):w for every y < A .

We need the following Fact about "mild" Cohen extensions: If P is a notion of
forcing such that |P| < A , then in any generic exl:ensién via P, X is still

Ramsey. To show this, if p e P and p [ £: (A1 » 2, define ‘g; 1A » P(Px2)

by gi(s) = {<q,i>| q is stronger than p and q | £(8)'=1 }-. as |P(px2)| <A, by
a remark in the previous paragraph let X C A be homogeneous for g so that |x| = A .
Then p | X is homogeneous for f & |3('| = A ), the last conjunct being immediate
from the A-c.c. of P .
By appealing to this Fact, we can assume from now on that we havé Martin's Axiom
Ma(2*) and w < 2 < . since this involves only a small cardinality extension.
Consider the following modification of Col (wl ,A), the usual Lévy collapse of A

to w, : Let Q be the collection of partial functions with domain C w * A so
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that f(<a,B>) € B for every <a,B> € Domain{f), meeting the following two condi-
tions: (i) |{B] & (<a,B> e Domain (£))}| < w) . and (ii) sup{o| dB(<a,B> ¢ Domain(f)}
< w,. Thus, instead of the usyal condition deciding a w x y part of the generic
map, we decide an oblong w X w, part. Ordering Q by inclusion, combinatorial
arguments as in §18 establish that Q is a w-closed, A-c.c. notion of forcing which
collapses X to W, . We now show that any generic extension via Q satisfies
Chang's Conjecture.

To this end, suppose that q e Q and q "- f: I&?]<w -+ ml . (Here, of course,

we can set the forcing terms w, = X and dxl = w ,) We must produce a condition q
extending g and a term t so that g |- ([£(1)%Y| < w & |t} = @) .
. . <w
Define a relation R ¢ ([A] X w o x Q) by: <s,8,p> € R iff P extends gq and
P ||- £(§) = 8§ . Consider the structure QL = <Vl,€,(»l,Q,(q],R,...,> + where ...
denotes a complete set of Skolem functions (in a countable language). By the Ram-
seyness of A, let HCA be X indiscernibles for this structure, and let €L =

<B,...> =4 be the Skolem Hull of the first w, members of H in Ol via the listed

Skolem functions. Notice that BNw, is countable, by a standard indiscernibility

argument: First of all, for any term t in n free variables and x < ; both in

n -+ - -
H, whenever t(x) < w,  we must have t(x) = t{y) .

. {Otherwise, by indiscernibil-
ity we either get an infinite descending sequence of ordinals or else A distinct
ordinals < wl.) Thus, every element of Bﬁw] can be rendered as t(;) for some

-+ s .
term t and x a finite sequence taken from the first w elements of H, and so

Bﬁwl is countable as we are dealing with a countable language.
A similar argument establishes that QMNB has the w,-c.c.: If QB  had ©,

mutvally incompatible conditions, there must be at least one term t , say in n free

variables, and ; < ; 4 nH so that t(;) and t(;) denote two incompatible members
of QB . But then by elementarity we can use n~tuples from H to produce A
mutually incompatible members of Q , a contradiction.

By elementarity using the relation R , we have that for.any EN B('\[A]<w, the
set D_ = {p| p extends q & 38(BeBNw, & p IF £(3) = 8)} is dense below g in
QMB . Thus, since IBﬁlAJ<m| < |B| = W

be generic for all these DS.

w
; » by MA@T) and c;o1<2m let G oNB

By the special way that Q was defined, we have UG ¢ Q, as Bﬁml is only
countable. Finally, UG cxtends q , and it is clear from elementarity using the
relation R that if we set BNA = K, then UG [ £ K] < is countable. As K ig un-

countable and Q is w-closed, K is forced to remain uncountable, so we are done. -

There is an unusual speciality in this proof, namely in the applicability of
Martin's Axiom only to w)-c.c. partially ordered sets. Can one show, for example,
that Con(2ZFC & there is a Ramsey cardinal) implies Con(ZFC & <w3,m2> had <w2,w1> ) ?

See Magidor (1977] for a recent application of Chang's Conjecture.
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520. Ineffability and Subtlety

In the previous section, we saw how the independence of Kurepa's Hypothesis
turned out to be a large cardinal concept; in the present section, we recount how
the further investigation of the hypothesis in L uncovered a new and distinctive
large cardinal idea. (Properly speaking, we could have discussed these matters in
an early chapter; however, the topic fits thematically herce, and its development
comprises a veritable cocktail ol applications of practicully all of the concepts
discussed in Chapters I and IT.)

After Solovay built a Kurepa tree in L, Jensen was able to isolate the essen-
tial features of L that made the construction possible by studying its generaliza-

tion. For a regular uncountable cardinal «x , Kurepa's Hypothesis for x (KH ) is

the assertion that thexe is an F c P(k) with |F| > «* so that |{xMal x : F)|
< |a| for every infinite o ¢ x . Jensen (see Jensen-Kunen[1971] or Devlin(1973al,
Chapter 10) showed that this generalized version of Kurepa's Hypothesis holds prac-
tically always in L, and characterized those «k at which it fails. Formulating

the concept of ineffability for regular uncountable cardinals, he showed that: If

x is ineffable, then KH fails; and the converse holds if V = L.

Ineffability is de;ined as follows: if x is a regular uncountable cardinal,
then ¢ is ineffable iff for any sequence <sul a < x> with Su c o for every
o <k , thore is an S ¢C x 5o that f{a < x| s, = SMNa } is stationary in « . The
emergence of ineffability is an interesting cpisode in sct theory, both for its rel-
atively rccent occurrence and for its notably original Elavor, Kunen quickly brought
the new concept into line with more familiar ones by providing the following char-
acterization: The following are equivalent for regqular uncountable k :

(a) x_is ineffable.

(b} Whenever f: {x]2 + x is regressive (i.e. £({a,B}) < min(a,8)), there

is a_X ¢ x__stationary in k__so that |£71x12] = 1.

(c) Whenever f£: [k]2 + 2, there is an X C »_ stationary in x so that

£ x12] = 1.

[— (a) + (b). Suppose f: [k]2 + x is regressive. Define f“ e %2 for each

a < x Dbys EQ(B) = £({B,a}) Eor B < a . We need to cfficiently code pairs of
ordinals with ordinals, so let G: OR x OR + OR be G8del's pairing function, so
in particular C = {a < x| G|uxu: axa ++a } 1is closed unbounded in x . Then by
the ineffability of « , there is a function ¢ e “x. ‘so that Y = {a ¢ C| fu = gla}
is stationary in k . Now g|¥ is regressive on Y , so there'is a y < k s0
that X = {a € Yl gla) = vy } is stationary in x . But this insures that X is
homogeneous For the original £ , since if B < a are both in X , then £({B,n))
= £ (8 =B =y . '

(b) + (c) is trivial.

(c) + (a). suppose that <sul @ <k > is such that S C o for every a <.

Define f: (k)2 + 2by: for a<f<«x, f(laBl) =0 iff (S = SgNa or else
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the least element < & in the symmetric difference of Sa and anu is in SB).
By (¢), let X C ¥ be stationary in k and homogenecous for f . We necd some
cosmetics, so notice that for each Yy < x , there is a p_ > vy so that for any
ae (X - py)’ sar\y = SpYnY . (This follows by induction on ¥y , using the homo-
geneity of X for f , noting that limit stages are automatic.}) Set C = {a < vc|
a is a limit ordinal & Yy < a implies pY <a ), so that C is closed unbounded
in ¥k ., Now if o < B are both in C€NX , then for any ¥ < ¢ we have 8 Ny =
spYnY = 58(17 . and hence Sa = Seﬁu . Thus, if we set S = U(Sa| a e le‘WX },
then (n| sn = SNa } ¢ CNX , which is stationary. This establishes the ineffa-

bility of « . 4

It follows immediately that a measurable cardinal is ineffable, and that an

ineffable cardinal is weakly compact. We now sharpen these implications consider-

ably by applying the technology we have developed in our first two chapters.

First, it was an interesting observation that, in a general setting, incffa-
bility is an internal attribute of critical points of elementary embeddings: Suppose
<M,e> is a transitive model of 2ZF (except possibly Replacement), and there is an

elementary embedding §: <M,e> > <M,e> with critical point & . Then <M,e> J- [
is ineffable.

|- Standard arguments establish that M [- 6 is regular and uncountable. Suppose
now that £ ¢ M is a function with domain & , so that f(a) ¢ a for every a < §.
Then j(f) e M 1is a function with domain 3j(6§) > 6§ and E = F(£)(8) ¢ 6§ with

E e M Setting $={a < 6| fla) = EMNa } , M models enough so that—‘we can assert
S ¢ M. Notice that 6 ¢ j(S), since j(£)(8) = E = j(E)MNS because & 1is the cri-
tical point of j . Also, if C e M is any closed unbounded subset of § , since
jleyNs§ =c , & is a limit point of j(C) and s0o § ¢ J(C). Thus, F(SINJF(C) + 7,
and so by elementarity SMNC + # . This shows that S is a stationary subset of.

§ in the sense of M . Hence, we have established that M | § is ineffable. -

Similar arguments show that M thinks & to be highly indescribable. Recall-

ing a familiar situation from 57, we can conclude that any of the canonical indis-

i

cernibles given by 0° is ineffable in L . Silver, Reinhardt, and Jensen observed

a sharper result: Below any cardinal «k such that x -+ {w) :m , there is an inef-

fable cardinal.

[  We can assume that x is strongly inaccessible by taking « = x(w), recalling
some comments at the beginning of 56 on Exrdds cardinals. Consider the structure
<VK,E,...> , where the ... denote a complete set of Skolem functions (in a count-
able language). As in §7, we can suppose from our hypothesis that there are w
indiscernibles Yo €Yy S V¥ eve < ¢ for this structure, so let ® ~ <VK,|:,...>
be the Skolem Hull determined by these indiscernibles. As usual, the map that sends
Y, te Yig induces an elementary embedding k: 6L + Ol, Let +t: 0L = & be the
transitization of Ol , and j: & + % the elementary embedding corresponding to k .
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jJ has a critical point § and fits into the scheme of the previous result, so
that Tuf & is ineffable. Hence, 0L E n is ineffable, where n = € 1(5). fThus,
<VK,:,...> }- n is ineffable, which means that n really is ineffable, as «x was

strongly inaccessible. -|

With a bit more work, one can actually show that {n < K(w)] n is ineffable)
is stationary in «(w). Anyhow, the point is that the oxistence of r{w) is
already cnmputiblc with Vv = L (gsee §7). Also, one can sBec that if A is incffa-
ble, then (A is ineffable)['. (Suppose <S | a <k >¢c L with S C a for every

a < x . By ineffability, in V, there is an S Cx 80 that A = (a < x| S, ™ sMNa}
is stationary in «x . However, « is weakly compact, 8o since arb1trarily large
jnitial segments of S aree L , S e L (by an indescribability argument; see §4).
Thus also A e L , and A is stationary in L , as A really is stationary.) Thus,
ineffability is a relatively mild concept, although we saw that it has an interest-
ing natural occurrence in the context of elementary embeddings.

We can bring in the paraphernalia of indescribability (§4) to measure the
strength of ineffability. The ineffability of x is a Il; property of <V‘,c> ,
so this sets an upper limit; Kunen proved the interesting fact that if x is inef-
fable, then k is H},-indescribable.

}— To show this, we shall find it convenient to usc Jineffability in the following

form: If£ A C V. for every a < ¥ , then there is an ACV  s0 that {a < x|
A = I\ﬁv"} is stationary in «k . (Since an ineffable cardinal is inaccessible,
we can call upon a bijection g: x++V_ for coding, noting that {a < «| gla:
a*—*V } is closed unbounded in « and hence has stationary intersection with any
stacionary subset of « .)

Suppose now that RCV _and <V ,e R E ¢(R) , where ¢ is l'I . We assume
by way of contradiction that for every a <k, <Vu,s: Rﬁvu> F —-o(R{'\Vu) . Writ-
ing ¢(s) as ¥XIVYP(X,¥,*) where ¢ is first-order, it follows that for every
a < x there is an A gvu so that <vu,s,nnvu> |= w-w(Au,y,Rﬁvu) . By pre-
vious remarks, we can now apply ineffability to produce A C VK so that D =
{a < x| a is a limit ordinal & A" ANV, 1} is stationary in « .

It is now claimed that <V ,c,F? |= W—-W(A Y,R) , which would yield a contra-
diction and finish the proof. woll, suppose not. Then for some Y¥c Ve o
<V +€,R> |= YA, Y,R) . As ¢ is first-order, a standard argument show that C =
{(x < k| v, (€,ROV > B vianv, Yﬁ\' RﬁV )} is closed unbounded in k . But D

was stationary, SO any a € CﬁD ymlds a contradiction. -|

It is now immediate from §4 that if x is ineffable, then {a < k| o is weakly

compact) is stationary in k . We mention stronger results at the end of this sec-

tion. Let us now attend to some remarks concerning technical questions that might
arise from these proceedings. The new idea of ineffability offers various varia-

tions. One generalization even gives a characterization of supercompactnéss (see
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Magidor[1974)), while another fits into a general scheme of "£1lipping" properties

for characterizing large cardinals (see Abramson-Harrington-Kleinberg-Zwicker[1977]).
A natural weakening of ineffability is: a regular uncountable cardinal x is almost
i:efful:le iff for any aequerI\ce <STI a < x> with s, Ca for every a < k ,

ere is an S C x so that {a <x| 8 =8Na }| =« . As we ar -

tionariness here, one might conjecture ct’ran Kunen'ls characterizazi:nfz:ez:z::az:iity
that almost ineffability is equivalent to weak compactness. This is not 80, as the
work of Baumgartner{1975] indicates. In analogy to ineffability, almost ineffabil-
ity of « is equivalent to: whenever f: (k]2 + ¢ is regressive (i.es. f({«,B}) <
min(a,8)), there is an X g« with |X| = x so that |£"[(x]2| = 1. Hence, an

almost ineffable cardinal is weakly campact, but the former notion turns out to be

much stronger. It is also interesting that, as essentially observed by Jensen (see

Boos[1975)), a Ramsey cardinal is almost ineffable, although Ramseyness being a Il
property cannot imply ineffability itself. :
Another question is the following: We saw in §5 that if k + (¢}2 , then
K -+ (K); for every n ¢ w . Can we similarly raise the exponent to af\y new for
ineffability? The answer turns out to be no, with the requirement of stationariness
of homogeneous sets constituting an essential block. Let us define for any n e w :

a regular uncountable cardinal «x is n-ineffable iff whenever ¢£: [K]n*-l + 2
there is an X C x stationary in k so that |£"lX]n+1| =1 . Thus, ineffability
is equivalent to l-ineffability. Baumgartner[1975) studied the n-ineffable cardi-
nals in some detail using natural normal filters, and showed in particular that for
any n > 1, if «_is n-ineffable, then {a < k| a is {n=1)-ineffable} is station-
ary in x .

Let us finally turn to another natural weakening of ineffability: a regular

uncountable cardinal xk 1is subtle iff for any sequence <S | a<k> withS Ca
‘ . - . a =

for every a < x , if CC x is closed unbounded, there are 8 < y both in (:m so

that SB = SYﬂB . It may have been the case that Jensen's inspiration for ineffa-

bility came from his formulation of the principle ¢ : There is a sequence

<Su| a<k> with § Ca for every a <k, 80 that for any Sk, (o< k|

s(x = SNa } is stationary in «x . Jensen had established that if V = L, then O
K

holds for every regular uncountable ¢ . Notice that ¢ is a sort of dY wversion
K

of the V3 statement of ineffability., Jensen showed that if x is ineffable then

°.< holds, by mimicking his argument for L, and noted in fact that if « |is subtle,

then 6 holds.
zhen 9. no.es.

Subtlety was thus born out of a technical observation, but has since achieved
quite a distinctive place among the ranks of large cardinals. Although the subtlety
of k is just a 1'1} property of <VK,;> and hence does not even imply the weak
compactness of « , it is known that a subtle cardinal «k 4is (strongly} inacces-

m
sible, and that {a < ,<| a is lin-indescribable for every m,n } is stationary in «

Also, the imvestigations of Baumgartner{1975] reveal that, in a natural sense,
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ineffability is made up of subtlety and u%-indescribability. One can thus regard
subtlety as the pure, distilled form of the ineffability idea. Recent work of Stavi
also supports this contention.

whether parent or child, ineffability and subtlety have emerged as significant
hypotheses about the possible coherence of sequences of sets. The awareness of

subtle phenomena is an interesting latter-day theme.

§21. The Tree Property, E?, and O,

Expanding on a theme from the provious section, we now turn to discuss how the
further elucidation of abstract structural features of L have uncovercd new large
cardinal relationships. It is to Jensen's penetrating analysis of L that we largely
own the emergence of and contemporary metamathematical interest in several unifying
combinatorial principles. Jensen had begun his investigation of the fine structure
underlying Gddel's notion of constructibility over a decade ago, but no one could
then have guessed at the succession of profound and beautiful results that he has
since achieved. (One is reminded of Wordsworth's Newton: "...a mind forever/
Voyaging through strange seas of thought alone.") By the early 1970's, Jensen had
formulated several deep combinatorial principles which hold in L; it is a remarkable
coincidence that the denials of many of thesc turn ocut to be equiconsistent to the
existence of large cardinals. !

We have already encountered {in 95) the first combinatorial property to be
discussed. This is the tree property, which in combination with inaccessibility
yielded a characterization of weak compactness. The possibility had been voiced
that the tree propefty for a cardinal K may not in itself imply the inaccessibil-
ity of % . The Axiom of Constructibility in any case precludes this contingency:

Jensen's{1972) investigations revealed that in L, weak compactness is_equivalent

to possessing the tree property, and in fact, to the assertion of a generalized

version of Souslin's Hypothesis. Jensen here had found the appropriate generaliza-
tion to his init;al demonstration of the failure of Souslin's Hypothesis in L.

