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MORASS-LEVEL COMBINATORIAL PRINCIPLES

A. Kanamori
Baruch College,C.U.N.Y.
New York, N.Y. 10012

This paper is devoted to an investigation of some combinatorial principles in
set theory of about the strength of a morass. As with well-known combinatorial
propositions 1ike 0 which have wide application, these principles are useful and
not difficult to state. However, that they hold in L seems to be a consequence
only of a deep structural -analysis of the sort afforded by morasses.

In §1 the principles and their applications are described, the historical con-
text.established, and acknowledgements made. Then 52 and §3 deal respectively with
the consistency question for a strong principle available at successor cardinals,
and the general case. The main theme is a forcing technique, and in &3 a new kind
of density argument is presented.

The set theoretical notation is standard; for example x1¥ denotes the col-
Tection of subsetg of x of cardinality «. Concerning the forcing formalism,
p<q will mean that p gives more information than q. Finally, let me quickly

review the relevant cases of the polarized partition symbol of Erdds, Hajnal, and

=

means that whenever F: Jxe + vy, there are X [A]u and Y e [K]v such that

()L

means that whenever F: kxk =+ vy, there are X ¢ [1]p and Y e [x]” such that

Rado [EHR].

[F*(XxY)| =1. Also,

F'(XxY) # v. To denote the negation of these propositions, - is replaced by +#.
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Besides [EHR], see the secondary source Williams [W], Chapter 4, for further infor-

mation.

§1. THE COMBINATORIAL PRINCIPLES

Let me formulate forthwith the main versions of the combinatorial principles

to be investigated. A(k,}) will denote the following proposition:

There is an F< "¢ with |F| > A such that:

VselF1'Voe’c(| {8 < «| wfes(F(g) # 6(F))}] < «).

Roughly, there are ) functions from « into « such that: if quesses are made
at possible values for any « many of them, then for sufficiently large £ <«
at least one guess is rendered correct at £. When « is a successor carcinal,
it will be natural to consider a more stringent form. &+(K,l} will denote the

following proposition, when « 1is a successor cardinal, with k~ its predecessor:

There is an Fc "¢ with [F| > A such that:

Yse[F1< voeSk([{€ < x| ¥fes(F(E) # 6(F))}] < x).

Thus, a+(x,l} is a stronger version of A(x,%) where Y¥se[F] has been replaced
by Vse[F}K~. General, many-cardinal versions of these propositions could have
been written down initially and Ao and At formulated as special cases, but there
is no need to obfuscate the situation with many parameters; in any case, A and

o' are the strongest versions possible, and natural weakenings in a couple of
directions will be explicitly discussed.

It is clear that the larger the A gets, the stronger these propositions
become. The main case of interest for consistency results involving L will be
A= m+, but we shall see that X can be made arbitrarily large by forcing. Turn-
ing to a concrete case, it is already a consequence of the Continuum Hypothesis
that 8%(u;.m,) holds (see 52). Prikry[P] first formulated the stronger 4" (w;.wp)
and established its consistency with ZF + GCH by forcing. 1 rediscovered his
proof in the course of answering a question of Szymafiski (see below), and it is
presented in §2. Prikry's work was focused on a question of Erdds, Hajnal, and
Rado [EHR] about polarized partition relations; the following easy proposition

establishes the connection:
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A ru
PROPOSITION 1.1: ( ) —4> [ } holds iff there is
K W

an Fc 'y with [F| =2 such that: Vse[Fl%ney (|{& < «| ¥fes(F(E) # n)}| < v.

prRoOF: Let {fa| o < A} enumerate F, and set G{o,E) = fufg}. Then G is a
counterexample to the partition relation.

Hence, note that

) K
Ak, 2) implies ( )—,@{ ] and
K K-K

+ A o
& (k,n) implies ( )—fo [ ] ,
K ¥ e

as the negative polarized partition relations are equivalent to the weak versions
of A and &+ where the ¢ in the definitions range over just the constant
functions. Thus for example, the aforementioned result with CH shows that under

this hypothesis, we have
1]
1 91

The Erdds-Hajnal-Rado question was whether the wy in the top left can be raised

|

to o > and Prikry's result shows just that. This was the first of several
examples of the phenomencn of consistency results, rather than outright demonstra-
tions, in the partition calculus. Jensen soon established that Prikry's negative
partition relation follows from V = L by showing in fact that n+(w1,m2) does.

