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Perfect-set forcing has been around for a long time. Sacks [10] himself had 
made substantial use of it to get important minimality results both in set theory 
and in recursion theory, and the fusion idea that he popularized has become an 
integral part of several notions of forcing. After Laver [8] developed the idea of 
adding reals iteratively with countable support, Baumgartner and Laver [2] 
applied it to the case of perfect-set forcing to produce interesting consistency 
results about Ramsey ultrafilters over to and the tree property for co 2. Since then, 
work of Shelah, Baumgartner, and others has considerably systematized countable 
support iterated forcing. As a first step in generalization, I develop in this paper a 
notion of perfect-set forcing for regular uncountable cardinals K and its iteration 
with K size supports. An application of an effective version of this forcing has 
already been made in recent work by Sacks and Slaman [11] in the study of 
abstract E-recursion and sideways extensions of E-closed structures. 

in Section I the notion of forcing and its iteration are formulated, and their 
basic properties established. In particular, the appropriate fusion lemmas are 
stated and proved. Section 2 is dominated by the long proof of a key technical 
theorem, one of whose many consequences is that ~ + is preserved as a cardinal by 
the iterated forcing. The use of a ~ sequence in the ground model is an essential 
feature of this fusion argument. There is much less control over the forcing 
machinery in the uncountable case as compared to the to case considered in [2], 
but <>K gives us just enough structural information about subsets of K to allow 
more economical procedures to work. In fact, it will be clear that this paper owes 
an obvious debt to [2]. with the new modulations arising primarily from limit 
stage constructions and the use of O~. 

in Section 3 it is shown that if 2 ~ = ~*, then ~<K ~+ iterations of the forcing still 
preserves •*' ,  hut that, in general, K ~ iterations adds a <~. sequence (in fact, a 
K*-Suslin tree) and hence collapses K H if 2~>K + had been satisfied in the 
ground model. In Section 4, the result on Aronszajn trees in [2] is lifted: Using 
<~. a closure property for the iterated forcing is established, and this implies, as  
Silver first showed in Mitchell's model (see [9]), that if the forcing is iterated h 
times, where A is a weakly compact cardinal >K, then there are no K++-Aronszajn 
trees in the resulting extension. 
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Section 5 makes some brief remarks about  the side-by-side, or  product,  version 
of the forcing, and Section 6 is devoted to the special case of K being inaccessible, 
where the analogies to the ~o case are much stronger.  A consistency result is 
established here which answers a question of Baumgar tne r  and Taylor  [3] 
negatively: There  is a model of ZFC where  2 ~, is large yet the non-sta t ionary 
ideal over o~ is ~o,-generated but not 2O.-saturated. 

The set theoretical notat ion is s tandard,  and the following litany should take 
care of any possible variations: The  letters a./3, 3' . . . .  denote  ordinals, whereas 
~, A, t~ . . . .  are reserved for infinite cardinals, if x is a set. P(x) denotes  its power 
set and I::l its cardinality. If ]' is a function, then ["x = {[(Y)I Y c x} and f I x = 
[ n ( x x V ) .  Vx denotes  the collection of functions: y---~x, so that  h" is the 
cardinality of ~)t. If s and t are sequences, then s - t  denove,- their  concatenat ion 
s ~ 0  and s ~ l  will be shor thand for s - ( 0 )  and s - ( 1 )  respectively. Concerning the 
forcing formalism, p<~q will mean that  p gives more information than q, t~-& will 
mean that any condition forces &, and it is convenient  to  take V as a relative term 
for the ground model and "const ruct"  generic extensions V[G]. 

1. The notion of forcing 

In this section the basic notion of forcing and its i teration are formulated, and 
their  main properties established. Any experience with perfect-set forcing for oJ 
(see [10] or [2]) should make the motivating ideas here familiar. For the durat ion 
of the paper  let K denote  a regular uncountable  cardinal such that  2 ~ = K, and set 

Seq = U ..... '" 2. 

Definition 1.1. (a) If pc_Seq and s ~ p ,  say that s splits in p if/" s - 0 ~ p  and 
s - l ~ p .  

(b) Say that p c Seq is per[ect if/ 
(i) If s ~ p ,  then s t a ~ p  for every c~. 

(it) If ~ < K is a limit ordinal, s ~ "2 ,  and s F/3 ~ p for every/3 < a, then s ~ p. 
"p is closed.' 

(iii) If s ~ p, then there is a t~ p with I z~s such that  t splits in p. 
(iv) If a < K  is a limit ordinal,  s o " 2 ,  and for arbitrarily large / 3 < a ,  s r/3 

splits in p, then s splits in p. 'The splitting nodes of p are closed." 
(c) If p is perfect and s ~ Seq, set p~ = {t ~ p [ s ~ t or t ~ s}. (So p~ is perfect iff 

s~p.)  
(d) Set P = ~p ~ Seq I P is perfect} and ~,rder P by: p ~ q i{f p ~ q. 

If p~ = p, then s is an initial segment of what can be called the ' s t enf  of p. 
Evidently, forcing with P adds a generic filter G which is identifiable with a new 
function [ ~ 2 ,  where [ ( u ) = 0  iff for some p e g  and s~p ,  we have p=p~  and 
s(cO = 0. Variants of P were known to 13aumgartner, Laver, and perhaps others.  
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T h e  key clause in the  above  definit ion is (iv), the  exact  form 3f which seems  
necessary  for the  coming  use of  O~. In the  p resence  of  (i)-(di), an al ternate ,  
s e c o n d - o r d e r  formula t ion  of  (iv) is: if f ~ " 2  is a branch through p, i.e. f I a • p for 
every  a ,  then {a I f I a splits in p} is c losed u n b o u n d e d  in ~¢. 

L e m m a  1.2. I f  B <K and (P, , ta  </3} is a decreasing sequence in P, then p-~ 
1"1,,,-~ P, ~ P. Hence, P is a <r-closed notion of forcing, 

Proof .  It suffices to check condi t ion  (iii). But if s #_ p, it is s t ra ight forward to find a 

cofinal branch f •  ~2 through p such that  s is an initial s egmen t  of  I". Then  define 

an increasing s e quence  of  ordinals  (0,~ [a <~ [3) so that:  s c_ jr I rio: if 6 is a limit 
ordinal ,  rla = U , .  art,,; and  f I' r l , ~  splits in p,.  Thus,  [ I rla splits in p. 

Def in i t ion 1.3. If t ~ < K  and p, q 6 P .  set  pv--~q iffp<~q and p N " + t 2 = q f ) " + ' 2 .  

That  it i s "  ~ 2  ra ther  than " 2  seems  necessary,  a l though this will cause techntcal  
compl ica t ions  later on.  T h e  key p roper ty  of  P is isolated in the following lemma:  2 

L e m m a  1.4 (Fusion Lemma) .  Suppose that (p, I a < K) is a decreasing sequence in 
P such that: p,~l<~,,p,, for ecery a, and i]'8 is a limit ordinal, then p~ == (-'l~<,s P,~. 
T h e n  p =  ( ' ] , , ,~p~•P.  

