


THE JOURNAL OF SymsoLic LoGiC
Volume 46, Number 1, March 1981

ON P-POINTS OVER A MEASURABLE CARDINAL

A. KANAMORI

This paper continues the study of x-ultrafilters over a measurable cardinal «,
following the sequence of papers Ketonen [2], Kanamori [1] and Menas [4]. Much
of the concern will be with p-point f-ultrafilters, which have become a focus of
attention because they epitomize situations of further complexity beyond the better
understood cases, normal and product g-ultrafilters.

For any g-ultrafilter D, let ip: V — My =~ V5/D be the elementary embedding
of the universe into the transitization of the ultrapower by D. Situations of U < gk
D will be exhibited when iy(x) < ip(x), and when iy(x) = ip(x). The main result
will then be that if the latter case obtains, then there is an inner model with two
measurable cardinals. (As will be pointed out, this formulation is due to Kunen,
and improves on an earlier version of the author.) Incidentally, a similar conclusion
will also follow from the assertion that there is an ascending Rudin-Keisler chain
of -ultrafilters of length @ + 1. The interest in these results lies in the derivability
of a substantial large cardinal assertion from plausible hypotheses on x-ultrafilters.

§1 discusses the necessary preliminaries, but also includes a digression on g-point
and rapid (semi-g-point) x-ultrafilters; §2 reviews distinctive cases involving iy(x)
and ip(x); and §3 contains the main result on large cardinal consequences, with a
prefatory discussion which frames the result among related work of Kunen, Keto-
nen, and Menas.

§1. Preliminaries. My set theory is ZFC, and here follows a litany on basic nota-
tion: The letters «, 3, 7, ... denote ordinals, whereas &, 4, g, ... are reserved for
infinite cardinals. |x| is the cardinality of x, P(x) is its power set, and if f'is a func-
tion with domain including x, f”x = {f(y)ly € x}. *x denotes the collection of
functions: y — Xx, so that A# is the cardinality of #A.

A g-ultrafilter is a nonprincipal #-complete ultrafilter over &, and hence a witness
to the measurability of x when £ > w. The reader is referred to Kanamori [1]—
hereby the reference for any unreferenced facts used in this paper—for a structure
theory for x-ultrafilters over a measurable cardinal . This theory is analogous to
the extensive one for 3N (the Stone-Cech compactification of the integers), which
is identifiable with the case # = w. However, new considerations involving the
closed unbounded filter and wellfoundedness of ultrapowers make the x# > o
case quite distinctive.

A function f'e #x is almost injective iff’ |f~}({a})| < & for every @ < . If U is
an ultrafilter, a function fe #x is injective (mod U) (almost injective (mod U),
respectively) iff f is equal to an injective (almost injective, respectively) function
ﬁ—ieéaé& J;r;uary 22 1979.
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60 A. KANAMORI

€ *5 on a set in U. A g-ultrafilter U is a p-point iff every fe % is either constant
(mod U), or almost injective (mod U). p-points first arose in the study of the in-
homogeneity of GN. The basis of the theory in Kanamori [1] is Puritz’ division of
ultrapowers of x into skies, and p-points are exactly those x-ultrafilters which yield
ultrapowers of £ with exactly one (nontrivial) sky. Thus, there is a natural interest
in the structure of p-points. A well-known example of a p-point is a normal x-
ultrafilter.

A basic tool in the study of ultrafilters is the Rudin-Keisler (RK) partial ordering,
which is briefly reviewed here for g-ultrafilters: If U is a g-ultrafilter and fe #x,
let f(U) be the ultrafilter defined by: X € f(U) iff f~U(X)e U. f,(U) is also a &-
ultrafilter just in case fis not constant (mod U). Roughly speaking, f,(U) is com-
putable via a projection from U, and so is of lesser complexity. If U and D are
g-ultrafilters, then U <gg D iff there is a function f € #x such that f,(D) = U.
Uxpe Diff U <gg D, D <gg U. It is well known that U ~gy D iff there is a
bijection f€ #x such that f,(D) = U. U <gg D iff U <yx Dbut U #gg D. When 5 >
w, an RK-minimal g-ultrafilter is just one RK-equivalent to a normal g-ultrafilter,
and if D is a p-point g-ultrafilter, there is a unique normal g-ultrafilter <gg D.

Suppose £ > w and U is a g-ultrafilter. Then whenever f:x — V, [f], will
denote the equivalence class of f(mod U) in M, the transitization of the ultrapower
of ¥ by U. id will be the identity function € #x. If f,(D) = U, there is a natural cle-
mentary embedding k: My — M, defined by: k([g]y) = [g-f]p. This embedding
satisfies ip = k-iy.