In the other direction, Laver (unpublished) has established the relative

@)=G)

by forcing over a ground model satisfying ZFC and a strong large cardinal

consistency of

Ug

hypothesis, the existence of a huge cardinal. He achieved this result by first

forging an ideal over wy with a particularly strong saturation property, improving

upon some work of Kunen[Kul. Working instead from ZF plus very strong determi-
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nacy hypotheses, Woodin (unpublished) produced an ideal over wy with an even

stronger property, that of having an mi-dense subset.

These are the only known positive consistency results, but both start with assump-
tions which are considerably more problematic than say the existence of a measurable
cardinal.

In general, the proposition

< K
(*) ( ) -+ ( ) for every vy >
K K

iy

seems to hold very rarely, even when k is not a successor cardinal. The earliest
result along these lines was due to ErdBs and Rado [ER] (Theorem 48), who estab-
lished that (*) 1is true for « = w. Hajnal [H2] then established that (*) is
true for « a measurable cardinal; see also Chudnovsky[C] and Kanamori([Ka] for
some refinements. Chudnovsky[C], p.295, stated without proof that (*) is true
for « a weakly compact cardinal. (Wolfsdorf[Wo] and Shelah have since provided
proofs.) Moreover, Shelah showed that this is about as far as one can go, by
developing a notion of forcing which adds a counterexample to (*) but preserves,
say, the Mahloness of k.

What is the situation in L? This question as well as more general motives
ultimately led Shelah and Stanley [SS1][SS2] to provide a new characterization of
morasses in terms of Martin's Axiom-type principles. (The work of Velleman([V] is
closely intertwined.) In particular, this showed that Shelah's forcing can be
transformed into a construction in L, to establish: If V =L, then x is weakly
compact iff (*) holds for « and « {s regular and uncountable.

Unaware of this work, I came upon the key feature of Shelah's notion of forcing
in a different formalism. In §3 my consistency result about a strong form of
4(k,)) which incorporates a strong O'type pfuperty is presented, which subsumes
Shelah's more ad hoc construction and makes transparent the natural progression
from the a+(x,l) result first discovered by Prikry.

To formulate natural weakenings of A and 2% in another direction, a third
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cardinal can be introduced which delimits the range of the functions. Let

Alu.k,2) denote the following proposition:

There is an F g_Kp with [F| > A such that:

Vse[F1'Voeu( |18 < «| Vfes(f(E) # ¢(F))}] < «).

Thus, &{x,x) s Alk,k,2); define a+{u,x,h) analogously. As expected, there

are some implications:

PROPOSITION 1.2:

(a) Suppose that either « < A, or k=2 s regular. If 1 <w<u<k,
and 4{u.k,n)} holds, then so does A{v,k,})

(b) Suppose that either k™ < A, or k = is regular. If 1 <wv <y <k,
and a*(u,K,m) holds, then so does ﬁ+(U,K,l).
proor: 1 shall establish (a); (b) is quite analogous. Suppose that
{fa|a < A} E‘Ku satisfies A(p,c.h), where it is understood that the fm's are
to be taken to be mutually distinct. Let k: p + v be surjective. Then it'is
easy to see that F = {k-fa|a <2} would satisfy a(v,k,x), if only |[F] i A
That is, we must make sure that k has not identified too many of the fm's. If
we assume to the contrary that |F| < &, then by the hypotheses on the relation-
ship of « to A, there must be an s & [A]K such that o,8 € s implies
k-fOE = k-fB. Since v > 1 and k is surjective, {& '<«| Vuss{k-fa(il # 0} and
{g < «| yoes(k-f (g) # 1)} both have cardinality < . Thus, there is a £ <«
such that for some o e s, k-fu{E) = 0 and also, for some B € S, k-fB(E) =T.
This is a contradiction, and hence |[F| > i.

I do not know whether converses exist, e.g. does a(Z,K,K+) imply  Alk,c)?
The apparent independence of these three cardinal versions make them more distinc-

tive, and they are directly applicable.

Balcar, Simon, and Vojtd$ ask ([BSV], Problem 20b) whether the following is
consistent: whenever k 1is regular and uncountable and U is a uniform ultra-.

filter over k, then there are K+ sets in U such that the intersection of any
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infinitely many of then has cardinality < «. Probably, this is tfue in L, and
the proof will depend heavily on the structure of ultrafilters. But at least, one
can affirm the case « = g (by results in 52) from a combinatorial propesition
about sets using the following:
PROPOSITION 1.3: Suppose A(2,k,2) (respectively, a+(2,r,l)). Then whenever U
is a uniform ultrafilter over «, there are A sets in U such that the inter-
section of any « (respectively, « ) of them has cardinality < k.
PROOF: Immediate.

