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Jensen invented the morass in order to establish
strong model-theoretic transfer prinéiples in the
constructible universe. Morasses are structures of -
considerable complexity; a culminating'ediffce in
Jensen's remarkable program of formulating useful
combinatorial principles which obtain in the construc-
tible universe, and which moreover can be appended to
any model of set theory by straightforward forcing.
Gbdel's Axiom of Constructibility V = L is surely the
ultimate combinatorial principle in ZFC, and the morass
codifies a substantial portion of the structure of L.
As set theorists looked beyond the well-known () and
0 for applicable combinatorial principles, it was
natural to consider extractions from the full struc-

ture of a morass.
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This paper is an expository survey that schema-

tizes the higher combinatorial principles derivable i

from morasses which have emerged in set theoretical

praxis. It is notable that most of these principles

late salient features of particular constructions, and@

!
shown by them to be consistent first by forcing. Then,

)

the specialists in L established how they hold there,lq;

in ad hoc fashion using the full structure of the ‘T‘

¥ 2

morass. The sections of this paper deal successively %f‘

[

1
with Prikry's Principle, Silver's Principle, Bur ess' b -
Y p g ‘

Principle, and finally limit cardinal versions. This |
sequence reflects the historical developmnent of ideasf
the progression toward further complexity, and coinci-

dentally the author's series of papers [Ka2][Ka3] i

{Kad4]. The cumulative layers of sophistication pro-

vide an illuminating approach to the full morass .o

structure, whilst at the same time providing a hier- !
archy of principles which, seen in this scheme, will
hopefully find wider application in the future. The

emphasis will be on shorter, illustrative proofs for: |

the casual but interested reader, with adequate ref—Ff

erences for the more persistent researcher. €

The set theoretical notation is standard, and wo

here is a short litany: The first Greek letters N |

.
'were formulated by combinatorial set theorists to iso=f

LTS
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%/B,Y,... denote ordinals, whereas the middle Greek

lett |
ers K,A,u,... are reserved for infinite cardinals

If x is a set, |x| denotes its cérdinality [x1¢
4
denotes the collection of subsets of x of cardinalit
0 l y
kK, and if £ is a function, f"x = {f(y) |y ¢ x}
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§1., PRIKRY'S PRINCIPLE

. } : “‘.. N :
In the first three sections, k will always denote |, 3
i T The i ‘
a successor cardinal, with k its predecessor. '

general situation will be considered in the last sec- -

tion Prikry's Principle is the following proposition:

+ K

i i < c "K so

(P) There is a collection {fala kK'} e
+.K” s

that whenever s ¢ [k ] and ¢ ¢ “k, we have

[{E < k|Vaes (£ (E) # ¢(a))}] < x.

This first approach to the system of approximations
which comprises a morass says roughly that there are
K+ functions: k + k such that: if guesses are made at
possible values for any ¢~ many of them, then for
sufficiently large § < k, at least one guess is ren-
dered correct at £. Although it is not made explicit,
notice that we can assume that the fu's are pairwise
distinct and have range = k, since easy applications
of PK show that only < k- of these functions do no? -
have these properties. Historically, PK was the flrsﬁd
of the higher combinatorial principles to be formulate‘v

In a ground-breaking paper, Prikry [P] devised his 1

principle and established its consistency with the GCH,

by a method of forcing with side conditions. Assumi%gf'i

K

2 = k, a simple diagonal argument provides k func-g‘

.
. i P ; Prikry's i
tions satisfying the conclusion of P Y { ¥

mm

argument yields «t many, and in fact can provide

arbitrarily many in a cardinal—preserving forcing

extension. There was no particular emphasis laid on

possibilities in L, but at any rate, the first result

about L in this whole context was due to Jensen, who

showed that if V = L, then P holds for every succ-

essor cardinal , using the morass structure that he

invented.