From here until the end of this section, I digress with some remarks which are
not pertinent to the rest of the paper, but nonetheless provide an interesting point
of comparison between the cases £ = w and £ > w.

DEerINITION 1.1. For a g-ultrafilter U,

(1) U is a g-point (or rare) iff every f€ #x almost injective (mod U) is injective
(mod U).

(ii) U is rapid (or semi-g-point) iff whenever f'€ 5 is normal (i.c., strictly increas-
ing and continuous at limits), there is an X € U such that if g: £ — X is the ascend-
ing enumeration of X, then f(a) < gla) for every a < &.

(iii) U is an r-point iff whenever f€ #x is almost injective, there is an X € U such
that | f~1({a}) N X| < « for every a < &.

The first concept is due to Choquet, the second to Mokobodzki, and the third
to Ketonen. It is easy to see that a g-point is both rapid and an r-point, and that
when £ > w, a normal g-ultrafilter is a g-point. If U and D are x-ultrafilters, then
U x D (with the standard definition of a product of ultrafilters) is neither a p-
point nor a ¢g-point. However, if £ >  and D is normal, then U x D is an r-point,
and there is an appropriate converse (see Ketonen [2, 2.4]). Rapid x-ultrafilters for
the case £ = w have recently figured in a consistency result of Miller [5], who estab-
lished that if w, Laver reals are adjoined to any model of ZFC + CH, there are no
rapid w-ultrafilters in the resulting generic extension.

The following lemma is straightforward.

LemMA 1.2. (a) (Mokobodzki) U is rapid iff whenever f€ *x is almost injective,
there is a g€ *k such that {a|g(e) < fla)} € U and g is injective (mod U) and
order-preserving.
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ON P-POINTS OVER A MEASURABLE CARDINAL 61

(b) If U is rapid, then U is an r-point.

PROOF. Assume first that U is rapid and f € %t is almost injective. Set 3, =
sup{d + 1] f(6) < @} < &, for @ < #, and let g€ 55 be a normal function such
that 5, < g(a) for every & < «. Finally, by rapidity let X € Usuch thatifh: x > X
is the ascending enumeration of X, then g(a) < /(a) for every @ < x. Now 7€
S Y({a}) implies that y < A(a + 1), so certainly |X (] f~!({a})] < a. This estab-
lishes (b). Note also that 471 is injective and #~1(8) < f(8) for 8 € X. This estab-
lishes the forward direction of (a).

To establish the converse direction of (a), suppose that F € #x is a normal func-
tion. Set f(8) = a iff F(a) < 8 < F(a + 1). By assumption there is a g such that
X = {alg(e) < fla)} € U and gisinjective. Let o: £ > X be the ascending enumer-
ation of X. Since f is nondecreasing and g is order-preserving, we have that o <
S (h(@)) for every a < x. By definition of f, this implies that F(a) < A(a) for every
a < k. Hence, U is rapid. -

Here is the presaged distinction between x = w and £ > w:

THEOREM 1.3. (i) If £ = w, then rapid is equivalent to r-point, and so both are im-
plied by g-point.

(ii) If £ > w, then rapid is equivalent to g-point, and so both imply r-point.

Proor. For (i), what remains to be established is that an r-point w-ultrafilter is
rapid. So, assume that U is an r-point w-ultrafilter and F e ¢ is strictly increasing.
Define g € w inductively by: g(0) = 0, and g(n + 1) = g(n) + n + 2. Set f(m) =
0iff m < F(0),and f(m) = n + 1 iff F(g(n)) < m < F(g(n + 1)). Then by assump-
tion, let X € U such that |X (] f~({n})| < n for every new. If h: @ - X is the as-
cending enumeration of X, then: F(0) < A(0); F(2) < h(1), A(2); F(5) < h(3),
h(4), h(5); etc., and certainly F(n) < h(n) for each ne w.

For (ii), what remains to be established is that when £ > w, then a rapid &-
ultrafilter is a g-point. So, assume that U is a rapid ¢-ultrafilter. By wellfoundedness
of ultrapowers, there is a /least almost injective function (mod U). By the previous
lemma, this function must be injective (mod U). But by Kanamori [I, 3.2(ii)], this
is enough to establish that U is a ¢-point. —

Using CH or MA, a construction of a familiar sort can be used to produce an
r-point w-ultrafilter which is not a g-point. For £ > w, Ketonen’s result on products
alluded to earlier shows that an r-point -ultrafilter is not necessarily a g-point. What
is interesting is that among several notions formulated by different people, rapidity
seems to be a relative concept between the cases £ = wand £ > w.