My initial interest in this whole area of research was kindled by another
problem. In developing some Baire Category-type theorems for U(ml}’ the space of
uniform ultrafilters over wys Szymarski[Sz] formulated the following concept:

For any infinite cardinal A, a matrix {A;[ n<uw,a<il isa A-matrix iff

(i) if m<n and o <2, then AEEAE,
(i1) U{ASI n<wl=w foreach o<, and
(111) for each infinite sc A and ¢ ¢ Su,

III{A¢§G)| o e st <.

A basic clopen set for U(NT) is a set of form {u ¢ U{m1)|A £ u} for some
ASw; and a Gy closed set is a countable intersection of basic clopen sets.
Szymariski established the following equivalence: A A-matrix exists iff there
exists a family of A G& closed and nowhere dense subsets of U(wl) such that
the union of any infinite subfamily is dense in U(m1). Typically, a topological
property has been reduced to its set theoretical essence.
At the end of his paper, Szymaﬁski asked whether the existence of A-matrices
for A >w is consisfénf Qith ZFC. It was in response to this question that I
first formulated ﬂ+(ﬂ,l), and rediscovered Prikry's consistency proof (see 32).
The connection to Szymafiski's matrices is clear:
PROPOSITION 1.4: If a+(w,mT,A) holds, then there is a A-matrix.
M If {f,| a<i} < “lu satisfies e.*(m,w] WA}, just set A; = (] £,(8) < nk.
I do not know whether the converse holds, and actually, there are some nice

equivalences other than the topological one, just concerning matrices: The follow-
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ing result is due to Baumgartner and included with his permission; for f,g e “u,
write f < g iff {n]| g(n) < f(n)} 1is finite. I
THEOREM 1.5: The following are equivalent: {

(a) An wy-matrix exists.

(b) An w-matrix exists.

(c) There is a subset of “w with cardinality wy without an upper bound
in “w under <. ?
ProoF: (&) + (b) is immediate; for (b) + (c), suppose that {A?| n,i e wl is an

n+

w-matrix, and define f_ for o <w, by: f (i) =n iff aechA’;

T_an 1f
[ 1

f ¢ “w were an upper bound under < for all the fa's, then there would be a

fixed n so that 1 >n dimplies fa(i) < f(i) for uncountably many a's. But

this is a contradiction, since {a| fu[i) < f(i) for every i > n} =

ﬂ{Af(g]I i > n} is countable by hypothesis. Thus, {fal a < w} is as desired.
For {c) + (a), suppose that {gE] £ < wq} has no upper bound in “w under <. #

By making adjustments if necessary, we can assume that the gg's are strictly in-.

creasing and that n < £ implies s gg. For each £ < wq, Tet gt E+uw be

injective, and define hgz E-+w by: hE(u) = max{ggtn)[ n< ﬂg(&)}. Set '

AE ={g| £<a or h(a) <n}. To show that (ATl n<w 0w} isan w- i
matrix, suppose that s e [w-JJm and ¢ & 5. Then D{Affa)la E St =
{g]hg(u) < ¢(o) for every o e s}, and call this set T. Let < uit iew>

enumerate s, and define & e “w by: &(n) = max{¢{ai)1 i < n+1}. Notice that

if £eT with £ >Us, then for every n, we have
QE(n) < max{hg(uo),...,hg(an+1)} < §(n). Thus, if T were uncountable, then given
any n < w; there would bea £eT with n < £ and so 9, <9 < $, contradict-
ing the hypothesis that the gg's have no upper bound. Hence, T {is countable,
and {Ag| n<w, o <wl isan w-matrix.

In view of this result, Baumgartner asked the following guestion: If there :i
is an w-matrix, is there a 2“-matrix? An independence result may be hard to
achieve, since the standard ways of adding reals alsc seem to add a 2“-matrix.

With this, the survey of the variations of &(x,%) is at an end; in the next

1

|

|

1

i

|

sections, consistency results are discussed.

!
|
|
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§2. CONSISTENCY OF ﬂ+(x,l)

; This section discusses the question of consistency for a+(m,h), with first

FERiE R

a direct construction, then a forcing argument, and finally the situation in L.
The following enumeration argument is a natural one in the present context, but it
has an antecedent already in Braun and Sierpinski[BS], Proposition (Q).
THEOREM 2.1: If « is a successor cardinal and 25 =, then ﬁ+(x,x)f In
particular, if the Continuum Hypothesis holds, then 6+(w],m]).