Proof. Again.  it suffice,,, to  check condi t ion  (iii), and again if s • p, we can suppose  
that  the re  is a b ranch  ( ~ 2  through p such that  s is an initial s egment  of f. Then  
def ine  an increasing sequence  of  ordinals  ( r t , [ i • t o )  so that:  s c f I' "On, and 

jr I rl~, s splits in p , .  Hence ,  if 71 = sup r/,, then f I ~l splits in Pw But also, if 3'/>'0, 

then  by hypothes is  pv N " * t 2 = p ,  f3"+~2, so that  f I rt splits in Pv. Thus.  f l r l  
splits in p. 

Usiag this l emma and 2 ~~ = u, the  following t h e o r e m  follows much as in [10]: 

Theorem 1,5. I[ G is P-generic over V, then (K ~)vlc;1 = (K*)v, and G is a minimal 
degree of constructibility over V (i.e. if X ~ V[G], then X • V or G • V[X]) .  

Hence ,  if we assume that  2 ~ = K ~ holds  in V. then  by the  K ~ +-c.c. and L e m m a  
1.2, P preserves  all cardinals  and adds  a 'minimal" subset  of  ~¢ without  adding any 
b o u n d e d  subsets .  

l! is in terest ing to note  that  unless K is s t rongly inaccessible,  some  aspects  of 

per fec t - se t  forcing on to do  not  lift to the  uncountab le  case. For  instance,  it can be 

Lemma 1.4 is called the Fusion Lemma in order to be consistent with [2]. The analogous lemma in 
[ 10] was called the Sequential Lemma Mathias had formulated this lemma more abstractly and called 
the result the Fusion Lemma. Shoenlield had invoked the term "splitting" to describe its proof, l have 
restrained myself from calling t,emma 1.4 the Fission I.emma. 
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shown by the same argument  as in the co case that when K is inaccessible and G is 
P.-generic over V, then:  for every X e  V[G] with X CK, there is a Y e  V with 
IY[= K so that ei ther Yc_X or y c  I< -X.  However,  Laver  has pointed out  that  
this is not  true if in V there is a A so that  2 x = K (e.g. if i< = ~o~ and the Cont inuum 
Hypothesis holds): 

In V, one can define a parti t ion Scq = A O B such that  for any p ~ P tl~ere is an 
o¢ < K so that a <~/3 < ~¢ implies that  p N ~ 2 n A -~ qJ and p n ~ 2 n B ~ O. Thus can be 
done as follows: Let k be the least cardinal such that 2 ~ = K. Since 2 "'~ < K, one 
can enumerate  as (H,, I~  <K )  those subsets of Seq ~- i somorphic  to the tree 
I,_J~<x~2. Then parti t ion Seq level by level: to take care of ~2, for every a < / 3  
such that  H~c-: U~<a~2, find two cofinal branches  b,~ and b,,f~ through H,, 
satisfying: (a) if ",/<o~ <,6, then L.] b,e'~ ~ U bv~U and U b,~13 :p U b.m.a, and (b) if 
ei ther A ~ c b,m~s or b , ~ _  s. then s~ U ~  Hr. Note that  (b) can be easily satisfied 
s ime [U-~<~ H.,I < K. Thus. we can now color ~J2 so as to render  {s ~ 2  1 b,'~ ~_ s}~  
A and { s ~ 2 ]  h~_s}~_B for every ~ < / 3 .  It is not difficult to see that  this 
partit ion satisfies our requirements,  since any p ~  P has some H~, as an initial 
segment. 

Suppose now that  G is P-generic  over  V, and X = { o t < ~ f = l p ~ G : l s ~ p  
(p---p~&s ~ " 2 n  A)}. A simple density argument  establishes that there can be no 
Y ~ V w i t h  t Y I = ~  such that ei ther Y_~X or Y ~ _ K - X .  

As another  example, just as in the co case it can be shown (see Theorem 6.21 
that  when ~¢ is inaccessible and G is P-generic over  V, then:  for every / ~  
~ n V[G], there is a g ~ ~ n V which eventually dominates  ]~ i.e. for some a < ~. 
f(13)<~g(/3) wheneve~ ~<~/3. This too has a countercxample when ~¢ is not 
inaccessible: 

Let A and (H,, It<,,> be as before, and for each H,,, enumera te  its cofinal 
branches in type K. If G is P-generic over V. then define f ~ ' ~  by: f ( a ) = / 3  iff 
: ip~  G ~ls ~ p (p = p~&s extends the /3th branch through H,,). and /3 = 0 o ther-  
wise. Again, a density argument  establishes that for any g ~'~¢ n V and a < ~. 
there is a /3~>a such that  g(/3)<f(/3).  

Similarly. we can show that there is a regressive function in ~ , -n  V[G]  not 
eventually dominated by any regressive function in "K n V, by using for each El,, a 
surjection of its cotinal branches  on to  a. 

Let us now turn to the iteration of P. 

Definition 1.6. (a) PE for ~ 1  is defined by induction as follows: P~ = P: 
P~_~ ~ = P~ * -r~, where "r~ is a canonical term denot ing the partial order P as detincd 
in the extension via I~, and * is the usual conglomeration of forcing twice: and P~, 
for ~5 a limit ordinal is the inverse limit of (!~ 1 ~ < 8 )  if ct'(~5)<~ K and the direct 
limit otherwise. As there will be no reason for confusion, just ~ will denote  the 
partial order of Pc, and finally, It-e its corresponding forcing relation. 

(b) Under  a standard identification, P.: will be considered, as a well-defined set, 
the collection of functions p so that  domain(p) is a ~<K size subset of E. and for 
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every/3 e domain(p), p I/3 IF a p([3) e ~'a. With this identificatior~, for p and q in Pe 
p <- q if[ domain(p) _~ domain(q) and for every [3 c domain(q), p I [3 II-a p(/3) <~ q(/3). 

PL is the bona fide 'upward'  iteration of P through ,~ steps with <~r size 
supports. The side-by-side or  product forcing of ~ ground model copies of P with 
<~K size supports shares many properties with P~, but the verifications are simpler 
(see Section 5). Of course, the difficulty in dealing with P which does not arise in 
side-by-side forcing is that p 1'/3 does not in general decide all the members of the 

term p([3). 
Basic properties of P are now lifted over to P~. 

Definition 1.7. For any ~ ~> 1, 
(a) If {p , , ta<[3}c_Pe then the "meet" P = A . < e p , ,  is defined so that: 

domain (p )=U.<~domain (p~)  and for every 3,~domain(p), p I3,1F.p(3')= 
N {p,,(3'J t 3' ~ domain(p~)}. (That p [ 3' ~ P~ for 3' 6 domain(p) is assumed here; if 
this ever fails, or [domain(p)[ > K, then /~,~<u p~ is left undefined.) 

(b) If p . q ~  P~. t~<K, and F~_domain(q) with [F[<K, then P<~F.~q if[p<~q and 
for every [3~F. we have p I [31t-~P(/3)~<~q([3). 

Lemma 1.8. For any ~ t> 1, i f  [3 < K and (p,~ ] a </3) is a decreasing sequence in Pe 
then A,,.~ ~ p,, ~ P~. Hence, P~ is a <K-closed notion of  forcing. 