It was the work-of Mitchell[1972] as supplemented by Silver that firmly estab-
lished the tree property as a definite possibility for small cardinals. Since
Aronszajn had show that there is always an wl—Aronszajnntree (recall §5), a coun-
terexample to the tree property for W, the least candidate was w, . Both
Aronszain's and Specker's generalized congtructions had actually built x~Aronszajn
trees which were subtrees of < J?Lux, c> - such trees are called special
x~-Aronszajn trees. Mitchell developed a method for collapsing cardinals which,
like the Lévy collapse, was amenable to a product analysis, and with it he was
able to establish in particular that: If there is a Mahlo cardinal k , then there

is a forcing extension V[G] in which «x = w,v[G], and there are no special x-Aron-

szajn trees. This held true to form, for he also showed that: If x is a suc-

cessor cardinal and there are no special k-Aronszajn trees, then «k is Mahlo in L.
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Thus, Con{ZFC & there is a Mahlo cardinal) iff Con(ZFC & there are no gpecial

w,~Aronszajn trees).

Silver was then able to show that Mitchell's forcing construction establishes:

If there is a weakly compact cardinal x , then there is a forcing extension VI(G]
VIG]
Wy

in which «x = and there are no k-Aronszajn trees. He also produced the com-

panion result: If x is the successor of a reqular cardinal and there are no

x-Aronszain trees, then « is weakly compact in L. Thus, Con(2FC & there is a

weakly compact cardinal iff Con(ZFC & w, _has the treec property). (Recently,

Baumgartner announced an alternate scheme to Mitchell's: If there is a weakly
campact cardinal k , and Sacks forcing is itorated « times, then «x = mQVIGI and
there are he k-Aronszajn trees.)

These are certainly satisfying results. The tree property has been scaled down
from an inaccessible to fit W, - and a natural weakening corresponds exactly to
Mahloness. Versions of the tree property have thus revealed the intrinsic graded
relationship between the ostensibly dissimilar concepts of Mahloness and weak com-
pactness.

We next discuss another combinatorial question whichhas several interesting
points of contact with various large cardinals. The question in general form is
when stationariness is reflected: If A is a stationary subset of a regular car-
dinal ¢ , is there an « < k so that AMa is a stationary subset of a ?

IF x were weakly compact, then from its ﬂ:-indescribability follows directly
that such an o exists, as being stationary is a H{-property of VK . Jensen 1972}
first raised interest in such considerations by showing that in L, this property

characterizes weak compactness: I1f V = L, then a reqular cardinal «x is weakly

compact iff for every stationary subset A of x , there is an a < k50 that

AMNa is stationary in a .

what about this property for accessible cardinals? Without modification, the
property trivially fails for ot whenever «k is regular, as A = {§ < K+| cf(8)
= ¢ ) is an easy counterexample. This turns out to be essentially the only restric-
tion here; we can admit successor cardinals 1n£o our study by introducing the fol-
lowing modified assertions for regular cardinals A < r :
A

E.: There is an A C {8 < Kl cf(6) = A } stationary in « such that
lor every limit ordinal o <« , AMNae is not stationary in o .

Jensen in fact could prove: If V = L, then a regular cardinal x is weakly com-

pact iff EA fails for some regqular A < K .
1S

It-is perhaps expected that the failure of Ei , being a reflection property,
should be a consequence of further large cardinal hypotheses. What is interesting
is that an assumption on ultrafilters from §13 seems just what is needed to estab-
1lish the failure of Ei . The following theorem evolved from Prikry[1973]Theorem

4, which is subsumed by it: If A < k are regular and there is a uniform, A-inde-

composable ultrafilter over «k , then 52 fails.
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I' Let us fix for each § < « such that cf(§) = A an increasing sequence

<y§| E < X > of order~type )\ , closed and cofinal in § . For any X ¢ {6 < «|
c£(8) = A } , say that a function f: X + A is a disjointer for X iff for & 4 n
both in X , whenever f£(6) < £ <A and f(n) < ¢ < XA , we have 72 + Yg .

To establish the failure of E'); , we argue as follows: Suppose A C {§ < .<|
cf(6) = A } has the property.that AMa is not stationary in a for every a < k.
We proceed to demonstrate that A is not stationary in r . For this purposc, we
shall first show by induction that for every « < x , there is a disjointer f“
for ANa :

So, suppose that there are already disjointers EB for ANB , for every
B <a . Since ANa is not stationary in « , let C‘l C a be closed unbounded in
a so that CaﬁA =@ . We can then define a function fu on ANa according to
the following well-defined recipe: Given a 6 e AMa , first find the unique,
consecutive elements (¢,8 of Ccl so that 7 < 86 < B . (We might as well assume
0e Ca') Then let fu(é) be the maximum of: fB(S), or the least £ < X so that
yg > £ . This definition (once understood!) renders fu a disjointer for ANa .

We now suppose U 1is a uniform A-indeccmposable ultrafilter over x . As )
is assumed regular, this means that whenever g: x + A , there is a p < A so that
[a <x| g@) £p ) el . Weuse U to take a sort of ultraproduct of the f 's, to
get a disjointer for A itself:

For each & ¢ A , by considering the function o wr fa(ﬁ) ., there must be an
£(8) < A oo that X = [a < k| 8 ca & £.(8) 2 £(8) ) c U . Ve olaim that ¢
is a disjointer for A . 1Indeed, if § + n both in A , suppose £(§) < £ < A
and f(n) <7 <A . Let ae xdr\xn e U , so that fo(é) < £(§) and fu(n) < f(n).
But £ is a disjointer, so Yg ] 72 . _

The rest is easy. We can use the disjointer £ for A to show that A cannot
be stationary in x . If A were stationary, since the function g given by
g(s) = Yg(ﬁ)«rl is regressive on A , there is a stationary BC A on which g is
constant. This contradicts the fact that f is a disjointer for A. 8

This result, of course, has the following wake: If A is regular and there

is a uniform w. -complete ultrafilter over A , then E':’ fails. Hence, if x < A

are reqgular and Kk _is A-compact (see §15) , then B‘:, fails:

Before turning to relative consistency results invelving Eﬁ , we attend to
another, and better known, combinatorial principle. - This is the weighty principle
‘[:ll< (variously read box or square), first isolated in the laboratory of Jensen's
fine structure study of L. EIK states: There is a sequence <C€| £ < K+> 80 that_
for any £ < x+, we have:

iyc, cé¢ and if £ is a limit ordinal, CE is closed. unbounded in £ .
(11) If cE(E) < x , then |c€| <k .

(iii) If Yy is a limit point of CE , then CY = CE”* .
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(It follows from (ii) and (iii) that if cf(f) = « , then CE has order-type k .)

Jensen[1972] showed that if V = L, then {3 holds for every kK > w . As with other
LY

cambinatorial principles discovered by Jensen in L, [0 encapsulates gomething
LS

about the uniform generation of L which can sometimes be used in place of the Axiocm
A

of Constructibility. We now establish: Suppose k > w and {J holds. Then E
S
[

holds for every regular ) < K+.

|- wWa shall 1n fact show that if T is a stationary subset of n"', then there is
a statlonary S C T so that for any limit ordinal a < n<+, SNa is not stationary
in o . For this purpose, we might as well assume that T consists of limit ordi-
nals. Let <CE| £ < x+> be a sequence witnessing C]K . For n<x , set § =

¢ e CC has order-type n } . Then, as the S"'s partition T into x p:tts,
there is some n <k so that S = Sr-, is still stationary in <. We now claim
that for any limit ordinal a < |<+, SMNa is not stationary in a . There are
three cases:

(a) ef(a) = w . Then as § consists of limit ordinals, § is disjoint from
any sequence of type w of successor ordinals, cofinal in a .

(b) cfla) > @ and C_ has order-type <n. Let Ea consist of the limit
points of Ca . Then as cf(a) > w , Eu is closed unbounded in a , and (5Na)N
Cu = ¢ by property (iii) of DK .

(c) cf_(u) > w and (_:u has order-type > n . Let Y € Cu so that Cuﬁy has
order-type n . Then if C“ is defined as in the previous case, we have by property
(ii4) of O that (SNa) MG - (r11)) = § .

Thus, the claim is proved, and so is the theorem. 4

The following corollary is immediate: If x is A+—compact, then 01 fails.
Thus, the scalings by ultrafilters imposed by strong compactness on the f;.nal levels
of the cumulative hierarchy disallows DA (and E‘:) for A sufficiently large., 1In
egsence, what is at play, of course, is the indecomposability of ultrafilters.

Turning to consistency results, Jensen[1972]p.286 himself had noted that if n<+

is not Mahlo in L, then ] holds. Roughly, the attributes of a [] sequence,

b [3
whether constructed in V or within an inner model, are quite absolute, and what
seems to be needed to make the length of the sequence (the real) K+ 18 precisely

+
that «x is not Mahlo in L. Solovay complemented this result for w) ; he showed

that if a Mahlo cardinal is Lévy collapsed to w_ , then O fails in the exten-
2 w
1

sion. Thus, Con{(ZFC__& there is a Mahlo cardinal) iff cCon(2FCc & [ fails).
1

Recent work of Dodd-Jensen(1976) casts some light on the consistency strength
of the failure of l:]'< when x 1is singular. They show that if there is no inner
model with a measurable cardinal, then the Covering Theorem holds for the Core Model
K , which in particular implies that (n<+)l< = x* for singular k (see §29)., It can
also be verified that in K , C]K holds for every x > w . Now a D'< sequence 1is

quite absolute, so that one existing in K really is one if (K+)K = x+. Thus,
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we have: If x is singular and [J fails (e.g. El* fails for some regular A < x),
LY

W
then there is an inner model with a measurable cardinal. Recent work of Mitchell

indicates that we can in fact get inner models with many measurable cardinals from

the hypothesis. So, the consistency strength of the failure of [13 for singular

k has been reasonably measured on our scale: it lies somewhere between the

strengths of strong compactness and the existence of many measurable cardinals.
(We can also recall from §13 that Magidor established: Con(2ZFC & there is a

x which is K+-nupercommact) implies Con{YFC & there in o uniform ultrafilter over

w which is v-indecomposable for w < v < ww }. Since Eh must fail if such
w

wt+l
an ultrafilter exists by results of this section, this establishes a reasonable
bound on the consistency strength of the existence of such an ultrafilter: it lies
somewhere between the existence of a K+—superccmpact cardinal ¢ and the existence
of many measurable cardinals.)

It is now appropriate to deal with the consistency strength of the failure of

principles E Reminiscent of Mitchell's result on the tree property, Baumgartner

Y -
[1976] 87 showed that a cardinal collapse preserves a non-trivial attribute of weak

compactness: 1If there is a weakly compact cardinal «k in the ground model, then

if x is Lévy collapsed to w, (i.e. force with Col(wl.x)). then E” fails in the
2 w,

extension. .
F In brief, the elements of Baumgartner's proof are as follows: Let G be

Col(ml,x)—gencric over the ground model V, so that k = mQV[G]

. Since Col(w, ,x)
is w-closed, {§ < | ¢f(§) = w ) will be extensionally the same set in what fol-
lows. We must show that the following holds in VIG) : if A ¢ {6 < x| cf(8) = w )
is stationary in «x , then there is an a < x so that AMNa is stationary in a .

Baumgartner first recalls the following well-known fact: If in V[G], C cK
is closed unbounded in «k , then there is a D € V closed unbounded in k so that
D¢ C . This ca}ls upon the regularity of k and the k-c.c. of the Lévy collapse.

Using this, he is able to appiy the n:-indescribability of ¥ in V on enough
of the forcing apparatus to show that: If in V[G], AC {6 < x| c£(8) = w } is
stationary in x , then there is an inaccessible a < k¢ so that in V[G(\Col(w],a)l
ANa is stationary in o . .

By the usual product analysis, V[G] is a generiz extension of V[G(ﬁCol(wl,a))
via (the w-c¢losed) Col(wl,x~u). Hence, the proof is ?anluded with the following
obsgrvatiqn (with V[GFNCOl(wl,u)] in the role of the ground mpdel, and a =21 ):

Suppose A is a regular uncountable cardinal, S ¢ {8 < AI cf(§) =w ) is a
stationary subset of A , and Q 'is an w~closed notion of forcing. Then in'any

generic extension via Q , S is still stationary in A . 4

The complementary result here, of course, would be a proof of: if Eg fails,
2
then w, 1is weakly compact in L. Unfortunately, this has not been forthcoming

thus far. All we presently know is that by previous remarks, if E: fails, then
2
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since []“l fails, w, 4is Mahlo in L. Mowever, it seems likely that the full
desired result holds, since with a slight strengthening of the hypothesis (which
can be checked to hold in Baumgartner's model) one gots: Suppose that k is a

regular uncountable cardinal, and therc is stationary subset § of k__such that:

whenever Al'AZ C S__are stationary subsets of « , there is an a < ¥ so that

ﬁlf\u and Azfﬁu are both stationary in a . Then «x ig weakly compact in L.

We conclude by citing a result of Shelah related to Baumgartner‘s: If there

is a supercompact cardinal x and ¢ is Lévy collapsed to ¢ then the exten-

sion satisfies the following statement: whenever A > w, is regular and A C

(8§ < AI cf(8) = w ) is stationary in ) , then thexe is an a < A so that ANa

is stationary in a (that is, E? Zails for every regular )\ > w‘).

§22. The Closed Unbounded Filter over .

Among all regular uncountable cardinals, we have already encountered some spe-
cial situations (at the ends of §12 and §19) obtaining at W)y « They seem to rely
on the fact (which does not generalize!) that w, is the least uncountable cardi-
nal. The closed unhounded filter ovaer w, is quite distinctive for this reason,
and it is worth deveoting a short section to its possible extent.

Throughout this section, let F denote the closed unbounded filter over W .
So F is the minimal w;-complete filter over W, which is normal. How close is
it to being an ultrafilter? With the Axiom of Choice, F cannot be an ultrafilter
since otherwise w; would be measurable. Without the Axiom of Choice, w, can be
measurable, if the existence of a measurable cardinal is consistent (Jech[1968]) .
However, it is still open whether the assertion that F itself is an ultrafilter
is consistent relative to the existence of some large cardinal. Martin and Mitchell
showed that if F were an ultrafilter, then for every a there is an inner model
of ZFC with « measurable cardinals. We shall see in §28 that the Axiom of 5eter~
minacy directly implies that F is an ultrafilter, an example of the axiom's tre-
mendous consistency strength.

As we are continuing to assume the Axiom of Choice as a standing hypothesis,
it naturally becomes of interest to sec to what extent F is an ultrafilter at
least over classes of simply defined subsets of w, . In other words, how simple
can a partition of @, into two disjoint stationary subsets be? Let us introduce
a "projective" hierarchy of subsets of Wy oz

Fix throughout a recursive bijection w < wxu, Thus, we can regard a subset
of ®w as a relation on ® , and when this relation is a well-ordering, ask to what
countable ordinal it corresponds. We now define: X cuw isa 2; (respectively,
ﬂ;) subset of w iff there is a 42; (respectively, ﬂ;) subset A of P(w) (in
the usual projective hierarchy) so that: whenever a C w codes a well-ordering of
order-type a < w, . then a e X iff aca.

Somewhat reminiscent of results in §18 about Lebesgue measurable and scattered
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sets, Silver showed that at least in the first levels of this hierarchy we cannot
find a partition of wy into two disjoint stationary subsets:

(i) Every E} subset of w)_ either contains or is disjoint from a closed

unbounded subset of 4, .
(ii) 1f_a'
or is disjoint from a closed unbounded subset of w, .

What is the consistency strength of the assertion that F is an ultrafilter

exists for every acuw , evety;,[l subset of «, either contains
- s 1

over the class of all projective subsets of w, ? Harrington(1975) established
that ineffability was enough: Con(ZFC & there is an ineffable cardinal) implies

Con{ZFC & for every n e w , every ! subset of w, either contains or is dis-
0

joint from a closed unbounded subset of w, ).

k The idea briefly is to Lévy collapse an ineffable cardinal k to w . The

usual product analysis shows that every 5& subset of w, in the extension essen-

tially appears at an early stage of the forcing. Using lhe ineffability of x in
the ground model, one can then get a stationary S C k such that: every 2; sub~-
set of w; in the extension contains or is disjoint from a final segment of § .
(Observe that stationariness of subscts of k is prescrved through a Lévy collapse
of k , as in a claim in the outline of Baumgartner's result in §21.) Finally, one
can shoot a closed unbounded subset through S by a further forcing extension
which adds no new subsets of w (see Baumgartner-Harrington-Kleinberg[1976])) and

hence no. new L; subsets of w, . 4

As for getting a lower Lound on counsistency strength, one can show: Suppose

for every n € w , every L! subset of w., either contains or is disjoint from a
ar '3

closed unbounded subset of w, . Then for every m,n € w , we have that {(a < w,I

a is T"-indescribable in I } is uncountable. This brackets the consistency strength
n g

rather closely, but further elucidation, possibly leading to an equiconsistency
result, is still desirable.

Recall now that a set x is ordinal definable iff there is an a and a
formula ¢(+) so that y e x iff vu F ¢(y) . (See Myhill-Scott[1971]); ordinal
parameters can be allowed in ¢ without affecting the definition.) If we want to

get all ordinal definable subsets of w, to be “decided” by F , we know exactly

1
what is needed: Con(ZFC & there is a measurable cardinal). iff Con(ZFC & every

ordinal definable subset of w, contains or is disjoint from a closed unbounded
subset of ”]_l; ) . -~
F First, if F possesses this strong property of deciding all ordinal definable
subsets of w o consider L(F) . As F is ordinal definable, every mcmber of
LIF] is ordinal definable (in the sense of V), Hence, in L[F], FML(F] is an
ultrafilter over (the real) Wy o and so w, is measurable in L[F] .

We outline the converse direction. Suppose x is measurable and U is a
normal ultrafilter over k . We Lévy collapse Kk to w, let G be Col(w,K}-
generic over the ground madel V . By arguments first devised by Solovay (for his
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model for Lebesgue measurability—see §18), if in V(G], x is an ordinal definable

viG
subset of «x (= w, icl

), then either x or « - x has a subset in U .