zrooF: Using =k, et <<55,¢6>[ § <« > be an enumeration of all pairs

<s,6> such that s e (<] and ¢ ¢ k. To build a collection {fa| a<«la “e

ZSE i) B, R el AV -

satisfying ﬁ+(x,m), given a £ <k, a value for fu{E) will be determined for

f f every o < x. This will be done by a diagonél ccﬁstruction*so that for every

?‘: 8 < £, there is an a e s; such that fu(g) = ¢5{a}. The proof would then be

HI complete, since for each & < «, we would have (] yaes(f () # ¢5(a)}}<§ 5+1.
_1% So, fix £ <k, and Tet < EY' v < gk~ > be an enumeration of £. Proceed

:. by induction on v < k=, at each step determining for some o a value for

.?. fa(g}, as follows: At the yth step, since sEY has cardinality x-, there must
é ' be some o & sEY such that f,(£) has not yet been defined; set f,(&) = ¢; (o).
Finally, for any o such that fu(g}' had been left undetermined by this construc-
tion, set fu(g) = 0.

That the converse is not true will be evident from the comments after the next
theorem., To meet more requirements than can be handled by a direct enumeration,
the foregoing argument can be converted into a forcing scheme. The next theorem
is essentially due to Prikry[P]; I rediscovered his argument in the notationally
simpler form now presented.

THEOREM 2.2: If the ground model V satisfies that k s a successor cardinal
and 27 =k, then for any cardinal X >« in V, there is a <«-closed,
«-c.c. forcing extension in which 6+{K,1]| holds.

ProoF: Define a notion of forcing as follows: Pf is to be the collection of
pairs <F,S> where

(a) F is a function: axy -~k for some vy <k and some a ¢ [A]K-, and

(b) S is a subset of {<s,t>| S ¢ [A]K- and & ¢ S¢} of cardinality .




Morass-Level Combinatorial Principles 347

For <F,Ss, <6,T> ¢ P;, define <F,S» < <G,T> iff
(i) F2 6 and ST, and

(i1) if F: axy + « and G: bx§ >~ x say, then for every
Eevy-6 and <s5,¢> € T, there is an o e s such that o ca and Flo,£) = ¢(a).

Intuitively, a condition consists of a «~ size approximation to a ﬂ+(K,R)
family, and k- many requirements <s,4> which must thence be met by any extension
of the condition.

This notion of forcing is <x-closed, since if n <k and « < B <n implies
<FB,SB> < <Fa,5u>, then there is a common extension, namely <a%nFa’u%nsa> £ Pi.
Also, for any <s.¢> such that s e [M and ¢ e “k,

D<s,¢> = {<F,5> ¢ P;[ <s,b> £ S} is obviously dense. Finally, for any vy <«

and ae [AIF . Dca,y> = {<F,S> ¢ P§| domain(F) o axy} is also dense. (To see
this, note that given any <G.T> ¢ Pi, say with G: bxé = «, the argument of the
last paragraph of the proof of Theorem 2.1 shows that there is an <F,T> < <G,T>
such that F: cx(&+1) + « for some c¢= b. Thus, one step extensions are always
possible, and the rest follows from <k-closure.)

1t now F0110w§ that if G 1is any generic filter over V, then one can define
{fgi a<ate e din VIGT by: fgtg} =g iff 3<F,5>eB6(F(e,£) = B). To see that
this collection satisfies &'(k,A), let te VIGl with te [A5, and ¢ € ‘.
By <k-closure, we can assume that <t,¢> e V. But then, by genericity there is
some <F,5> ¢ G such that <t,¢> e S, say with F: axy » k. It now follows from
the nature of the forcing that: {£] Vaet(fg(i} #ola))l < y.

Finally, & A-system argument using 2" =k shows that Pi has the « -c:c..
(This sort of argument is standard; see Jech[J1], p.248 for an example. Inciden-
tally, this is the only place where 2° =« is used.)

Pi has several notable properties. First of all, it is actually <k-complete,
i.e. if n <k, then any decreasing n sequence in P§ has a greatest lower

_bound, namely the conditicn formed by taking unions of both coordinates. Also,
when X < 2%, it is actually possible to show that in addition to having the
K+-C.C., N

A
sists of pairwise compatible elements. Finally, instead of P; one could just as

is x-linked, i.e. is the union of « many subsets each of which con-
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i
A

if F: axy > « say, then for each <s,¢> e S we have sC a. 5§ has the basic

well have used the dense suborder ﬁi consisting of those <F,S> = PT such that:
properties of PY, but in addition is well-met, i.e. any two compatible conditions
have a greatest Tower bound. Thus, taking the concrete case « = Wy Pf1 meets
the requirements for Baumgartner's [B] generalization of Martin's Axiom.. Hence,
&+(w1,k) holds in any model of CH & »* < sz & Baumgartner's Axiom, and such
models exist with ZmI arbitrarily large.

