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Perfect-set forcing has been around for a long time. Sacks [10] himself had
made substantial use of it to get important minimalitv results both in set theory
and in recursion theory, and the fusion idea that he popularized has become an
integral part of several notions of forcing. After Laver [8] developed the idea of
adding reals iteratively with countable support, Baumgartner and Laver [2]
applied it to the case of perfect-set forcing to produce interesting consistency
results about Ramsey ultrafilters over @ and the tree property for w,. Since then,
work of Shelah, Baumgartner, and others has considerably systematized countable
support iterated forcing. As a first siep in generalization, I develop in this paper a
notion of perfect-set forcing for regular uncountable cardinals « and its iteration
with x size supports. An application of an effective version of this forcing has
already been made in recent work by Sacks and Slaman {11] in the study of
abstract E-recursion and sideways extensions of E-closed structures.

In Section 1 the notion of forcing and its iteration are formulated, and their
basic properties established. In particular, the appropriate fusion lemmas are
stated and proved. Section 2 is dominated by the long proof of a key technical
theorem, one of whose many consequences is that « © is preserved as a cardinal by
the iterated forcing. The use of a O, sequence in the ground model is an essential
feature of this fusion argument. There is much less control over the forcing
machinery in the uncountable case as compared to the w case considered in [2],
but &, gives us just enough structural information about subsets of « to allow
more economical procedures to work. In fact, it will be clear that this paper owes
an obvious debt to [2]. with the new modulations arising primarily from limit
stage constructions and the use of O.

In Section 3 it is shown that if 2% = ", then =« " iterations of the forcing still
preserves k', but that, in general, " iterations adds a ©,. sequence (in fact, a
k -Suslin tree) and hence coilapses « " if 2" >«" had been satisfied in the
ground model. In Section 4, the result on Aronszajn trees in [2] is lifted: Using
<. a closure property for the iterated forcing is established, and this implies. as
Silver first showed in Mitchell’s model (see [9]), that if the forcing is iterated A
times. where A is a weakly compact cardinal >k, then there are no «*"-Aronszajn
trees in the resulting extension.
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98 A. Kanamori

Siection 5 makes some brief remarks about the side-by-side, or product, version
of the forcing, and Section 6 is devoted to the special case of k being inaccessible,
where the analogies to the @ case are much stronger. A consistency result is
established herc which answers a question of Baumgartner and Taylor [3]
negatively: There is a model of ZFC where 2 is large yet the non-stationary
ideal over w,; is w,-generated but not 2“:-saturated.

The set theoretical notation is standard, and the following litany should take
care of any possible variations: The letters a. B, v, ... denote ordinals, whereas
K, A, . ... are reserved for infinite cardinals. If x is a set, P(x) denotes its power
set and |=| its cardinality. If f is a function, then ["x={f(y}|yex} and f} x=
fN(xx V). Yx denotes the collection of functions: y-—x, so that A“ is the
cardinality of “A. If s and t are sequences, then st denote- their concatenation
$70 and s~ 1 will be shorthand for s ~(0) and s ~(1) respectively. Concerning the
forcing formalism. p <g will mean that p gives more information than g, I+ ¢ will
mean that any condition forces ¢, and it is convenient to take V as a relative term
for the ground model and “construct” generic extensions V{G].

1. The notion of forcing

In this section the basic notion of forcing and its iteration are formulated, and
their main properties established. Any experience with perfect-set forcing for w
(see [10] or [2]) should make the motivating ideas here familiar. For the duration
of the paper let k denote a regular uncountable cardinal such that 27" = «, and set
Seq= U, 2.

Definition 1.1, (a) If pcSeq and sep, say that s splits in p iff s~ 0ep and
s~ Yep.
(b) Say that p<Seq is perfect iff
(i) If sep, then s | a€p for every a.
(i) If « <« is a limit ordinal, se€*2, and s | Bep for every B <a. then s€p.
*p is closed.’
(iti) If sep, then there is a t€p with 1 25 such that ¢ splits in p.
(iv) If a<« is a limit ordinal, s&“2, and for arbitrarily large B<a. s | B
splits in p, then s splits in p. “The splitting nodes of p are closed.’
(c) If p is perfect and seSeq, set p,={tep|s=t or t=s}. (So p, is perfect iff
sep.)
(d} Set P={p<Seq|p is perfect} and crder P by: p=q iff psq.

If p,=p, then s is an initial segment of what can be called the ‘stem” of p.
Evidently, forcing with P adds a generic rilter G which is identifiable with a new
function fe*2, where f(a)=0 iff for some pe G and se€p, we have p=p, and
s{a)=0. Variants of P were known to Baumgartner, Laver, and perhaps others.
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The key clause in the above definition is (iv), the exact form of which seems
necessary for the coming use of <. In the presence of (i)—(:ii), an alternate,
second-order formulation of (iv) is: if f€*2 is a braach through p, ie. f } a€p for
every a, then {a|f | « splits in p} is closed unbounded in «.

Lemma L.2. If B<« and (p,|a<P) is a decreasing sequence in P, then p=
M- Pa € P. Hence, P is a <«-closed notion of forcing.

Proof. 1 suffices to check condition (iii). But if s € p, it is straightforward to find a
cofinal branch f&*2 through p such that s is an initial segment of f. Then define
an increasing sequence of ordinals (n, |« =<p) so that: s<f | n,: if 8 is a limit
ordinal, ns = {J,. 5 n.: and f I ., splits in p,. Thus, f | ng splits in p.

Definition 1.3, If « <« and p,qeP, set p< qiff p<q and pN="'2=gN*'2.