Prikry was answering a question of Erdés, Hajnal

and Rado [EHR] in the partition calculus, and this was

the first example of the phenomenon of relative con-

sistency results, rather than outright demonstrations,

in this area of set—-theoretical research. To recall

the relevant case of the polarized partition symbol of
(EHR],

means that whenever F: Axx - Y, there are X ¢ [A ¥ ang

Y ¢ [k1Y such that F"(XxY) # y. To denote the negatién

of this proposition, + is replaced by #. Besides [EHR],

see the secondary source Williams [Wwi] Chapter 4 for

background. Prikry educed PK from the negative parti-

tion relation that he wanted to show consistent, thch

is equivalent to the ostensibly weaker version where

the ¢ ¢ Sk just range over the constant functions:
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I1f Pwl' then there is an wy—matrix.

(Let g: Wy *ow be any surjection, and given

[fal o < w2} as provided by Pwl set AE = {Elg'fafﬁ)sn}l)'

t ample.) Incidentally, Baumgartner has established that the
to get a counter-ex .

. L
PK has several other applications. Prikry hlmse%f

following are equivalent (see [Ka2] for a proof):
I by

in [P] provided a consequence about an old problem ofjj (a) an wy-matrix exists; (b) an w-matrix exists; and

'S
f ‘. w ) ,

measures. In a related development, Szymafski [Sz] |

¥ . an upper bound in “s under the ordering of eventual
; i ablish dominance.
formulated the following concept 1in order to est n

e’ Delimiting the ranges of the functions in P
some Baire Category-type theorems for U(wl), the spac g g

K
b
furtherfcomposing with a fixed surjection g: k + 2

even
fr

i 2 i inite
of uniform ultrafilters over w,. For any infini |

b
i n i A-matrix yields the following:
cardinal ), a matrix {Aal n<uw, o<l is a

iff f (P;) There is a collection {fal o < s < X2 so that
- m n " ’

i then A < A& , !
(a) if m < n and a < A, o S Bo |

o
whenever s ¢ (k"1 and ¢ ¢ %2, we have

(b) U{A§| n < w} = v, for each o < 1, and [{e < «| Voes (£ (8) # ¢(a))} < k.

infini c A and ¢ € sw,
(c) for every infinite s ¢

Even this weakened principle has its uses: Balcar,
A a el < uy

Simon and Vojtég asked([BSV] Problem 20b) whether the
A basic clopen set for U(wl) is a set of form

following is consistent: whenever A is regular and
c ; and a G closed . )
{u e U(wl)l A e u} for some A c § ”K( uncountable and U is a uniform ultrafilter over A,
cet is a countable intersection of basic clopen sets;‘“

then there are A" sets in U such that the intersection
szymafiski established the following eguivalence: A

| of any infinitely many of them has cardinality < A,
. . g
A-matrix exists iff there 1s a family of A Gs close

‘ Probably, this is true in L, and the proof will depend
11O
and nowhere dense subsets of U(wl) such that the un

heavily on the structure of ultrafilters.

But at
of any infinite subfamily is dense in U(wy). The

least, one can affirm the case )\ = w.,:

1t If P, then
connection with Pm is clear:
1l
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for any uniform ultrafilter over k there are et sets
in U such that any k of them has intersection of
cardinality < x. (The proof is immediate.)

Perhaps a more substantial application of P is

to the Hajnal-M&té Principle, formulated in the study

of set mappings in combinatorial set theory, in Hajnal- X

M&té [HM]: ’ +

(HMK) There is a collection {hEI £ <k} ¢ ) «¥ with
hg(a) # a for every § < k and o < K+ such that:
whenever s € [K+]K_, we have

|{& < k| Yaes(h_ (a) ¢ s)}| < x.