Forcing with Pi is demonstrably different from adding hany Cohen subsets of
k with «  size approximations, since conditions are bound together by the lat-
eral constraints <s,$>. However, there is complete freedom in choosing the values
of any particular fS on arbitrarily large «  size intervals. For example, for
any a<Xx and E< k™, {<F,S> ¢ P§| 3p<xye<c (Fo,p+g) 1is defined and = 0 iff
E e E)} 1is a dense set of conditions. Thus, whether 2“- = g was satisfied in
the ground model or not, fg already codes an enumeration T of the power set of
" in type k given by: T(8) = {5 e «”| fg(3+g) = 0}. In fact, it can be shown
that fg codes a QK sequence.

If 2 =« is not to be retained, one can force A"(k,A) to hold with <k~
size approximations when «~ 1is regular. Taking the concrete case k = wys
several people including Baumgartner, Cichon, and A, Miller, noticed that if
A > wy Cohen reals are added with finite conditions, then A+(w1,k) holds. The
point here is that the X reals can be recast as functions fa: Wy > Wy for
@ < A Now if a finite condition plse [A]™ & ¢ ¢ §m1, then

ﬂF-B‘xsﬁ{%a{E) = $(a)) for any £ < wy not yet influenced by p, since § is
forced to be infinite.

Of course, adding A Cohen reals with finite conditions preserves all cardi-
nals and renders 2% > X. Hajnal and Juhasz noticed that one can get a+(w],w2)
to hold together with the GCH by just adding wy Cohen reals; the idea is to use
the A+{m1,w1] example as described apove, and stretch it to a A+(w1,w2) example
by using wy almost disjoint subsets of wy. Thus, this is an alternate way to
get Prikry's consistency result (see Theorem 2.2.) of ﬂ+(w1,m2) together with the
GCH.
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Finally, let me turn to the situation in the constructible universe. The first
result, as one might have guessed, was due to Jensen, who upon seeing Prikry's
result established that his principle A+(w],m2} holds in L by a direct morass-
type argument. More recently, Shelah and Stanley[SS1] and Velleman[V] have made the
formidable apparatus of a («,1)-morass (gap-1 morass at k) more tractable by pro-
viding a Martin's Axiom-type characterization. That is, certain partial orders and
collections of dense sets are described, and the existence of a morass is shown to
be equivalent to the proposition that for every such partial order and every such
collection F of dense sets, there is a F-generic filter in the usual sense. In
this way, morasses can be better understood through intuitions developed with ex-
perience in forcing. It is noteworthy that Shelah-Stanley and Velleman came up
with quite distinctive formulations, with Velleman's more compact. On the other
hand, the Shelah-Stanley formulation also led (see [$52]) to a characterization of
(k,1)-morasses "with built-in Q'princip]e“ which exist in L when x 1is not weak-
ly compact, and this will be crucial to the considerations in §3.

With some care, the partial order described.in Theorem 2.2 can be recast to
fit both the Shelah-Stanley and Velleman schemes, and if ZKﬁ = k, there are enough
dense sets. Thus, we have
THEOREM 2.3: If « s a successor cardinal, EK_ =k, and there is a (k,1)-
morass, then ﬂ+(x,x+). In particular, if V =L, then for every successor car-

dinal «,

§3. CONSISTENCY OF Afx,})

This section is .devoted to consistency results which encompass the case « is
inaccessible. We saw in §2 that when there is a greatest cardinal below k, special
enumeration possibilities exist for constructions with <k size approximations
which establish the consistency of a+(K,A} with the GCH. However, if it is no
longer assumed that « is a successor cardinal, then we must be content with

4(k,%) and a more delicate situation. The thematic evolution of the following

- R T
i e
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result from Theorem 2.2 should be obvious. The proof involves a new and rather
elegant kind of density argument discovered independently (and much earlier) by
Shelah in his direct approach to the partition relation consistency problem. The
A(k,))  family provided by the proof has further strong properties, and subsumes
Shelah's more ad hoc construction.

THEOREM 3.1: If the ground model V satisfies «° = ¢, then for any cardinal
A>k in V, there is a « -c.c. forcing extension in which A(«,%) holds.
Further, this forcing adds no new n sequences of ordinals for any n < k; also,
properties Tike inaccessibility or Mahloness of « are preserved.