That it is * 72 rather than “2 seems necessary, although this will cause technical
complications later on. The key property of P is isolated in the following lemma:'

Lemma 1.4 (Fusion Lemma). Suppose that (p, | a << «) is a decreasing sequence in
P such that: p, ., =<,p, for every a. and if 8 is a limit ordinal, then py= (.5 Pa-
Then p= oo pacP.

Proof. Again. it suffice- to check condition (iii), and again if s € p, we can suppose
that there is a branch fe"2 through p such that s is an initial segment of f. Then
define an increasing sequence of ordinals (n;|ie @) so that: scf! 7, and
f 1 mi.ysplits in p, . Hence, if n =sup n, then f | v splits in p,. But also, it y=7,
then by hypothesis p, 0" '2=p N~"'2, so that f |  splits in p,. Thus. f1 7
splits in p.

Using this lemma and 27 = «, the following theorem follows much as in [ 10]:

Theorem 1.5. If G is P-generic over V, then (k )V = (« ")V, and G is a minimal
degree of constructibility over V (i.e. if X e V[G], then Xe V or Ge V[X])).

Hence, if we assume that 2° =« " holds in V. then by the «' "-c.c. and Lemma
1.2, P preserves all cardinals and adds a ‘minimal’ subset of x without adding any
bounded subsets.

It is interesting 10 note that unless « is strongly inaccessible, some aspects of
perfect-set forcing on w do not lift to the uncountable case. For instance, it can be

! Lemma 1.4 is called the Fusion Lemma in order to be consistent with [2]. The analogous lemma in
[16] was called the Sequential Lemma. Mathias had formulated this lemma more abstractly and called
the result the Fusion Lemma. Shoenfield had invoked the term “splitting’ to describe its proof. 1 have
restrained myself from calling Lemma 1.4 the Fission Lemma.
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shown by the same argument as in the o case that when « is inaccessible and G is
P-generic over V., then: for every X e V[G] with X <k, there is a Ye V with
lY|=« so that either Y= X or Y <« — X. However, Laver has pointed out that
this is not true if in V there is a A so that 2* = « (e.g. if k = @, and the Continuum
Hypothesis holds):

In V, one can define a partition Seq = A U B such that for any pe P thiere is an
a <k so that a = 8 <« implies that pNP2NA# P and pNE2NB# Q. This can be
done as follows: Let A be the least cardinal such that 2* = «, Since 27* <«, on¢
can cnumerate as (H, | @< «) those subsets of Seq c-isomorphic to the tree
Ue<r £2. Then partition Seq level by level: to take care of #2, for every a <
such that H, < [J.«3%2. find two cofinal branches bJ; and b5, through H,
satisfying: (a) if y<a<p, then {J bls# U b5 and {J bE,# U b5y: and (b) if
either bz s or bliz<s. then sé |, .4 H,. Note that (b) can be ecasily satisfied
since |Uy=g H,|<«. Thus, we can now color #2 so as to render {s€®2 | b, o s}c
A and {se®2|blscs}c B for every a<f. It is not difficult to see that this
partition satisfies our requirements, since any pe P has some H, as an initial
segment.

Suppose now that G is P-generic over V. and X={a<«|3peG3sep
(p=p,&se*2N A)}. A simple density argument establishes that there can be no
Y eV with |Y|=« such that either YS X or Yok~ X.

As another example, just as in the «w case it can be shown (see Theorem 6.2)
that when « is inaccessible and G is P-generic over V, then: for cvery fe
“k N V[G], there is a g € “x N V which cventually dominates f. i.e. for some a <k,
f(B)=g(B) whencver a=g. This too has a countercxample when & is not
inaccessible:

Let A and (H, |« <xk) be as before, and for ecach H,. enumerate its cofinal
branches in type . If G is P-generic over V. then define fe*x by: fla)=g iff
dpe GAsep (p=p.&s extends the Bth branch through H,). and 8 =0 other-
wise. Again, a density argument establishes that for any ge“«k NV and a <k.
there is a 8=« such that g(B)<f(B).

Similarly. we can show that there is a regressive function in “x M VG not
eventually dominated by any regressive function in "k N V. by using for cach H,, a
surjection of its cofinal branches onto «.

Let us now turn to the iteration of P.

Definition 1.6. (a) P, for £=1 is defined by induction as follows: P, = P:
P.,, = P, # 1, where 7, is a canonical term denoting the partial order P as defined
in the extension via P,, and * is the usual conglomeration of forcing twice: and P,
for & a limit ordinal is the inverse fimit of (P, | €< 8) if ¢f(5)=« and the direct
limit otherwise. As there will be no reason for confusion, just < will denote the
partial order of P,, and finally, -, its corresponding forcing relation.

{b) Under a standard identification, P. will be considered, as a well-defined set,
the collection of functions p so that domain(p) is a s« size subset of & and for
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every 3 e domain(p), p | B Ik p(B) € 75. With this identificatior., for p and q in P,,
p < q iff domain(p) 2 domain(q) and for every § € domain(q), p | BlFap(B) <q(B).

P, is the bona fide ‘upward’ iteration of P through £ steps with =k size
supports. The side-by-side or product forcing of £ ground model copies of P with
=k size supports shares many properties with P,, but the verifications are simpler
(see Section 5). Of course, the difficulty in dealing with P which does not arise in
side-by-side forcing is that p | 8 does not in general decide all the members of the
term p(B).

