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INTRODUCTION

Silver's Principle WK has been around for quite some time. It fits well
into the remarkable program initiated by Jensen of formulating useful combinator=-
ial principles which hold in the constructible universe, and which moreover can be
appended to any model of set theory by straightforward forcing. Such principles
have found wide application not only in the continuing investigation of set theory
itself, but to problems in more general mathematics which implicitly involve the
transfinite. WK is a useful extraction from the full structure of a morass, not
so deeply embedded in the definability considerations of the constructible hier-
archy, and more akin to OK and I_"JK in comparable combinatorial complexity.

This paper is perhaps the first systematic discussion of WK , and one objective
is to establish WK to a wider audience as an independent and useful principle of
construction, alongside OK and {jK g

Silver initially isolated his principle from a morass in order to effect con-
structions in set-theoretic topology. To backtrack a bit, Prikry had introduced
the method of forcing with side conditions in order to establish the relative con-
sistency of a combinatorial principle which in turn had an application in the par-
tition calculus of Erdds, Hajnal, and Rado. Combinatorialists in Eastern Europe,
inspired by Prikry, used this new approach to solve further problems in set-theor-
etic topology and in the partition calculus. In somewhat ad hoc fashion, many of
these new principles were then shown to follow from the full structure of a mor-
ass, by the morass experts. After the introduction to WK in the first section
of this paper, the second section brings together results—-some known, others not
~-which show how these principles actually form a hierarchy of implications eman-
ating from just the relatively simple proposition _WK . It should be noted that
recent work of Shelah has considerably extended the method of forcing with side
conditions, to establish the relative consistency of propositions for which it is
no longer clear that analogues in the constructible universe exist.

The third section of this paper discusses a form of wK available at limit
cardinals which is endowed with the requisite strength. Its relative consistency

is established through a forecing technique involving a new kind of density
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argument. Then, the recent work of Shelah and Stanley on a Martin's Axiom-type
characterization of morasses, in the particular case of canonical limit partial
orderings at non-weakly compact cardinals, is called upon to establish the rela-
tive consistency in L , and moreover to provide some new characterizations of
weak compactness there. An evident precursor to this section is the author's
paper [Ka2].

The set theoretical notation is standard, and the following short litany
should take care of any variations: The first Greek letters «,B,Y,... denote
ordinals, whereas the middle Greek letters KyArly... are reserved for infinite
cardinals. If x is a set, |x] denotes its cardinality, [x]K denotes the
collection of subsets of x of cardinality « , and if £ is a function, f"x =

¥y

{f(y)| v € x} . Finally, x denotes the set of functions from vy into x .

§l. THE PRINCIPLE

In order to formulate Silver's Principle, it will be helpful to establish
once and for all some conventions regarding trees. If T is a tree, 'I‘OL will

denote the members of T at its oth level; if x ¢ T and o < B8 , then ﬁa(X}

B
is the tree predecessor of x at level o . Let us assume that trees are normal-

ized at limits, i.e. if 6 is a limit ordinal and x # y are both in T(5 , then

there is an o < 8§ such that ﬂa(x) # ﬁa{y} - A «x-Kurepa tree is a tree with

height k+1 such that [TK| >k , yet |Ta| < a for every a < k . (This is
clearly congruous with the usual definition; it will be convenient to identify

cofinal branches with a top level.) As usual, a Kurepa tree is a w,-Kurepa tree.

1
This settled, we can state Silver's Principle WK for «k a successor cardinal

with g its predecessor:

(WK) There is & k-Kurepa tree T and a function W with domain «k such that:
(a) for each o < k , we have W(a) g;[Ta]K_ with |W[a)| E‘K—.
(b) for any s ¢ [TK]K-, there is a vy < « such that whenever y < a < k,
we have ﬂa"s e W(a) .

Like OK F WK can provide constructions in k stages which are universal
in some sense. But whereas OK and its variants anticipate subsets of « and
manage to meet requirements at cofinally many stages, WK takes care of subsets
of < and manages to meet requirements at all sufficiently large stages. Mind
you, OK is an enumeration of potentialities for all arbitrary subsets of « ,
whilst WK is only able to handle all the actual size «k subsets of «". The
two principles, in any case, are guite disparate.

The potency of WK comes from the function W . Suppose that T is a tree
with height «k+1 . Even if T were not necessarily a k-Kurepa tree, as long as

]TK] > « and there is a function W satisfying (a) and (b) above for this T ,
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it is not difficult to see that 25 = ¢ must be satisfied. On the other hand,
merely having a Kurepa tree is consistent with the heqation of the Continuum Hypo-
thesis; such frees exist in L , so just add many reals to L generically whilst
preserving cardinals.

Already, it is convenient to focus on the concrete case « = w1 , even
though the following remarks hold generally. Int&restingly enough, an amplifica-
tion of an old remark of Silver ané Rowbottom about Kurepa trees provides a simple
plausibility argument for W

Suppose that ) 1is a st%ongly inaccessible cardinal. ILet T be the com-—
plete binary tree lJ{a2| @ <A} in V , and let VI[G] be a generic extension
via the usual L€vy collapse of ) to w; - Silver and Rowbottom's comment was
that in V[G] T is a Kurepa tree since its top level has (2A}V > w, members yet
its ath level {a2)v is now countable for o < A . Next, consider G as
<Ga; a < X >, where Ga codes generic bijections of all ordinals < a with w.
Let W(g) be [a21erV[Ga] , which by standard arguments is countable in VI[G]
Then le hildi in VI[G] with these definitions, since if s is a countable
subset of ("2) , then by the \-c.c. of the forcing, there is a vy < A such that
S e V[Ga] for y < a <A . Clearly, "na“s e W(a) for such o , if we take vy
large enough so that nyrs is injective.