PROOF: In order to formulate the appropriate generalization of Pi, let us use
the following concept: If S < {<s,t>|s ¢ {A]cK & ¢ e sn}, then

h: U{s| <s,0> € S} + « 15 a consistent map for S iff for every <s,p> £ S, there

are infinitely many elements o e s so that h(a) = ¢{a). MNow define a notion of
forcing as follows: Q§ is to be the collection of pairs <F,S> where
(a) F is a function: axy + ¢ for some v <« and ace [A]°F.
(b) S is a subset of {<s,0>| s ¢ B 6 & S¢} of cardinality less than
¥ possessing a consistent map.
For <F,S>, <G,T> ¢ Qi, define <F,S> < <G,T> iff
(i) F2 6 and S2T.
(ii) if F: axy + k¢ and G: bxd - ¢« say, then for every £ ¢ y-6 and
<s,¢> £ T, there is an e e s such that e a and F(a,E) = ¢(a).
(i11) any consistent map for T .can be extended to a consistent map for S.

It follows from (iii) that this notion of forcing is <k-continuously closed,

i.e. if n<x and a < g <n Jimplies <FS,SB> < <Fa’sa> and <F6,56> =
<sFar odsS,> for 1imit ordinals 6 <n, then there is a common extensicn,

K - - 3
namely <dénFa’ uQnsa> £ Ql' Hence, this notion of forcing does not add new n
sequences of ordinals for any n < «, and for example preserves the Mahloness of
k by standard arguments. Also, for any ae [A](K and v < Kk, D<a,y> b
{<F,5> ¢ Q§| domain(F) o axy} is dense. (To see this, note that given any
<G,T> ¢ Q:. say with G: bx§ - «, a consistent map for T can be employed to

produce a <F,T> < <G,T> such that F: cx(8+1) » ¢ for some c¢ 2 b. Thus, one
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step extensions are always possible, and the rest follows from <k-continuous
closure. )

It now follows that if G is any generic filter over V, then one can define
{f2| a<ate X in VIG] by: fg{il =8 iff 3<F,52eG(F(a,E) = B). The next task
is to verify that this collection of functions satisfies A(x,A). In fact, I shall

establish the following:

(1) Whenever t e NN V[G and e Y N V6], there is an initial
segment s of t of cardinality <k such that

€& < k| Voes(#(E) # v(a))}] < x.

This would more than suffice.
So, suppose <F,S> |- t e I & b e tm. By induction, construct conditions
’ < : :
<Fn,5n>, ordinals Gy sets t, ¢ [A] and functions v, tn -k as follows.
Set <F0,SU> = <F,5>, Given <Fn,Sn> since t 1is forced to have cardinality «,

Koo —— t i
and QA is sufficiently closed, produce & condition <Fn+1’sn+1> < <Fn,5n>, an

1K, and a function ¥,: t, =k such that

ordinal o, @ set tn e [

<Fr1:Sp47” - i.n o, =ty & Pft =y & o et-Uls|<s,0> €S ). By a trivial

extension, we can assume that o e U{s|<s,¢> € S Finally, set <G,T> =

n+1d

4JFn4JS >, B = supa, 5 = Utn, and ¢ = U¢n. There is now a Claim:

<G, TU {<s,¢>}>. is a condition extending <Fn,5n> for every n (but not neces-

sarily extending <G,T> !). Since it would then be the case that <G, TU {<s,p>}>

II- tng=s & @rs = ¢, this would certainly establish (+), since if by density

<G, TU {<s,¢>} > ¢ G, and G: bxd = «, then {£ < k| yaes (fg(E) # ¢(0)) < 6.
To establish the Claim, it is necessary to show that for any n and any con-

sistent map h for <Fn,5n>, h can be extended to & consistent map for

<G, TU {<s,¢p>} >, So, fix such an n and h, and proceed by induction to define

consistent maps hi for Sn+i for every 1 e w as follows: Set h0 = h. Given

'l’S > < <F

. i <F . . -
h1’ S1nce n+i+l” = n+1’sn+1 ?

Tet 9i412 hi be a consistent map

}’

n+i+

for S Remembering that o .. £ u{s|<s,¢> ¢ S } —U{s|<s,¢> e S

n+i+l” n+i n+i+] n+i

define h1+1 by

|
b
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9:41(8) if £fqa .
hi+]{£) - i+l n+1

¢{Gn+i} g = s

Clearly, h‘i+1 > h1. is again a consistent map for Sn+1‘+1 since only one value

was changed. Finally, set R =Uh., so that F is a consistent map for T = .S
E JEw™J

Moreover, for each i e w, we have ﬁ("‘nH) = ¢{an+1.), so that B is actually a

consistent map for T U {<s,¢>}. This establishes the Claim.