Basic properties of P are now lifted over to P,

Definition 1.7. For any ¢=1,

(a) If {p,la<B}c P, then the ‘meet’ p=A,.zp, is defined so that:
domain(p) = |,z domain(p,) and for every <yedomain(p), p [ vl ply)=
N {p.(v) | v e domain(p,)}. (That p | y€ P, for y e domain(p) is assumed here; if
this ever fails, or |[domain(p)|>«. then A, g P, is left undefined.)

(b) If p.q€ P.. a <k, and F < domain(q) with [F|<x. then p<,,q iff p<q and
for every Be F. we have p | Bl-3p(B)=<,.4q(B).

Lemma 1.8. Forany £= 1, if <« and {p, | @ <) is a decreasing sequence in P,.
then N\,. g Pa € P.. Hence, P; is a <k-closed notion of forcing.

Lemma 1.9 (Generalized Fusion Lemma). For any £¢=1, if p,c P, and F, for
a <k are such that:
(2 Py Sy P and ps = Ny<s Py for limit 8.
by F,cF, . Fs=Ua.-sF. for limit 8; and J, < Fs = Ua<. domain(p,).
Then A, .. p.<€ P,

The proofs of these lemmata proceed by a straightforward induction using
Lemmas 1.2 and 1.4, and are left to the reader. Lemma 1.8 is a particular
instance of a general property of iterated forcing when sufficiently many inverse
limits are taken, and Lemma 1.9 is the appropriate generalization of the Fusion
Lemma where the F,’s are a standard strategem for ultimately covering all the
domains of the p,’s.

2. The use of O,

This section is dominated by the long proof of a technical theorem. This
important result has an analogue in the o case (see Theorem 2.3() of [2]) and has
as a direct consequence the fact that x* is preserved as a cardinal in forcing with
any P,. However, the analogy is not exact unless « is inaccessible (see “ection 6),
and the use of <, is the distinctive new feature in the general case which allows a
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more involved argument to work. The use of <, was suggested by Baumgartner,
who was the first to apply it in forcing arguments. (See [1, Theorem 6.7].)
To scamper up many trees all at once, a generalization of p, is now defined:

Definition 2.1. Suppose that pe P,, F cdomain(p) with |F{<«, and o:F—=2.
Then p| o is a function with the same domain as p. given by:

p(B) it B¢ F,
p(Blog if BeF.

Thus, p|ae P, just in casc for every Be F, we have (p|a) | Blraa(Bre p(B).
To complete the preliminaries, let us recail that Jensen's well-known principle <,
can easily be made to hold by a preliminary generic extension via a <«-closed
notion of forcing, and let us make explicit the following bipartite formulation of
<., casily seen to be equivalent to the usual one:

There is a sequence (S, | @ <«) such that §, c e X« and for every X <« X x.
the set {a <« | X Naxa=8§,} is stationary in «.

We can now state the main theorem, which serves to delimit the range of
possible values for a term denoting a member of the standard universe V.

plow=]

Theorem 2.2. Assume O, and that pe P, with plk.7e V. Suppose also that
F < domain(p) with |Fl<«, and that v <. Then there is a q=<,.,p and an x& V
with |x| <« such that g+, 7€ x.

Proof. To produce g, we shal! corstruct a fusion sequence ((p.. F,)| a < k) with
po=p and F,=F appropriace foc using the Generalized Fusion Lemma 1.9,
Along the way. some sets x, € V ior some successor ordinals o <« will also be
defined. We want in addition that n, =, .., p.. but this can be arranged by just
starting the coming construction at some indecomposable ordinal « >y and
setting py = p, for B<ea. Finally let us decide ahead of time on an efficient
bookkeeping device to insure |F,|=|aj and (... F, = U.-. domain(p,). and
also keep track explicitly of bijections g, : F, <> n, where n, =a. s0 that asa
implies g, = g; and g5 = U, <5 g for limit 8.

The limit step of the construction is obvious, so it only remains to explicate the
successor step. So, suppose that a <« and that p, and F, are already given.

Assume that g, F, <> . i.c. n, = a. Then first define o, 1 F, -~ "2 from the
O, sequence given above by: if B2 F,, then

1 if §<a and (g, (B).8)cS.,.
0 otherwise.

(0, (BI(6) = {

(Notice that o, (B)(a) = 0 by this definition: we need o, : F, ~— "2 rather than *2
because of the definition of =, and there is an arbitrariness here in that we could
just as well have uniformly required, say, the other split o, (8)(«) = 1 everywhere,
and proceed accordingly.)
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Now assume that there is an r<p, so that r=r|o, and for every BeF,, we
have

riBhgo (B! a splitsin p,(B).

If either of these assumptions do not hold, set p,,,=p, and F, ,=F,.
Otherwise. produce by hypothesis an r, <r and an x, ¢,V so that i, IF,7=x,.
Finally, we formulate p,.,, to be an ‘amalgamation’ of p, and r,, whos¢ definition
insures P, <g . pa, as follows.

(a) domain(p, ,,) = domain(r, ).

(b) If BeF,. then p,, (B) is a term such that:

tu P B Py o1 (B) = (PadB) —~ Pu(B)ar i) U T B),

and for any condition ¢=<p,,, | B incompatible with r, | 8,

clbgpy  (B) = pa(B).
(c) If B¢ F,, then p, . (B) is a term such that:

ru r BH_Bpav](ﬁ) = ra(B)-

and for any condition c<p,., | B incompatible with r, | B,

{p(,(B) if B edomain(p,).

clhgpea(B)= otherwise.