We can now conclude this argument somewhat like Harrington's above: Since U
is normal in V, every member of U is stationary in « in V, and hence in V[G]
(again, by a claim in the outline of Baumgartner's result, §21), Because of this,
one can devise a notion of forcing in V([G] which will add a closed unbounded sub-

set C of k= w,V[G]

such that: for every Y ¢ U , there is an a < k so that
cgyY-oa. This further forcing extension will not alter the class of ordinal

definable sets, and hence the result follows. (Throughout this argument, “ordinal
definable” could'in fact have been replaced by "real,ordinal definable" as defined

in 518.) ‘ 4
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V1. FPORCING DEVELOPED FOR LARGE CARDINALS

§23. Prikry Forcing

In this chapter, we continue to elaborate on the general theme of relative con-
sistency results, turning to forcing techniques developed to handle more intrinsic
aspects of the theory of large cardinals. As the various large cardinals emerqged,
new questions about consistency relationships among them also arese, and it is nak-
ural that strong set theoretic assumptions should engender new ideas and possibil-
ities.

The first such development, due to Prikry[1970}, expleited strong properties
satisfied by a measurable cardinal. At first, its main import seems to be to an-
swer somewhat technical questions about the capabilities of the forcing method.

But growing familiarity with Prikry's technique is accompanied by a corresponding
greater appreciation for its further clucidation of the concept of measurability,

as well as for its applicability in relative consistency results involving the large
large cardinals.

Let us fix a measurable cardinal x and a normal ultrafilter U over « .
Prikry's idea is to add generically a new countable sequence of ordinals cofinal in
x , such that the set of possible extensions of any finite approximation to the
sequence is large in the precise sense that it is to bé a member of U . ‘This
motivates the following formulation of Prikry's notion of forcing: Let Py =
{<s,x>] s 1is a finite subset of k & X ¢ ¢ with MNx » Us } , wilh the proviso
that <s,X> is a stronger condition than <t ,¥> iff t is an initial segment of

s {i.e. sNa = t, for some a), XCY ,and s-tC Y. Thus, <s,X> e P should

be regarded as a finite approximation s to a generic sequence, toqetherywith a
bookkeeping set X of possible ordinals from wﬂich extensions of s are to be

comprised. _
It is not hard to see that if <s,X> and <t,¥> are compatible, then either

s 1is an initial segment of t or vice versa. Hence, if G is a —~generic f£il-

P
U
ter over the ground model V, then g =lJ[s| <s,X> ¢ ¢ } is a countable set, which

by a simple density argument must be cofinal in «k . Hence, cfv[G]

{¢) = w , and
since PU obviously satisfies the K+—c.c., all cardinals > x are preserved in the
extension from V to VIG] .

So far, any uniform filter over k could hqve Feplaced our ! , and there is
no guarantee that x is not collapsed by this prbceﬁs. Large cardinals ideas enter
into the picture through the route of Rowbottom's partition theorem for normal ul-

trafilters (§6)}, in the following key lemma: Prikry's Lemma: If <s,X> € Py and

¢ is any formula of the forcing language, then there is a <s,¥Y> stronger than
<g,X> _so that <s,v> |- ¢ , or <s,v> H- ¢ .
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F what we must do is to find a Y C X with Y ¢ U so that <s5,¥> "decides” ¢ .
<
For this purpose, define a partition f: I[X] Y43 by:
0 if <suUt,T> |- ¢ . for some <sUt,T> ¢ PU,
f(t) = {1 if <sUt,T> |- -9 , for some <sUt,T> ¢ P ,

14
2 otherwise.

By Rowbottom's theorem, there is a Y C X with Y ¢ ! so that for every n g u ,
[frea™) =1 .

We can now establish that this Y is as desired: If to the contrary «s,Y>
does not decide ¢ , then there are <sUt,2> and <sL)E,§> both stronger than
<s,Y> so that: <syUt,2> ||~ ¢ , and <s\UL, 2> |F -4 - By cxtending one condition
if necessary, we can suppose that |t| = |t| =m . Thus ¢t,t ¢ (Y1™ , yet clearly
F(t) =0 and £(t) =1 . This contradicts the homogeneity of Y . 4

0f course, for any <s,X> € Py and forcing statement ¢ , there is a <t,¥>
e Py stronger than <s,X> which decides ¢ ; the point of Prikry's Lemma is that
we can in fact take s = t . The crux of several notions of forcing involving large
cardinals {(like those touched upon in §26 and §29) lies just in some analogous fact.
Continuing to assume that G is a P"-generic filter, we can now establish: If

ly] < ¥ in v , and_x e VIG] with x Cy then x e V .

F Let x be a term in the forcing language for x , and suppose <s,X> H— X C v -
Wwe must find a z € V and a condition <t,Y> stropnger than <s5,%X> so0 that

<t,¥> | x = Z . But this is now easy: Working in V , for each a ¢ y by Prikry's
Lemma let Y, C X with Y e U and either <s,Ya>|F aex,or <s, ¥ > F3aé¢x.

as |yl <k, ¥Y=0Y eU. Then if =z is defined {in V) by: a e z iff

acy a .
<s,¥> |- 3 e x, then <s,¥> |Fx=%. . ) o
- . . : v ViG]
It follows immediately from this last fact that (VK) = (VK) , 8o all car-

dinals < k are preserved, and finally, « too remains a cardinal, being a limit

cardinal. In summary, Prikry forcing for a measurable cardinal «k preserves all

cardinals, yet changes the cofinality of k to w®w . Changing a cofinality while

preserving all cardinals was a new technical possibility about the forcing method.
We did not exactly need a normal ultrafilter for significant aspects of Prikry forc-
ing to go through, but in any case a filter with rather strong partition properties
seems necessary—see Devlin([1974} for some characterizations.

In previous sections(§6,§9,§12), we have seen how in special cases the cardinal
filter generated by some countable increasing sequence of cardinals is capable of
yielding a normal ultrafilter, and hence a measurable cardinal, in some inner model.
Prikry forcing provides the structural rationale: If G is Pu-generic over V, then
sg = Uls| <s.%> € G} gemerates U in V(G], i.e. X € U just in case s, - X is
finite. Mathias([1973) in fact established that this last property characterizes

Prikry genericity: Suppose that M is an innexr model of “FC so that in M , k is
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measurable and U is a normal ultrafilter over x . Assume that s C x _has order-

type w . Then there is a G P,-generic over M so that s8_ = s iff s generates
1 G—

U, i.e. X ¢! just in case s - x is finite. Actually, Mathias first conceived

his ideas in an ultrafilter-free context about w , and this led to his result (sec
his (1977]) that w -+ (w): holds in Solovay's Lebesgue measurability model (618),
Ramsey ultrafilters over w (recall §13}, having the requisite partition properties,
were later found to play a useful role in these proceedings.

How about changing cofinalities to cardinals other than w ? Magidor(1975)

devises a generalization of Prikry forcing to show: Suppose ) < k are reqular,

and k_is a moasurable cardinal such that therco is an ascending scquence of order-

type )  of normal ultrafilters over x in Mitchell's order «<(see the end of §9).

Then there is a notion of forcing which preserves all cardinals yet changes the

cofinality of k to XA . The method here does not have the exactitude of Prikry's

in that new bounded subsets of k will be added, in particular the infinite initial
segments of the new generic sequence cofinal in x . Informal arguments exist to
show why something like this must happen.

It is an interesting sidelight of forthcoming work in §29 that the existence
of a (set) notion of forcing, which preserves all cardinals but changes a cofinal-
ity, is equi-consistent with the existence of a measurable cardinal. For those
reading ahead, the point is that a (set) notion of forcing preserves the Core Model

K , and so the covering property would be violated if some cardinal is newly singu-
larized. Similar arguments using Mitchell's generalization of K show that Magi-
dox’'s hypotheses in the preceding paragraph are problaebly neccssary.

§24. Xunen-Paris Forcing

We discuss here a framework for forcing involving measurable cardinals which
has aspects that filter through to the general methods of the next section. It pro-
vided an early analysis of the interplay of elementary embedéings and forcing de-
fined via products, and is especially useful for proving technical relative consis-
tency results abqut ultrafilters ana ideals. As an application, we provide a proof
using the method of a result of Solovay[1971] once promised: the relative consis-
tency of real-valued measurability with respect to (two-valued) measurability.

The scheme introduced in Kunen-Paris(1971] is, slightly simplified, as follows:
Let us assume that in the ground model V, U 1is a normal ultrafilter over x > w ,
and j: VMo VK/U . Suppose that i is a notion of forcing in V. 1Ideally, we
would like to extend U to a k-complete ultrafilter in a generic extension via P .
Of course, this will not always be possible, but with some restrictions on P, we
wi{l be able to extend U in a weak sense. So, the following assumptions are made:

(i) We can identify j(P)= P x Q for same Q in such a way that:

(il) For every p e P, j(p)= <p, 1> (wherc Il is the weakest conéition of Q).
Those looking ahead to §25 will notice that (ii) is a special case of a generhl

compatibility requirement there.
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Regarding j(P) as a notion of forcing for V, we define a term U* in the
forcing language appropriate for j(P) by:

rlFreyr iff r =7 ¢k , for some term T in the forcing

language appropriate for P, and M k (r [k ¢ 3()).

Let us try to make sense of this definition. Firstly, we can construe the forcing
language for P as a sublanguage of the forcing language for j(P) = P x @, so the
intrusion of 1 is not incongruous. Secondly, we are trying to define U* as a
term for forcing with j(P) over the full V, so the first two forcing at;:;ments
about r e j(P) should be regarded in this way. However, the last statument r ”—
k € j(1} should be read, of course, in terms of the forcing relation with 3 (p)
within M. Finally, remember that for any X € x in the ground model V, X ¢ U iff
k € j(X), as U is normal. Thus, we are trying to extend U to P-terms T w;;;£
denote subsets of x , so that j(T) is a j(P)-term denoting a subset of k), and
seeing whether k € j(T) is forced. What goes on in §25 is essentially a general-
ization of this idea cast in terms of extending elementary embeddings; in the pre-
sent section we have in mind more combinatorial results,

Suppose now that G is j(P)-generic over V. Since 3(P) = P x Q, we can con-
sider G = G1 x Gz , where G1 is P-generic over V and G2 is Q-generic over
V[Gll. Our labors were directed toward the following observation, which says that
the desired extension of U for a forcing extension via P exists tantalizingly
in the further extension obtained by forcing with Q . (Recall a similar situation

in $§12.) Suppose U* is the realization in V{G] of the term U*. Then in ViG],

Ut ig a V[Gl]-u:-ccmplete ultrafilter on P(k)NVIG.] such that U*S U .

F We shall only check V[Gl]—n-ccmpleteness. So, assume Yy <k , Tt is a
P~term, and r e j(P) with: r [} 1: v+ P(x) , and M k va<y(r [F ¢ € j(t(a))).
Let T be a P-temm so that_any condition ¢ P forces 1t = ngr(a) . Then in M, any
condition ¢ j(P) forces j(r) = uDy(j('r))(u) = acyj(r(a)) . as j{y) =y . Thus,

M E (| Wevic e 3(t) (@) directly implies M k (r |- « ¢ JT}) . .

With a bit more difficulty, one can also show that U* is V[Gll-normal. The
point of all this is that in many cases, forcing with the Q part of j(P) =P x @
is tame in one of two scnses: (i) it adds no.new subsots of k , so in V[G], U is
an ultrafilter over k , and hence x 1s measurable, or (ii) it has a strong chain
condition on it so that a pull-back of U* to a non-trivial filter in V[Gll is
possible. When P is a uniformly defined, iterative notion of forcing (see con-
crete examples in §25), we can often write j(P) = P x Q0 and arrange for the ¢Q
portion to be tame in this way. Among several results using constructions of this
sort, Kunen-Paris[1971] established: Con(2FC & there is a mecasurable cardinal «x)

implics Con(ZFC & there is a measurable cardinal x with ZZK neormal ultrafilters

over « ). Here, many copies of the tail Q are used to generate different normal

ultrafilters; see §14 for remarks about the possible number of normal ultrafilters.
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We shall apply the technique when P is a product measure algebra, and get
the aforementioned consistency of the real-valued measurability of 2*, first achieved
by Solovay using different means. For this purpose, let us quickly review the nec-
essary facts about measure algebras. Suppose that B is a g-algebra, i.e. a Bool-
ean algebra all of whose countable suprema exist. A measure on B is a function u:
B+ [0,1] so that: {a) w(I) =1, and (b) whenever {b | n e w ] CB with b a b
=0 for n i} m, then u(\n/bn) = ;‘.lu(bn) . If in addition u is pogitive (i.e.
pu(b) = 0 iff b =0 }, then we say that <B,u> is a measure algebra. A measure
algebra is always a complete Boolean algebra.

Suppose now that I is a set, and <Bi’”i> for i € 1 are measure algebras.
Call C e igIBi a cylinder iff C(i) is the unit element of Bi except for a
finite number of coordinates i . Let B (C igIBi be the g-algebra generated by
the cylinders, It is.known that there is a unique measure p on B so that u{C)
= iqui(C(i)) 'for any cylinder C . p may not be positive, but there is a standard
strategem: Let I = {beg B| w(b} =01} . Then I is an ideal, and B=B/I as
usual is a g-algebra consisting of equivalence classes [b] for b e B (where
[b] = [¢] 4iff the symmetric difference (b - c}v (¢ - b) ¢ I'. We can define a
positive measure y on B by: wu{(bl) = u(b) . Thus, <B,u> is a measure algcbra,

called the product measure algebra of the <B1’,'"i)'5‘

Let 2 be the basic measure algebra <P{2),u> where j is the measure:
p(@ =0, w0} = p{1h =% , and u((0,1}) = 1 . For any set I , let 2%
denote the product measure algebra of I copies of 2 . We can then force with

2I with the natural proviso: b is a stronger condition than ¢ iff 0<b < ¢

in 21 . This forcing obviously has the w=c-c. .
With all these preliminaries, we can now proceed to provide a proof of Solovay's

result: Suppose Kk __is a measurable cardinal in the ground model V. If G is gen-
v)VIel

eric over V for forcing with the measure algebra 2 , then in VI[G], k =

is real-valued measurable.

[ The initial observation that x = (Zw)V[G]

(|2K|w)v
pra 2

vIG) <

is standard: First, (2‘”)

by the usual counting argument, using the w,-C.C; but the measure alge-

has cardinality ¢ , so (Zm)V[G] < x .

what remains is to exhibit k dis-
tinct subsets of w in V[G]. For this purpose, let h: kxw+>k be a bijection

in V. TFor § <k and k < 2, let C6 be the cylinder ¢ K2 with every coordinate

k
the unit element 2 = {0,1} except the dth, and pk(§)’ = {k} . Then define for

every a < x terms s for subsets of w by: p |Fne s, iff p is stronger then

[Ci{(“'n)]. For any condition p and@ o < B < k , there is an n ¢ w sufficiently

large so that p A [c:(u,n)

) A [C:fg'n)] > 0 for some k < 2. This is so since
p > O means that if p = {b}, then b could not be < infinitely many different
cylinders, by definition of a product measure. We have thus shown that for any
condition p and @ < B < k , there is a stronger condition q so that q||v- S, # SB'

Hence, k < (2w)v[G].
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We now turn to the demonstration of the real-valued measurability of x in

VIGl. We first argue in V: Let U be a normal ultrafilter over « , and 3: V >
M = VK/U . Then j(z") = (2 J(K))M = 2 j(x)’ the last equalily being an easy con-
sequence of the w -c.c. of measure algebras, and the fact that M C M. We can

certainly write 2 ie) 2 x2 j(K)—K. b

bI03) Also, this identifies j(p) e 3(2%) =
2 K

with <p,lL >, since if p = [bl, b has at most a countable “support" s cK
of coordinates on which it is not the unikt element, and 3(b) has the same support
i(s} = s .

All this, of course, makes the Kunen-Paris method applicable. lence, there is

a term U* so that, continuing to assume that G is 22K -generic over V
(k) ~x

) , if H
is any 2 J -generic filter over V[G], then K =G x H is 2 j(K)-generic
over V, and the realization U* ¢ V(K] of U* is a V[G]-k-completé ultrafilter
on P{(k)MVIG]. The following lemma now concludes the proof (with our VI[G} in
the role of its ground model V): ’

Lemma: Suppose that <B,u> is a measure algebra in the ground model V so that
there is a term 1 whose realization in any forcing extension via <B,u> is a

V-k~complete ultrafilter on FP(k) N V. InV, define v(X) for any X C k by:

vix) = u(VbeB|b|FXxeth
Then vy is a x-additive measure on I'(k), and so x is real-valued measurable in
v.
To establish this lemma, we argue in V. Pirst, vik) =1 and v(lal)) = 0 for
any a < Kk . Suppose now that vy < ¢ , and xa for o < y are disjoint subsets

-
of k. If beB and b ||— UX &1, then for some a < y andsomel—:'stronger

- ~ a<y a
than b , we have b ||— xa €1, as 1t is forced to be V-k-complete. Thus,
viUx )=V 7
a<‘(a) wi {beBlb"-ayxuet})
_ o
= p(ayY(V{b eB| b |- X et ).
Let q =VibeB| b |} X e ) . The q,'s are pairwise incompatible as 1 is

forced to be ultra, and hence if T = {n| 9%, >0}, |Tl £« by the w, -€.c. on

measure algebras. Thus, we can continue our equality chain:

v (“ngxu)

We have established that v is k-additive, and so the proof of the Lemma, and

= (u\</'rqq) = "(a\c/'l‘qa) =

aéT“(qu) - agyu(qu) = QEYV(X“J.

thereby the theorem, is complete. _|

6§25, Silver's Forcing Method

This section is devoted to an exposition of an important technique for making
forcing constructions which preserve large cardinals, while creating some desired
situation in the universe. It is a prominent technique for independence results in
set theory involving strong axioms of infinity. The basic framework is often given

the descriptive name "Backwards Easton Forcing" (we shall comment on why later), and
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was probably first seen in the work of Jensen. Silver then molded the ideas into

a general method, and, in particular, solved the problem of getting a model inwhich
there is a measurable cardinal « such that 2 > k¥ (recall §10). For a detailed
presentation of Silver's method in the Boolean algebraic setting, we refer to Menas
{1976].