This simple argument makes le seem gquite natural. The official relative
consistency result through forcing has more details, but does not need the con-
sistency strength of a strongly inaccessible cardinal. To the usual notion of
forcing for adjoining a Kurepa tree one appends further side conditions which
renders the strengthened W, in the generic extension (see Burgess[Bul] for an
exposition, and 3.1 below). This notion of forcing is countably closed and more-
over has the w,~C.C. if the CH holds, and so preserves all cardinals in this
case. Also, it is worthwhile mentioning that this forcing meets the requirements
for Baumgartner's[Ba] generalization of Martin's Axiom, as is outlined in Tall[T],
and hence le holds in any model of Baumgartner's Axiom, CE , and 2w1 > w0, -

More to the point is that if V = L , then WK holds for every successor
cardinal x . In fact, if there is a (x,l)-morass (a gap-l morass at « ) for
K & successor cardinal with 2K— = g , then wK holds. 1Indeed, Silver had ori-
ginally extracted WK as a useful combinatorial residue from a (k,l)-morass.
That so many of the long-winded combinatorial emanations from morasses actually
follow from WK ; as we shall see, is a testimonial to Silver's insight.

More recently, Shelah and Stanley[SS1] and Velleman[V] have made the formi-
dable apparatus of a (k,l1)-morass more tractable by providing a Martin's Axiom-
type characterization. That is, certain partial orders and collections of dense

sets are described, and the existence of a morass is shown to be equivalent to

the proposition that for every such partial order and every such collection F
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of dense sets, there is an F-generic filter in the usual sense. This provides an
alternate way of seeing that WK holds in L., It ié noteworthy that Shelah-Stan-
ley and Velleman came up with quite distinctive formulations, with Velleman's more
compact. On the other hand, Shelah and Stanley [SS2] have an extension when ¢k is a
regular but not weakly compact cardinal which will be crucial in §3.

It was already observed that W, implies 2 & = K . The consistency
strength of CH plus —le is not difficult to determine. Silver[si] long ago
established that in any generic extension via the Lévy collapse of a strongly
inaccessible cardinal to W, there are no Kurepa trees at all. Conversely, it
is known that if & g;ml ; then inside L[A] there is a (wl,l)-morass. Thus,

a standard argument shows that if the CH holds vet Wml is false, thenL[;§ must
be inaccessible in L : Otherwise, one can find an 2 C w; such that wy = Wy,
mzL[A]= Wyo and (by CH) {wzle; L[A] . Now inside LI[A] , there is an {wl,l)-
morass, So Wml holds. But then le must hold in the universe by absocluteness,
by the conditions on A . Thus, we have the following equiconsistency:

Con (ZFC + There is an inaccessible cardinal) iff Con (ZFC + CH + R [
1
Concerning Jensen's principle [0, . notice that if )\ is an inaccessible
1

non-Mahlo cardinal in L , then any generic extension of L wvia the Lévy collapse

of A to sz is a model of the theory 2FC + CH + O, + -W, , since Jensen
1 1

has shown ([Jenlp.286) that if E]K fails, then K+ must be Mahlo in L. An argu-
ment due to Baumgartner yields 2ZFC + Wml +'—[1”1: Let p be Mahlo and first
adjoin a witness for le with U cofinal branches, i.e. do the usual forcing
(see [Bull) but provide for the labeling of u branches. Then the collapse of u

to w, yields -0 by an argument due to Solovay, and W, is still retained.
1

5|

§2. THE RELATED PRINCIPLES

This section describes how several higher combinatorial principles first
devised in set theoretical praxis, particularly in the partition calculus and in
set-theoretic topology, actually form a hierarchy emanating from WK . It is sig-
nificant that the principles were each formulated by combinatorialists to isolate
salient features of particular constructions, and shown by them to be consistent
by forcing. Then, the specialists in L established how they hold there, using
morasses. The realization that they are all derivable from the relatively simple
WK is a more recent, synthetic phenomenon.

Pondering the existence of special topological spaces of large cardinality,
Hajnal and Juhdsz realized in the early 1970's that concrete constructions readily
follow from certain existential principles concerning matrices of sets. The fol-
lowing proposition is a conglomeration of these principles, and can be appropri=-

ately dubbed the Hajnal-Juhdsz Principle. It is somewhat of a long-winded gener-

alization in the Shelavian manner, but a convenient unification.
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. ; + -
(HJK) There is a collection {fa| og ki “2 so that whenever p <« and

- + L L. 7 4 :
S: K X0 >k 1s injective, there is a vy < k such that: if x ¢ [K--Y]((JJ

x . .
and {e_| T < p}C "2, there is a o0 < k  with ¢ Cf for every
T - T = "s{gsr)

T % P %

In set-theoretic topology, HL and HS are acronymic for heresditarily Lin-
delSf and hereditarily separable, respectively, and an L(S) space is an HL (HS}space
which is not HS(HL). Finally, X is a strong L(S) space iff for every n ¢ w p

X" is a L(S) space. There is quite a literature on the study of these spaces
nowadays, particularly in connection with Martin's Axiom, and a good but older

reference is M.E.Rudin [R]Chapter 5. An initial version of HJ, was considered
by Hajnal and Juh@sz with the restriction to just p =1 . Taking again the con-
crete case gk = ml (otherwise, we would have to frame the discussion in general
terms around g =Lindelof and —separable), they show [HJ1l] that this restricted
principle implies the existence of normal S spaces of large cardinality, the
so-called HFD spaces, and establish its consistency by forcing. Then Devlin [D]
established this restricted principle in L , directly using morasses. As Hajnal
and Juhdsz later realized, the full principle HJK implies the existence of
normal, strong S spaces of large cardinality. Kunen[Ku] has shown that under
MA + -CH , there are no strbng S spaces.

Concerning L spaces, Hajnal and Juhédsz early on [HJ2] formulated the fol-

lowing principle to construct L spaces of large cardinality:

- + -
(HJK) There is a collection {fal a < Kk } c K2 so that whenever o < k and

*t 5 oz ; -
S: K Xp + K 1s injective and ¢: k Xp -+ 2 , we have

18 < x| oo FeoE  (B) # olo, TN <k .