The formulation of p, . (8) corresponds to a use of the Maximal Principle in the
Boolean algebraic setting, and insures that p,., | Blrgpe+(B) € 75. It underscores
the fact that we are really in an iterated, rather than side-by-side, forcing
situation,

This completes the inductive definition. Let g = A.... po. x = {x, | x, is defined}.
and g={J,.. &, so that g:domain(q) <> «. Thus, ge P; by Lemma 1.9, with
q =g, and it is claimed that:

qlrTEe X
This claim is established through the following several lemmata.

Sublemma 1. Suppose that t<q. Then there is a sequence (I, | @ <k) with t,=1,
and functions se V with s2:p8 — 2 for some pP=a for every BeF, such that:

(a) a<a implies t; <1,.

(b) a<a implies s8~0< s% when BeF,, and s§= ], .55% for limit &.

(c) Forevery BeF,, ve have t, | Blryt,(B) = 1,{B),s-, and s splits in q(B). (So
notice that t, =1, | (s~ 0| Be F,).)

Proof. The construction proceeds by induction, carrying along the additional
hypothesis:
() For every Be F,,,, we have {,., | BlFgt,..(B)= a+|(6) B0

and s&., splits in 1,(8).
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At limit steps 8, simply set & = {J,<5 5%, and u =\, .. Then by (*),
For every B € F;, we have u | Bl-zu(B) = u(B), and s§ splits in u(B).

(s% splits in u(B) since by (#) s splits in 1,(B), for every a <3.) Now it is easy to
produce a t; = u which satisfies (c) above with a =o.

At successor steps a+ 1 with 1, already given, enumerate F,., ascendingly as
(B, v<n). Then find a decreasing sequence (i, | v<m) with u,=1t, as follows:
Set uy = A, <5 U, for 8 a limit. Now given u,, find v=<u, [ B, and s, ,:p% , —2,
for some p,, =a+1, so that s, , 2520 when B, F,, and:

vlkg st e,(B,) and s splits in 1,(B,).
Set
N .
U = 0L (B2, -0 b, | (domain{t, )~ B, + 1)).

With {u, | ¥ <n) thus defined, we can set 1,,, = A\, -, U, so that f,, satisfies (*).
This completes the inductive construction, hence the proof of the sublemma.

Sublemma 2. C,={a<«k|p®=0a for every BeF,} and C:=la<k{gla:
F,, <> a} are both closed unbounded in «.

Proof. This is immediate since for each B, (p? | a <«) is continuous at limits, and
(F, | @<k} is also continuous at limits,

The proof of Theorem 2.2 can now be completed as follows: Suppose that t<q
is arbitrary. Carry out the construction of Sublemma 1 for this 1. Set §% = |, s%
for B € domain(q), and then set X = {{(g(B). 8)| B e domain(q) and s*#(5) = 1}. By
G S={aec C,\NC | XN{axa)=S8,} is stationary.

Fix a €S, so that by tracing through the definitions we have 1, =1, | g, Note
also that 1, =tsg=p,, and for BeF,, 1, | Blrgs? splits in p,(B). Thus, the
assumptions for the non-trivial construction of p,., were satisfied, and I, <
Pasr | 0x =1, where r, k.7 =1x,. Hence, to any =g, a condition v=<1 and an x,
have been found o that vlr, 7= x,. Thus, ¢!k, 7 € x. as was claimed. and the proof
of Theorem 2.2 is now complete.

The following self-refinement of Theorem 2.2, a sort of covering property for
sets of cardinality =« in the generic extension, is now a dircct consequence.

Theorem 2.3. Assume <, and that p € P, with pit.7 < V with |7|<«. Then there
is a q=<p and an x€ 'V with {x|<«k such that q\-,7 < x. Hence, forcing with P;
preserves k* as a cardinal.

Proof. We might as well assame that pikr={r, |a<«x}g V. Then using
Theorem 2.2 repeatedly, it is casy to define a fusion sequence (p,. E) ] a <)
such that for every a <k, there is an x, € V with |x,| <k such that p_, lF7, € x,.
Thus, if q= Au<e po and x= UJ {x, | a-<x}, then gk, 7 x.
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3. Preserving and collapsing «**

We saw in the last section that for any £= 1 forcing with P. nlways preserves
x*. In this section we shall investigate what happens to » " in different cases. In
analogy to the o case, it will first be shown that if 2* =« (and ©,), then for
every ¢x’’, P, has the k" -chain condition and hence preserves all cardinals.
Then the section is concluded with the observation that in general, forcing with
P,. adds a O, sequence, so that in many situations " is collapsed.

The following lemma is directly analogous to [2, 3.1].

Lemma 3.1. Assume O, and that £€<k™*". Then there is a dense subset W, < P;
such that |W,|= 2"

Proof. Let W, be the collection of those p e P, such that:

(i) there is a sequence (F, | & < «) such that each F, = domain(p) with |F,|<«,
and: a<a implies F,cF;; Fs=,<sF, for 8 a limit; and U, F,=
domain(p).

(ii) there is a sequence (o, |a<k) such that a,:F, —**'2 satisfying:
whenever 1 <p and y <k, there is an a =7y so that t and p| g, are compatible.

It is not difficult to see from the proof of Theorem 2.2 that W; is dense in P..
To establish that |W,|=2% for &<«**, note that there are 2° possible
(o, |a<k)s. so it suffices to show that any pe W, is characterized by its
(o, |a<k):

Suppose that p and ¢ are both in W, and have the same (g, | @« <«) (and hence
the same (F, | a <«k)). Assume by way of contradiction that there is a § so that
plB=q ! B vet for some r<p ! B and s and vy, we have

rikgse(p(B)—q(B) Y2,
Consider

t=r"p(B), " p | (domain(p)—- B +1).
Then for some a =y, B F, and there is a u <t with u<p | og,. This follows from
pe W,. It then follows that a,(8)e*"'2 and o,(B)2s. Butalso p [ B=¢q | B. s0
that

(q ! B (o, I BYga.(B)eq(B).

as p and q have the same (o, | @ <«). This is a contradiction of s < o,(B), and
ulB=(q! B, I B)and u t B=r and rlkzs¢ q(B).