§2. p-points and embeddings. From this section on I definitely settle on the case
£ > w. Suppose that D is a p-point -ultrafilter, and let U <gg D, say fo(D) = U.
The corresponding elementary embedding k: M, — M, given by k([g],) = [g-f]b
is such that k(iy(x)) = ip(x), so certainly iy(x) < ip(x). It is a consequence of
general facts about p-points (see [1, 2.3(ii)]) that k"(iy(x)) = {[g-f]plg € *&} is cofinal
in ip(x). Hence, it becomes interesting to look at the nontrivial case U <ggx D and
consider when iy(x) < ip(x) and when iy(x) = ip(x). In this section, known con-
structions are reviewed to produce examples of both situations. Notice that strong
large cardinal hypotheses are employed; that some such assumption is necessary
at least in one case will be the topic of the next section.
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62 A. KANAMORI

A case when iy(x) < ip(x). Kunen constructed a very canonical sequence of p-
points using a relatively strong hypothesis; the following example is taken from his
construction: Let £ be 2%-supercompact, i.e. there is an elementary embedding j:
V — M where M is an inner model closed under arbitrary sequences of length 2%,
« is the first ordinal moved by j, and 2¢ < j(x). Kunen’s main tool was the follow-

ing:
LemMa 2.1. If a < B < (2%)F, there is an almost injective function f€ *x such that
JUNB) = a.

For the proof of this lemma as well as Kunen’s construction, see [1, 4.11]. Notice
that, in general, whenever £ < 0 < j(x), if Uy is defined by:

XeUyiff X € £ & 0€j(X),

then it is easy to ascertain that Uj is a g-ultrafilter.

Turning to the present goal, first set U = U,. Then U is a normal s-ultrafilter,
and iy(x) < (2%)* is a standard fact. Next, note that as M is closed under sequences
of length 2x,

(@M =27 < (29" = 2™ < j(n).

So, if we fix a § such that iy(x) < ¢ < (2%)*, then D = Uj; is a g-ultrafilter. More-
over, with Lemma 2.1, one can check that D is a p-point such that U <gg D. The
point is now the following.

Claim. iy(k) < ip(x).

This claim follows from a look at embeddings, just as in Menas [4, 2.2]. First,
note that if e: M, - M is defined by e([f]p) = j(f)(©), then e is an elementary
embedding such that e - i, = j. Notice that e(x) = &, since j(/)0) = « iff fis a
least nonconstant function (mod D). Hence, standard arguments show that:

@M = 20 < (290 < ip(k) < (297,

so that e first moves the ordinal (25)*¥2 (to (2)*, of course). But e([id],) = J by
the definition of e. Since § < (2%)*, it follows that [id], = §, and the conclusion
iy(k) < 0 < ip(x) now follows.

A case when iy(x) = ip(x). Here, an example due to Ketonen [2] is used. Assume
that £ is a measurable cardinal and a limit of measurable cardinals. Let U be a
normal x-ultrafilter, and for x measurable and less than «, let N, be a normal -
ultrafilter. For a < # set m(a) = the least measurable cardinal > «. Finally,
define D by:

XeDiff Xcr&{a < x| X ) m@)€ Ny} € U.

If A < £ is the closure (in the order topology) of the set of measurable cardinals
below £, A € Uas Uis normal and 4 is closed unbounded, and also, B = {§|3a €
A(a < B < m(a))} € D.On B, define a function f'by: f(f) = a iff « < 8 < m(a) &
a € A. Then it is straightforward to check that f is a least nonconstant function
(mod D), f(D) = U, and U <gg D. (See [2, 3.6] or [1, 4.6].) The point is now the
following.

Claim. iy(x) = ip(x).

To establish this claim, recall that as typical of a general fact mentioned at the

This content downloaded from 128.197.60.227 on Thu, 25 Sep 2014 14:16:45 PM
All use subject to JSTOR Terms and Conditions



ON P-POINTS OVER A MEASURABLE CARDINAL 63

beginning of this section, {[g-f]plg € *x} is cofinal in ip(x). In other words, the
ordinals represented by functions € #x that are constant on the intervals (a, m(«))
for @ € A are cofinal in ip(x), and the set of these ordinals has order-type iy (x).
Hence, it suffices to prove the following.

LEMMA 2.2. If g € *k, then there is an order-preserving injection of [g - into iy(k).

The justification here is that since the lemma says that [g-f], < iy () for all g € 5%,
we have ip(x) = sup{[g-flplg € *s} < iy(x), thereby establishing the claim.