We shall confine our attention to those large cardinals characterizable by the
existence of an appropriate elementary embedding. In most cases, the damain of this
elementary embedding can be asgumed to be of the form <VB,E,R> . where R g‘VB ,
and the large cardinal is usually the eoritical point of the embedding, i.e. the
least ordinal moved by it. 'Thus, the Keisler property for weak compactness (recall
§3) shows that weak compactness fits our specifications, with the embedding being
in this case the identity map. The measurability of a cardinal k can be charac-
terized by the existence of some j: <Vx+1’£> + <M,e> with critical point «x ,
where M is transitive. Similarly the supercompactness of k can be characterized
as follows: for every 8 > x there is a jB: <Ve,e> + <MB,c> with critical point
¢ , where: (i) MB is transitive, and (ii) MB is closed under the taking of arbi-
trary B sequences of its members, provided the members of the sequence have, in Mg
rank bounded below some fixed a ¢ MB . We can go on to make similar comments on
extendible cardinals, and so forth.

1f we want to extend the universe by some forcing extension which will preserve
the size of k , where k is the critical point of an elementary embedding J:
<VB,E> + <M,e” ., @ natural approach Lo try is to do the forcing carefully oenough
so that in the extension, 3 can be extended to an elementary embedding of the new
<V8,e> into some new transitive structure M' extending M , which has all the
relevant properties that M had for guaranteeing that k is a large cardinal.

Mild Extensions. As an easy example in wﬁich this can be done, consider the
case in which the set of forcing conditions is "mild”, i.e. has cardinality less
than k . In this case the notion of forcing P can be assumed to be a member of
Vo . and the salient fact about this is that J fixes P as well as every member
of it. Suppose that G is a p-generic filter over the ground model V. Then
(VB)V[G] may have new elements, but we can assume that every such element has a

b RN :
sets of yank < B .) To guarantec this, the standard way of naming clements of the

"name” in Vv (Here, V the ground model's, conception of the set of

generic extension by elements of the ground model bﬂs‘to be modified in an inessen-
tial way (especially when B is a successor oréinél), but this can be done using
the fact that P €V _CV, . Let us denote by Rel(G,a) that element of VIG)
which is the realization of the forcing term a eV . By preceding remarks, for
every x € (VB)VIG]

We are now faced with the task of defining the extended elementary embedding
v(G])

, there igs an a ¢ V8 so that x = Rel(G,a). |

4' for the domain (VB) The idea is to define 3j'(x) by referring to a name

for x in VB , applying j to it, and then taking the realization of the
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resulting name as the value of 3J'(x) .

That is, if x = Rel(G,a) where a € V

then set j'(x) = Rel(G,j(a)). An obvious difficulty with this approach is that an
element in the generic extension can have many different names, and the j* thus
defined may well depend on the particular name picked for x . However, this diff-

iculty does not really arise in this case:

If Rel(G,a) = Rel(G,b) for some names a,b g VB , there must be a condition

p e G so that p |F a=D>b . This is a property of p which can be expressed in
V8 as a first-order property of p, P, a, and b . Hence, by the fact that 3 is
an e¢lementary embedding, the same property holds in M for j(p) = p, j(P) = P,
j(a), and j(b). The definition of forcing is rather absolute, and M being ele-
mentarily equivalent to VB is behaving well enough so that we can decluce that

P |- 3ta) = 3} . Hence, Rel(G,j(a)) = Rel(G,j(b}), and ji' is well defined.

We have not yet specified into what structure (VB)V[G] is going to be cmbedded
by j' , and a natural candidate for this is M' = {Rel(G,a)| ae M } . M' can
quite easily be checked to be transitive, with M C M' (provided we had been rea-
sonable about the "naming" procedure). Also, Jj' is an elementary embedding:
Suppose that (Ve)v[G] F ¢[Re1(G,al),...,Rel(G,an)] . Then same p e¢ G must
force a corresponding forcing assertion. Again, this can be expressed as a first-
Tt L e

1 W P orces the forcing assertion corraespond-
ing tos M’ F ¢[j'(Rel(G,a)L...,j‘(Rel(G,an))] , since j'(Rel(G,ai» = Rel(G,j(ai))
or 1< 1l < n . The reader should be aware ot the important role that the Fact
that j(p) = p for pe P and j(P) = P played in these arguments.

In the last few paragraphs we essentially outlined the proof that if « is
weakly compact, measurable, supercompact, extendible, or huge, respectively, it
retains this property in a generic extension obtained by a set of forcing conditions
having cardinality less than x . (This in general form is the basic remark oé
Lévy-Solovay[1967}). This implies that many important properties of small sets
like the Continuum Hypothesis or Souslin's Hypothesis are not affected by the exis-
tence of large cardinals, because the proof of the independence of these various
statements call upon notions of forcing of small cardinality. This is a disappoint-
ment to the hopes (first expressed by GBdel) of deciding these questions by assum-
ing the oxistence of large cardinals, but on the other hand the results which do
show gome effect of large cardinals on small sets, like the existence of o”

’

seem all the more surprising.

The problem of preserving a large cardinal k under forcing extensions be-
comes much more difficult if we have to use a set of forcing conditions having car-
dinality at least x . This is necessary if we want to affect some properties of
the large cardinal «x itself, like getting 2 > K+. Let us continue to assume
that « is characterizable as the critical point of some j: <VB,e> + <M,e>., The
problems we are faced with if we try to follow the approach we outlined above for
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the case of a mild forcing notion are mainly that j(P) is not equal to P , and

for p€ P, Jji{p) is not necessarily equal to p . Now, if a is a name in the
forcing language for P , j(a) is a name in the forcing language for J(P) , ra-
ther than for P , Hence, in order to realize j(a) , we have to use a generic

filter for Jj(P) rather than for P .

In many important cases this is not a major problem, in view of the fact that
what is needed is a j(P)-generic filter over M , and not over the full V . It
certainly helps here if M is meager enough compared with V so that forcing with
P over V immediately guarantees that we also have a j(P)-generic filter over M .
In important situations this does not happen, and we have to force further to pro-
cure a j(P)-generic filter over M . These cases can still be handled if the new
forcing does not introduce any further sets of rank < B , so that our carefully
nurtured embedding is preserved, (We had similar concerns in §24.)

Let us now assume that G is a P-generic filter over V , and that in VI[G] ,
we can get a j(P)-generic filter G' over M . Extrapolating from the case of mild
extensions, the intention is to extend our given embedding j to 3j' by: if x¢
w1

sense of - M{G'] . Our troubles are not over yet becausc if we want j' to be a

with x = Rel(G,a) for an a € Vﬂ , then j'{x) = Rel(G'.j(a)) . in the

well-defined elementary embedding, we need to have that whenever p € G, Jj(p) € G'.
This is a major difficulty, as the following example indicates:

Example. Suppose we want to introduce a new subset of a measurable cardinal
Kk , without collapsing any cardinals or introducing subsets of smaller cardinals.
The obvious choice is of course tointroduce a Cohen generic subset of x : Let the
notion of forcing P be the set of functions from a bounded subset of x into 2 ,
ordered by extension. If G is s-qeneric, then the subset of k introduced by G
is (e < Kl p(a) = 1 for some p €-G 1 . Suppose %lso that we want to preserve the
measurability of x . That is, we had in the ground model V an elementary embed-

)V[G]. Note that we

ding j: <Vk+1,C> + <M,e> , and we want to extend j to (VK+1
can consider P € VK+1' If M was obtained by the usual ultrapower construction,
and if 2 = K+, then it can easily be verified that even in V we can find a j{P)-
gencric filter over M : Because |M| < (K+)K = K+, we have at most x+ dense sub-
sets of j(P) in M . M considers J(P) to be <j(x)-closed (i.e. whencver y <
jle) and <pu| a <y > is a sequence of elements of j(i) increasing in strength,
there is a g € j(P) stronger than every PB ). N?teJaiso that every subset of
j{P) of cardinality < k is in M . Using all this, we can construct by induction
a filter on j(ﬁl which will meet each of the K+ dense subsets in M . (During
this construction we use the fact that the sequence constructed so far has cardinal-
ity < x , so is in M , and hence has an upper bound in M ). Thus, we get a j(§)-
generic filter over M . The problem is getting such a filter G' which will sat-

isfy the extra requirement that for. some P-generic filter G over V ,

() if peG, then j(p) e G .
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For this particular forcing, this simply cannot be done:

Assume otherwise. Note that since P [ VK ., 3 4is the identity on P. Hence,
if A and A' are subsets of k and j(r) introduced respectively by G and G',
the condition (*) would imply that A'(M¢ = A . However, A is not in V whereas

every initial segment of A' is in M CV , which is a contradiction.

In fact, it is not surprising that we ran into trouble in the above example,
because at least in some cases we cannot introduce a Cohen generic subset of «
while preserving the measurability of k . Such a case is when V is L[If], where
U is a normal ultrafilter over «k . If we could find a P-generic filter G over
this V which introduces a subset A of «x and preserves the measurability of «x,

then we would have in V[G] an elementary embedding E of (V viel into some

)
)VlGl k+l

transitive M . In (Vv we can express the fact that every initial segment

of A 1is in L[U) . (;;lnoed not refer to ! to do this.} The same is true for
JiA) in M, and so A = J(A)N« is in L[3W)] . However, it is a well-known
result of Kunen (see 8.8(iii) and fact (a) toward the end of §9) that A is then
in L[U) . Therefore, A is in V which is a contradiction. (If we had started
with a different ground model it may be pogsible that forcing with P preserves
the measurability of k ; see Kunen(1974) .)

So, the main problem in the general sctting is to get a j(P)-generic filter
G' over M satisfying (*) above, for somc¢ P-generic filter G over V . Note
that if p,q are both in G , then they are compatible, and therefore j{(p) and
j(q) are compatible as elements of j(P} . The problem is that the set (j(p)|
p € G} may give too much information so that it cannot be extended to a generic
filter.

Silver's Method. Let us now discuss the way Silver handles this problem.

Assume that P was defined in such a way that _j(P) eritails P , i.e. forcing with

j(Pi over V automatically introduces a P-generic filter over V . In Boolean
algebraic terminology, this means that the Boolean algebra corresponding to P is

a camplete subalgebra of the Boolean algebra corresponding to Jj{(P) : If one forces
over V with P to get VI[G] , then VIG) can be further extended to a forcing A
extension of V using j(P) . We shall denote the notion of forcing in VIG] which

achieves this by j(P)/P , and use this notation in similar contexts. Let us make

two further assumptions about P . The first is that for all pe P , j(p) is

compatible with p . (Note that p can be considered an element of 3j(P), in view

of the assumption that j(P) entails P .) This implies that Jj(p) can be consid-
ered an element of 3(P)/P . (For instance, if j(p) = p , then j(p) will be
identified with the weakest condition of 3j(P)/P .) Further, assume that V[G] con-
siders j(P)/P to be a IPl-closed notion of forcing.

Under all these assumptions, it is possible to find for every P-generic filter
G a j(P)-generic filter G' satisfying (*): In VIG] consider the set {j(p)|
p € G} as a set of elements of j(P)/P which lies in VI[G] , such that any two
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of them are compatible. Since its cardinality is [p| . it has an upper bound q .
Let H be any (j{P)/P)-generic filter over ViG] which contains q . Then the
pair <G,H> can be combined to give a j(P)~-generic filter G' over V whose
restriction to P is G . The fact that q e H guarantees that if p € G , then
j(p) r G' , which was our objective.

Now recall that we only need a j(P)-generic filter over M , and not over the
full V . This is espreially significant, since wc may not need to extend V(G] at
all. If we are lucky, we may be able to produce, within V(G] , a (j (P) /P) -generic
filtar H' over M[G] which contains the q above, 8O that <G,II'> can be iden-
tified with a j(P)-generic filter over M .

The requircments that we imposed on P seem rather stringent, and so we should
see how we can satisfy them in a rather general setting. Suppose that we want to
force some situation to occur at a large cardinal k (at the very least inaccessi-
ble!), for instance, to render 2 > x+. since k will have certain reflection
properties, it is quite natural to assume that we shall have to do the same con-
struction for u < Kk . So, we perform an iterated forcing construction, where at
the ath stage we already have Pu which takes care of ordinals < a , and we are
given a term Tn which denotes a forcing notion in the universe obtained by forc-
ing with Pu , which is supposed to take care of a . Let us assume that Tu is
forced to be <lPa|—c105ed. Pu+l , the next stage of the construction, will then be
the iterated forcing notion corresponding to forcing with E‘*(l followed by forcing
with the realization of T, {The first occurrence of this sort of iteration is

in Solovay~Tennenbaum(1971].) Let us denote the combined forcing by: Pu+1 = Pq' Tt

(We shall use this notation in similar contexts.) At limit stages the construction

is usually more technical; but let us assume that it can be done in such a way that

for inaccessible o £ Kk ., Pa is the usual direct limit of <PB| B<a>. We shall
also assume that for all « <« , T is forced to have cardinality < x , so this
will insure that for all @« < xk , Pm will have cardinality < k . The technicali-

ties which are involved in the definition at the limit stages of the iteration come
about mainly because we want to guarantee that for &§ < vy . l’Y/P‘s is forced to be
<|Pé|—closed. In the next paragraph, we elaborate on a related point which is prob-
ably for the more sophisticated reader.

Anyone aware of some of the possible applications of this conatruction may ask
whether this complicated iteration scheme ig really necussary. If we want to create
a certain situation at every regular cardinal o < k , why not let Qa be the appro-
priate forcing notion for « and force with an appropriate product of the Qa's?
This is exactly what is done by gaston {1964) when he wants to blow up 2 to u++,
say, for every regular « < x : Qu is the usual notion of forcing in V which
introduces G** new subsets of a , and the final notion of forcing R is simply
a kind of direct product of the Qa's. Note that QQ is <a-closed. However, ob-

serve the following: If R is the product of the Q 's for 8 <a, RR is
atl B - o).
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unfortunately not closed enough in spite of the fact that for a < y < ¢ Q
lRu+1|-closed as a member of V : Once we have forced with R ., . there wlll
new sequences of e
quencas of elemonts of QY . The virtue of the iteration scheme in the p

vious paragraph is that for our ultimate notion of forcing P , P/

'P I bl will.b
a1 -closed, because for every y > a , T was assumed to be a notion of fo

ing in the universe obtained after forcing with P_ , and is |P_ . |-closed in
at+l

this larger universe. This step-by-step iteration instead of the simultaneous i

istering to all a < k is the reason for the often used term “"Backwards Easton

Let us continue the discussion initiated in the penultimate paragraph. Th
notion of forcing that we shall ultimatel:
y use is P = P , l.e. 3
orien o *° el i.e. the notion o
rcing that should take care of all a < « . Let us assume that the definitio
the sequence <1u] @ < x > is so absolute that if we repeat the same definitio
M , we shall get a sequence (of length j(x}+l1 ) which extends the old sequence,
that: j(<Pul @ <k >)(ktl) =P
K

entails P .

1= P . We are now in a situation where j(P)

Observe that whenever p ¢ P, j(p) is compatible with p . (To see this

notice that j can be assumed to be the identity on P_, as |P | = « So sir
. _ 3 K *

P P'<+1 PK * T, - every peP can be considered to be a pair <q,s> , where

q e Px and s 1is a term forced by q to be in TK . Thus, J(p) = <j(q).j(s)

w <q,j{(s)> . J(8) is a term forced to belong to 'Tj( ) and hence j(p) 1is

] K
clearly compatible with p , since s and j(s) refer to different notions of
forecing.) Usiny this remark, it is routine for the foreing practitioner to show

the desired property that J(P)/P will be ]P|—closed, provided:
(a) M contalns every subset of j(P) of cardinality < |P[ , and
(b) P/Pa+1 is actually IPa+l|-closed for every a < x ,
so that we can invoke the elementarity of j . Condition (b) can be easily met
letting Ty be the empty forcing notion most of the time. For example, if the.
typical forcing notion T that we have in mind will be forced to have a cardin
ity which is easily accessible from a , then we could agree to only introduce t
Tu for inaccessible a < x , letting Tu for other a be the empty forcingnot
As an example of the above construction, let us survey the proof of Silver'

. . ++
theorem: Con(2FC & x is a k -supercompact cardinal) implies Con(2ZFC & « is a

++
_ K +
S supercompact cardinal gnd 2" >k ). (Since such a k 1is at least measural

we have a model in which the GCH is violated at a measurable cardinal.)

. ++
F k 1is k -supercompact iff there is an elementary embedding of V into @
—_— . K+3

transitive structure M s
e uch that every sequence of elements of M of cardinal:
< k can be coded as an element of M . Without loss of generality we can assw

et

3 +
that 2 = x (else we are finished) and that 2K++ = x (which can be arrange«

by a simple forcing extension which does not destroy the K++—supercompactness~of
). (

We now follow the scheme presented above. For a < x , let ¢ be a term
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denoting the standard forcing notion for adding a*tt new subsets to a if a is

inaccessible, and the empty forcing notion otherwise. We define the sequence <Pu|

@ <x > and Scet P =P - Pr * TK . Note that the forcing notion denoted by t

is in the universe obt:I;ed by iterating <TBI B8 < oo > first. Note also that thg
sequence <pu| o < k> for :ither gome trivial coding of it) is definable in VK+3.
Since M is closed under Kk . sequences (note this!), the definition is abseolute
enough for M so that if we use the same definition in M , we get a sequence which
extends (Pnl a < x> . Also, M considers j{P)/P to be <v-closed, where in M,
v is the first inaccessible above k . This follows, of course, from our choice

of the terms Tu . Since M is closed under sequences of length < K++, J(p)/P

is really K'r-closed. This will yield that if G 4is a P~generic filter over V ,
in V[G] we can inductively construct a (j(P)/P)-generic filter over MI[G], if we
can show for example that there are at most x++* dense subsets of 3J{(P) in M .
But this is'true, because it can be verified that |p| = «** ana P satisfies the
K+—c.c. , hence in V there are at most (K++)K = K++ dense subsets of P . There-
fore in M , there are at most j(K++) dense subsets of j(P) ., However, if M

was obtained by the usual ultrapower construction, j(x++)

S ++
5 = 2% = «™. (the fact that j(P)/P is |P|-closed is of course impor-

has (real) cardinality
(K**
tant in getting an upper bound for (itp)] p € G} .) Thus, we can find a j(P)-
generic filter G' over M such that p ¢ G implies j(p) ¢ G' , and the gencral

)V[Gl
K3

aegMl} . -

construction allows us to extend j to j': (V + M', where M' = {Rel(G,a)

We essentially used the fact that M 1is closed under x++ sequences, and this
is exactly the point where we had to assume that we started with a large cardinal
stronger than measurable. Silver's theorem wiﬁh just “measurable" in place of
"z++-supercompact” cannot be proved, since as we saw in §10, Kunen established
that the consistency strength of the existence of a measurable cardinal «k with
2% > K+ is at least that of the existence of many measurable cardinals.