A1l that remains is to establish the ;<+-c.c. for Qi. So, suppose that
+ ;
{dFa,Sa# a<kle Qf, where Fo:: K K_' Standard A-system arguments uslng
€ =k (see Jech[J1], p.248, for an exanple) show that there is a We k1%,

a4 y<k, anda z ¢ [ch such that:

(1) aeW implies T ™
(2) a#8eW implies a, n g = z.
(3) o.2eW implies Fofzey = FBFZXY-

Thus, for any a,8 = W, FaU '!-‘B is still a function. To take care of the Su's,
+
first find X e (W and a <« such that o e X implies [Sal =y, For
such o, write S, = {<s§,¢g>] £ <yu}. By a further A-system argument using
+
<« =k, onecan find Y& X1 and a T such that:
(4) a#8¢eY implies U{s|<s,é> ¢ S} Nuls|<s,p> e Sgl = T

(5) wBevy J.mpl:l.es <<s§]’]’1‘,¢gr1'>r E<u>= <<sgn‘r,¢grr>] E<yp >,

For we ¥, write Tu =U{s|<s,> ¢ Sa} -T. By = x, there are at most
€ structures <p,<,A€>€<u where p <k and the Ag's are unary predicates.

el

= 3 * - - - b
Each Mc: ‘Tg"’*'g“Ta’qu when transitized is isomorphic to one of these, so by

+
cardinality considerations there is a 7 e [Y1°  such that:

(6) «,8 =Z implies there is an isomorphism =

(7) ¢§(5) = ¢gfﬂa8(6}} for § = sgﬂTa.

g’ Hﬂ - MB, and

It is now claimed that if q,8 ¢ Z, then <Fau Fs,smu SB> is a condition

extending both <FysS,> and <FgsS5>s thereby completing the proof. It suffices
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mutatis mutandis to show that if h 1is a consistent map for Su, then h can be
extended to a consistent map for SaLiSB. Let s’ Md -+ MB be as in (6) and (7).

Then it is straightforward using (4) and (5) that if F is defined by:

h(g) if £ ecUls|<s,¢) €S}

Ate) = |,
Wy () iF EeT

1 B*
then h 1is a consistent map for SGU SB' This completes the proof of the theorem.
In this consistency proof, it was essential that one actually establishes (+),
a O-1ike proposition which says that any X e [A]¥ has a proper initial segment
which serves as a sufficiently good guess. To make this more precise, one can im-

pose & further constraint on the forcing conditions to read off more information

from the second coordinates. Consider:

(b)' S ds a function with domain a <k size subset of [, where
S(t) = <s,¢> for some sct and ¢ e S, and the range of S possesses a con-

sistent map.

Condition (b)' can be used instead of (b) for better bookkeeping, with provi-
sions (i) and (iii) slightly rewritten to accomodate the fact that S 1is now to
be a function whose range should have the corresponding properties. Jech[J2] first
formulated the notions of closed unbounded and stationary subsets of [A]CK, and

the following natural generalization of 0:

K

(Of) There is a sequence <At[ te [ > with A =t such that for

every Ac A, {t| ANt =AJ is stationary in [\,

(0; was not Jech's notation.) The following is quite straightforward.
PROPOSITION 3.2: If G 1is generic over V for the notion of forcing QE mod-
ified with (b)' replacing (b), then V[G] satisfies OE. Also, VIG] satisfies
the usual OK.

proOF: With (b)’, we can define from G sets A%gg t for every t e [A]F by:

A% =s iff 3<F,5> e 6(t e domain(S) & S(t) = <s,9>).
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The usual-argument for satisfying & via forcing can be incorporated into the den-
sity argum;ent for (+) in the proof of 3.1 to establish: If in V[G], Ac x

with |A| >« and C fs a closed unbounded subset of [A]°, then there is a
<t,<s,d>> e 5 fora <F,5> ¢ G such that teC, and s< t s an initial seg-
ment of A. Thus, <A$[ te % dsa 0; sequence at least for A< A with
|A| > . But then, it is not difficult to see that it actually codes a 0% sequence
for all A< . (For instance, by using a master bijection: X = ix2, first trans-
form <A€| te A into functional form: <f€| te s with fg: ts2

such that for any f: » + 2 we have that {t| f[t = fg} is stationary in [a]¥.
Then convert back to set form again with ﬁ% = {a e t] ft[u} = 1}; by then,

<ﬁ$| t e \I™> s a bona fide 0% sequence.)

An analogous argument establishes that <A21 a < k> codes in similar fashion
a 0»: sequence. . )

Sti1l another twist can be added. Erdds and Hajnal[EH] formulated the follow-
ing: a set X has property B iff there is @ B<UX such that if s e X, then
sNB#¢ and s - B #@. Define a stronger property: a set X has a division
Iff there is a B<UX such that if s e X, both sNB and s -B are infinite.
Consider the further amendment:

(b)" in addition to (b)', {s| 3t,s(S(t) = <s,4>)} s to possess a division;
and add to the definition of the partial order:

(iv) any division of {s| 3t,e(T(t) = <s,4>)} can be extended to one for
{s] 3t,(5(t) = <s,4>)}.