+ A .
(Actually, they had a further condition on {fa[a < k } to insure good separation
properties for the space constructed, but this is the crux of the matter.) That
HJ; follows from HJK is not unexpected; in fact, it follows from the simplified

version of HJ  where |[x| =1 .

Lemma 2.1: HJ -+ HJ .
S K, kT "
F Let T: kX2 <>k be a bijection, and given {fu| @ < kK } as provided

by HJ , set : ; = o
K 1 if fI‘(a,i) (£) = 0 and fr{a’l_l}(ﬁ) = X

g (g) =
@ 0 if there is no such i .

S . - - +
Then {ga[ @ < k } satisfies HJ : Suppose that p < x and s: KXp >k is

- : - - + —
injective and ¢: kxp > 2 . Define s: kXp2 » Kk by: s(0,1) = I'(s(0,T),¢(0,T))
and ;fG,O+T) = I'(s(o,T), 1-¢(0,1)) for every T < p . Then s is also inje&~
tive, so let <y be as in HJK for s . Hence, if y < & < k , taking x = {g}

and ¢ (&) =0 if 1 <p, and =1 if o <1 <p2, there is a o < k¢ such that
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fngpT}(E) = sT{gJ for every 1 < p2 . But then,, gS{U’T)(g) = ¢(o,7) for
every Tt <p . Thus, {f < ] VG<K_ET<D(QS(U T)(E) # ¢(o,t))} C v and hence has
cardinality < g . ' -

The following theorem makes the connection with Silver's Principle. The
proof can be culled from [EJ1]1, [HJ21, and [Ju], but let me provide the details
for the interested reader. If this first derivation from W proves too daunting

see Theorem 2.4 below for a notationally simpler use of W

Theorem 2.2: 2X = g LA
f In applying WK one can actually assume that there is a K=Kurepa tree T

with a function W such that:
(1) T =,
(ii) for any ¢ < ¢ , W(g) C {s| Fp<k " (s: k" xp - TE is injective)} and
[W(g) | <« , and
(iii) for any injective s: kK~ xp » k¥ where p <k , there is a y < ¢ such
that whenever v < & <k, we have ﬁg-s e W(E) .
This can be seen as follows: Let T and W be as provided by W , and
E. % K be sufficiently large so that [T f = K . By an inductive relabelling

0
which involwes some minor pruning and graftlng, we can assume that for 50 < £ <k,

i
A

each level T_ is the set k™ xk~ XTE for some Tg in such a way that: (a) T,
and |Tg|=|<" for £ <k ; (b) £# r implies Tng;=g; (c) <o,
<02,T2,v> in T implies 0, =0, and Tl =T, and (4) <01,T1,u>_ < <UI,T1,
and <0,rT < <0,/T,,Ww> in T implies u=v . Now T= U 7T ;

2V E<Ep & Ecigi" £

which by (d) has a naturally inherited tree ordering, is also a k-Kurepa tree.

,T ,u> <

Next, for £ <k set W(E) = ﬁ(g)rﬁ {s] o<k (s: k™ xp » 'I‘E is injective)}, i.e.
take only those members of ﬁ{g) which are functions of the first two variables
of this form. Then T and W satisfy (i), (ii), and (iii) above, regarding
functions s as in (iii) as sets of ordered triples.

ggz Tg +2 for & <k , satisfy-

Now, we shall inductively define functions

ing the following inductive hypothesis:

(*) Suppose that s e W(E), say with s: k xp - Tg s, X E€ I£+1]<UJ is such that
6§ € x implies Ms°S € W(é8), and {an T <plC *2. Then the set defined
by Z{s,{aT| T <ph = {o <« | HT<DV6€X(95(ﬂ6(S(U;T))]= eT{G))} has

cardinality .

Once this is done, the proof can be completed by defining fa: K2 for
o < K+ as follows. sSet

f (g) = gg{w fe) )

To ascertain HJr » let p <« and s: kxp +—K+ be injective. By hypothesis,
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let y <« be such that y < g < k implies MetS € W(g) . Then using (*) and
tracing through the definitions, it is easy to see that the conclusion of HJ

holds for s .

All that remains is to define the functions Suppose that this has

g -
£
already been done so that (*) is inductively satisfied for every § < £ . Let

K, be the collection of all the x size sets of form Z(S,{gTI T <pl}l) as

£

defined in (*) , with s ¢ W(£) , say with s: kK xp + T x e [£1™ is such

E r
that ¢ € x implies Mg'S € W(8) , and {5T| T < p} g_xz . To perpetuate (¥*)

at £ , we must essentially add a layer of wvalues with g, to take care of all
% & (kg W,

Since W(E) , £ , and 2<K all have cardinality j_m-, there is an enumer-
ation <<sn,{52| T < pn},kn>|f1< k > of all possible triples <s,{eT| T < p},k>

where Z{s,{eTI T <p}) e K and k: p 2 . Moreover, we can arrange that:

3

(a) each triple occurs kK~ many times in the enumeration, and (b) cgn]pc] < K

for every n < Ku, whether k  is regular or not, by a dovetailing process akin

to GUdel's pairing function for ordinals.

Finally, define gE: Tg + 2 inductively in K stages, so that at the nth

stage only pn many values of gE are determined. Thus, before the nth stage,

only Kgnjpci <k values have been determined. Since Z(sn,{e:] T <p }) has
- n
cardinality «k , it must have a member ¢ such that gE has not been defined for

sn(a,T) for any 1 < p]_I . Thus, we can set gg(sn{c,r)} = kn(r) at the nth

stage. Having carried out the construction through all « stages, extend gE

arbitrarily to the whole of Tg R
It is now clear that (*) is satisfied at £ : Suppose that s ¢ W(g) , say
with s: kxp +T_, x ¢ [g+l}<w is such that 6 & x implies Ms*S € w(s) , and

g

{5T| T < p} g:x2 - If xC &, by induction there is nothing to prove. Otherwise

x = xU{E} where =x C &£ , and inductively Z(s,{srf5| T < p}) has cardinality

K , i.e. 1is a member of Kg . But <eT{EJ] T <p > 1is kn for « many n's,
and thus our construction insures that Z(s,{aT| T < pl) has cardinality K .