Lemma 1.9 (Generalized Fusion Lemma). For any f;>~ 1, if p,, ~ P~ and F.  for 
ct < K are such that: 

(a~ p,,, I ~<~:,.,,P., attd p~ = A , , ~  p. for limit 8. 
(bt !;~, ~ F~,~ t: F~ = U.- :~ F,, for limit 8; and U~<~ F,~ = U~<.  domain(p.). 
Then /~ . . . .  p,, ~ P~. 

The proofs of these lemmata proceed by a straightforward induction using 
Lcmmas 1.2 and 1.4, and are left to the reader. Lemma 1.8 is a particular 
instance of a general property of iterated forcing when sufficiently many inverse 
limits are taken, and Lemma 1.9 is the appropriate generalization of the Fusion 
Lemma where the F~'s are a standard strategem for ultimately covering all the 
domains of the p,/s. 

2. The use oi ©.  

This section is dominated by the long proof of a technical theorem. This 
important result has an analogue in the to case (see Theorem 2.30) of [2]) and has 
as a direct consequence the fact that K ÷ is preserved as a cardinal in forcing ~Ath 
any !~. However, the analogy is not exact unless K is inaccessible (see ~ection 6), 
and the use of ~ is the distinctive new feature in the general case whicia allows a 
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more involved argument  to work. The  use of ' ~  was suggested by Baumgartner .  
who was the first to apply it in forcing arguments.  (See [1, Theorem 6.7].) 

To scamper up many trees all at once, a generalization of p, is now defined: 

Definition 2.1. Suppose that p ~ P~. F c  domain(p)  with tFI < ~, and o-: F---> ~2. 
Then p t cr is a function with the same domain as p, given by: 

i or(/3 ) _ ~ p(/3) if /3¢ F, 
P - /p(/3),.~0 ~ if /3 ~F.  

Thus, p I cr ~ P~ just in case for every /3 ~; E we have (p l a') I/3 I1-,¢r(/3)~ p(/3), 
To complete the prdiminarics ,  let us recall that Jensen 's  well-known principle '# .  
can easily be made to hold by a preliminary generic e×tension via a <~-c losed  
notion of forcing, and let us make explicit the following biparti te formulation of 
<)~, easily seen to be equivalent to the usual one: 

There is a sequence (So [ a < ~) such that  S,. ~_ a × a and for every X_~ K x K. 
the set {a < ~ [ X fq a × a = S,~} is stationary in K. 

We can now state the main theorem,  which serves to delimit the range of 
possible values for a term denoting a member  of the s tandard universe V. 

Theorem 2.2. Assume <)~ and that p ~ P~ with p Ik~ ~- ~ V. Suppose also that 
Fc_domain(p)  with IFt<K, and that "y<K. Then there is a q<~l.;vP and an x ¢  V 
with [x[<~K such that ql~-~r~x. 

Proof.  To produce q, we shal: cot struct a fusion sequence ((p,,, F,~) [ a < K) with 
p~=p and F,~= F appropria e foc using the General ized Fusion Lcmma 1.9. 
Along the way. some sets x. s V ~'or some successor ordinals a < K will also be 
defined. We want in addition that ,~,,. ~ ~;, .~ ~,, p,,. but this can be arranged by just 
starting the coming construction at some indecomposablc ordinal c~ >3 '  and 
setting p~ = p,, for /3<c~. Finally le~ us decide ahead of t ime on an efficient 
bookkeeping device to insure tFo[>~I,~i and U . . . .  F , .= U,~<.domain(p. ,) .  and 
also keep track explicitly of bijections g~ :F .  ~ rt,~ where rio ~ a .  so that a ~ &  
implies g~ ~ ~ and g~ = U . < ~  g~ for limit & 

The limit step of the construction is obvious, so it only remains to explicate the 
successor step. So, suppose that a < K and that p,, anti F,, arc ah'eady givcn. 

Assume that g~ : l~  ~-~, a. i,e. rl. = a. Then first define cr. : / ;~,--." '12 from the 
~ sequence given above by: i f /3 ~.~ E~, then 

l if ~ < ~  and (g~(/3),6)cS,~, 
(o-~(/3))(~51= 0 otherwise. 

(Notice that cr,,(/3)(a) = 0 by this definition: we need cr,, :F .  - - . "  '~2 rather  than " 2  
because of the definition of ~,,, and thcrc is an arbitrariness here in that wc could 
just as well have uniformly required, say, the other  split cr,~,(/3)(a)= I everywhere,  
and proceed accordingly.) 
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Now assume that there is an r ~ p,~ so that r = r ] 0"~ and for every /3 c F. ,  we 
have  

r I/31Fu~r,~(/3) [ a splits in p~(/3). 

If  e i ther  of these assumptions do not hold, set p , .+j=p~ and F~ .~=F~.  
Otherwise .  produce  by hypothesis  an r,,<~r and an x , , c , V  so that : '~ lF~r=x. .  
Finally, we formulate  p,,, ~ to be an 'amalgamation" of p,, an d r,~, whose definition 
insures p,,~ ~ <~,,,d~,,, as follows. 

(a) domain(p, , ,  i) = domain(r,,).  
(b) If /3 c F., then p,~ t(/3) is a term such that: 

r,. t {3 IF-ap,.~ ,((~) = (p,~ (/3) - P~ (/3),~.,,0,) U r, fl/3), 

and for any condit ion c ~< p.+ ~ I'/3 incompat ible  with r. [/3, 

c IF~ p,, ~ ,(/3) = Po,(/3). 

(c) I f  /3~ F,,, then P,,~l(/3) is a te rm such that :  

and for any condit ion c<~p.+~ [ /3 incompatible  with r, [ /3, 

Jp,,(/3) if / 3~domain(p . ) .  
C JF'I3 p~ ~ 1(/3 } =  / !  otherwise.  

The  formulat ion of p~+ ~(/3) corresponds to a use of the Maximal Principle in the 
Boolean algebraic setting, and insures that p . .  ~ ['/3 IF~ p~+ ~(/3) ~ r~3. It underscores 
the fact that we are  really in an i terated,  rather  than side-by-side,  forcing 
situation. 

This completes  the inductive definition. Let q = A ..... p., x = {x. ] x,~ is defined}, 
and g =  U, , .  ~ g., so that g :doma in (q ) .~ .K .  Thus.  q ~ P ~  by Lemma  1.9, with 
q ~I..~P, and it is c la imed that: 

q IF~ r ~_ x. 

Th is  c la im is estab l ished th rough  the f o l l o w i n g  several  l emmata .  

Sub lemma  1. Suppose that t<~q. Then there is a sequence (t~ t a < K )  with to = t, 
and functions s~ ~ V with sO:pO ~ 2 for some PO >~ c~ for every/3 ~ F~ such that: 

(a) c~ <~ 5 implies t~ <~ t,. 
(b) ct < &  implies sO-()c_ s~ when /3 e F,~. and s~ = g, ,<~ s~ for limit ,5. 
(c) For every/3 ~ F,~, ve have t,~ [/3 IF,~t~(/3) = t,,(/3)~-o and s~ splits ilz q(/3). (So 

notice that t,~ = t. [ (s o ~ O]/3 ~ P_).) 