By amplifying-the type of argument we have encountered in this seétion, Laver
(1974) was able to give a very strong version of these techniques for supercompact

cardinals as follows: Let k be a supercompact cardinal. Then there exists a

forcing notion P , having cardinality « and satisfying the k-c.c., such that in

the univorse obtained by forcing with P , « is still supercompact, and forcing

A} ’”
over. this universe with any <x-closed forcing notion will preserve the supercompact-

ness of x .

F Laver's theorem is proved by using the following combinatorial principle: Let
k be supercompact. Then there exists a sequence <xu a < k > of elements of V

such that for every set A and for avery B there exists an elementary embedding

j:+ V+ M with critical point «k , where M is closed under 8 sequences, and

Jlex | a < x> (k) = A
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With such a sequence <xu| a < k >, Laver constructs an iterated forcing
sequence <Pul a < x > , where the corresponding Tu is X if X, is a term in
the forcing language appropriate for P“ vwhich is forced to be a <a-closed forcing
notion and IP“| = ¢ , and the empty forcing notion otherwise. P is simply P . the
direct limit of <Pu| a < k¢ > . The argument that shows that, after forcing with
p , any <x-closed forcing notion preserves the supercompactness of x follows the
scheme of this section: Given a term Tt which denotes (with respect to P) a <«k-
closed forcing notion, we can find an elementary embedding Jj such that j(<xa|
a <k >){k) =1 and with sucha j , P = PK' T satisfies the requirements of

K+l
our scheme. 4

§26, The Least Strongly Compact Caxdinal

A pervading feature of the theory of large cardinals is that the different
postulations form into a nice linear hierarchy: given two large cardinal concepts,
one is typically of transcendingly stronger kind, both consistency-wise and in the
direct implicational sense. It is in fact usually the case that if two large car-
dinal concepts can be directly defined in terms of the existence of a cardinal with
certain properties, then the least cardinal satisfying one definition is much smaller
than the least cardinal satisfying the other definition, in a strong sense given
in terms of the context established by the stronger concept.

Strong compactness presents an anomalous case in its relationship to its neigh-
bors, measurability and supercompactness. There is an equivocation here which is
all the more interesting since although supercompactness is now thought the proper
concept transcending measurability, strong compactness was formulated first with 7
quite natural motivations. We saw in §14 that a supercompact cardinal «x is the
xth measurable cardinal in a strong sense, and the simple proof of this fact has
the right feel as a reflection argument. In this section, we briefly outline con-
sistency results involving the various possibilities for the least strongly compact
cardinal. This is decidedly a varying concept, as we shall see.

Concerning strong compactness and measurability, the result of Vop&nka and

Hrb&Eek (see 53) established that these concepts provably are not the same. If U
is a normal ultrafilter over k , then k remains measurable in L[U), while «
cannot be strongly compact in L[U) by their result, Similar arguments apply to
several measurable cardinals. Concerning consistency strength, Kunen showed that
(as cited in §10) if there is a strongly compact cardinal, then for every a there
is an inner model with a measurable cardinals. Hence, strong compactness and _
measurability cannot be equiconsistent. However, the question still remained whe-
ther the classes of strongly compact cardinals and measurable cardinals are provably
different (provided strongly compact cardinals exist!). In Magidor(1976] it is

established that the answer is in the negative, namely: If there is a strongly

compact cardinal, then there is a forcing extension in which it remains strongly
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compact, but is now the least measurable cardinal. Let us describe the idea of the

proof:
F Suppose «k 18 a strongly compact cardinal. Very likely, there are many mea-
surable cardinals below x . We would like to deprive them of their measurability,
and one way of achieving this is to make each of them singular. Prikry forcing
(523) gives us the tool for turning one measurable cardinal into a singular cardi-
nal with cofinality w . What we have to do is to iterate Prikiry forcing in such
a way that x remains strongly compact. Prikry's conditions for A, say, have the
form <s,X> where s is a finite approximation to an w sequence that will even-
tually be cofinal in X , and X is a subset of A which is the sct of possible
candidates for extending the finite sequence s . The point was that the X's were
always to be taken from some normal ultrafilter over )\ . When we iterate Prikry
forcing for every measurable cardinal o < k , a condition will have the form
{<su’xa>' & < x, a is measurable} , where <8 X > is a Prikry condition for a ,
with the change that Xu is not a particular subset of a but rather a term
denoting such a set, which belongs to the universe obtained by first iterating the
Prikry forcing < a. One can check that o remains measurable at this train stop
along the way to k , and so xa is required to belong to a certain normal ultra-
filter over a , which belongs to this universe. One further requirement is that
s is to be the empty sequence except for finitely many a .

with all these constraintg, one can then show that a generalized form of
Prikry's Lemma (§23) goes through, with all the desired consequences. Clearly
every measurable cardinal below k becomes singular, and one can verify that no
new measurable cardinals are created in the process. The main point is that «

will remain strongly compact, by arguments reminiscent of 524. 4

In this model, x is definitely not supercompact, since it is the least mea-
surable cardinal. Therefére, strong compactness and supercompactness provably are ,
not the same concept. That this may be the case was indicated by an earlier result
of Menas, who noted that below an extendible cardinal there are many strongly com-
pact cardinals which are not supercompact. This can be culled from Menas' Lemma
in §15: a measurable cardinal which is a limit of strongly compact cardinals must
itself be strongly compact. Note that since an extendible cardinal is a limit of
supercompact cardinals, by a reflection argument there are many measurables below
it which are limits of strongly compacts. Any measurable whicn is a limit of
strongly compacts, but not a limit of such measurables, is strongly compact but
not supercompact (by the argument for (ii) of that Lemma). Armed with this, Menas
[1974] had boen able to show: If thore is a measurable cardinal which is a limit
of strongly compact cardinals, then there is a forcing extension in which there is
a strongly compact cardinal, and it is not supercomQact. Of cvurse, this result is

subsumed by Magidor's above.
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The question still romains whether the first supercompact cardinal is provably
larger than the Pirst strongly compact cardinal, and again Magidor[1976] answers

this in the negative: If there is a Supercompact cardinal, then there is a forcing

extension in which it remains supercompact, but it has no strongly compact cardinals

below it.

} The idea is to perform the construction in two steps, In the first step we

use Silver's forcing method (525) to got an unbounded subset of k of measurable
cardinals which violate the Generalized Continuum Hypothesis. (A supercompact car-
dinal has unboundedly many cardinals below it with enough degrue of supercompactness
so that Silver's construction can be applied to them.)

The second step is to change the cofinality of each of these measurable cardi-
nals to w wusing the iterated Prikry forcing described above. Each of these newly
singularized cardinals still violates the GCH, and one can verify that they remain
strong limit cardinals. This in itself is enough to guarantee that there can be
no strongly compact cardinals below « , by Solovay's GCH result (§15): Any singg—
lar strong limit cardinal above a strongly compact cardinal satisfies the GCH.

We still have to preserve the supercompactness of x , and for this we have
to be more cautious about the set of measurable cardinals which are to be made sin-
gular. But one can show that by picking this set to be sparse unough in k , iter-
ating Prikry forcing on it preserves the supercompactness of x . Hence, we get a
model in which the first supercompact cardinal is also the first strongly compact
cardinal. 4

If we turn our attention to the second strongly compact cardinal, etc., then
Stern(1973) was able to show that under the existence of an extendible cardinal,
one can get a model in which the first strongly compact cardinal is the first su-
Percompact cardinal but the second is not. Similariy one can have that the first
two strongly compact cardinals are not Supercompact. Using other methods, one can
show that it is consistent to have a supercompact cardinals which are exactly
all of the strongly compact cardinals. However, it is not known whether the firét
two strongly compact cardinals can be the first two mecasurable cardinals.

The prominent open question left unanswered by these various results is whe-
ther strong compactness and supercompactnuss are equiconsistent. The accepted

guess is that the answer is no.



242

VII. MISCELLANY

§27. Infinitary Games

Over the last couple of decades, it has become increasingly popular to formu-
late concepts in terms of games. It is helpful to regard, say, alternating quanti-
fiers or nested sequences in a topology in this way. The theory of games as such
is often preoccupied with rather different situations, and we shall be dealing with
infinitary versions of what in the jargon is the rather simplistic "zero-sum two
person game with perfect information”. The classic von Neumann-Morgenstern([1944)
had already provided the basic theorem for finite versions of such games: there is
a winning strategy for one player. Infinitary versions were first studied by Gale-
Stewart{19531, and by Mycielski-Zieba{1955] and Mycielski-Swierczkowski-Zieba[1956],
and a rich and bizarre world was soon to open for (interested)set theorists, a world,
as subsequent work of Solovay indicated, populated by many large cardinals.,

The following is the basic infinitary game: Let A be a set, and B C “a L
Then G(A,B) is the game with two players I and II who alternately choose ele-

ments of A . I initially picks a_, then II picks ay then 1 picks a,, and

2
0" 81

After w steps, a sequence <ao,a1,a2,...> e A is gencrated, and player I wins

the game if this sequence is in B , and player II wins otherwise.

0’

so forth, with each a, picked in full knowledge of the initial play <a >.

A-winning strateqy for either player in G(A,B) is a function S: A?LHA + A

8o that if at each of his turns the player plays S(<a ) after Lhe ink-

ot ,an_l‘)

tial play <a > . then he wins every play of the game, Clearly, at most

0’ -1
one player can have a winning strategy. We say that G(A,B) is determined iff one

player has a winning strategy.

It turns out that (in ZF) there is always a B C Yo so that G(wl,B) is not

1

determined (Mycielski[1964]). Also, as pointed out by Gale-Stewart[1953], if hl >1, .

from a well-ordering of “A one can construct a B c “A so that G(A,B) is not
determined, by diagonalizing over all possible strategies. 1In a sense, this B
can be recgarded as a typically "paradoxical® set made available by the Axiom of
Choice, and so Mycielski-Steinhaus[1962] introduced for further study the Axiom of
Determinacy (AD) :

G(w,B) is determined for every B C Yy .
-

The choice A =y is made here because it is reélly/the simplest non~-trivial case;
AD is known by coding to be equivalent to the proposition that G(2,B) is deter-
mined for every B C Y3,

Since the Axiom of Determinacy contradicts the Axjom of Choicc,‘two approaches

have been taken in the investigation of the determinacy of games:
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(a) Abandoning AC, one can study the consequences of the full 2ZF + AD.

(b} Retaining AC, one can study weak versions of AD which are possibly congis-
tent with 2¥C.

The continuing progress being made along the first alternative will be discussed

in the next section. In the present section, we shall continue to assume the Axiom

of Choice, and discuss the recent experience as regards the second alternative.

The classical rosult in the program of determining the extent in 2ZFC of the
class of determinate games is the following result of Gale-Stewart(1953): If B
is an open subset of ““7, then G(w,B) is determined.

F The salient point here is that a member of B is in B by virtue of an ini-
tial segment. Hence, if player I does not have a winning strategy, then player II
has a winning strategy which can be informally described as follows: At any turn,
player II picks the least integer so that after it is played., player I does not

have a winning strategy in the truncated game which starts with his next move. If
player II cannot do this at some turn, or if he plays according to this recipe but
still loses, then in ecither case this misfortune occurs after a finite number of

plays, and we can derive a contradiction by looking at the move before. 4

This simple result is actually a pivotal one for the theory, as in many cases
the daterminacy of a game can be reduced in some sense to the determinacy of a de-
rived "open” game. IL is natural to look for such a reduction, since a strategy
is a function on finite scquences, and an open game epitomizes the determinate sit-
uation when a finite approximation to an infinite play is really enough.

As we shall discuss in the next section, in the mid-sixties Solovay inaugu-
rated a new era for AD when he established that it implied the relative consistency
of (ZFC & there is a measurable cardinal). This was a totally unexpected result
about the structure of the reals, and propelled set theorists to chart out how
large cardinals come into play in games with reals.

Descriptive set theory was the natural area to look for clarifications. 1In
order to discuss degrees of determinacy along the Projective Hierarchy, let us de-
note by ﬂ;-beterminacy the assertion that G(w,B) is determined for any B g_wm
which is ﬂ;. (Vvariations on this notation, like the "lightface" version, have the
obvious meaning; for once we need not consider the EA versions, as we can look at
complements and see that what would be_é;-Determinacy is the same as ﬂA-Determin—
acy.) By Projective Determinacy (PD) is meant the joint assertion of‘gé-Determin—

acy for every n € w .

Classical results indicated that if V = L, then H}—Determinacy fails. 1t
transpires that an uncountable, scattered H: set in the sense of §18 is a counter-
example. But reminiscent of some comments toward the end of that section about the
effect of measurables on the Projective Hierarchy, Martin[1970] showed that if there
is a measurable cardinal, then ﬂi—Determinacy holds. More precisely, he was able

to invoke the Silver theory of indiscernibles to establish the following statement:
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If acw and a! exists, then G(w,B) is determined for any B g'wm which is

1) iin a):

| suppose Bc'w is Hi(in a), so that it has (normal) form: f ¢ B Aiff
Hg:wwﬂngwR(fln,gIn,aln) , where R 1is recursive. (Here, we have styled a ¢ Y

by an identification of Plw) and Yy , to bring the predicate into consistent
form; in any case, a does not play any dynamic role in the proceedings.) For any
£e Y% , let us denote Ty = {se¢ JEan | ¥n < length(s)(—1R(f|n,s|n,a|n))). Then

the usual tree analysis of E: sets indicates that f ¢ B iff 7T,  is well-ordered

= t <
EXV<KB + where <KB is the Xleene-Brouwer ordering of finite sequences S <n t

iff t is a proper initial segment of s , or else s is lexigraphically less
than t .

One of the precepts of set theory is that well-ordering can be regarded as an
existential statement about order-preserving injectivity into the ordinals. Keep-
ing this in ﬁind, we shall define an auxiliary game G to Gl(w,B). First, fix an
enumeration <si| iew> of AELnu so that length(si) <1 for every i . G is

now described as follows: Player I initially picks an a_ ¢ w and also an a

0

wy g then player II picks an al € w ; then player I picks an a,ew and an ay

cuwy i then player 1I picks an a3 € w ; then player I picks an a4 e w and an a,

€ w i and so forth. Thus, © is like G(w,B) oxcegt that player I must also

choose ordinals at his turns. Player I is said to win a play of this game just in

case the following holds: if £ = <a ¢o++> 16 the Bequence of integers pro-

0’1 %2
i 124 ui ©
<Tf’<KB> + <wy <>, In particular, if player I wins a play of G, then he wins the
corresponding play of G(w,B), where the ordinals are left out, since’the resulting

fes.,

duced by this play, then the map s extends an order-proeserving injection:

Notice that each player knows at the ith play of the game whether s 3 Tf ,
since we had arranged that 1ength(si) < i, Now if player I lapses in G in his
order-preservation efforts, he can-never rectify his mistake again; hence, whenever
player II wins G, he has done so on the basis of an initial segment. Hence, G is

an "open" game, i.e. one for which the Gale-Stewart analysis can be invoked, and so
G is determined. Using this fact, we can now proceed to show that the original

game G(w,B) must be determined:

Case 1 player I has a winning strategy for G. By an earlier comment, if he
plays according to this strategy in G(uw,B), deviously modified by keeping his ordi-
nal moves secret from his opponent, then he will always win. Thus, player I has a
winning strategy in G(w,B).

Case 2 player II has a winning strategy for G. We now call upon the existence
of a” to produce a winning strategy for player II in G(w,B). Since the predicate
R was recursive, we could surely have carried out the construction of the game G
entirely within L[a] (but using the real wy in the definition of G). Thus, we

could argue as before to show that there is an S ¢ L(a]l which in the sense of
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Llal is a winning strategy for onc player in game G

Notice that if (S is a winning strategy for I)L[a], then S is a winning stra-
tegy for I {(in V). This is bocause of the open nature of G : If there were a play
of G in V in which player I plays according to S but still loses, then he must have
failed to preserve order at a finite stage, and is lost from then on. But then this
failure would take place juet the same in Lla), and so S5 was not winning for play-
er 1 inside L[a) either,

Hence, as we are supposalto be in Case 2, we can conclude that: (S is a win-

Lial

ning strategy for 1II) Again by the open nature of 5, this means that is

a winning strategy for II (in V), as the following argument shows: RAs G is open,

an ordering RS §»<A3anl’;P can be defined in L[a) so that: S is a winning stra-
tegy for II iff Rs is a well-founded relation. But this last statement holds

relativized to Lla), and also: (RS is a well-founded relation)L[a]

iff Rg is a
well-founded relation. (This argument is exactly like for 7.9 of §7.)