Turning to the proof of Lemma 2.2, fix g€ sx. Notice that [A], <[g-f1p iff
{ae Al{Be ma)h(B) < g(@)} € Ny} € U. Thus, if a function ¢ with domain
[g-f1p is defined by:

$((h1p) = [K[A|M(@)]y, (|cx € Ay

then ¢ is an order-preserving injection of [g-f1], onto [{7,|la € 4]y, where 7, is the
order-type of the set {[s] NomcolS € ”""’g(a)}. (Notice that this fact about ¢ relies
heavily on the special definition of D.) However, y, < & for @ € 4, and so ¢ cer-
tainly injects [g-f]p into iy (), proving the lemma.

It turns out that the D in the preceding example is a “two-constellation p-point”
(i.e., if E <gg D, then E =y the unique normal x-ultrafilter U below D). For such
p-points, is it always the case that i;(x) = ip(x)?

§3. Large cardinal consequences. This section contains the main result of the
paper, and the following remarks relate it to the study of p-points. If U is a normal
s-ultrafilter, then Kunen [3, 7.6] established that inside L[U], the universe relatively
constructible from U, « is still measurable, yet the only p-points are those RK-
isomorphic to the (unique) normal g-ultrafilter, U (1 L[U]. Thus, stronger hypo-
theses than mere measurability are necessary to produce non-RK-minimal p-points.
As indicated in §2, Ketonen constructed such g-ultrafilters assuming x to be a
measurable limit of measurable cardinals. Menas [4, §3] then established that the
£ in Ketonen’s example can be made the /east measurable cardinal by forcing, and
still retain a non-RK-minimal p-point D, which by remarks in §2 has a U <gg D
such that iy () = ip(x).

It will be shown (see 3.2) that in general whenever # > w and there are x-ultra-
filters U <gg D such that iy(x) = ip(x), then there is an inner model with two
measurable cardinals. Thus, the large cardinal strength Menas used is necessary
in the following sense. From the existence of an inner model with two measurable
cardinals (or the weaker assertion that the set of integers O exists), it follows that
below any measurable cardinal there are arbitrarily many ¢ such that ¢ is measur-
able in an inner model (see Kunen [3, §9]). This is certainly true for the x# in Menas’
model, and now one sees that it was a necessary state of affairs. That p-points have
even this much structure is somewhat unexpected in view of past experience in the
theory of ultrafilters.

I shall first establish a technical result as a sort of preview, but it is interesting in
its own right. The proof is a typical application of Kunen’s technique of iterated
ultrapowers, and the notation and substance of his paper [3] will be used. In par-
ticular, if M is any class and E is an “M-ultrafilter”, then Ult (M, E) denotes the
ath iterated ultrapower of M by E (with Ult(M, E) = M). If E is actually a
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64 A. KANAMORI

countably complete ultrafilter in the real world ¥, then fora < 8, i%: Ult(V, E) —»
Ulty(V, E) denotes the usual embedding of the ath iterated ultrapower of V into
its Sth iterated ultrapower.

THEOREM 3.1. Suppose that U <gx D are g-ultrafilters with f(D) = U, and
k: My — My is the corresponding natural embedding. Then if there is a least ordinal
moved by k, say p, then p is measurable in an inner model.

Proor. Fix a strictly increasing sequence of cardinals {(4,|n € w) so that each
A, is a strong limit cardinal with cf(4,) > &, and p < Aj. The salient features of the
A,’s are that for any f-ultrafilter £: (a) ify (£) = 4,, and (b) if(4,) = 4, fora < 2,
(see [3, 3.8, 3.9]).

Let F be the filter over A = sup A, generated by {4,|n € w), i.e.

XeFif X< A& ImVn > m(A, € X).

The aforementioned properties of the A,’s can now be used in connection with
embeddings if, for « < A and E any x-ultrafilter to establish that in L[F], F (| L[F]
is a normal A-ultrafilter (see [3, 10.10] for the analogue).

Turning next to our particular situation, define W < P(p) by:

XeW iff XeP(o) LIF] & pek(X).

Since i; and i, both fix {(4,|n € w), it must be the case that i, (L[F]) = L[F] =
ip(L[F]). Thus, k I L[F]: L[F] — L[F] is elementary. This is enough to show that
W is an L[F)-ultrafilter over p, in the sense of Kunen (see [3, 4.6]).

Next, it is a standard fact that M, is closed under arbitrary sequences of length
. So, a straightforward argument shows that arbitrary countable intersections of
elements of W are nonempty. Hence, Ult (L[F], W) is wellfounded for every «
(see [3, 3.6]).