This lemma leads directly to the theorem on preservation of k™

Theorem 3.2. Assume <O, and 2*=«". Then for every £<«™", P; has the
K "*-chain condition, and so preserves all cardinals.
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Proof. For ¢<k*' this is immediate from Lemma 3.1, and for £ =«"'" there is a
standard A-system argument.

1 have been unable to determine whether. in analogy to the w case, (see [2,
Section 57), O, and 2% =« implies that forcing with P,..,, collapses «**. This
sharp result does hold with the further assumption that « is inaccessible. How-
ever, the following result will imply that ™™ is collapsed quickly enough in many
cases: an iteration of length «* suffices. Suggested by P. Dordal, it is really a
general fact about how the support stracture of conditions adds what looks like a
Cohen subset of «'.

Theorem 3.3. If O, then .. O, .

Proof. Let us note at the beginning that the term «* will be unambiguous in the
following, as it is always preserved as a cardinal by Theorem 2.3. For any ¢, let G,
be the caronical generic filter over P,. The desired ©,.- sequence (S, | 7 <« ) will
be recovered from G, . as follows: Be S, iff B<<m and therc is a pe G, with
1+ B € domain(p) and

pln+B). pn+Brc{seSeq|s()= 1}

In other words, a generic subset of « ' is naturally decoded from the initial splits
along the «* fibers of G-, and 8, is to consist simply of those 8 < so that n+ 8
is in this generic set.

To establish that this sequence has the O, property in VG, .| suppose that
gl Xck' and Cg k' is closed unbounded. We must show that there is a p=s g
and an ne k' so that plk,. XNn =8, and neC.

Say that p determines X up to £ iff p=<gq with pe W, .. as defined in Lemma 3.1,
with the corresponding {F, | @ <k) and {o, | a<«) so that for some bijection
¢k < ¢ and some sequence {y, | a<k) of sets in V., we have p|o, k.- X0
d"a=y, For any r=q and k<=s{<k’ the proof of Theorem 2.2 with <,
indicates that there is a p = r which determines X up to & The salient point is that
if p determines X up to { then ph, XN ¢e VG, ] whenever domain(p)< n.
since it can be seen that X N ¢ is completely determined by p and its correspond-
ing (o, | a<«) and {y, | & <«).

Let us now construct a sequence of conditions (p, | 7€ w) and a sequence of
ordinals (£, | n € w) as follows: Set p,=q and {,= k. Given p, and ¢, first find
some r=p, and a {,,,>max{{, | ) domain(p,)) such that ri-.. .., ¢ C. Then
produce a p,,,=r with domain(p,,,)= ¢, ., which determines X up 0 ¢, ;.
Finally, set = A p, and n =sup £, Itis not difficult 10 see from the construction
that domain(p)=n and pl-,. X Nne V[G,] and & C Thus, it is permissible to
define a p<p with domain{p)cn+n by p | n=p. and:

p(n+B) is defined and equals 1., iff plr,BeXNn.
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where 1, is a term so that
ot ={seSeq] s(0)=1}.
From the definitions, pi-.. XNy =S8, and neC.

Corollary 3.4, If 2" >« in V, then forcing with P,. collapses «* .
Proof. This is immediate since O, implies 2“ =« ",

Let us recall that if A is regular and E < A is stationary in A, then O,(E) is the
sharpened principle: There is a sequence (S, | 1< A) such that S, =7 and for
every X ¢ A, the st {ne E| XNn=8§,} is stationary in A. Then the conclusion of
Theorem 3.3 can actually be I+,. O, (E,) for every regular u <«, where E, =
{a < |cf(a) = w}. since the sequence (p, | n € w) can be extended to length u by
the <k-closure of P_.. However, note that the proof of Theorem 3.3 does not
apply to perfect-set forcing for w to add a & (=<,) sequence, since the
countable closure of the forcing was used. Thus, it is worthwhile to prove an
amplified version of Theorem 3.3 which relies on a further fusion argument and
will apply to the w case. The extra feature that we shall need is the following
lemma:

Lemma 3.5, Assunie .. and that pe P, with pit,C< k™ is closed unbounded.
Suppose also that F < domain(p) with |Fi<«k and that y <x. Then for any p<<«~,
there is a {=p and a 4 <g,p such that g+ e C.

Proof. To produce g and £, we shall construct a sequence of conditions (p, | ne
w) and a sequence of ordinals (Z, | n € w) as follows: Set p,=p and ¢, = p. Given
p. and . let 7, be a term such that p, Il 7, is the least element of C~¢,. Using
Theorem 2.2. let p,., <;,p, be such that for some x, € V with |x,|=<«, we have
Po -1 Fe T, € x,.. Then set ., =sup x,.. Finally, set g = A p, and { =sup ¢,. It is not
difficult to sce that this works.

Theorem 3.6. If . then -, O, (E,).

Proof. We can define the desirec sequence (S, |7 <«") exactly as in Corollary
3.4, Assuming that ik, X< k' and Cc «’ is closed unbounded, we must now
show that there is a psgq and an m<«". with the additional proviso that
¢f(n)= k. so that pl+,. XNn=3§, and neC.