Proof .  The  constructk)n proceeds by induction, carrying along the additional 
hypothesis:  
(*)  For every /3~ F~+I, we have t~+l I"/31Ft3t,~÷l(/3)= t~.~(/3)~÷,-o 

and s0+~ splits in t~(/3). 
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At limit steps 8, simply set s~--- U,~<~ s. ,  '~ and u = A,~.~., t,~. Then by (*), 

For every/3 e F~. we have u [/31Fou(/3) = u(/3),g and s~ splits in u(/3). 

(s~ splits in u(/3) since by (*) s~ splits in t,,(/3), for every c~<&) Now it is easy to 
produce a t~ ~< u which satisfies (c) above with a = b. 

At successor steps ~ + 1 with t,, already given, enumerate F,,+t ascendingly as 
(/3. J v<'O).  Then find a decreasing sequence (u~ J v < r l )  with uo = t,~ as follows: 
Set u~ = A.<~ u~ for ~ a limit. Now given u~, find v ~< u~ ['/3~ and s ~  ~ : p~+ t ~ 2, 
for some O~'~ ~ a  + 1, so that s~,~ ~- s~ ' -O when /3,, ~F,,, and: 

vlFo, s~,,~t,,({3,,) and s~,~ splits in t,,(/3,,), 

Set 
(domain(t,.)-/3~ + 1)), u,~, = v - t , , ( f l )  ..... -o t,~ t 

With (u~ I v < r l )  thus defined, we can set t , ,~ = A ~ < n  u~, so that t,,.t satisfies (*). 
This completes the inductive construction, hence the proof of the sublemma. 

S u b l e m m a  2. C , = { c ~ < K l p ~ = a  for every /3~F,,} and C 2 = { a < u t g  [ a :  
F,~ ~ c~} are both closed unbounded in K. 

Proof. This is immediate since for each/3, (p~ j a < K) is continuous at limits, and 
(F~ I a < K) is also continuous at limits. 

The proof of Theorem 2.2 can now be completed as follows: Suppose that t <~ q 
is arbitrary. Carry out the construction of Sublemma 1 for this t. Set s ~ = LJ ...... s~ 
for /3  ~ domain(q), and then set X = {(g(/3). ~5)J/3 c domain(q) and s~(~5)--- 1}. By 
0~, S = {a ~ C~ n C2 [ X n (a x a)  = S.  } is stationary. 

Fix a ~ S, so that by tracing through the definitions we have t. = t,. [ ~,,. Note 
also that l~<~t~q~p,~ ,  and for /3~/~,, t,, r {3lFos~ ~. splits in p,,(/3). Thus, the 
assumptions for the non-trivial construction of p,~t were satisfied, and t,~ ~< 
p,,~ [o-~ = r~ where r. lV~-= xo. Hence, to any t<~q, a condition v ~ t  and an x. 
have been found so that v IF~r = x,~. Thus, q !1-~ ~- c- x. as was claimed, and the proof 
of Theorem 2.2 is now complete. 

The following self-refinement of Theorem 2,2, a sort of co~,:'ring property for 
sets of cardinality .-~K in the generic extension, is now a dirtct consequence. 

Theorem 2.3. Assume ~ ,  and that p E P~ with plk~-c_ V with [r[<~ ~c. Then there 
is a q<~p and an x ~  V with [xl<-K such that qlt-¢T~_x. Hence, [orcing with P~ 

preserves K ÷ as a cardinal. 

Proof. We might as well as~ame that plFcr={'r , , [a<~¢}~oV. Then using 
Theorem 2.2 repeatedly, it is easy to define a fusion sequence ((p., E,)l~ < K) 
such that for every a < K ,  there is an x,, ~ V with jxol<~K such that p,,, tlF~r,~ ex,,. 
Thus, if q = A . < .  p~. and x =  U {x,, [c~<K}, then q l F ~ r c x .  
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3. Preserving and collapsing K ÷÷ 

W e  saw in the  last sect ion tha t  for  any  ~ >I ~ forcing wi th  P~ always preserves  
K +. In this  sec t ion  we shall  inves t iga te  wha t  h a p p e n s  to  ,, ++ in di f ferent  cases. In 
ana logy  to  the  to case,  it will first be  shown  tha t  if 2 ~ =  K + (and  ~ , ) ,  t hen  for  
every  .~ ~ K ++, P~ has  the  K +÷-chain cond i t ion  and  hence  p rese rves  all cardinals .  
T h e n  the  sec t ion  is conc luded  wi th  the  obse rva t ion  tha t  in general ,  forc ing with 
P,.  adds  a © , .  s equence ,  so  tha t  in m a n y  s i tua t ions  K ~  is col lapsed.  

T h e  fol lowing l e m m a  is di rect ly  ana logous  to  [2, 3.1]. 

[ , e m m a  3.1.  Assume ©~ and that ~ < K  ++. Then there is a dense subset W~ ~_ P~ 
such that [W~[ = 2 ~. 

]Proof. Let W~ be  the  col lect ion of those  p ~ Pe such tha t :  
(i) t he re  is a s equence  (F ,  l a < K )  such tha t  each  F,~ c_ d o m a i n ( p )  with  IF,~]< K, 

and:  a~<& implies  F,,c_Fa; Fs=U,~<~F,~ for  ~5 a l imit;  and  U ~ < ~ F ~ =  

doma in (p ) .  
(ii) t he re  is a s e q u e n c e  ( o r , ~ l a < K )  such tha t  tr~:F,---~'~+~2 satisfying: 

w h e n e v e r  t ~< p and  3, < ~, t he re  is an a / >  3' so tha t  t and  p ] or~ are  compat ib le .  
It is not  difficult to  see  f rom the  p roo f  of  T h e o r e m  2.2 tha t  W e is dense  in P~. 

T o  es tabl ish  tha t  I W ~ I = 2  K for  ~ < ~ + + ,  no te  tha t  the re  are  2 ~ possible  
(~r,~ ] a < t c ) ' s o  so it suffices to  show tha t  any  p e W ~  is charac te r ized  by its 
(,~. I,~ <,:>: 

Suppose  tha t  p and  q are b o t h  in W~ and  have  the  same  (or~ ] a < K) (and hence  
the  same  (F,, ] t~ < K)). A s s u m e  by way of con t rad ic t ion  tha t  the re  is a /3 so tha t  
P r /3  = q I/3, yet for  some  r~<p I'/3 and  s and  3', we have  

r II-~.~ ~ (p(/3) - q(/3)) N ~ 2. 

Cons ide r  

t = r -p( /3 )~-p  I ( d o m a i n ( p ) - / 3  + 1). 

T h e n  for  some a ~> %/3  ~ F,, and  the re  is a u ~< t with u ~< p J tr,,. This  follows f rom 
p e  Wa. It then  fol lows tha t  o - , , ( /3 )~+~2 and  o',,(/3) ~ s. But  also p I / 3 = q  I/3. so 

tha t  

(q I/3)[ (or~ t/3)ll-~or~(/3)~q(/3). 
as p and  q have  the  same  (or,, ]t~ < K). Th i s  is a con t rad ic t ion  of s c ~r,(/3), and  

u I/3"-~(q I/3)l(or,, I B) and  u [ ' /3<~r and  rlF-as6q(/3). 