This completes the proof of 2.2. ' ﬁ

The next principle can be appropriately dubbed Prikry's Principle, and is

denoted £+(K,K+} in Kanamori [Ka2].

; ; + K +. K
(PK) There is a collection {fal o <k } C 'k so that whenever s e [k ] and

b € Se , We have |{g < KI Vues(fa(g) # o)} <« .

Historically, PK was the first of these higher combinatorial principles to
be formulated. 1In the ground breaking paper which inspired the work of Hajnal and
Juhdsz, Prikry[P] devised his principle and established its consistency with the
GCH by forcing. Prikry was answering a guestion of Erd®s, Hajnal, and Rado [EHR]

in the partition calculus, and this was the first of several examples of the
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phenomenon of relative consistency results, rather than outright demonstrations,

in this area of set theoretical investigation. To recall the relevant case of the

polarized partition symbol of [EHR],

means that whenever F: AXK > Yy , there are X ¢ [A]¥ and Y ¢ [«1V such that
F"(X¥xY) # vy . To denote the negation of this proposition, -+ is replaced by 'f 8
Besides [EHR], see the secondary source Williams [Wi]Chapter 4 for background.
Prikry educed PK from the negative partition relation that he wanted to
establish, which is equivalent to the ostensibly weaker version where the ¢ € S

just range over the constant functions:

+ —-—
Lemma 2. 3: B = « £ | s
K K K
f If {fu[ o < K+} is as provided by PK , set Fl(q,B) = fa(B) S =

Cther applications of PK are discussed in Kanamori [Ka2], where it is
+ . .
denoted A (K,K+} - The first result about L in this whole context was Jensen's:
he showed that Pm1 follows from the morass structure that he developed in L .

The following derivation from WK needs less of an edifice than Theorem 2.2.

Theorem 2.4: 2K =k & WK -+ P

F Let T and W be as provfded by WK ; as before, we might as well assume
that TK = K+ by renaming. For each § <« and s g W(§) , by 2% = ¢ we can
enumerate ¢ as {hzi 8§ < £ <k} . To take care of more and more of the hz's,
for each g < ¢k we shall define functions gg: Tg + k such that:

(+) Whenever § <n < g; s € W(g), and “5"5 e W(8) , there is an x £ s such

Me S

that ggfo = hn6 (wa(x)).

Once this is done, the proof can be completed by defining fa: k + ¢ for

fa(E) = ggfﬂg{a)}

To verify P , let s g [K+]K and ¢ € SK . By hypothesis, there is a § < «
K

such that ¢ < £ < ¢ implies “5"5 € W(g) , where we can take § sufficiently

is injective on s . For some n > § , we have g _ -1
) - . hn = ¢'ﬂ6 A
Then for any & such that n < § < k, there is an x ¢ WE"S such that
ﬁG"S -1
gg(x} = hn (HG(X)) . But if g = Te (%) , then fatg) = gg(x) = ¢(a)

All that remains is to define the functions g, SO as to satisfy (1) . But

large so that 7

doing this is easy: Fix £ < k , and let {<sc,5€,ng>[ L < k } enumerate all
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triples <s,6,n> where 6§ <n<¢g¢, s ¢ W(§ , and wa"s € W(d) . Now define
exactly one value of 95 in each of «~ stages iﬁﬁuctively: If § <k , since
only ¢z wvalues have been determined before the tth stage and sg has cardinality

k™ , there is an x ¢ SC such that g,_(x) has not yet been defined. Set

1T IIs E
ga{xJ = hn (ﬁﬁ(x}) , where § = 6c and n = n - Finally, after «~ stages
extend gE arbitrarily to all of TE . This completes the construction of gg ;

and the proof is thus complete. -

To correlate Prikry's Principle with the work of Hajnal and Juhasz, the

range of the functions must be delimited to 2 . Consider

" K
(PK) There is a collection {fa| a <k} C 2 so that whenever s ¢ [K+]K and

o € 5 , we have |{g < K‘ Vaes(fa(g) # ¢(a))}| <« .

The following is immediate.

Lemma 2.5: (i) HT - P .
Lemma 2.5 - p
(ii) P - P .
K K + @
- For (ii), take {fal @ <k }C kasinP and k: k >2 any surjective
; + . . -
function. Then {k-fa| o < k } satisfies P . 1

The final principle to be discussed here is the Hajnal-M&té Principle,

formulated in the course of the study of set mappings in combinatorial set theory,
in Hajnal-Maté [HM].

e +
(HMK) There is a collection {hg[ £ <k} g_K < with h_(o) # a for every

+ K
£ <k and a < k such that: whenever s ¢ [k ] ;, we have

| {g < | Vaes(ha(u) £8)} <«

In the most general setting, a set mapping on a set X is a function f
from a subset of P(X) into P(X) such that xN£f(x) = § for every x in the

domain. A subset H C X is free with respect to f iff HNEf(x) = g for every

X C H in the domain. The general problem of when large free subsets for set
mappings exist was extensively investigated through the fifties by classical com-
binatorial means in Eastern Europe. (See the secondary source Williams [Wi]Chapter
3 for background; a timely application of this theory is found in Galvin-Hajnal
[GH].) Forcing and in particular Prikry's method of forcing with side conditions
extended the realm of possibility, and Hajnal and Maté distilled their principle
with the fellowing implication in mind: If HMK and there is a k-Kurepa tree,
then there is an f: [K+]3 9-K+ such that no set of cardinality k is free with
respect to £ . Note that HMK itself is a proposition about set mappings and
free sets. Fitting into the pattern, Hajnal and M&té established the consistency

by forcing, and then it was shown later to be true in L , this time by Burgess
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[Bu2], who incidentally establishes a stronger principle in L from which W
K

Fl

is also derivable.