To produce p, we construct a fusion sequence ({p,. F,}| & <«) which interlaces
Theorem 3.3 and Lemma 3.5, defining an increasing sequence of ordinals
{£, | « <) along the way. Set p,=q and ,= «, and decide beforehand as usual
on a procedure for determining the F,’s. The limit steps 8 of the construction are
obvious, with ¢ = sup, -5 £.. 50 it remains to explicate the successor step. Given
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po and £, and F,, first use Lemma 3.5 to find some r=g .p, and a {,,,>
max(Z.. | domain(p,)) such that rit, . ¢ ., € C. Then produce a p,., =g ,r with
domain(p,.,) 2 £, .; which determines X up to £,.,. This completes the inductive
definition.

Set Pp=Aucw Pa and 1 =SUp, . &- Then pe P, - and cf(n)=«, and it is not
difficult to see from the construction that domain{j)=n and pit,.. X Nne V[G,]
and n € C. Thus, we can complete the proof exactly as in Theorcm 3.3 to produce
a p<=p such that plt-,. XNn=§, and neC

Corollary 3.7. If ©,, then I+,.. There is a « '-Suslin tree.

Proof. The following is a known theorem of ZFC: if A“*=A and
O <A™ | ef(a) = A}), then there is a A*-Suslin tree. (See [6. p. 336].)

The proof of Theorem 3.6 has the heralded application that if perfect-set
forcing for w is iterated w, times over any ground model. then < holds in the
extension, since the analogue of Lemma 3.5 for the w case goes through by a
straightforward fusion argument.

4. Aronszajn trees

This section is devoted to the proof of a strong closure property for P,. and its
consequence on the possibility of «*” having no «" " -Aronszajn trecs. Mitchell
and Silver (sce [9]) had achieved definitive results about various tree properties
for accessible cardinals, For one case of their results, the consistency of w, having
no w,-Aronszajn trees, [2. Section 6] showed that the same result can be achieved
by iterating perfect-set forcing for o up to a weakly compact cardinal. The result
is here extended to «*"-Aronszajn trees, and this provided one of the initial
motivations for investigating perfect-set forcing for uncountable cardinals.

The following theorem affirms an important closure property of P, and is
analogous to [2, Theorem 6.2], although the proof is somewhat modulated by €,

Theorem 4.1. Assuime <. If pe P and cflpy>x and pl- (f:p— Vandf [ ne V
for every n<p), then pit.fe V.

Proof. It will be convenient to use O, in another equivalent form: There is a
sequence (S, | @ <&) such that S, ¢ 2x a % a and for every X & 2%k % k. the set
{a<k | XN2xaxa)=8,} is siationary in «.

To establish the theorem, argue by contradiction and assume that there is a
i = p such that j I f¢ V. We shall now construct a fusion sequence similar to the
proof of Theorem 2.2, adopting the same general notaton and attending to the
necessary adjustments. We start with n,= p and moreover for later convenience,
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arrange U domain(p,) and O€ F,,. At the successor step with p, and F, already
given and g, : F, <> « assumed, we now define o,: F, <> °*'Z for both i =0 and
i=1by:if BeF, then

I if 8<a and (i, g.(B), 8)eS,.
0 otherwise.

(@ (BNB) = {

Assume that o0(0) # o 4(0). Next assume that for both i =0 and i = 1. there is
an r'=p, so that ¥ =r' | o, and for every BeF,,

r' 1 Brgou(B) 1 e  splits in p,(B).

As before, if any of these assumptions do not hold, set p,.,=p, and F,,,=F,.
Otherwise, for i=0 and i=1, produce ri<r' and a function h'eV so that
roi3n(f 1 m = h), such that hY and h) differ at some ordinal common to both
their domains. (This is possible since pli-, f¢ V. so that we can first find r=<r° and
F<r"and an n with rirf | n=h, and Fi,f | 4 =h, where h and I differ at some
ordinal. Then let (r,. h)) be any pair such that ri<r' and !, f | 5 = hl. Since at
least one of h or /i differs from h'. we can take (+, k") to be at Jeast one of {r, hy
and (7. h).)

We can now formulate p,., to be an amalgamation of p,, r’, and rl, whose
definition insures p,., g, P. as follows:

(a) domain(p, ,,) = domain(r’) Udomain(r.).

(1) Pas (0} = (Pe (0) = Pa (0)ivin = Pa (0) 20 U Fa0) U rA(0).

(c) If >0 and B F,, then p,.,(B) is a term such that for both i=0 and i = 1,
we have:

Fol Blyp. . (B) ""(P‘.(B)"P‘;(B).r:,(m)u ro(B).
and for anv ¢=<p,., | B incompatible with both r% | 8 and r. } 3.
clrapa . 1 (B)=pa(B).
(Notice that p,.,(B) is well (enough) defined, since a"(0)# ¢'(0) implies that
ro ! B and rl | B are incompatible.)
(d) If B¢ F,. p,.(B) is a term such that for both i =0 and i = 1, we have
ro(B) whenever 8 cdomain(r).

Pl Bl I<B>={

1 otherwise;
and for any c=p,,, | B incompatible with both r! } g8 and r! | B.
.{(B) if Bedomain(p,),
Clbgpe (B = {, B .
1 otherwise.