Finally, all these ingredients can be put together: L[F] is an inner model for the
measurability of 2 > p, and W is an L[F]-ultrafilter over p such that Ult,(L[F], W)
is wellfounded for every a. Thus by [3, 6.9], W is a normal ultrafilter inside L[],
and hence p is measurable in an inner model. —

There are nontrivial situations as hypothesized in the theorem (involving product
-ultrafilters) when p turns out to be i;(x). But then the theorem does not affirm
anything new, as iy(x) is already known to be measurable in an inner model, to
wit, M. On the other hand, suppose that U <k D, say with f,(D) = U, and yet
iy(k) = ip(x). Then the corresponding elementary embedding k: My — M first
moves some ordinal < iy (x).

For example, the ordinal [id], is not in the range of k; otherwise, if [g-f],=[id],
for some g, then surely f is injective (mod D), contradicting U <gzk D. Since
[id]lp < ip(x) and k(iy(x)) = ip(x) = iy(x), this means that there must be an ordinal
< iy(x) moved by k.

This prefatory remark sets the stage for the main result. The author is grateful
to Kunen for pointing out the present formulation; originally, the author had been
preoccupied with p-points, and had stopped at the weaker conclusion that the
set of integers O exists.

THEOREM 3.2. Suppose that U <gx D are g-ultrafilters such that iy(x) = ip(x).
Then there is an inner model with two measurable cardinals.
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ON P-POINTS OVER A MEASURABLE CARDINAL 65

PRrROOF. As before, let (D) = U, k: M; — M the corresponding embedding,
and p the first ordinal moved by k. Then, as pointed out, p < iy(x). If p, = k"(p)
for ne w, clearly p, < o, for n < m. But k(iy(x)) = ip(x) = iy(x) by hypothesis,
so it must be the case that each p, < iy(x). Let G be the filter over g = sup{p,|
ne€ w} generated by the sequence {p,|n € w), i.e.,

XeG iff X<p & ImVn > m(p, € X).

Next, let {(1,|n € w) be exactly as in the proof of 3.1, with F the filter over
A = sup A, generated by this sequence. Setting G = G () L[G, F] and F = F )
L[G, F], the proof will now be complete, once we establish the following.

Claim. Inside L[G, F], G is a normal p-ultrafilter and F is a normal A-ultrafilter.

To establish this claim, note first that since M, and M, are closed under arbitrary
countable sequences, {p ,/n€ w) and {4,|n€ w) are members of both inner
models. Thus, G (| My € My and F () My € My so that L[G, F] € My, and simi-
larly for M. Next, notice that k(L[G, F]) = L[G, F] since: (a) k preserves final
segments of {p,|n € w) and hence preserves membership in G, and (b) k fixes
{Aln € w), as both iy and ip do. Now, standard arguments using iterations of
k show that in L[G, F], G is a normal p-ultrafilter ([3, 10.10] is the analogue).

The demonstration that F is a normal A-ultrafilter inside L[G, F] is analogous to
the argument for 3.1, but there are some adjustments. First, observe that Ult,(V, D)
is just another notation for M, and we already saw that L[G, F] = M. Now for
a = 1, the usual embedding i2,: M, — Ult,(V, D) of the first ultrapower into the
ath ultrapower first moves the ordinal ip(x). Of course, since the sequence {p,|
newy€ Mp yet ip(x) is inaccessible in M p, it must be the case that 5 = sup p, <
ip(x). Thus, G is fixed by i, foranya > 1.

Going on, by properties of the 4,’s, whenever & < A, if, fixes a final segment of
{A,ln € w), and hence fixes L[G, F]. Having realized this, standard arguments
using these embeddings now conclude the proof by establishing that F is a normal
A-ultrafilter inside L[G, F]. —

The following corollary shows that any substantial length in the RK-ordering
leads to a substantial large cardinal assertion. 0" is an analogue of 0* for inner
models of measurability; see [3, 9.2] for some informative characterizations.

COROLLARY 3.3. If there is an ascending RK-chain of k-ultrafilters of length w + 1,
then the set of integers 0" exists.

PROOF. Suppose that Uy <gg Uy <gk Uz <gk - <gg D, so that iy (x) <
iy(£) < iy (k) < -+ < ip(x). One can assume that strict inequality holds every-
where, or else by the previous theorem there is an inner model with two measurable
cardinals, and the existence of O' follows by a standard argument. But if strict
inequality holds everywhere, there are infinitely many ordinals § between £ and
ip(x) such that § is measurable in an inner model. So again, the Kunen technology
can be applied to conclude that OF exists (see [3, 6.9, 9.2D]). —

I conjecture that the assumption iy(x) = ip(x) is not needed in 3.2, when D
is a p-point.
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