Theorem 2.6: P > HM .
e K K

+ = .
[— Suppose that {fal o < k } is as provided by PK . For each ¢ < K+, let

wa= a + k be injective. Finally, define hg: K+ - K+ for & <k by:

1 . if o =0, else
ho (@) = wa"ltfa(g)) if this is defined, and
0 otherwise.

Thus, we took care that hg(a) # a for everyv a < K+ .

To verify I-IMK s Suppose that s e [K+]K - Let B Dbe the least element in
s -~ {0,1} , and set t = s - (B+l) . Define ¢: t >k by ¢(a) = wu(B) .  Then
{g < k] Vuet(fa{a) # ¢(a))} D {g < K]Haes(hgta) £ s)} and hence by P_ . this

last set has cardinality < k. 5

The following diagram summarizes the implications in this section, assuming
the GCH :

I do not know whether any converses are possible. Particularly desirable would
be the implication P; a—PK + for then the hierarchy of principles would become

linear.

§3. THE GENERALIZATION

This final section is devoted to a version of WK available at limit cardi-
nals. We still want a k-Kurepa tree with a companion function W , but without
assuming that there is a cardinal predecessor « . We can only expect to take
care of all s ¢ [TK]K in clause (b). Since this way we will no longer have the
capability of carrying out the inductive constructions of the previous section,
we must enhance the principle in some other direction to get the requisite
strength. There seems to be several ways of doing this; one strengthening, which
presages the application to a Prikry-type principle and is natural in the context

of 2.4 and [Ka2], is the following, which will be dubbed the weak Silver's Prin-

2 . . s
ciple. We first need a definition: If S 5 {<s,¢>‘ s is a set & ¢ € "k} , say
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that an h:LJ{s|H¢(<s $> € 8)} >+ «k is a con51stent map for S iff for every

<s,9> ¢ S8 , there are infinitely many elements X & s so that h(x) = ¢(x)
Now the principle:

(wa) There is a k-Kurepa tree T and a function W with domain & such that:
(@) for each o <k , we have W(a) C {<s,¢>| s CT s8¢ °<} with
W) | < |T(q)| < o such that W(q) possesses a conSLStent map.
(b) for any t e [TK] and ¢ ¢ tK , there is an s ¢ [t]<K and a
Y <k such that ¢ _[s is injective and whenever v < a <k , we have

n .-l L)
<n "S, ¢em T [m "s> g W(a).
« o o

Somewhat cumbersome, but one can no longer trust to chance when not assuming
that there is a «~. It is clear from the proof of Theorem 2.4 that ZK_ = ¢k and
WK together imply wWK - Let me mention that for § to possess a consistent map
is a natural generalization of X = {5| dp(<s,¢> ¢ 8)} having Property B in the
sense of ErdSs and Hajnal [EH]: there is a set B such that if s ¢ X ; then
sMB#FP and s ~-B#F . Possessing a consistent map is a stronger transversal
principle.

The consistency of wWK via forcing entails a new and rather elegant kind
of density argument discovered independently (and much earlier) by Shelah; the
argument is similar to Theorem 3.1 of [Ka2], but is presented here for the con-

venience of the reader. The initial Shelah argument established directly the

negative partition relation which is a consequence of the forthcoming 3.2 and 3.3.

Theorem 3.1: If the ground model V satisfies K<K = k , then there is a K+'C-C.
<k-distributive forcing extension in which WWK holds. (Furthermore, properties
like the Mahloness of k are preserved.)
F The notion of forcing is an adjustment of the one for WK (see e.g.
Burgess [Bul]), which in turn is an augmentation of the standard Stewart [Ste] con-
ditions for adjoining a k=Kurepa tree.
Let QK consist of quadruples P = <Tp'lp'wf'sp> such that:
(i) T is a tree consisting of nodes which are ordinals < , with
](Tp}ul < ap for every o . Moreover, T has height a successor ordinal qp+l
<k s il.e. TP has a top level, the apth-
(ii) Wp is a function with domain o such that each Wé(a) g;{<s,¢>|
sg;(Tp)a & & SK} , possesses a consistent mai, and |Wp(a}| 5_H1bax] s
(iii) 1P is a bijection from a subset of «k -k onto the top level of Tp
(iv) Sp is a subset of {<s,¢>| s g;domain(lp) & ¢ ¢ °¢} of cardinality

< k possessing a consistent map.

Partially oxder QK by setting p < gq iff
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(a) Tp is an end extension of T .

(b) domain{lq) g;domain(lp}, and for every 6 € domain{lq), we have
1 (p) <1 (p) in the tree ordering of T .
q = P

(c) w extends W .

P q
(@ s c Sp  and for every o with o < g < aP and every <s,¢> g S

q
] » o “E o n
we have <(wa-lp) S¢ ¢ (m, lp) f(na lp) s> € Wp(a) .

[

(e) BAny consistent map for Sq can be extended to a consistent map for SP'

Thus, each p ¢ QK is a < k size approximation to a witness for wwK , with
lp a labelling of the e eventual cofinal branches through the k=Kurepa tree
and SP a set of requirements which must thence be met by any extension of the
condition. Clause (e) is the key new idea needed to establish the important pre-
servation properties of the forcing. With it, one can define a notion of contin-
uity for a strictly decreasing sequence <p£[ £E<n> n alimit ordinal < k ,

and an operation Lim on such continuous sequences such that:

{I) if <p£| £ < n > is continuous, then Lim{<pgf E<n > ¢ QK , and then

(II) if p = Lim(<pg| € <n>), then p < pg for every & < n and
S

= Us .
P &< Pg
This is done by induction on the length n < k of sequences as follows.
Suppose that these notions have already been defined for limit ordinals & < n.