: #
By the existence of a’, let H g w, with || = w, be a set of indiscernibles

1
for Llal. We now describe a winning strategy for player II in G(w,B): Given an
initial play <a0,...,a2n> toward some eventual f ¢ “w , pPlayer II proceeds as
follows: He first chooses ordinals a, for i <n such that: Iif 8y ¢ Te oay =

0 ; otherwise « ils some ordinal picked ¢ H so that si-+ a is order-preserving

i i
for <KB’ (Notice that whethur o, ¢ Tf or not can be decided without knowing the
full f , as lcngth(ui) < i < 2n.) ‘Then as if he were playing in G, player II res-

ponds according to the winning strategy S to the initial play

€ <AL, 0>, A, €A, 08 geen €A, 0> > .
0’70 1 271 3 2n’n

This is a well-defined strategy for player II in G(w,B) which does not depend on
the particular ai's chosen, since H is a set of indiscernibles for L[a] and _E,S
€ Llal.

It is now claimed that this is a winning strategy for player II in G(w,B) :
Assume to the contrary that f is the result of a play of G(w,B) when player II
uses his strategy, yet f ¢ B, i.e. Tf is well-ordered by <KB' Since [Tfl -y
< |H| , let h: 'rf + H be an order-preserving injection, and extend h arbitrarily
to a function h: AEL"w + w; . Then surely if player II plays according to S in
G, and player I plays <f(2i),h(si)> at his (i+l)st turn, then player II still
loses by indiscernibility of H for L[al. This is a contradiction of the fact

that S is a winning strategy for II in V. -

This rather attractive proof of Martin first brought contemporary large cardi-
nal ideas into the arena of infinite games. Recently, Harrington(1975) skillfully
synthesized ideas of Friedman, Sami, Steel, and others to show that, somewhat unex-

pectedly, the direct converse holds: 1If agcw and G(w,B) is determined for

every B which is H*(in a), then a# exists. Thus, our outline of 7.25 of §7 is
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now complete, and we have before us the fascinating revelation that the existence’
of a non-trivial elementary embedding: L + L is equivalent to ﬂ{-Determinacyl

As soon as Martin cstablished his result in the late sixties, set theorists
became enamored with the idea of using indiscernibles to effect a reduction to open
games. The prominent open question at the time was whether Borel(A{-)Detérminacy
can be established outright in ZPFC. Tndiscernibles were laboriously pieced together
by Martin and others to push through various arguments, thc best result along these
lines being that of Paris[1972] who first established HE—Determinacy. Actually,
this turned out to be a false start toward Borel Determinacy, as Martin{l1975] later
established in late 1974 that Borel Detcrminacy holds in ZFC using gystematic reduc-
tions down along the Borel hierarchy. Sometimes, one can go overboard, even with
large cardinal ideas!

Borel Determinacy is a prominent example of an assertion which was amenable
to predictive analysis via the strength of axiomatic systems. Friedman{1971] had
shown early on that Borel Determinacy is not provable in Zermelo set theory (ZF =~
Replacement); in fact no particular countable iteration of the power set operation
suffices. Thus, set thcorists were already aware of the axiomatic strength that
must essentially be employed in an eventual proof of Borel Determinacy. Martin's
proof used uncountable iterations of the power set opgration. Measuring the
strength of propositions undecided by ZFC by using the scale of large cardinals is
a natural extension of such axiomatic analyses.

The consistency strength of full Projective Determinacy is still completely
unknown. The work in the early ‘seventies of Kechris, Kunen, Martin, Moschovakis,
and Solovay {(most unpublished--but see Kechris([1973)(1974](1975], and Moschovakis
[1970] [1973) and his forthcoming book), have charted the extensive consequences of
PD for the descriptive theory of projective sets. These researches have certainly
helped isolate the essence of arguments in descriptive set theory from a founda-
tional point of view. However, although the Martin-Harrington results have fully
clarified E{—Determinacy, even the strength of‘ﬂﬁ-oeterminacy has not been satis-

factorily ascertained. It is known to be a remarkably strong proposition; extend-

ing work of Solovay, Green(1977) established that g;—beterminacy implies the exis-

tence of an inner model of: %FC & there is a measurable cardinal x carrying a

normal ultrafilter U with f[a < k| « is measurable } e . Martin then remarked

that Green's methods actually show the existence of'{ﬁner models with measurable
cardinals carrying normal ultrafilters of high type in Mitchell's order (see end
of §9}).

(Very recently, Martin has announced that ﬁé—betcrminacy is a consequence of
a very strong axiom of infinity, I2 of 517. At the time of this writing (early
1978) it is too early to get the full story. However, this would certainly be a
major breakthrough: an upper bound on the strength of’R;—Determinacy has, been
established. We eagerly await further details, with the hope that an elaboration
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of the strength of Projective bDeterminacy is finally forthcoming.)
R : " : ; 1 :
To give an idea of the implications of,ﬂz-netermxnacy, we sketch Solovay's

ideas in a proof of: If ll,-Determinacy holds, then there is a transitive set model

of 2FC with a measurable cardinal,

L Already from the existence of a# for every a C w , we know that there is
for every a C w a minimal transitive model w(a) satisfying *v = L[a]" Clearly
. 13

m{a) must have form LYlal for some y < wy depending on a .

For every scntence o in the language of set theory, define: A = {a ¢ ml

» 9 -

m(a) F o} . AU can be shown to be a A; set of reals. Moreover, if a is in Ao'
any real having the same Turing degree as a is in A, since it has the same
minim. del. é side i

al model Hence, we can consider AU and P(w) - AO to be sets of Turing
degrees.

We must now appeal to some facts which are consequences of forthecoming results
in §28: Call a set X of Turing degrees large iff XD [d] a fT a ) for some

- l _ . . -

degree d . Then ﬂ2 Determinacy implies that for every sentence ¢ , either Ao
or Plw) - Aa is large, by the relativization to n; of a coming argument in 5§28
about the filter of large sets, due to Martin.

Let [ = [o| Au is large} . Note that by the above remark I is a complete
theory. Since for st i

ry or any countable collection (ai| iewlcliw there isa b Cw
s0 that a Sp b for every i , we can invoke the largeness of the Ao‘s in T to
get an x C w so that: whenever x ET a , then m{a) is a model of T .

t i m{x) 3

Let F be the filter over (mw) defined by: X ¢ F iff X ¢ P((ww)m(X))

sgaas m{x)
& 31VJ>1((mj) e X} . Thus, FN m(x) is the usual cardinal filter in m{x) over

m(x) : s m(x) 3
(mm) . It 1? ?ow claimed that (FNL[F]) is a (ww)m(h)-complete ultrafilter
inside (L{F1H™,
We just indicate how to show ultrafiltration, thé proof of (w )m(x)-complete—
w

ness being similar. The reader should notice the thematic connection to arguments

we have encountered in §6 and §9.

m(x) .
Note that (LI[F]) has a canonical well-ordering definable in m(x) . TIf
our filter were not ultra, let Y e P((mm)m(x)) ri(L[F])m(x) be the least in this
a . m(x) P X .
oxdering such that neither Y nor (mw) - Y is in F . Y is therefore

defiz?:}e in m(x) . We now proceed to establish that if (wl)m(X) e Y , then

(wn) €Y for every n > 0; this argument works just as well for (Mw)m(x) - Y,

so we will then have before us a contradiction.
m{x) :

So, assume that (w;) € Y . This can be stated as the fact that for some
sentence o , m(x) F 0 . Hence for every a 2 X m(a) F ¢ . Now fix an n > O.
Let ? )be a real coding the usual generic collapse over m(x) of (v )m(x) to

m{x ! j n
(wl) , and let a be a real coding z and x . So, we can consider that the
first w+l infinite cardinals of m(a) are: wu,(w )m(X),(w )m(x) ( )m(x)/
n n+l L™ -

™ . m{x) $ed :
erefore, the cardinal filter over (mm) defined inside m(a) is just
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FOmta). s, @)™ = wrn™, ana EnLen™® = @anEn®®

the canonical well-orderings must also be the same, Y is defined by the same for-

Since

mula in both m(a) and m(x) . Now mf(a) F g , where o iu as at the beginning

of this paragraph, since a >, % . But (w])m(a) = (wn)m(x)

conclude that (wn)m(x) € Y . Since the n » 0 here was arbitrary, we have estab-

, 80 we can finally

lished what we set out to prove: ((un)m(x)| n>0}cCcy. 4

This proof exhibits a remarkable connection between a hypothesis on simply
defined sets of reals and a highly non-constructive existential postulation in set
theory, which seems to hinge ultimately on Skolem's “"paradox": if set theory is
consistent, it has countable models, and these can be simply coded into reals.

We pass now to a few examples of other infinite games. A variation on the
game G(A,B) is the game G*{A,B) where the players have different roles. They
still construct an uw-sequence of members of A , but player ! at his turns can
determine finitely many members of the sequence whereas player Il at his turns can
determine just one such member. Player I wins as before iff the resulting se-
quence is in B Morton Davis(1964] gave a complete solution for the games G*{(2,B)
as follows: (a) player II has a winning strategy in G*(2,B) iff B is countable.

(b) player I has a winning strategy in G*(2,B) iff B as a subset of the topologil

cal space m2 contains a perfect subget. (Here and hereafter, it should be clear

what is meant by a winning strategy, although we do not bother to define it for-
mally.)

The corresponding axiom of determinacy is AD*: one player has a winning

strateqgy in G*(2,B}, for every B C I By Davis' result AD* is equivalent to

the proposition that every subset of “2  jis either countable or contains a perfect
subset—that is, to (p) of §18. Hence, by results cited there, AD* is still in-
consistent with the Axiom of Choice, and Con(ZF & AD*) iff Con(ZFC & there is an

inaccessible cardinal). This is historically the first link-up between large car-

dinals and infinite games. AD certainly implies AD* by a simple coding, but we
shall see in §28 that AD is an incomparably stronger proposition; in fact, it is
rather striking that such an apparently slight alteration in the rules of the game
should result in such a drastic diminution in strength.

We finish this section with a discussion of a class of infinite games mainly
introduced by Ulam(see his [1964)). We are given an infinite set A . The two
players determine in their play a decreasing sequence of subsets of A , and the
regult of the game is a function of the size of the intersection of the resulting
sequence. A few examples of this kind of game are:

{A) Player I splits the set into two parts. Player II chooses one of the
parts, and player I splits the part chosen by II. Player II then chooses one of
the parts, and so on. Player I wins the game iff the intersection of the chosen

parts is non-empty.

249

(B) Like game (A), except that player II splits, and player I picks. Player
I wins iff the intersection contains at least two points,

(C) Both players pick and split. Player I wins iff the resulting intersec-
tion is non-empty.

(D) Bach player picks in his turn a subset of the set obtained so far. He is
not allowed to pick a small subset, where "small” is a part of the definition of
the game. Player II gets to start this game, for technical reasons. Player I wins

iff the resulting intersection is non-empty.

It is clear that winning these games depends just on the cardinality of A .
Game (A) has nothing to do with large cardinals: Player I has a winning strategy
in the game iff the cardinality of A is at least 2¢ ; and player II has a win-
ning strategy iff A is countable. Games (B) and (C) are closely related in the
sense that: (i) player I cannot have a winning strategy in either game if the car-
dinality of A is at most ¥ ; and (ii) if the cardinality of A 1is less than
the first measurable cardinal then if player I has a winning strategy in game (B)
then he has a winning strategy in game (C). The consistency strength of player I
having a winning strategy in either game (B) or (C) follows from the next two the-
orems:

(Laver) Con(2?FC & there is a mecasurable cardinal) implies Con(ZFC & Player I

has a winning strategy in game (B) (hence in game {C)) played on a set having car-

dinality w, . Note that if game (B) is played on a set A bhaving cardinality at
least the first measurable, then player X trivially has a winning strategy by al-
ways picking the set which lies in some fixed wy-complete ultrafilter over A .
Laver’'s model is obtained by Lévy collapsing a measurable cardinal to w, . For

the other direction we have: (Silver, Solovay) If for some set A , player I has a

a winning strateqy in either game (B) or game (C), then there is an inner model of

ZFC with a measurable cardinal.

} The argument is rather interesting. Let us take game (B) for definiteness.

We first generically collapse |P(A)| to w . In the resulting model we play the
game where player I plays according to his strategy. The idea is that player II
plays an enumeration of P(A)V, where P()\)V is the power set of A in the sense of
of the ground model V. Leat <Bn| n ¢ w > be such an enumeration. If An is the
set picked by player 1 at the (2n-1)th move of the game, for the 2nth move player

II splits A/ into Anfﬁan, and A, - B - The set U = {Bnl at the (2n+l)th move
player I picked anrwnn} is then a ultrafilter on the Boolean algebra P(A)v, and

so one can form the ultrapower VA/U , using only functions: A + V which are mem-
bers of A . The salient fact about U is that VA/U is well-founded. (It is
here that the play according to the winning strategy for player I is used.) Hence,
it is isomorphic to a transitive class M into which V can be elementarily embed-
ded by an embedding which is not the identity. We can now invoke arguments as in

§12 to conclude that there is an inner model with a measurable cardinal, -
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The situation for game (D) depends on the meaning of "small”. (Consult Galvin-
Jech-Magidor{1976) as a reference for this part.) For instance, if small means hav-
ing cardinality less than |A|, then it is known that player II always has a winning
strategy., If A = x a cardinal, a generalized notion of small is belonging to some
(non-trivial) ideal I over « . For such ideal games, the following are of inter-
est to player I : (a) he cannot have a winning strategy if «x 5»2“; (b) he cannot
have a winning strategy if I is normal with {a < x| cfla) = w )} # I ; and (c) if
U is a normal ultrafilter over a measurable cardinal A , and A is Lévy ocollapsed
to w, then the dual ideal to U generates an ideal I in the extension for which
player I has a winning strategy.

We are not neglecting player II in the ideal game. The following nice character-
jzation was heralded in §12, and is really the best way to look at precipitous ideals

without meta-mathematical phraseology: An ideal I over a cardinal k is precipi-

tous iff player II has no winning strategy in the corresponding ideal game.

F Recalling the notation of §12, if I were not precipitous, there must be a con-
dition X ¢ P{x) - I so that X "—R(I)"<I1n]| n e w > is an g-decreasing sequence
in Ultl(v,g)". The following is a winning strategy for player II: He starts the
game by playing X for the first move so. in general, if player I has just played

s2n-

1 player II then finds a ¥ g 8, . with Y e P(x) - 7 and two functions fn
v - ,
and f so that Y ‘LR(I) TmE 8 T,y = Eyy v then plays YN{a < k| £

n+l

€ fn(u)} for his next move S. . This strategy guarantees (15 = § ,

Suppose now that I is p::clpitouc, and assume to tho cgizrzry that thore ic a
winpning strategy S for player II. If v(G] is a generic extension via R(I), then
a density argument with S shows that there is a play of the game. <Sn| new?>
where player II follows his strategy § and each Sn ¢ G . By precipitousness, in
V[G) let j: V+ M= VK/G , where of course VK/G is constructed using only func-
tions € V . We can consider that the ideal game is coded as same set GI e V. Thusﬁ
<j(sn)| new?> is a play of the game j(GI) where player II plays according to
strategy 3j(S) . Moreover, if y = [id]G where id is as usval the identity func-
tion on k , then Y € AELj(sn)' By a well-foundedness argument exactly as in 7.9
of §7, it follows that there must be such a play of the game j(GI) which is a mem-
ber of M . Hence, by elementarity there is a play <Tn| new?> in V of the
game GI in which player II plays according to S, yet ae A;LTH for some oo < K .
Thus, S was not a winning strategy for player II. 4

For generalizations of the ideal game in the Boolean algebraic setting, see
Jech(1977).

528, The Axiom of Determinacy

Those passing through thesu portals heed the warning: Abandon the Axiom of
Choice.

The fascination that the Axiom of Determinacy holds for set theorists lies pri-
marily in its undaunted ability to decide combinatorial propositions, and thereby
provide a surrealist landscape with a pathological but finely detailed structure.
Left behind is the inscourity of formalist agnesticism, and the malaise of living in
an indefinite world cluttered with independence results. Of course, the experience
with determinacy so far may be just a prelude to a major inconsistency result, and
some may even be attracted to the field by the likelihood of participating in some
such event. After all, there is no convincing reason why the axiom should be adopted
as a basis for mathematics, especially in view of its consequences. (The situation
is somewhat reminiscent of Quine's New Foundations.) But in the absence of any over-
riding philosophical impetus for the adoption of genuinely new set theoretical prin-
ciples, or even any idea of what these principles ought to look like, the Axiom of
Determinacy provides a retreat into a structured world, one in which opportunities
present themselves for new kinds of arguments as well as new syntheses of known ones.

Certainly, the study of AD has refined our set theoretical knowledge. For one
thing, the continual necessity of having to avoid the Axiom of Choice (which undoubt-
edly has induced paranoic tendencies in some!) has sharpened our intuition about the
nature of this axiom. For another, our awareness of gamc theoretic formulations has
considerably increased, as 527 indicates. Finally, the axiom provides plausibility
arguments for a whole series of new and distinctive propositions, like infinite expo-
nent relations, possible only in Choice-less situations. These propositions may now
serve as a focus for further investigations, possibly emerging someday as interesting
consistent consequences of ZFC plus some strong axioﬁ of infinity.

in this section we limit ourselves to briefly summarizing consequences of large
cardinal character from AD, knowing beforehand that we cannot do justice to all the
new styles of argumentation that have been devised. The early results concerning AD
daalt with direct consequences about the structure of the real numbers, like (L),

(B), and (P) of §18(see Mycielski[1964] and Mycielski-Swierczkowski(1964]). This in
itself recommended AD as a substantial, antithetical alternative to AC.

(AD itself implies the somewhat useful choice principle that choice functions
exist for countable collections of reals. However, recent work of Solovay indicates
that it is unlikely that AD implies DC, the Principle of Dependent Choices (see §18).
specifically, he showed that Con(2F & ADR) implies Con(ZF & AD & =-+DC), where ADR
is the very strong axiom of determinacy for games played with reals instead of inte-

gers chosen at each step. Throughout this section, we assume DC, which is needed in

various constructions.)
It was Solovay who in 1966 injected the study of AD with the fresh meta-mathema-

tical arguments of the time to show that: AD implies W, is measurable; in fact,
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the closed unbounded filter over w, is an ultrafilter. Thus, the closed unbounded

filter over w first occurred in a large cardinal context, with the ultimate state-

1
ment. of the sort considered in 622. Solovay's rousult provided a new insight on how

the bifurcation postulation of AD about games with integers can somehow carry over
to a complete dichotomy about subsets of w, . with respect to the closed unbounded
subsets as a basis. Of coursc, the derivation of the existence of a measurable car-
dinal From AD is real evidence for the strength of AD, since one can then construct
from the corresponding ultrafilter an inner model of (ZFC & there is a measurable
cardinal) and thereupon cite the standard facts about the strength of measurability
in a Choice-ful situation.