This  l e m m a  leads direct ly  to  the  t h e o r e m  on p rese rva t ion  of K++: 

T h e o r e m  3.2.  Assume <>~ and 2 K= r*. Then for every ~ K  ÷÷, P~ has the 
K ~*-chain condition, and so preserves all cardinals. 
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Proof.  For  ~ < K*' this is i m m e d i a t e  f rom L e m m a  3.1, and  for  ~j = K ~ + t he re  is a 
s t anda rd  A-sys tem a rgument .  

1 have  been  unab le  to  d e t e r m i n e  whe the r ,  in ana logy  to  the  o~ case, (see [2, 
Sect ion 5]), O~ and  2" = K* implies  tha t  forc ing  with P.. .+~ col lapses  ~ + .  This  
sha rp  resul t  does  hold with the  fu r the r  a s sumpt ion  tha t  K is inaccessible.  How-  
ever .  the  fol lowing resul t  will imply tha t  ~ +  is col lapsed quickly e n o u g h  i.~ many  
cases: an i tera t ion of length  Kt suffices. Suggested  by P, Dorda l ,  it is really a 
general  fact abou t  how the  suppo r t  s t r ac tu re  of cond i t ions  adds  wha t  looks  like a 
C o h e n  subse t  of ~ .  

Theorem 3.3. I f  ©~, then Ib~. <>.,. 

Proof .  Let  us no te  at the  beg inn ing  that  the  t e r n  K ~ will be  u n a m b i g u o u s  in the  
following, as it is a lways p re se rved  as a card ina l  by T h e o r e m  2.3. For  any ~_. let G~ 
be the  canonical  gener ic  filter ove r  P~. T h e  des i red  ©~. s e q u e n c e  (Sn I rl < K ' )  will 
be r ecovered  f rom G~- as follows: {3 ~ S,~ if[/3 < rl and  the re  is a p ~ G~. with  
"o + [3 E doma in (p )  and  

P F (rl + [3)11-~, P(n + {3) c_ {s ~ Scq [ s(0)  = 1}. 

In o t h e r  words,  a gener ic  subse t  of K' is na tura l ly  decoded  f rom the  initial splits 
a long the  K ÷ fibers of G~., and  S,~ is to consist  simply of t hose /3  < r~ so that  ~ + [3 
is in this gener ic  set. 

T o  establ ish that  this  s eqnence  has  the  ©. ,  p roper ty  in V[G . , ] ,  suppose  that  
q Ik~, X c K ' and  C ~ K' is c losed u n b o u n d e d ,  We must  show that  there  is a p'--~ q 
and an r i cK '  so that  plF~ X f 3 ~ = S , ,  and  v l~C .  

Say that  p determine:, X up to ~ if[p<~q with p c  W. . .  as def ined  in L e m m a  3.1. 
with the  co r re spond ing  ( F . [ e  < K )  and  (o-~ I o~< K} so that  for  some  b i jec t ion  
,'k : ~¢ ~ ~ and  some sequence  (y., I a < K) of sets in ~ we have  p [ (r,, IF.. X A 
+ " o z = y . .  For any r<~q and K < ~ ' < K  ~ the  p roof  of T h e o r e m  2.2 with '~ .  
indicates  tha t  the re  is a p ~ r which d e t e r m i n e s  X up to ~. T h e  salie~lt poin t  is that  
if p de t e rmines  X up to ~'. then  p tk.. X N ~ V[G,,]. w h e n e v e r  d o m a i n ( p ) ~  re. 
since it can be seen tha t  X f') ~ is comple te ly  d e t e r m i n e d  by p and  its c o r r e s p o n d -  
ing ((r,, l a < K )  and  (y,, I o~<K). 

Let us now cons t ruc t  a s equence  of condi t ions  (t9,, [ n ~ oJ) and  a s equence  of 
ordinals  (~r,, I n E oJ) as follows: Set p~ = q and  ~',~ = K. G iven  p,, and  ~ r  first f ind 
some  r<.p,, and a ~',,, ~>max(~',,, I J domain(p, , ))  such that  r lk. .~, , ,  ~ c ( ' .  T h e n  
p roduce  a p , , , ~ r  with domain(p, , .0~?/~ ' . ,~  which d e t e r m i n e s  X up to ~,,,~. 
Finally, set  0 = A P,, and  rl = sup  ~,,. It is not  ditficult to  see  f rom the  cons t ruc t ion  
that  domain (0 )  = rl a n d / 5  Ik~. X fq-q ~ V[G,, ] and  rl ~ (7. Thus ,  it is permiss ib le  to  
def ine a p <~ 13 with doma in (p )  ~_ rl + r/ by p I "11 =/5. and:  

p ( r l + / 3 )  is def ined and  equals  t , , . ,  iff O I k . [ 3 ~ X ~ n .  
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w h e r e  t~ is a t e rm so that  

It-t t~ ={scSeq[ s (O)=  1}. 

F rom the  definit ions,  p IF.. X N 71 = S,  and r l ~ C .  

Corollary 3.4. i f  2" > K' in V, then forcing with P~, collapses K ~ ~ 

Proof. This  is immedia te  s ince © . ,  implies 2 ~ = K ~. 

Let u.,; recall that  if h is regular  and Ec_ h is s ta t ionary in A, then ©x(E) is the  
s h a r p e n e d  principle:  T h e r e  is a s equence  (S,, ] rl < A) such that  Sn c ~1 and for 

every  Xc_ k, the  set {71 e E [ X f 3 B  = S,,} is s ta t ionary  in h. Then  the  conclusion of  
T h e o r e m  3.3 can actually be IF~.O~.(E~,) for  every regular  tx<K,  where  E,, = 
{t~ < K ' I c f (a)  = p.}. s ince the  s equence  (p,  J n ~ to) can be e x t e n d e d  to length g by 
the  <K-c losu re  of P~.. Howeve r ,  note  that  the  p roof  of  T h e o r e m  3.3 does  not  
apply to per fec t - se t  forcing for  to to  add a ~ ( =  <>,o,) sequence ,  s ince the 
coun tab le  closure of  the  forcing was used. Thus,  it is wor thwhi le  to prove  an 
amplif ied version of  T h e o r e m  3 3  which relies on a fur ther  fusion a rgument  and 
will apply to the to case.  The  ext ra  fea ture  that  we shall need  is the  following 

lemma:  

L e m m a  3.5. Assume ©~, and that p~P~ with pll-~Cc_K ~ is closed unboutlded. 
Suppose also that F c_ domain (p )  with I FI < K and that V < K. Then for any p < K ÷, 
there is a (,>~p and a q~: ,vP  such that q l F t l ~ C .  