This completes the inductive definition. Let g= A, ., p, € P, and g = . &.. SO
that g :domain{q) <> «. Since cf(p) > «, there must be some 7 <p larger than the
domains of all the hi’s appearing in the construction. Let t<q so that for some
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he V, we have tIF f | 9= h. In order to derive the ultimate contradiction, we
continue to follow the pattern of the proof of Theorem 2.2:

Let (", | a <«)and {"s?| &, B < «} be the resnlt of carrying out the construction
of Sublemma 1 of Theorem 2.2 for t=gq, and let (*t, |a<«) and {"s?] a, B <«}
be the result of carrying out another such construction with some 'sg which differs
from “sj; at some ordinal. (Recall that we specificd O € F,.) For both i =0 and
i=1,set 's? = J,-.'s? for B edomain(q), and then set

X ={0, g(B). 8)| B e domain(qg) and "s®*(8)=1}
UL, g(B). 8)| B e domain(q) and 's*(8) = 1},
10

By <.. there is an & such that X N (2 x a % @) = 8. Recall that “sy, differs from s,
s0 that ao(0) # oL(0). Thus, since we can also require « 10 be in certain relevant
closed unbounded sets as in Theorem 2.2, we can suppose that all of the
assumptions for the non-trivial construction of p,,,; were satisfied. Hence, for
both i=0 and i=1, we have ‘1, <p,.,| o, =r,, where ril-.3n(f I n=h.). But
then hich and h, < h, contradicting the fact that h{ and h. differ at some

« =

ordinal. This completes the proof of the theorem.

The following consistency result now follows from Corollary 3.4 and Theorem
4.1 exactly as [2, Lemma 6.4] is established. Familiarity is assumed with the
rather well-known concepts and terms involved, as well as their significance in the
context of the theory of large cardinals (see [6] or [7]). In brief, a A-Aronszajn tree
is a tree of height A all of whose levels have cardinality <A, which has no
branches of length A. A A¥-Aronszajn tree is special if there is an order
preserving injection of it into the trec

< U Aflf:a— A is injectivel, r:>
o AT
Theorem 4.2. (i) Assume <, and that A is a weakly compact cardinal such that
A>k. Then ‘b A =«"" and there are no A-Aronszajn trees.

(ii) Assume <, and that A is a Mahlo cardinal such that A > «. Then A =k ™"

and there are no special A-Aronszajn trees.

This result shows that perfect-set forcing provides an alternative method of
establishing many cases of some consistency results of Mitchell and Silver (see
[9]). Admittedly, their work is technically more general, in that their method also
works in a case not covered here: the consistency of « being a regular limit
cardinal and there being no «*-Aronszajn trees.

5. Side-by-side forcing

Although the cardinal collapsing result of Section 3 was used to advantage in
Theorem 4.2, it is an unfortunate feature of the P,'s if we want to render 2% large
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by adding many subsets of « through the iteration of P. In this section, side-by-
side or product forcing, with =« size support, of ground model copies of P is
briefly considered, forcing which it turns out will preserve all cardinals.

Definition 5.1. For ¢=1, Q. is the collection of functions p such that
domain(p) ¢ ¢ with |domain(p)|=<«, and p(B)e P for every B € domain(p). Order
Q; by: p=q iff domain(p) 2 domain(q) and for ¢very B € domain(q), p(8) <q(B).

Just as for P,, one can define A,y p, and p <, q for Q,, and show that: (a) Q,
is a <k-closed notion of forcing, and (b) the Generalized Fusion Lemma 1.9
works for Q. Of course, the difference between P, and Q;, is that for p e O,, p(B)
is a definite member of P as in the ground model, not just a term for a member of
P as defined in some partial generic extension. Hence, the following result holds
via an casier proof that avoids the complications introduced by the necessity of
forcing more and more definite members of Seq into conditions.

Theorem S5.2. Theorem 2.2 holds with Q, replacing P.. Hence, assuming <.,
forcing with Qy for any £=1 preserves every cardinal <k”.

P, and Q, now part ways. If 2“=«". then P obviously has the «*"-chain
condition since |P]=«k*. The following is a direct consequence of this and a
standard fact about product forcing (see e.g. [6. p. 190]).

Theorem 5.3. If 2 =«", then Q; has the k" "-chain condition for every £=1.
Hence, if also <, holds, then forcing with Q; for any £=1 preserves all cardinals.

We shall have the opportunity to use Q, to render 2° large in the next section.

6. The inaccessible case

When « is (strongly) inaccessible, O, is unnecessary in deriving the salient
properties of the iterated forcing, and what is more, distinctly new results are
possible. In particular, a consistency result about the closed unbounded filter can
be established which answers a question raised by Baumgartner and Taylor. This
section is devoted to such ramifications afforded by the inaccessibility of .

Our first task is to attend to the analogue for Theorem 2.2, and typically a more
straightforward argument is available which also yields a stronger conclusion. (It is
interesting to note that thiz argument also works for the w case to provide an
alternative proof for [2, 2.3{h].)

Theorem 6.1. Assume that v is inaccessible and that p € P, with pl-, 7€ V. Suppose
also that F < domain(p) with |F{<«, and that y <«. Then there is a q<,.p and an
x € V with |x| <« such that qi-,7 € x. (The new feature here is |x|<x.)
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Proof. Let {0, | @ <7) enumerate the collection of all funciions o: F—"*'2. By
the inaccessibility of «, we can assume that n <«. To produce g, we shall construct
by induction a decreasing sequence of conditions {p, | @ <n) such that a<a
implies ps <r.P.. and also some sets x, € V for some successor ordinals a <7
along the way.

If §<7 is a limit, set p; = A,<s Do FoOr the successor step with p, given, set
Pa+1 = Po if there is no r=p, such that r = r | g,,. Otherwise, for such an r, produce
by hypothesis an r, =r and an x, € V so that r, k.7 = x,. We can now formulate
Pus1 to be an amalgamation of p, and r, cxactly as in the corresponding
construction of Theorem 2.2, to insure that p,,,=.,p,. This completes the
inductive definition.