The measurability of w, can most quickly be understood as a consequence of a
later 1968 result of Martin, who with the eye of a recursion theorist, spotted the
following scheme: Let D be the set of Turing degrees of reals. Call an X ¢ D large
iff X C {d| 4 Sp d } for some degree d . Let M denote the collection of large

subsets of D . Then Martin established that: AD implies that M is a w -complete

ultrafilter over D .

f That M is a ml-complete filter is immediate, since whencver <di| iew> is

a soquence of degrees, thore is a degrec d > d for every | ¢ w . It romains to

i
show that M is ultra:
Given XCcD , set B = {£ ¢ mul degree(f) ¢ X } , and consider the game G(uw,B).

By AD, one player has a winning strategy S for this game. Now a strategy is just

a function: Ag nm + w , so wu can conslder the degree d of 5 . It is claimed that
W
if S is a winning strategy for player I, then {d| d Zr d } ¢ X . (The companion

argument will show that if S is winning for player I, then (d] d iT alnx=24g,
and so the proof will be complete.)

So suppose that d > d and g e s has degree 4 . If G{w,B) is played
where plaver I follows his strategy S and player II picks successively a, = g(0),
a; = gl{l), ag = g(2),.... then the resulting sequence f is in B as S was win-
ning for player 1 . Surely f has degree max{d,d) =d , and s0 d &£ X . -

This result, specialized to ﬂi sets, is what was elicited in the latter-day

result about ﬂ&-beterminacy in §27. It is now straightforward to show that AD implies

that w; is measurable:

F Let G: “w ~ Wy be surjective; such a function exists in 2ZF via codes for count-

able well-orderings. bDefine F: J + w; by: F(d) = sup{G(f) | degree(f) S al} .
Then as in §13, F, () = {X C “J F-l(X) €M) is an  -complete ultrafilter over

w .- (To establish that F, (M) is non-principal, notice that if f ¢ “w with G(f)
= o , then d > degree(f) implies F(d) > a , so that {@ < “ll a<BleF, M. -

Actually, a careful choice of G will result in F,(¥) being the closed un-
bounded filter, thereby procuring Solovay's full result. Martin's ultrafilter

predictably has much morc universality, as we now indicate., For ADeists, © names
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a well-known ordinal: @ is the least ordinal p so that there is no surjections

”m + g . Intuitively, € is the outer limit on ordinals which can be affected by
properties of reals. 2F implies that 0 is a cardinal i.wz , and AD implies that
6 is very large: 1In his early efforts to popularize Determinacy, Friedman invent
a game that showed that under AD, if for any ordinal a there is a surjection G:
“o + o , there is a surjection H: Yu > P(a) . This result allows closure argumen:
which show that AD implieﬁ 9= Wy O is the Oth ordinal a so that a = w ,
is greater than the least weakly Mahlo cardinal, and so forth. (On the other hand
although DC can be invoked to establish cf(@) > w , work of Solovay indicates that
without DC, AD alone probably cannot establish cf(@) > w .} We can re-run the arg
ment from M about the measurability of @ to establish, in self-refined form,

that: If A <9 and F is a u‘-comg;ete filter over X , then F can be extend

to a w,-complete ultrafilter over X .

f By Friedman's result, let G: Ys + P(A) be surjective, and define H: D =+ A
H(d) = least member of N{G(f)| G(E) ¢ F & degree(f)’ <, d } . This last intersec
tion is a countable one, 50 since F is assumed w)-complete, H is well-defined. .
before, consider U = H (M) . U is a w,-complete ultrafilter over A , and it is
hard to sec that U SF .

Observe that if we had already started with an ultrafilter V for P , the
proof shows in particular that V = H (M) for some % , l.e. V hI M in the ter
nology of §13. This is indeed a strong universality property for M . 1In partiéu
w, has a property under AD which from §3 and 515 is like saying that it is strong
compact below © . Without AC however, the large cardinal equivalences of this fi
ter extension property do not ensue. i

Almost immediately after Martin introduced his M , Solovay was able to use i

to prove: AD implies that w, is measurable. The power of AD was seeminglf boun

less inestablishing the measurability of cardinals, until Martin in 1970 annouﬁééd

the bizarre result that AD implies w for 2 < n < w are all singular with cofi
1T

ality Wy - The Baroque feel of all this was further amplified soon after when it

was shown that AD implies w and w . are both measurable.
w wt2

This last result is partYif a larger format. Moschovakis[1970] introduced th
following ordinals: é; is the least ordinal n so that there is no surjection:
Yo o n which is A;. (Here, a surjection G:Amw > n '13‘5; iff the relation
(<£,9>] G(E) < Glg) } is a A; set.) The é;'s are the analogues of © which nat
rally arise in the investigation of levels of the Projective Hierarchy. a great dc
of effort has been invested in their study, both under PD and under the full AD.
cite the prominent facts, known by 1971, if AD is assumed: each ‘QL is a measura
cardinal and they occur in pairs £2n+2 = (EQn+1)+ {Martin (1971) and Kunen);‘g2n+]
(An) for some cardinal An of cofinality w (Kechris[1974]);'gi =-w, (Kleener—
classical); ﬁ% =, é; =0 ﬁ& =W

(Martin(1971)}. It is not known what
j; is under AD, but the prominent conjecture (Kunen) is that ‘g; Wy (1), Th

.

!
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fascination of AD lies in such results which exhibit the pathological behavior of
uniformly defined ordinals, and the intricate web of combinatorial detail they rein-
torce. Little is left of what is familiar in this Looking Glass world of set theory.
AD set the stage for another Choice-less motif, infinite exponent partition re-
lations. In the late sixties Kleinberg (see his [1970)) showed that such relations
were capable of producing measurable cardinals. Without the Axiom of Choice, it
secms that strong dichotomies arc possible in rather concrete situations. If A < g
are reqular cardinals, a set. C @G x  is A-closed unbounded LEf C is unbounded in g,
and whenever ¢ < ¢« with cf(a) = X so that CMa is unbounded in a , then a € C.
The A-closed unbounded subsets of g generate a (non-principal) filter Ci which
with the Axiom of Choice cannot be ultra. Kleinberg established that: If ) < x are

regular cardinals so that ¢ -+ (K)A+), then CA is a normal ultrafilter over «
L K

?

and hence ¢ is a measurable cardinal.

3 This is proved through several lemmata which isolate the essentials:

Claim 1. If « » (K); , then € i is an ultrxafilter. To show this, let X C k
be arbitrary. Then define f£: (x)* » 2 by: £(s) = 0 iff Us e X . By hypothesis
let H¢g x with [H| = k be homogeneous for f , and then set C = {a < x| cf(a) =
A & HNa is unbounded in a }. It is not hard to see that C is A-closed unbound-
ed. 1f £7(1)* = {0} , then CC X ; and if £"(H)* = {1} , then CNX = P . This
establishes the claim.

Claim 2. If g » (x)i for every y < k , then C’i is a normal g-complete fil-
ter.

We first establish k-completeness. (Notice that although it can be shown that
the intersection of less than « A-closed unbounded sets is A~closed unbounded, this
does not in itself suffice, since without AC we cannot simultaneously choose for many
nembers of 02 corresponding A-closed unbounded subsets of them.) Let y < x and
F: x+y . Wemust find an 8 < y so that F'l({a)) € cz . Let us define G: («1A
+ Yy by: G(8) =o iff F(UUs) = a« . Let HC k with lal = x be homogeneocus for
G , and consider as before C = {a < k| ef(a) = A & HMNo is unbounded in o }. C
is A-closed unbounded, and if G“IH]A = {B8) , then CC F-l({G]), i.e. F-l({B]) c c:.

To ghow normality, suppose f(a) < a for every 0 < a < k . By the previous
paragraph, it suffices to get a C ¢ k which is A-closed unbounded so that |f|c]|
< x . To do this, define g: [K]X + 2 by: g{s) =0 iff f(Us) < Ns . Let H
C x with IHI = ¢ be homogencous for g . It is not hard to show that it must be
the case that g"[H1* = {0} . once again, consider C = {a < k| cf(a) = A & HNa
is unbounded in a }. Then if § = MH , the least member of H , it is straightfor-
ward to show that f"CC § <« ,

Claim 3. If x =+ (K):+A, then « + (r;)A for every y < k . To show this,

given f: |K]A + vy for some y < x , define an auxiliary G: [x]A+A + 2 by G(aUt)
=0 iff Us< Nt & F(s) =F(t) . Let HC k with |H| = ¢ be homogeneous for
G . Then as Y ¢ Kk , a straightforward argument shows that it must be the case that
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G"[H]A+A = {0} , and so the claim follows.
The preceding steps in combination establish the full result.

Soon after Kleinberg proved his result, Martin and later Kunen established a
context for it by demonstrating that AD implies that strong infinite partition rel
tions of the relevant sort were satisfied by many cardinals. This in particular w
a new way to establish the measurability of cardinals under AD., By 1973, the strc
est possible partition result was established; Martin showed that: AD implies the
21—2—1ﬂ1)21-f Thus, the great dichotamy that AD postulates for games, after havir
been transferred to ultrafiltration properties, has now been transferred to infini
exponent partition relations.

Various partition relations for other cardinals were quickly seen to follow ¢
rectly fram Martin's result for wy - In 1975, Kleinberg gave an elegant abstract
formulation that summed up the conbinatorial gist of what was going on. (See his
119771, which is a good reference for most of this section.) He established the 1
lowing in 2F + DC alone:

Assume that « 1s an uncountable cardinal satisfying « + (x)g . Then there

are cardinals «x = Ky € Kz €Ky o o 80 that:

(1) (3 and K, are measurable; in fact K, * (‘z)g for every a < w,

X2
yet Kzﬁk(KZ)z .
(ii) €n for n > 2 are singular Jénsson cardinals with cofinality Ky
(1i1) « = Uk '
W nNEw N
Moreover, if there is a normal ultrafilter ¢ over k so that KK/U has order-

io a Rowbottom cardinal.

type x+, then the Kn's can be taken to satisfy:

: +
(iv) « ., = for each n , and

v ok, + ()5

2 22 for every a < k_ .

2
Now Solovay had shown that if F 1is the closed unbounded filter over wy o o
AD implies m]wllF has order-type w_ . Thus, with Martin's result, Kleinberg's

2

scheme immediately yields: AD implies that o

is measurable and in fact w, * (¢

2 2
for every a < uw, {previously known); o, for n > 2 are singular Jénsson carding

with cofinality w, i and w, is_a Rowbottom cardinal. ‘The influence of w, * (w

seems tremendous, but M.Spector(1978) has shown that it does not extend beyond‘%

< a
-+
It is known for instance that AD implies w 1 (w 1) 2 for every a < w 1 (Xu:

and Spector's result assures that this is not a provable consequence of wy o+ (mﬁ

Recent work of Kechris(1977) has made Kleinberg's result applicable under.AD
cardinals > wy . Kechris established that: AD implies thaﬁ there is a '« so th:
K+ (K)g . and {A < k] Ais a limit cardinal & A -+ (A)é } is stationary in «

It is certainly difficult to assess such pronouncements!
Of the large large cardinals, we have already mentioned strong compactness w:

respect to w; and @ . Martin recently established that AD implies that thefé

a normal ultrafilter over Pb (w,) . (See DiPrisco-Henle(1977) for a proof, as wi
1
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as a related result, that AD implies that there is a fine ultrafilter over Pm (wy) )

Without the availability of an inner model construction for supercompactness (recall
§14), we cannot evaluate the strength of this statement by referring to the standaxd
ZFC context.

AD has certainly peppered the landscape with quite a number of new propositions
which geom to L of large cardinal type. Without AC rather small cardinals seem
capable of possessing properties which with AC would be attributable only to highly
inaccessible cardinals, One way of getting a better understanding of AD and itsplau-
sibility would be to see¢ if these new propositions are relatively consistent to ZFC
plus the existence of some large cardinal. In other words, how far can known conse-—
quences of AD be replicated by using large cardinal hypotheses? Since we want models
in which AC fails, it would seem that the constructions will have to be rather in-
volved, calling upon both forcing and inner models. We refer to Bull(1976) and M.
Spector (1978) for recent developments along this program.

Our discussion of AD is at an end; in future sections we again assume the Axiom

of Choice.

§29. The Singular Cardinals Problem and Covering Properties

This section is devoted to recent developments which relate the theory of large
cardinals to the elaboration of a fundamental problem of set theory. It is remark-
able that large cardinals should play any role in such a basic context at all, and
all the more remarkable that their intervention, as we shall see, is a necessary one.

The generalized form of Cantor's original continuum problem is: given the car-
dinality of a set, to determine the cardinality of its power set. Hindsight tells
us that Cantor's own, frustrating efforts directed toward the solution of this prob-
lem were bound to fail. Indeed, one had to await the introduction of Cohen's forc~
ing method o see that the axioms of set theory do not give a definite answer to
this problem. Expected or not, given this state of affairs, there naturally arises
the problem of at least determining what constraints can be imposed on the functional
K - 2K .

For regular cardinala, the problem was duly and satisfactorily solved by Easton
11970], who proved that the only restrictions probable in 2FC about this functional
for regular cardinals are:

(i) If x £ A, then 2" < ZA .

(ii) k < c£(2%) |
His result is: Suppose that in the ground model, the GCH holds, and there is a class

function F _from reqular cardinals into cardinals such that: {(a) F is non-decreas-

ing, and (b) ¥ < cf(F(K)): then there is a forcing extension preserving all cardi-

nalities and cofinalities in which 2% = F{k) for every regular k . Thus, the

theory 2FC has little to say about powers of regular cardinals. (Easton's result
can also be achieved with Silver's foreing method (§25), so that most large cardinals
will be preserved, if F has a uniform definition amenable to reflection arguments:
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see for example Menas[1976]). - .

The Singular Cardinals Problem is to determine the situation with respect to
powers ‘of singular cardinals. There are some complications hére, since further con-
straints relative to powers of smaller cardinals are known theorems of 2ZFC: ‘

(a) (Bukovsky[1965); Hechler) If « is singular and there is a Y < ¥ _so that
Y < B <k implies 2P = oY ¢ then 2% a 27,

(b} (Silver(1974a]) If x is singular with uncountable cofinality such that

+
2¥ 5 k , then {a < i« 2% 5 o ) contains a closed unbounded subset of x .

Silver's result is well worth some discussion. It immediately inspired a whole
series of results, includinq significant technical improvements by Galvin-Hajnal
[1975] and, of course, Jensen's Covering Theorem (see below). Silver's result was
an unexpected theorem of ZFC about the surprising control wielded on powers of many
singular cardinals by powers of smaller cardinals, but once the collective intuition
of set theorists were sharpened (or rather corrected) by it, ideas both standard and
latent were fashioned into new results about the subtle underpinnings that exist in
the set theoretical universe.

It may seem paradoxical that there now exist combinatorial proofs of Silver's
result (due to Baumgartner, Prikry, and others) which are relatively straightforward
and can be regarded as in the genre of semi-classical results about cardinal arithmeti
Yet, Silver had to light the way, and it is significant' from the viewpoint of this..
paper that his own proof used elements usually associated with large cardinals: the
taking of a sort of ultrapower, and the existence of a least function there. Indaéd
Silver's result can be seen as a culmination of efforts which started with a result
of Scott on the GCH at a measurable cardinal, proceeded through various weakenings =
(see the last theorem proved in §13), and finally evolved into a standard theorem of
ZFC through the use of scaling at z singular cardinal of uncountable cofinality. As
with Solovay's theorem on splitting stationary sets (811), ideas first molded in the
workshop of large cardinal theory emerged to establish an important result about fhé
structure of sets throughout the ramified hierarchy. ' }

Returning now to the Singular Cardinals Problem, we can first ask: what is* 2¢

for singular x in Easton's models? It turns out that 2% is the minimal cardinal

A satisfying the necessary restrictions: A > aupfzul a<k)}, and ef(A) > x .
This devolves into two cases: (i) For some Y<K, Y<B <k implies ZB = 2"Y .
Then 25 = 27 by the Bukovsky-Hechler result, (ii) Otherwise. Then § = sup{2a|
@ < k } has the same cofinality as « , so 2 = 6*. Thus, powers of singular car-
dinals here are completely determined by the powers of reqular cardinals. We shall 7
see that what happens in Easton's models pertains to some contexts involving large
cardinals. To cast some recent results in general terms, let us make the follow1ng
definition: ’
Suppose that M C N are two inner models of ZFC. Then N has the coveringﬁ
property with respect to M iff M is a definable class in N , and whenever
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N X is an uncountable set of ordinals, then there is a Y e M so that X ¢ ¥ and
Wk fx[ = Y]

The restriction to uncountable sets turns out to be an essential one in specific
cases, by non-trivial arquments involving forcing (see Bukovsky{1976]}. That N has
the covering property with respect to M is a deep structural statement about the
close distance between M and N . In fact, some of the cardinal structure of M is
preserved in the passage to N , as the next two lemmas indicate:

Lemma 1. Assume that N has the covering property with respect to Mg N .
Then if « is a singular cardinal in N , then k 1is a singular cardinal in M

and (K+)N = (vr+)M .

.

F Let X € N be a set of order-type < x , cofinal in k . By the covering pro-
perty, get Y e M so that XC Y and in N, |Y| = |X| + (w])N < Kk . Without loss
of generality we can assume that Y C k . Since in N, & is a cardinal and Y has
cardinality less than &k , Y must have order-type < k . Hence, k is singular in
M, as Y is clearly cofinal in « .