Proof. To  produce  q and ~. we shall cons t ruct  a s equence  of condi t ions  (p. ] n 
to) and a sequence  of  ordinals  (~',, [ n ~ to) as follows: Set p,, = p and ~'¢, = p. Given 
p,, and /5,,. let r,, be  a t e rm such that  p,,ll-~r,, is the  least e l emen t  of C--~r.. Using 
T h e o r e m  2.2. let p,,. ~<-v.-,P,, be such that  for  some  x,, ~ V with Ix,,[~ < K, we have 
p . .  t l F t ' r .  ~ X.. Then  set  ~',,~ ~ = sup x..  Finally. set q = A p. and ~" = sup ~,,. It is not 
ditticult to see that this works.  

Theorem 3.6. l[ <>~. dlen IF~ <~ (E~). 

Proof. W e  can def ine the desirec, s equence  (S~ ] ~ < K t) exactly as in Corol lary 
3.4, Assuming  that  qff-~, X c_ r ~ and C ~  K'  is c losed unbounded ,  we must  now 
show that there  is a p ~ q  and an - q < K * .  with the  addi t ional  proviso that  

cl'(rl) 7= K. SO that  I) I}-., X n ~ = s., and rl ~ C. 
To produce  p. wc const ruct  a fusion sequence  ((p,~. F . ) I a  < K) which interlaces 

T h e o r e m  3.3 and L e m m a  3.5, defining an increasing sequence  of  ordinals  
(~, i a < K) along the  way. Set p~ = q and ¢o = K, and  decide  be fo rehand  as usual 
on  a p rocedure  for de t e rmin ing  the  F , / s .  The  limit s teps  ~5 of  the  construct ion are 
obvious,  with G = sup..<~ ~ .  so it r emains  to expl icate  the  successor  step.  Given 
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p~ and ~ and F,. first use Lemma 3.5 to find some r~F,,.,~P,, and a ~ + t >  
max(~ ,  U domain(p,~)) such that  r l l - . . ~ + ~  C. Then  produce a p,~+~ <~r;..,~r with 
domain(p.  + ~) _~ ~ + ~ which determines  X up to ~ .  ~. This completes the  inductive 

definition. 
Set / 3 = / \  . . . .  p~ and r l = s u p . < . ~ .  Then / ~ P ~ .  and cf(r l)=K, and it is not 

difficult to see from the construction that  d o m a i n ( p ) = r l  and/~lk. .  X n rl ~ V[G,~] 
and ~ ~ C Thus, we can complete  ~he proof  exactly as in Theorem 3.3 to produce 
a p <~/3 such that p II-~ X n-rl = S. and rl ~ C. 

Corollary 3.7. I f  ©~, lhen Ik~.. There is a ~¢ ' -Sus l in  tree. 

Proof.  The following is a known theorem of ZFC: If A~ '  =A and 
(>~,({a <A÷ [ c f ( a ) =  A}), then there is a A,~-Suslin tree. (See [6, p. 336].) 

The proof of Theorem 3.6 has the heralded application that if perfect-set 
forcing for eo is i terated ~o, times over any ground model,  then © holds in the 
extension, since the analogue of Lemma 3.5 for the co case goes through by a 
straightforward fusion argument.  

4. Aronszajn trees 

This section is devoted to the proof  of a strong closure property for P,. and its 
consequence on the possibility of K"" having no i < " - A r o n s z a j n  trees. Mitchell 
and Silver (see [9]) had achieved definitive results about  various tree propert ies 
for accessible cardinals, For one case of their result,,;, the consistency of oJ2 having 
no oJ2-Aronszajn trees, [2, Section 6] showed that the same result can be achieved 
by iterating perfect-set forcing for e0 up to a weakly compact cardinal. The result 
is here extended to K++-Aronszajn trees, and this provided one of the initial 
motivations for investigating perfect-set forcing for uncountable  cardinals. 

The following theorem affirms an important  closure property of P~. and is 
analogous to [2, Theorem 6.2], although the proof is somewhat  modulated by ©. : 

Theorem 4.1. A s s u m e  4) ~. I]" p c I~ and  cf(p) > K and  p ff-~ (f :  p ---, V and  f [ ~1 ~- V 
for every r~ < p ) ,  then pll-~]'~ V. 

Proof.  It will be convenient  to use ~ in another  equivalent form: There  is a 
sequence (S. ] a < •) such that S,, ~ 2 x a x ~ and for every X ~ 2 × ~¢ x K, the set 
{~ < K ] X n (2 x ~ x a)  = S.} is stationary in i<, 

To establish the theorem, argue by contradiction and assume that there is a 
/3 <~ p such that /3  Ik f~ V. We shall now construct a fusion sequence similar to the 
proof of Theorem 2.2, adopting the same general notaton and at tending to the 
necessary adjustments.  We start with oo =/~ and moreover  for later convenience.  
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a r range  0 ~ d o m a i n ( p o )  and  0 e  Fo. A t  the  successor  s tep  with I~ and  F,~ already 
given an d  g~ : F.. ~ ot assumed,  we now define o-'.: F,~ ~ "*~2 for  bo th  i = 0 and  
i =  1 by: i f / 3  ~ F. ,  t hen  

1 if 8 < o e  and  (i, g . ( / 3 ) , 8 ) ~ S ~ .  

( t r i ' ( /3))(8)= 0 o therwise .  

A s s u m e  that  tr,.~ p ~ try(0). Next  a s sume  that  for  bo th  i =  0 and  i =  I. t he re  is 
an r ~ ~ iv,, so tha t  r ~ = r ~ [ tr~. and  for  every  /3 ~ F. ,  

r ~ I/3tl-atrg(/3) I a splits in p..(/3). 

A s  before ,  if any of  these  a s sumpt ions  do  not  hold,  set  p,~÷ ~ = p.  and  F~.. ~ = F,~. 
Otherwise .  for  i = ( )  and  i =  1, p roduce  r~<~r ~ and a funct ion  h ~ e  V so tha t  
r~,lt-~l~q(f I rl = h',,), such tha t  h~ and  h~. differ at  some  ord ina l  c o m m o n  to bo lh  
the i r  domains .  (This  is poss ible  s ince /5  II-~f~ Is', so tha t  we can first find r ~ r ° and  
~<~r" an d  an  ~ wi th  r l I -J  ~ rl = h, and  f l l - , f  I rl = if, where  h a n d / 7  differ at some  
ordinal .  T h e n  let  (r~. h~) be  any pai r  such tha t  r~ ~< r t and  r~ lFJ  t rl = h~. Since at 
least  one  of  h o r / ~  differs f rom h~,. we can take  (r~, h~].) to  be  at  least  one  of (r, h )  
and  ft./T).) 

W e  can now fo rmu la t e  p,~.j to  be  an a m a l g a m a t i o n  of p~, r~, and  r~., wFose 
def ini t ion insures  p ~  ~<F...,~P.. as follows: 

(a) d o m a i n ( p . ,  t) = domain(r~,) U domain(r~) .  
(b) po. ~(0) = (p.. (0) - p,~ (0),<.,~ - p~ (O),~L.,~) t_J r~(O) O r~,(O). 
(c) I f /3  > 0 and/3  ~ F., then p,~. ~(/3) is a term such that for  both i = 0 and i = l .  

we have:  

r',, I /3 I~-t~ p.,, ,(/3) = (p, , ( /3)-  p,. (/3),.;,(~,) U r~(/3). 

and for  any c<~p . . i  I /3  incompat ib!e w i th  both r~ ~/3 and r~ I ~9, 

c IF~ p,,. d/3) = p~ (/3). 