If G 1is generic over V for this further version of the forcing. then the
density argument for () in 3.1 still works, and {s|XF,5>eG3t,0(S(t) = <s,9>))}
is such that: (a) every subset of cardinality lass than « has property B, yet
(b) the whole collection cannot, as any A = [A]° has an initial segment in the
collection. For the first consistency results about property B, see Shelah[Sh].

In all these guises, the key feature of the forcing is the capability of taking
a lower bound (1ike the < G, TU {<s,¢>} > in 3.1) for a sequence of conditions

which is not the natural one (i.e. <G,T>) provided by taking unions of the coor-

dinates. In general, <G, TU{<s,0>} > is not < <G,T>, and so Q‘; is not
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Recall that a partial order P 1is <k-directed closed
reD)

<<-complete as PE was.
iff whenever D< P is directed (i.e. p,g e D implies r < p,g for some

and |D| < x, then D has a lower bound. The following argument shows that Qi

is not generally <k-directed closed:

Hajnal ([H1],Theorem 9) once established that if 2H = p+ and p s regular,
then there is a family F '5_[1,|+]-u with |F| = " consisting of pairwise u-almost
disjoint sets (i.e. s # t ¢ F implies |s N t| < u), such that for every
S [u"-]w*'|+ there is an s ¢ F with s< X. For any set s, let w; be the con-
stant function with domain s and range {i}. Given a family F as above and
assuming that v" < «, consider D = {CD,{<5,¢;>}>| seF & 1e¢{0,1} }. Then
D g_Qi is directed; in fact, any u members of D have a common lower bound.

However, D itself cannot have a lower bound, for suppose f: u+ + 2 were a con-
sistent map for {<s,¢i>| SeF & ie{0,0}}. Either £1(£0}) or £1({1})
has cardinality p+, say the former. By hypothesis, there is an s e F _with
sC f'I{{O}). But this is a contradiction, as there should be infinitely many
ces sothat fla) = 1.
There is one situation where it is crucial that Qi not be <k-directed closed.
fs mentioned in &1, Chudnovsky had stated that if «k 1is weakly compact, then
+
()0
K K 2
1f QK+ for such a k were <k-directed closed, then we can call upon the standard
Si]vei technique of upward Easton extensions (see [J1]836 or [KM]§25) to show that
it is consistent (via a preliminary extension) to have a weakly compact k such
that if one forces with QK+, then « remains weakly compact. However, the
A(K,K+) family added c?eai1y contradicts Shelah's result.
Q;, in having a natural limit operation for procuring lower bounds but also
other possibilities for Tower bounds to the side, is a paradigm case of a canonical

limit partial order, as formulated by Shelah and Stanley[SS1]. It was to handle

such orderings that led Shelah and Stanley[SS2] to extend their characterization of

morasses. They show that a Martin's Axiom-type characterization, with strong pro-

|
|
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perties attributable to the corresponding generic filters, which also accomodates
canonical limit partial orders is equivalent to the existence of (x,1)-morasses
with a "built-in {-principle", when there is a non-reflecting stationary subset

of «, i.e. an S< k which is stationary in « yet S0 a is not stationary

in o for any o < «. They establish that such morasses with built-in {-principle
hold in L, and of course, it is a well-known result of Jensen that in L, k is
not weakly compact iff there is a non-reflecting stationary subset of . That
QK+ does satisfy the Shelah-Stanley formulation is just a matter of checking, and
tﬁere is enough provision in their characterization for the generic object to take

'y %
care of the requirement (+) in 3.1 for all te [x+1 . Thus, we have

THEOREM 3.3: If V =L, then the following are equivalent for regular uncountable

€
(i) « 1is not weakly compact.

(i1) alex).

<\ sk
o X0
K P:z

By previous remarks, the a{m,n+) family here can also be made to satisfy
(+) of 3.1, code a 02+ family, and exhibit the "non-compactness” of property B.
As a side remark, let me mention that Jech(J2] had shown that if V =L, then Gi
holds for every X >« as long as k 1is a successor cardinal. The present result
extends this to OE+ for any uncountable regular « (but note the limitation to
A= K+). -Hnwever, it is not clear that all this morass structure is necessary just
to establish in L that 0E+ holds for every uncountable regular k. Theorem 3.3,
mostly due to Shelah and Stanley, elegantly highlights the close connection that

really exists between forcing and definability.
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