Assume now that vy = (K+)M < (x*)N . Then in N, y is a singular ordinal and
its cofinality is less than «x , since x is singular in N . Let X e N be a set
of order-type < x , cofinal in y . We can now proceed as in the preceding paragraph

to show that y 1is singular in M , which is a contradiction. -I

The connection between the vovering property and the Singular Cardinals Problem
comes from the following lemma:

Lomna 2. Assume that N has the covering property with respect to M C N, and
that M satisfies the GCH . Then the following statement holds in N : Qhenever
k is singular, 2* is the minimal cardinal A so that A > sup{2a| a <k}, and

cf(A) >k .

} Let us argue in N . If for some y <k , ¥y < B < x implies 28 =27 , then

ZK

= 2Y, and the Lemma holds in this case. Otherwise, setting § = sup{2u] a <k},

since cf(3) = cE(x) , we must show that 2° = 6+. To do this, we use the easy-to-

prove fact that 2° = SCE(K).

Now by the covering property, every subset of § of
cardinality cf(k) 1is included in a subset of & which is in M , having (in N)

cardinality cf(k) + w . Thus,

X < 6cf(K) < (2§)M.2cftx)+w1
put 2°57%01 o 5 by definition of 6 , and as .M -Eatisfies the con, (251 =
(6+)M < st . Thus, 2° = §" , ana we are done. 4

Thus, the Singular Cardinals Problem would be solved if V had the covering
property with respect to same inner model satisfying the GCH. The qucinating fact
is that large cardinals have come into play in the recent work of Jensen, Dodd-Jensen,
and Mitchell in determining possible cases of covering properties. Jensen first iso-
lated the essence of the covering idea, proving the following beautiful theorem after
seeing Silver's GCH result:
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Jensen's Covering Theorem: If o does not exist, then V has the covering

property with respect to L .

For a proof, see Devlin-Jensen[1975); a recent proof by Silver using his Machines
makes more transparent some of the ideas. This result immediately clarifies the Sin-
gular Cardinals Problem: If for scme singular x , 2° is not the minimal possible
cardinal (with cofinality > x , and at least as large as sup[2“| a <k }), then 0“
must exist! (With similar arguments, one can also conclude that a" exists for
every agw .)

Even stronger results follow fram the very recent work of Dodd-Jensen(1976).
Their initial purpose was to get an analoyous covering property result for L|U],
where U 1is a normal ultrafilter over a measurable cardinal « . But their investi-
gations went deeper, uncovering a new underlying structure which they designated the
Core Model K . Intuitively, K is the inner model of set theory generated by iter-
ating the # operation, i.e. it is the minimal inner model M such that if for any
set x e M, x“ exists (see §7), then x” € M. Thus, K is a relative notion,
dependent on the ontological commitments one has made in V . For instance, if 0”
not exist, then K= L . If there is an inner model with a measurable cardinal, then
K has a nice characterization: We start with a given model of form L[U], and in it
we can use the ultrafilter to get a descending nested sequence of iterated ultrapowers
<M | « ¢ OR > as in §8; then K is simply f\(Mu| a € OR}] . In any case, K is
aI:ays a model of the GCH., The main result:

Theorem (Dodd-Jensen): If there does not exist an inner model with a measurable

cardinal, then V has the covering property with respect to K .

Hence, if there is a singular cardinal k such that 2 is not the minimal
possible cardinal (under the usual constraints), then there is an inner model with
a measurable cardinal! Exciting ongoing work of Mitchell shows that the conclusion
can even be extended to the existence of many measurable cardinals in a strong sense
(i.e. with ultrafilters of high type in the <1 order—see the end of §9).

Naturally, one begins to wonder whether the simple solution we seem to be get-~
ting for the Singular Cardinals Problem is a universal phenomenon, or whether if a
sufficiently strong large cardinal hypothesis is used, we could get a model in which
2 is not the minimal possible value for somc singular x . The latter is the case:
Assume that k 1is a K++-supercompact cardinal, By an application of Silver's forc-
ing (§25), there is a forcing extension in which k is measurable and 2K > K+.
Now by Prikry forcing (§23), we can change the cofinality of k to w . In this
resulting model, k 1is a singular strong limit cardinal so that 2€ K*. However,

for any singular strong limit cardinal X , the minimal possible value for 2A is

+
A,

The Prikry-Silver result follows a patternwhich seems to be very useful for get-
ting consistency results fxom large cardinals about singular cardinals: In many of

these problems it is possible to get the required consistency result for a regular
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cardinal , say for a measurable cardinal. We can thereupon make this cardinal singu-
lar by some variation of Prikry forcing. If one wants to transfer the Prikry-Silver
result to more down-to-earth cardinals like w, one can follow this pattern, as is
done in Magidor|1977) where a model is produced in which w, (scveral other “gmall"
asingular cardinals are possible) is a strong limit cardinal which violates the GCH.
The scheme is to start with a cardinal « which is K+—supercompact and violates the
GCH, and change the cofinality of x to w while simultaneously collapsing many
cardinals below x , so that in the resulting model « is w, ¢ The fact that «x
was K+-supcrcampact is extensively used in the proof for showing that 2 is not
collapsed in the process to AR

One uncompramising version of the Singular Cardinals Problem is to get a singu-
lar cardinal to be the first cardinal which violates the GCH. In view of Silver's
result, such a cardinal cannot have uncountable cofinality, and the problem is most
interesting for the first singular cardinal, w, - Trying to solve this singular car-
dinals problem by following the pattern described above runs into difficulties because
if k is at least measurable with * s x+, then there are unboundedly many a < K
such that 27 > u+. Thus, if we follow the collapsing scheme of Magidor [1977], we
are left with unboundedly many cardinals below k which vicolate the GCH. A more in-
volved approach,starting with the much stronger assumption of the cxistence of a huge
cardinal with a supercampact cardinal below it, can be used to get a model in which
zww > e but 2wn =0
position that the GCH holds below a singular cardinal which violates it, has stronger

for every n € w (see Magidor|1978])., Whether the pro-

consistency strength than the proposition simply that a singular strong limit cardi-

nal violates the GCH, is still open.

§30. Problems Entailing Large Cardinals

We are finally(!) in sight of the end of this paper. In this section we shall
survey a few problems which seem to be leading to large cardinal concepts. We shall
intentionally concentrate on those problems, usually concerning "small" sets, in
which no large cardinal is mentioned specifically in the formulation. Still, for
each of these problems there are some arguments that their solution, at least in one
of the possible directions, should involve the consistency of the existence of some
large cardinals.

Let ug first turn to a topic fresh in our memory from the previous section, the
Singular Cardinals Problem. In spite of the prog&es; achieved towards determining
the possible behavior of the function kB 2* for singular k , a nice clear state-
ment like the Easton result for regular cardinals is still missing. Particularly
appealing special cases of this problem are the following:

(A) Is 2ZFC consistent with “for every « , 2€ s n+" ? For oxample,

(B) IS ZPC consistent with "for every « , 2¥ = K++" ?

The large cardinal connections of this class of problems were summarized in §29; how-

ever, even for the known results better lower and upper bounds on consistency strength
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are desirable.

The next class of problems are connected with more modest large cardinal notions
Recall from §5 that a k-Aronszajn tree is a k-tree with no x-branch. A k=-Souslin
tree is a g-Aronszajn tree such that every antichain of the tree (i.e. a set of mu-

tually incompatible elements) has cardinality € x . Souslin's Hypothesis for k (SH )
R

is the assertion that there is no x-Souslin tree, a weak version of the tree property

for x . SH”I is {equivalent to the original) Souslin's Hypothesis, well-known to

be independent of ZFC, both with the Continuum Hypothesis, and with its negation (by
work of Jensen, Solovay and Tennenbaum; sce Solovay-Tennenbaum{1971] and the mono-

graph Devlin-Johnsbraten(1974]).

The consistency problem for 8Ii when K > &, seems to be much more difficult,

especially if we want to retain the GCH. To bring matters into focus, we make scme
remarks which recall and amplify §21. First of all, Jensen{1972] had actually estab-

lished that in L, weak compactness for k is egquivalent to SH , for regular g .
LY

We are interested in SHK for small k , and the Mitchell-Silver model cited in §21

certainly satisfied Sﬂmz , as there were not even any wz—Aronszajn trecs in that

W
model. However, 2= = u, held in that model, and in fact a classical result of
Specker[1951) as cited in §5 necessitates something like this: if 2% = ¢ . then
. 1
there is an wz—Aronszajn tree. No such result seems available for w?-SQualin trees,

s0 the focal problem in this area is to get SH,, _and the GCH to hold.
2

This problem has been extensively investigated by Gregory[1976] who established

N m w
in particular that: If 2 = W, 21 = Wy_e and E: hold, then SH is false,
2 w

i.e. there is an m:—Souslin tree. Hence, if we want SH;, and the GCH to hold, we
2
need to guarantce the failure of E:Z . As pointed out in §21, this necessitates at

least the consistency strength of the existence of a Mahlo cardinal, and very likely,
of a weakly compact cardinal.

Further light was cast on the general problem by Shelah in 1978 when he estab-
lished: Con(ZFC & there is a weakly compact.cardinal) implies Con (ZFC & ¥ = w

;] -5
1

EEUQLL Shelah improved a result of Laver, who started with a measurable cardinal.
. w

The model satisfics 2 ! > w, and so the GCH still has not been achieved, 1t is

an open question whether large cardinals are needed at all to get SH, , if we

disregard the GClI considerations. The accepted guess is that the answer is yes.
The consistency problem for Sllm2 is closely connected with the problem of gen-

eralizing Martin s Axiom, Martin's Axiom for k (MA )} states: given.a w, -C.C. no=-
tion of forcing P and a family F of dense subsets of P with |F| < x , we can
find an F-generic filter for P . (Recall that GC P is an F-generic filter if it
ig a generic filter in the usual sense, except that it is only required to meet each
member of the family F of dense sets.) The consistency of Martin's Axiom is estab-
lished in Solovay-Tennenbaum{1971}, and extensively investigated in Martin-Solovay
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[1970]. The axiom is a sort of enumeration principle which generalizes the Contin-
uum Hypothesis and allows many forcing-like constructions. The original raison

d'étre was the following implication: MAx and x > w implies SH, . A major gen-
1

1
eralization of Martin's Axiom would result if we can weaken the chain condition re-
quirement on P . Without some other restriction on P , one can easily verify that
a direct generalization is outright false, so there are different directions in which

one can go, One possibility is the following ganeralization of MA, : given a
3

w,-C.C. notion of forcing P which is w-closed and a family F of dense subsets of

P with |F| = w, , there is an F-generic filter for P . The consistency of this

2
axiom is unknown, and if one tries to generalize the usual argument for Martin's
Axiom, it seems very likely that the proof would require a large cardinal assumption
in the ground model.

The consistency problem for the tree property for K is more or less settled
by Mitchell's construction, when ¥ is a successor of a regular cardinal. The prob-
lem seems to be much more difficult for successors of singular cardinals. The sim-
plest case is Woe1t Is it consistent that there is no w :l-Aronszajn tree? The
consistency of the other direction is settled by Jensen's result that if V = L and

¥ is not weakly compact, then there is a x-Aronszajn tree. Jensen in particular

showed that : If the GCH and UJ, holds, then there is a special l+-Aronszajn tree.

Special x-Aronszajn trees were defined in §21; the nice thing about such trees is
that they are still K-Aronszaijn trees in any extensjon in which K is abill a cardi-
nal. This suggests the covering property from 529, and one can argue as follows:
The Core Model K satisfies both the GCH and [3A for all A . Remember that if

there is no inner model with a measurable cardinal, them V has the covering pro-
. + +
perty with respect to X , and so for any singular cardinal X , (A )K =1 . 1In

particular, there would be a special u -aronszajn tree in V . Hence, if we want

w+l
the consistency of “there are no mw+l-Aronszajn trees”, then we have to assume at

least the consistency of the existence of a measurable cardinal. (Mitchell's recent
work on generalizing K indicates that we have to actually assume the condistency
of the existence of many measurable cardinals in a strong sense.) Nothing is known
beyond these lower bounds on consistency strength.

A
Recall from §21 that another consequence of [wa is that Em holds for
w+l
every ) < w, - Let us briefly consider the follow proposition:

(*) Whenever S cCw is stationary, there is an & < w,

w+l +1

so that SMNa is stationary in o .

A
This proposition is a strong negation of E,
w+l

is the successor of a singular cardinal, there is no obvious counterexample to (*),

for cardinals X < w . (Since w
™ wtl

. A .
and so we do not need to specialize to E 4+ ¢ as in the general case for succes-
" 3

+
sors z+.) As a EJA sequence is preserved through any extension in which A
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remains a cardinal, an argument as in the previous paragraph (or see §21) shows that
(*) has the consistency strength at least that of the existence of measurable cardi-
nals. The last result cited in §21, due to Shelah, is a relative consistency result

for the failure of C]w (in fact, for E: }, but the question still remains whether
w wtl
the full (*) can be consistent,

The consistency problem for (*) is related to the following problem from alge-
bra: Let us call an Abcelian group almost free 1{ every subgroup of smaller cardi-
nality is a free Abelian group. It is known that for every w , n ¢ w ., one can
find an almost free, but not free, Abelian group of cardinalit; W, . A theorem of
Shelah(1975]) states that if X is singular, every almost free Abelian group of car-
dinality ) is free. So, it turns out that the first unresolved case is w

m+l.
is known that: If (*) fails, then there is an almost free, but not free, Abelian

It

group of cardinality w Thus, the consistency of the existence of such a group

wrl®
is established (by any model of U, , for instance). The consistency of the propo-
W

sition that such a group does not exist isunknown and it is clear that large cardinal
assumptions are required.

Let us conclude this section by reiterating some of the problems concerning
"small" sets which we discussed in previous sections. They fall into two categories,
and are just a sample of the prominent problems in these categories. The problems
that we have been discussing in this section so far fall into the first category (I):
to establish the consistency of ZFC plus some propogition, when it is clear Lhal such
a consigtency proof requires large cardinals. The second category (II) involves sit-

uations where a relative consistency proof using large cardinals is known, but it is

not clear whether they are essential to the proof; the problem is to eliminate these

large cardinal assumptions.

I. Are the following propositions consistent with ZFC:
(Ia) Projective Determinacy (§27).
{Ib) The ideal of non-stationary sets over W, is w,-saturated {511} .
{Ic) There is a uniform non- (w,u;)-regular ultrafilter over wy  (513).
(1d) v, is a Rowbottom cardinal (96).
II: §re large cardinals nccessary to establish the consistency of the following
propositions:

(IT1a) There is a uniform ultrafilter over w which is w_-indecomposable
for some 0 < n < w (§13). w »

(1Ib) Every set of reals which is real,ordinal definable is Lebesgue mea-
surable (518).

(IIc) Every normal Moore space is metrizable.

This last problem is not discussed in this paper, but it is a prominent one of set
theoretic topology. It is cited here because of its topical nature: very recently,
work of Nyikos and Kunen established that Con(ZFC & there is a strongly compact
cardinal) implies Con{ZFC & ecvery normal Moore space is metrizable).
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ENVO1

Through these pages, we hope that we have accomplished with some clarity and
coherence what we set out to do. If that is so, there should be no need to iterate
our main themes and motivating ideas, as they have been extensively developed through
eclaboralions and variations. 5o, we confine ourselves to some afterthoughts that our
long trek has left with us.

The development. of the theory of large cardinals should be regarded as closely
integrated with the development of set theory itself. As we have tried to show, the
ideas at play are not off to one side, but really in the mainstream of set theory.

It is especially through equi-consistency results thatwe can see how large cardinals
encapsulate structural principles which are pivotal to speculations on the nature of
sets.

As our edifice grew, we saw how one by one the large cardinals fell into place
in a linear hierarchy. This is especially remarkable in view of the ostensibly dis-
parate ideas that motivate their formulation. As remarked by H.Friedman, this hier-
archical aspect of the theory of large cardinals is somewhat of a mystery. Are there
natural set theoretic propositions whose consistency strength cannot be measured on
the scale of large cardinals? In other words, is there a hierarchy of set theoreti-
cal principles in another galaxy above ZFC, disjoint and’ incomparable to our large
cardinals? The technological development of forcing for large cardinals has defin-
itely scquashed any hope that the large cardinals can decide the power of the Contin-
uum, but perhaps GBdel's hopes can still be realized by new natural principles more
intimately connected with the power set operation.

On the other side of the coin, the neat hierarchical structure of the large
cardinals and the extensive equi-consistency resuits that have already been demon-
strated to date are strong plausibility arguments for the inevitability of the theory
of large cardinals as the natural superstructure on ZFC. Persuasive are the unifying
themes that motivate and develop them, which often translate into characterizations
of unexpected elegance. Perhaps it is the further cultivation of the ground already
shown to be so fertile that will reveal the possible extent of the subtle structure
of the set theoretical universe. The Continuum Problem may be left unresolved, but
on the other hand recent research has established the remarkable connection of large
cardinals to basic problems involving the powers of singular cardinals. Such a fun-
damental elucidation of structure holds the promisé of more to come, and we are con-

fident that what is past is only a prologue.
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Unless otherwise specified, horizontal arrows indicate direct implications,
and downward arrows indicate reclative consistency implications.

0=1 + 11 - I2 - I3
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(continued next page)
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The large cardinals on this page (left column) are compatible with V = L .

|

x(w)
+
ineffable
v \ every projectlve subsel of w
gubtle (§20) contains or is disjoint from a

| closed unboundod subset of w, (522)
Hﬁ-indcscribable for every m,n ¢ w

+ (§4)
Hl—indescribable equi-consistent with: tree property for w,

w s
l sz fails

greatly Mahlo(511)

13 : .
. . son. (@) there are no special wz—AronszaJn trees
Mahlo equi-consistent withe () O, fails
1
¥ (i) every uncountable set of reals has a
inaccessible equi-consistent with: perfect subset ((P) of §18)

(ii) Kurepa's Hypothesis fails (§19)

every set of reals is Lebesgue measurable (§18)
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