Then say that a strictly decreasing sequence 195[ € <n > is continuous iff for

every limit ordinal § < n , Ps = Lim(<pg| € < 8>). 1In order to define Lim for

such a sequence, first set T = UT d = Udomain(1 ) w= Uw
4 ’ £<n Pg 4 £<n Py ! £<n Pg !
s = Us and B = o . Since the T 's are end extensions, T inherits
£<n Pg ! 2R Pe Py J
a tree ordering with height B . In order to have a condition however, we must

adjoin a top level--but there is canonical way of doing this.

For each p e d , notice that b(p) = {x e T| Fg<n(p ¢ domain{lp ) &
£

x f-lp (p)} is a cofinal branch through T . We can top each branch in a canon-

£
ical fashion: if Po is the least element of d , let xp be the least ordi-
0
nal in ¢ - T and specify xp > every x g b(po) on the tree; if Py is the
0=

second least element of d , let xp be the second least ordinal in k - T and
1
specify xp >every x e b(p ) on the tree; and so forth. Define T to be the
1 1
extended tree TLJ{xp|p e d} , and define a map 1 with domain d by setting

1(p) = x . Finally, set p = <5,i,w,s> - The important clause (e) in the defin-
ition ofpthe partial order combined with the inductive assumption (II) about Lim
insures that p ¢ Q’< since S has a consistent map, as well as P :_pg for
every £ <n . Set p = Lim {<p€| € <n >). This completes the inductive defin-

ition of continuity and Lim .



- 13 -

QK becomes a k-canonical limit ordering in the sense of Shelah and Stanley

[SSI]1[SS2] with these formulations of continuity and Lim , and this fact will
figure prominently in the discussion of L below. Using these notions, it is
easy to see that QK is <k-distributive, i.e. adds no new n sequences of ordi-
nals for any n < k , and for example preserves the Mahloness of k by standard
arguments. Also, for any o < k and p € K+—K ;, one can check that Dap =

{p e QK| 0,20 & pe domain(lp)} is dense in Q. - (To see this, note that

Op

with a tx to get a new tree T , defining 1 with the same domain as lp by

given any p ¢ QK + @ one-height extension is possible by topping every X € T

1(p) = tl (o) * and extending Wp one step to W by setting ﬁ(ap) =
_l -
{<1 "s °1 1 "s>| <s,¢> e s } . W(a) has a consistent map since S does
D :¢ P rp I e 0 P D P o =

and so <§,i,ﬁ,sp> is a condition 2 p . Thus, one-height extensions are always
possible, and the rest follows from the use of Lim .)

With all this in mind, if ¢ is Q. generic over V , set WG =lJ{Wp| p € G}
and TO U{T lp € 6G}U(k™-k) with the inherited tree ordering for ordinals < k,

and if p ¢ K+—K . specify: x <p in T iff HFpeGi(x < l (p) in T ) . Then TG

is a x-Kurepa tree (once the K+—C c. is verified; see below), and the function WG
satisfies clause (a) of ww =
The next task is to verlfy clause (b) of Wi in V[G] . So, suppose that

o ]F t e [k -K]K & Ve iK . By induction on n € w, construct conditions pn i

ordinals an ; Sets tn £ [K+]<J< and functions qh: tn + Kk as follows. Set
po = p . Given P, v since £ is forced to have cardinality k and QK is
sufficiently closed, produce a condition Bigy £~pn , an ordinal @ , a set
€ e (k"1™ , and a function ¥ it >k such that

”'-{:ﬂa =t & e =y s anet-u{s|3¢(<s,¢>esp)}.
n

n+l

By a trivial extension, we can further assume that t LJ{a } CJJ{SI9¢(<S ¢> €
S )} . Next, set q = le{<p | new>), s =LJtn , = Lan " =lJ(an+l),
n+l
S=s {<s,¢ >}. Finally, set g = <T ,1 ,W ,S> .
q U iR Yo g q’ q: q’

There is now a CLAIM: ¢q is a condition extending every - (but certainly

]
<=1

’

G,

not g !). Since it would then be the case that q IF tNa =58 =& &ré

(]

this would certainly establish clause (b) of ww , Since if by density ¢

then <na“s, ¢ i lrna"s> € W (a) for any o such that o < o < k .
9
To establlsh the claim, it is necessary to show that for any n and consis-

tent map h for Sp » h can be extended to a consistent map for S . So, fix
n
such an n and h , and proceed by induction to define consistent maps hi for

Sp for every i e w as follows: Set ho = h . Given hi ;, Since
n+i =
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Blgsas SBq let 9541 ;ghi be a consistent map for S : . Remembering
. . . n+i+l
that o .. ¢ Uls| 3(<s,¢> e s )} — Uls| (<s,¢> e S )}, define
n+i+l Phts
heyy PO
gi+1(p) i nE %n+i
hygy f0) = B
¢(an+ij REERE n+i .
Clearly, hi+l 2 hi is again a consistent map for S since only one value

n+i+l
was changed. Finally, set h =Uhi ; so that h is consistent map for S

Moreover, for each 1 € w, we have ﬁ(an+i) = Tp(an+i), so that h is actually
a consistent map for sq U {<s,$>} = S . This establishes the Claim.
All that remains is to establish the 1c+-—c.c. for QK_ . So, suppose that

{Pg] £ <) C Q - Standard A-system arguments using =k (see Jech[Jec]

4kt
p.248 for an example) show that there is an A e [k ]K , & tree T of height

; + <
a+tl for some o , a function W, and a z £ [k -K] “ such that:

(1) £eA implies T =T and W =W 4
Pe Pe
(2) E# ¢ eA implies domain (lp ) M domain (J.p ) =z , and
€ C
(3) &z eA implies 1 [z=1_ [z .
p p
3 g .
To take care of the Sp 's, first find B ¢ [2-‘&]|< and a p < Kk such that
€
£ ¢ B implies Esp | = u. For such £ , write SP = {<s§,¢§>| § <ul. By a
€ € +
further A-system argument using K<K = kK , one can find C ¢ [IE&}'< and a ¥y

such that:

(4) &£ # reC implies U{s§| § < p}mu{s§| § < pu} =y , and

(5) &,z € C implies <<s§(‘\y, ¢§[y>] § < pu> = <<s§ﬂy, ¢grY>[ § < H>

For £ g C , write y‘E =U{s§] § <u}— y . By K<K = k , there are at
mostt k structures <g,<,06>6<u where ¢ < k and the USIS are unary predicates.
Each ME = <Y5'{'S§nyg>6<u is isomorphic to one of these, so by cardinality con-

+

siderations there is a D ¢ [C]lc such that:

(6) &,z ¢ D implies there is an isomorphism e ME - MC , and

£ g €

7 = .

(7) ¢6(p) ¢5(Tr££p)) for p e s(sﬁyg

It is now claimed that if £,z € D , then Pg and p(; are compatible,

thereby completing the proof of the theorem. To show this, first add one new

level to the top of T by specifying that each lp (p) for p ez 1is to have
&

o
exactly one immediate successor, and that each lp (p) for p ¢ domain(lp ) =2

g 3
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is to have exactly two immediate successors. This forms a new tree T of height

0+2 . Define a function 1 with domain equal to domain (lp JUdomain(l_ ) and
P

range the top level of T by setting & ¢
the node above 1p (p), if p ez

i(p) = the first node above lp (p) , if p g domain(lp ) -~z
£

the second node above lP (p) , if p g domain(lp ) -z .
g z

Next, set S = SPLJ S + and finally, extend W to a function W with domain
£ ok = _— - 5
otl by specifying W(a) = {<1"s, ¢l lrl"s>[ <s,¢> e S > .
Now, set g = <§,i,ﬁ,§> . To establish that q is a condition extending
both pg and p; + it suffices to show mutatis mutandis that if h is a consis~

tent map for Sp ; then h can be extended to a consistent map for s . (This
€

will incidentally show that W(a) has a consistent map.) Let FEC be as in (6)
and (7) above. Then it is straightforward using (4) and (5) to show that if h
is defined by:

_ h(p) if peyUy,
hip) =

-1 ,
h(wgc (p)) if pe yC ’

then h is a consistent map for S . This completes the proof of the theorem. %

The particular formulation of wWK was designed for application to the fol-

lowing direct analogue of Prikry's Principle available at limit cardinals:

. . + +_K
(WPK} There is a collection {fala skl K¢ so that whenever s ¢ [k ] and

¢ € Sk , we have I{g < KI Vdss(fa(i) # ¢(a))}] < K .

+ . ; R : ;
This principle is denoted A(k,k ) in [Ka2], and the following is just as immedi-

ate as Lemma 2. 3:

Lemma 3.2: WPK' = 7‘ .
K K K

Now the presaged application:

Theorem 3.3: WWK - WPK .
F If T and W are as provided by wW _, with everything so prearranged,

we can let ggz T_ +~x for each £ < k be any extension of a consistent map for

F
’ + . +
W(E) . As usual, assume TK = K and define fa: kK >k for o <k by:

fa(g) = gg(ﬂg(a}} .

- + : 1
To verify WP, let t ¢ [k ]'< and ¢ ¢ tK . By hypothesis, there is a vy < «
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and an s ¢ [t]1"° such that m_[s is injective,:and whenever Y < E< Kk, we
= _ Y . -
have <ﬂghs, ¢'ﬂg lfﬁg"s> € W (§) . Thus, for such £ there is an x ¢ Wg"s

such that gE(x) = ¢'ﬂ€-1(x) - since ga is consistent for W(£) ; i.e. if
-1,

@ =T, "(x) , then £ (£) = ¢(a) . This establishes W .
Actually, WP, is equivalent to the weak version of wW,. where the thinness
reguirements on the tree are dropped, i.e. the reformulation of wW, with T
just a tree of héight Kk with k' branches, and the condition |W() ] 51|T(a}|
< o eliminated. There does not seem tE be a good analogue for HJK , but HMK
can be weakened by replacing s ¢ [K+]K by s ¢ [|<+]K to yield a principle
WHMK  which follows from WPK with the same proof as for Theorem 2.6.
It is appropriate here to digress somewhat with a discussion of the polarized
partition relation denied by wPK » before the final synthesis which characterizes

wwK in the constructible universe. In general, the proposition

(*} K+ K
_>
K K| 2

seems to hold but rarely. The earliest result along these lines was due to Erdds
~and Rado [ER]Theorem 48, who established (*) for k= w. Hajnal[H2] then
established that (*) is true for k a measurable cardinal; see alsc Chudnov-
sky[C] and Kanamori [Kal] for some refinements. Chudnovsky claims without proof
in his paper that (*) holds for « weakly compact, and proofs have since been
provided by Wolfsdorf[Wo] and Shelah. We shall soon see that, at least in L ,
this is as far as one can go. The following is yet another proof £ the implica-
tion from weak compactness, which is more compact than the published proof in

[Wol; it uses an idea from [Kal].

+
K n
+

Theorem 3.4: If « is weakly compact, then ¥ for every n < «

K K| 2
} Suppose that F: Kﬁ<K + 2 1is given, and set X; = {§ < K] F(a,8) = i} for

A .

a < K+ and i <2 . Say that an interval I of ordinals < is full iff
|I] = x and whenever B > supI, for every £ < k we have

[{o e I| xgmg - xgng}[ =K .

< 0 1
Of course, the 0 could have been replaced by 1 here, since XaL)Xa =K .
Notice that any a < K+ is the start of a full interval:
<K ; ;
First, let {sp[ p < Kk} enumerate [k] so that each set appears k times.