(Not ice that p.+~(/3) is wel l  (enough) def ined, since tr~(O)5~o-~.(()) impl ies that 
r~,~ [ /3 and r~ I /3  are incompat ib le. )  

(d) If /3d F,,, P, . .d/3)  is a t e rm such that  for  bo th  i = 0  and  i =  l, we have 

r:, r /31F, ,p .~, ( /3)= {r~(/3) w h e n e v e r  /3 ~ d o m a i n ( r : ) .  

o the rwise ;  

and  for  any c ~  p . ,  ~ r (3 incompa t ib le  wi th  bo th  r~ I /3 and  r .  t ['/3, 

~p,,(/3) if / 3 E d o m a i n ( p . ) ,  

o therwise .  

This  comple t e s  the  induc t ive  def ini t ion.  Let  q = A~<~ p.. ~ Pc. and  g = I. I..<~ g., so 
tha t  g : d o m a i n ( q )  ~ K. Since cf(p) > K, t he re  mus t  be  some  fi < t9 larger  than the  
d o m a i n s  of all the  ~ "  h .  s appea r ing  in the  cons t ruc t ion .  Let  t ~< q so that  for  some 
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tl c V, we have t IFtf [ fi = h. In order to derive the ultimate contradiction, we 
continue to follow the pattern of the proof of Theorem 2.2: 

Let ("t~ [ a < K) and {°s~ [ or,/3 < K} be the result of carrying out the construction 
of Sublemma 1 of Theorem 2.2 for t ~ q, and let (It,, 1o~ < K) and {Is~ [ a,/3 < K} 

J '~ which differs be the result of carrying out another such construction with some so 
from s~ at some ordinal. (Recall that we specified 0~ Fu.) For both i = 0  and 
i =  1, set ~s ~ = U . . . .  ~s~ for /3  ~ domain(q), and then set 

X={(0 ,  g(/3), 8) 1/3 ~domain(q) and °s~(8)= 1} 

U{(I, g(/3), 8) [ /3~domain(q) and ~s"(~)= 1}, 

By ' ~ ,  there is an a such that X A (2 x a x a)  = S,,. Recall that °s'41 differs from ~ '" SO* 
SO that o i o',,(0) :/: o-,,(0). Thus, since we can also require a to be in certain relevant 
closed unbounded sets as in Theorem 2.2, we can suppose that all of the 
assumptions for the non-trivial construction of p,,+~ were satisfied. Hence, for 

i _  ~ - h , ) .  But both i = 0  and i= 1, we have ~t,,<~p,~l ] t r , -  r , ,  where r~lF~3rl( / [' ~ -  
then h",m h and h~,m h, contradicting the fact that h~,~ and h), differ at some 
ordinal. This completes the proof of the theorem. 

The following consistency result now follows from Corollary 3.4 and Theorem 
4.1 exactly as [2, Lemma 6.4] is established. Familiarity is assumed with the 
rather well-known concepts and terms involved, as well as their significance in the 
context of the theory of large cardinals (see [6] or [7]). In brief, a a-Aronszajt~ tree 

is a tree of height A. all of whose levels have cardinality <k,  which has no 
branches of length )~. A A~-Aronszajn • tree is special if there is an order 
preserving injection of it into the trec 

( U .  {/[]':¢x---~A is injective}, ~ ) .  

Theorem 4.2. (ill Assume <~, and that A is a weakly compact cardinal such thai 
A >K. The~z II-:,A = ~<*" a~zd there are Ho k-Aronsza]n trees. 

(ii) Assume <~, and that h is a Mahlo cardinal such that A > K. Then IkxA = K -" 
and there are no special A-Aronszajn trees. 

This result shows that perfect-set forcing provides an alternative method of 
establishing many cases of some consistency results of Mitchell and Silver (sec 
[9]). Admittedly, their work is technically more general, in that their method also 
works in a case not covered here: the consistency of K being a regular limit 
cardinal and there being no K~-Aronszajn trees. 

5. Side-by-side forcing 

Although the cardinal collapsing result of Section 3 was used to advantage in 
Theorem 4.2, it is an unfortunate feature of the Pt's if we want to render 2 ~ large 
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by adding many subsets of K through the iteration of P. In this section, side-by- 
side or  product forcing, with ~<K size support, of ground model copies of P is 
briefly considered, forcing which it turns out will preserve all cardinals. 

Definition 5.1. For s~>l,  O~ is the collection of functions p such that 
domain(p) c_ ~ with Idomain(p)l ~< K, and p(/3) ~ P for every /3 E domain(p). Order 
O~ by: p ~< q if/" domain(p) _~ domain(q) and for every/3 ~ domain(q), p(/3) ~< q(/3). 

Just as for Pc, one can define A,,<a p,~ and P~<r,,q for Q~, and show that: (a) O~ 
is a <K-closed notion of forcing, and (b) the Generalized Fusion Lemma 1.9 
works for O~. Of course, the difference between P~ and Q~ is that for p ~ O~, p(/3) 
is a definite member of P as in the ground model, not just a term for a member of 
P as defined in some partial generic extension. Hence, the following result holds 
via an easier proof that avoids the complications introduced by the necessity of 
forcing more and more definite members of Seq into conditions. 

Theorem 5.2. Theorem 2.2 holds with Qe replacing P~. Hence, assuming ~ ,  
forcing with Q~ for any ~ >I 1 preserves every cardinal ~K*. 

Pt and OE now part ways. If 2 ~= K*. then P obviously has the ~c++-chain 
condition since IPI = K ÷. The following is a direct consequence of this and a 
standard fact about product forcing (see e.g. [6, p. 190]). 

Theorem 5.3. IJ 2 ~= K*, then O~ has the K ""-chain condition [or every ~>t 1. 
Hence, if also ©~ holds, then forcing with O~ for any ~ >~ 1 preserves all cardinals. 

We shall have the opportunity to use O~ to render 2 ~ large in the next section. 

6. The inaccessible case 

When K is (strongly) inaccessible, , ~  is unnecessary in deriving the salient 
pr~perties of the iterated forcing, and what is more, distinctly new results are 
possible, in particular, a consistency result about the closed unbounded filter can 
be established which answer~ a question raised by Baumgartner and Taylor. This 
section is devoted to such ramifications afforded by the inaccessibility of ~. 

Our first task is to attend to the analogue for Theorem 2.2, and typically a more 
straightforward argument is available which also yields a stronger conclusion. (It is 
interesting; to note that thi:~ a;gument also works for the co case to provide an 
alternative proof for [2, 2.3(i~].) 

Theorem 6.1. Assume that ~ is inaccessible and that p ~ Pc with p L~-~-; ~ V. S~lppose 
also that F c domain(p) with IF[ < K, and that 3' < K. Then there is a q <~-~ p a~d an 
x ~  V with lxl<K such that qll-~r~x. (The new feature here is [xl<K.) 
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Proof. Let (tr~ l a < rl) enumera te  the collection of all funclions t r : F  ~ '  +~2. By 
the inaccessibility of K, we can assume that  rl < ~. To produce q, we shall construct 
by induction a decreasing sequence of conditions (p,~ [ a < r l )  such that  a < &  
implies P~r: .vP, , ,  and also some sets x, ~ V for some successor ordinals a < r l  
along the way. 