Let @ = A < Po and x ={x, | x, is defined}. Then q =g, p, and the proof will be
complete once we establish that: glk,7 € x. So, suppose that t = g. Surely there is a
[ <t so that for some a <n, we have 1 =1 la The condition for the non-trivial
construction of p,., was thus satisfied, and so  <q | 0, <pa., | g, =r,, and hence
{W, 7= x,. The proof is complete,

The following now follows from Theorem 6.1 exactly as Theorem 2.3 follows
from Theorem 2.2:

Theorem 6.2. Assume that k is inaccessible and that pe P, with plr 7:x — V.
Then there is a q=<p and a sequence ‘x, | @ < k) of <« size sets in V such that
qlF Ya(r(a)€ x,). Hence, forcing with P, preserves k* as a cardinal.

Theorem 6.2 has the consequence heralded at the end of Section 1 that if « is
inaccessible and G is P-generic over V, then every fe*x N V[G] is eventually
dominated by a ge*k N V.

With Theorems 6.1 and 6.2 in hand, one can follow the pattern of previous
sections, often using arguments more closely modelled on those of [2], to check
that all of the results of those sections hold with the hypothesis ©, replaced by
the inaccessibility of k. However, there seems little need to dwell on this, since <,
is such a mild hypothesis to assume. One new aspect which does deserve mention
is that it can be shown (by roughly following [2, Section 53] for the w case) that if
is inaccessible and 2* = « ", then forcing with P,..,, collapses x' ' as mentioned
in Section 3, I do not know whether this sharp result holds with O, replacing the
inaccessibility of k.

Let us now turn to some new considerations involving the closed unbounded
filier afforded by the inaccessibility of «. The following result shows that the
closed unbounded filter in the generic extension is generated by the closed
unbounded filter in V.

Theorem 6.3. Assume that « is inaccessible and that p ¢ P; with pt, C < & is closed
unbounded. Then there is a g <p and a D € V which is closed unbounded such that
qt.DcC.
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Proof. We might as well assume that pli-.7:x — « enumerates C in increasing

order. Then use Theorem 6.2 to find a g=<p and a sequence {x,_ | a<k) of <«

size sets of ordinals in V, such that g+, Va(r, € x,). Let D be the set of limit

ordinals 8 <k such that whenever a <8, then x, < B. Then D is closed un-

bounded, and it is not difficult to see that ql-,D < C. For if e D, then
qikr(B)= U rla)ys U U x. <B<7(B),

a<f PR c]

ie. gik7(B)Y=BeC.

I state without proof that a more involved argument establishes that if « is
inaccessible and ¥ holds (see e.g. [4] for a definition), then a OF sequence in V
is also a OF sequence in any generic extension via P,

Typically, when k is not inaccessible, the conclusion to Theorem 6.3 no longer
holds. To see this, note that for uncountable cardinals «, the question whether
every closed unbounded subset of « contains a closed unbounded subset from the
ground mode! is equivalent to the question whether every f:«x — « is dominated
by a function from the ground model. The failure of the latter was demonstrated
after Theorem 1.5 for x not inaccessible.

Let us recall that an ideal I < P(«) is A-saturated if the Boolean algebra P(«x)/I
has the A-chain condition, i.e. whenever {A, |a<p}< P(k)—I are such that
a# B implies A,NAg el then p<A. Also, an ideal I< P(x) is A-generated if
there is an X < I with ! X| = A such that [ is the smallest ideal extending X. Finally,
NS, denotes the non-stationary ideal over A, the dual to the closed unbounded
filter. Theorem 6.3 leads to the following consistency results:

Theorem 6.4. Con(ZFC and « is inaccessible) implies Con(ZFC and « is inacces-
sible and 2" is large and NS, is «"-generated but not 2*-saturated).

Proof. By either relativizing to L or performing a preliminary generic extension,
we can assume that x is inaccessible, 2* =« ™, and <, holds in V. Then force with
the side-by-side Q, for £ as large as desired. It is easy to check that Theorems
6.1-6.3 hold with Q; replacing P,, and so we have in the generic extension that:
NS, is « '-generated and 2° = £ Finally, it is well-known that a <k-closed notion
of forcing preserves O, (see [4]), and that ¢, implies that NS, is not 2~-
saturated. (For this last assertion. let (S, | @ <«) be a O, sequence and for each
Xck, set Ty ={a|XNa=8,}. Then {Tyx| X c«k}c P(x)-NS,, vet X#Y im-
plies | Tx NTy{<«k.) ‘

The following answers Question 7.2 of Baumgartner and Taylor [3], relative to

the consistency strength of the existence of an inaccessible cardinal.

Theorem 6.5. Con(ZFC and there is an inaccessible) implies Con(ZFC and 2* is
large and NS, is w,-generated but not 2*-saturated).
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Proof. Simply perform the standard Lévy collapse of « to w; on the model of
Theorem 6.4. By a standard argument, the «-chain conditirn of the collapse
insures that any closed unbounded subset of « in this further generic extension
contains a closed unbounded subset in the given model, and so in particular
stationary sets in the given model are also stationary in the further extension.

Added in proof: T. Jech (in: On the number of generators of an ideal, to appear)
has established that the conclusion of Theorem 6.5 follows from just Con(ZF).
His mode! is very different, since he first insures that 2* is large and NS, is not
2*-saturated, and then generically adds w, closed unbounded sets which generate
NS, in the extension. The model of Theorem 6.5 has the distinction of having the

N

closed unbounded sets of the ground model still generating NS, in the extension.
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