0
general letting up be the least g > sup{aél § < p} so that sp is an initial

Then define ordinals ap for p < k by induction starting with o = o and in

segment of Xz ; if there is such an o (and ¢ = sup{apl § <p}+ 1 otherwise).

Finally, set B8 = sup{apl p <k} . To verify that I = {E,BJ is a full interval,
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assume to the contrary that B > § yet for some £ < ¢k we have

[{a e I| xgmg = xg

any o in this set, and let Py > P,y be such that sp2 = Xgrﬁg - Then

(\g}] < k. Let Py < k be such that o, is greater than
1

apz
must have been defined via the first, non-trivial clause, since £ was an avail-
able candidate. This contradicts the choice of Py -

To establish the theorem, let 1 < K+ be given. The goal is to find a
J <2, aset D of ordertype n , and a set 2 ¢ [rc]K such that 2 G
fﬁ{x1|u e D} . By increasing n if necessary, we might as well assume for con-
venience that n is an indecomposable limit ordinal > K . Now let <c;| T <n>

3 . ; +
be any closed, increasing sequence of ordinals < ¥  such that each [0 )

"%+l
is a full interval; such a sequence exists by the previous paragraph. Next,

invoking the weak compactness of k , let U be any non-principal K-complete

ultrafilter on the k-field of sets generated by {Xi| i<2 & ac< Gn} and the
bounded subsets of «k . Surely, there is a fixed j <2 and a set A ¢ {K+]K+
such that for any B £ A , there are order-type 10 many full intervals [UC'GC+1}
in the natural ordering on which: for every &£ <k ,

|{xieuiximg=xgng & 0_<a H o=« .

=% %n

Call these [GC,UC+1
Now, we might as well assume that there is a

) the full intervals for B .

By € A such that |x:ér1x] =
+ 0
K
for every X ¢ U . If this were not so, there would be a B £ [A] and a fixed
X € U such that for every B € B, |Xéfﬁx| < Kk ; in fact, we can further assume
that vy = Xjfﬁx is also fixed. But then, X -y g_xl_j

B B
F'(Bx (X - y)) = {1-j} , which is more than adequate to establish the theorem.

, and hence we would have

Next, since ]U[ =k and U is k-complete, we can easily produce a

X E [X% ]K such that |Y - X| <k for every X € U . Finally, fix a bijection
0
P K <N .

We now proceed by induction to choose a closed unbounded set {gyj Yy <k} Cx

+ 3 . . 3
and a set {a;| a <k} ck as follows: At the yth step, if y is a limit

ordinal < k¢ , set EY = 33@ gé . Otherwise, with EY already given, first choose
a, in the y(y)th full interval for g such that Xi e U and

: . 1.
XiY;q EY = X%Jﬁ EY . (This is possible since 80 € A .) Then let £Y+l be the
least £ > aY such that Y - & C Xi E

Y

With this construction, {aYI @ < k} clearly has ordertype n . So, by
splitting it into two parts each of ordertype n , we can see that there must be
a D g;{ayl Y < k} of ordertype n such that if T = U_[¢& ’EY+1} , then

aYED ¥

Z =Y - T still has cardinality « . )
The proof can now be concluded by verifying that 2 Q(W{Xi| o € D}. Indeed,
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5 aY e D agd §d € 2, then either § < g or EY+1 <&. If §<¢g , then

: ; Y
e 2CyY CjX:| implies that § ¢ x7 by chozce of o . If ¢ < § ,
= = ‘ @ Y FHL =
then § g Y - gY+1 gixi . Hence, in either case § ¢ %7 ; and the proof is
o
complete. Y X “

To bring this section and this paper to a close, let us first take another
look at the proof of Theorem 3.1. The key feature of the notion of forcing Q
was the capability of taking lower bounds which are not the natural ones prov1ded
by taking unions of the coordinates; in general, 'QK does not have greatest lower

bounds. Recall that a partial order P is <k-directed closed iff whenever D CP

is directed (i.e. p,q e D implies r <p,q for some r ¢ D) and |ID| < «, then
D has a lower bound. QK is not in general <k-directed closed, as the following
argument attests:

If «k 1is weakly compact and QK were <k-directed closed, then one could
call upon the Silver technique of upward Easton extensions (see [Jec]§36 or [KM]
§25) to show that it is consistent (via a preliminary extension) to have a weakly
compact «k such that if one forces with QK » then « remains weakly compact in
the extension. But, this would contradict 3.1-3.4.

QK + in having a natural operation Lim for procuring lower bounds but also
other possibilities for lower bounds to the side, is a paradigm case of a k~canon-

ical limit partial ordering, in the sense of Shelah and Stanley[SSl]. It was to

handle such orderings that led Shelah and Stanley [SS2] to extend their character-
ization of morasses. They show that a Martin's Axiom-type characterization, with
strong properties attributable to the corresponding generic filters, which also
accomodates canonical limit partial orderings is equivalent to the existence of
(k,1)-morasses with "built-in 0—principle“, when there is a non-reflecting sta-
tionary subset of « , i.e. an § € Kk which is stationary in ¢ yet SMNqa is
not stationary in o for any o < k . They establish that such morasses with
built-in { -principle exist in L , and of course, it is a well-known result of
Jensen that in L, « is not weakly compact iff there is a non-reflecting station-
ary subset of Kk . That Q. does satisfy the Shelah-Stanley formulation is just
a matter of checking, and there is enough provision for the generic object to
satisfy the needed conclusions. Thus, we have the following conflgence of 3.1~

3.4.

Theorem 3.5: If V = L, then the following are equivalent for regular k > yw :

(i) k 1is not weakly compact.

{2:4:) WWK
(1ii) wp
K
+
iv) (¥ 4 | K
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This characterization in L of weak compactness in terms of wWK is a pleasing

complement to Jensen's characterization in I that a regular cardinal g is inef-

fable just in case there are no kK-Kurepa trees at all.
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