If ~5 < 71 is a limit, set p~ =/~,,<~ p,~. For  the successor step with p,~ given, set 
p , ~  = p,, if there is no r ~ p , ,  such that  r = r l ,r~. Otherwise,  for such an r, produce 
by hypothesis an r,, <~ r and an x,, e V so that r,, tkEr = X,,, We can now formulate 
p, ,  ~ to be an amalgamation of p,, and r, exactly as in the corresponding 
construction of Theorem 2.2, to insure that p,,~,~<~:.vp,,. This completes  the 

inductive definition. 
Let q = A , ~  p,,, and x =Ix,, [ x,, is defined}. Then q<~F.vP, and the proof will be 

complete once we establish that:  q II-~r ~ x. So, suppose that  t ~< q. Surely there is a 
i-~< t so that  for some a < rl, we have i '=  t'[ tr,,. The condition for the non-trivial 
construction of p,,+~ was thus satisfied, and so I'~<q [ tr,~ ~< p,,~ ~ [ tr,~ --- r,,, and hence 
tlk¢~ = x~. The proof is complete. 

The following now follows from Theorem 6.1 exactly as Theorem 2.3 follows 
from Theorem 2.2: 

Theorem 6.2. A s s u m e  that ~¢ is inaccessible and  that  p ~ Pr, with p lk t r : K -~  V. 
Then there is a q<~p and  a sequence (x,~ ! a < ~ : }  o f  <K size sets in V such that  
qlkeVa(~-(a)~ x,~). Hence,  forcing with PE preserves K ~ as a cardinal.  

Theorem 6.2 has the consequence heralded at the end of Section I that if K is 
inaccessible and G is P-generic over V, then every f~:~¢ I-1V[G] is eventually 
dominated by a g ~ 'K fq V. 

With Theorems 6.1 and 6.2 in hand,  one can follow the pat tern  of previous 
sections, often using arguments more closely modelled on those of [2], to check 
that all of the results of those sections hold with the hypothesis , ~  replaced by 
the inaccessibility of K. However,  there seems little need to dwell on this, since (>, 
is such a mild hypothesis to assume. One new aspect which does deserve mention 
is that it can be shown (by roughly following [2, Section 5] for the to case) that if K 
is inaccessible and 2 ~ = K',  then forcing with !~ . . .  ~ collapses ~¢' ' ; as ment ioned 
in Section 3, I do not know whether  this sharp result holds with (>~ replacing the 
inaccessibility of K, 

Let us now turn to some new considerations involving the closed unbounded  
fiher afforded by the inaccessibility of K. The following result shows that the 
closed unbounded filter in the generic extension is generated by the closed 
unbounded filter in V. 

Theorem 6.3. A s s u m e  that K is inaccessible and  that p ~ i~ with p Ik~ C c_ ~: is closed 
unbounded.  Then  there is a q <<- p and  a D ~_ V which is closed unbounded  such that  
q lkeDc_ C. 
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l~roof. We might as well assume that ptt-er:K---, K enumerates C in increasing 
order. Then use Theorem 6.2 to find a q<~p and a sequence (x, j a < K )  of <K 
size sets of ordinals in V, such that q!l-eVa(~',,~xo). Let D be the set of limit 
ordinals /3 <K such that whenever a </3, then x,~ c_/3. Then D is closed un- 
bounded, and it is not difficult to see that q I~-e D _c C. For if /3 c D, then 

qlb~r(/3)= U T ( a ) ~ < U U  x,~<~/3<~r(/3), 

i.e. qll-er(/3) =/3 ~ C. 

1 state without proof that a more involved argument establishes that if K is 
inaccessible and ~ holds (see e.g. [4] for a definition), then a ©~* sequence in V 
is also a ~ *  sequence in any generic extension via P~ 

Typically. when K is not inaccessible, the conclusion to Theorem 6.3 no longer 
holds. To  see this, note that for uncountable cardinals K, the question whether 
every closed unbounded subset of K contains a closed unbounded subset from the 
ground model is equivalent to the question whether every f :  K--> K is dominated 
by a function from the ground model. The failure of the latter was demonstrated 
after Theorem 1.5 for ~ not inaccessible. 

Let us recall that an ideal I ~  P(K) is k-saturaled if the Boolean algebra P(r) / l  
has the A-chain condition, i.e. whenever {A, [ct <p .}~  P ( K ) - I  are such that 
ct~/3 implies A,, tqA~ ~ I, then /x < k .  Also, an ideal I~_ P(K) is A-generated if 
there is an X ~ I with ~XI = A such that I is the smallest ideal extending X. Finally, 
NSx denotes the non-stationary ideal over A, the dual to the closed unbounded 
filter. Theorem 6.3 leads to the following consistency results: 

Theorem 6.4. Con(ZFC and K is inaccessible) implies Con(ZFC and K is inacces- 
sible and 2 ~ is large and NS~ is K'-generated but not 2"-saturated). 

Proof. By either relativizing to L or performing a preliminary generic extension, 
we can assume that K is inaccessible, 2 K = K +, and ~ holds in V. Then force with 
the side-by-side 0~. for ~ as large as desired, it is easy to check that Theorems 
6. i -6.3 hold with O~ replacing P~, and so we have in the generic extension that: 
NS, is K ~-generated and 2 ~ ~>~. Finally, it is well-known that a <K-closed notion 
of forcing preserves <~K (see [4]), and that ©K implies that NS~ is not 2 K- 
saturated. (For this last assertion, let (S, ] c~ < K) be a ~ sequence and for each 
Xc_K, set Tx = { a l X N a = S , , } .  Then {TxIXcK}c_P(K) -NS~ ,  yet X C Y i m -  
plies [Tx NTvI<K.)  

The following answers Question 7.2 of Baumgartner and Taylor [3], relative to 
the consistency strength of the existence of an inaccessible cardinal. 

Theorem 6.5. Con(ZFC and there is an inaccessible) implies Con(ZFC and 2 ̀0' is 
large and NS,,,, is to2-generated but not 2",-saturated). 
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Proof. Simply perform the standard L6vy collapse of K to tot on the model of 
Theorem 6.4. By a standard argument, the K-chain condition of the collapse 
insures that any closed unbounded subset of ~- in this furthel generic extension 
contains a closed unbounded subset in the given model, and so in particular 
stationary sets in the given model are also stationary in the further extension. 

A d d e d  it1 proof: T. Jech (in: On the number of generators of an ideal, to appear) 
has established that the conclusion of Theorem 6,5 follows from just Con(ZF). 
His model is very different, since he tirst insures that 2", is large and NS,,, is not 
2",-saturated, and then generically adds to2 closed unbounded sets which generate 
NS,., in the extension. The model of Theorem 6.5 has the distinction of having the 
closed unbounded sets of the ground model still generating NS,., in the extension. 
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