13
In the most general.setting, a set mapping on a

set X is a function f from a subset of P(X) into P(X)
such that xnf(x) = @ for every x in the domain. A

subset H ¢ X is free with respect to f iff Hnf(x) = ¢

for every x ¢ H in the domain. The general problem of
when large free subsets for set mappings exist was
extensively investigated through the fifties by

classical combinatorial means in Eastern Europe. (See ﬁ

the secondary source Williams [Wi] Chapter 3 for back- s

ground; a timely application of this theory is found
in Galvin-Hajnal [GH].) Forcing and in particular
Prikry's method of forcing with side conditions ex-
tended the realms of possibility, and Hajnal and Maté

distilled their principle with the following implica-

17!
ti : ‘
on in mind: If HMK and there is a k-Kurepa tree (see
the next section), then there is an f: [K+]3 + k% such
that no set of cardinality k- is free with respect to
f. Note that HMK itself is a proposition about set
mappings and free sets, Fitting into the pattern,
Hajnal and MAté established the consistency of HM by
. K
forcing, and then it was shown later to be true in L,
this time by Burgess [Bu2J], who first established a

stronger principle in L to be discussed in §3.,

Theorem 1 (Kanamori): PK + HM

"
|- Suppose that {fal « < x*} is as provided by P, .

+
For each a < k', let wa: o + Kk be injective. Finally,

define hg’ ket o> et for £ < « by:

1 if a = Q, else '
_ -1
hg(a) = wa (fa(E)) if this is defined, and
0 otherwise,

Thus, we took care that hg(a) # a for every a < K+.

To verify HM , suppose that s e [K+]K_. Let B be
the least element in s - {0,1}, and set t = 5 - (B+1) .
Define ¢: t + « by ¢(a) = wa(B). Then
{€ < k| Vaet(fa(&;) o))} > {g < K]Vaes(hg(a) ¢ s)}

and hence by P . this last set has cardinality < k. s
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§2. SILVER'S PRINCIPLE

In order to formulate gilver's Principle (and
also Burgess' Principle in the next section), it will
be helpful to establish once and for all some conven-
tions regarding trees. If T is a tree, TE will denote
the members of T at its Eth level; if x € T; and
g < ¢, then ng(xj is the tree predecessor of x at
level £. Let us assume that trees are normalized at

limits, i.e. if § is a limit ordinal and x # y are

both in the d8th level, then there is a § < § such that

T (x) # ﬁg(y). A x-Kurepa tree is a tree with height
£

ver < K.
k+1 such that \TK\ > k, yet |T€| < £ for every §
(This is congruous with the usual definition; it will

be convenient to identify cofinal branches with a top

level.) This gsettled, here is gilver's Principle:

(W) There is a k-Kurepa tree T and a function W with
K

domain k such that: )
(a) for each § < Kk, Wwe have W(§) < [Tg]K with
|WwE) | s k™.
(p) for any s € [TK]K-, there is a y < x such
that whenever Y = £ < Kk, we have
ng"s € W(E) .
Like Pos WK meets reguirements mandated by K~

+
+ 2 k') at all
size subsets of k (in essence, as |TK| )

'17i 
sufficiently large stages. The new feature in the
ascent towards the morass is the k-Kurepa tree struc-
ture: the system of approximations has small initial
stages. This combines with the potency provided by
the function W, which plays a role somewhat akin to
the sequence of distinquished subsets in <>+. Notice
that if T is any tree of height k+l, even if T were
not necessarily a k-Kurepa tree, as long as |T | z «~
and there is a function W satisfying (a) and (b) above
for this T, it is not difficult to see that 2 =«
must be satisfied.

The formulation of W'< evinced an evolution from
PK in the focus of attention as well. Upon seeing
some consistency results constructed by Hajnal and .
Juhdsz in setjtheoretic topology, Silver extracted WK
from the morass in order to effect these constructions
in L. So, unlike PK, W'< was formulated with ramifi-
cations in L in mind. That many, long-winded combina-
torial emanations from a morass actually follow from
WK is a testimonial to Silver's insight. Incidentally;
the consistency argument for WK through forcing is not
difficult. To the usual notion of forcing for ad-
joining a k-Kurepa tree one appends further clauses
reminiscent of Prikry's side conditions (see Burgess

[Bull] for an exposition). The following proof illus-
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trates the constructions possible with WK:

Theorem 2 (Silver): W_ -+ P .
- Let T and W be as provided by W _; we might as

+ : _
well assume that TK = k by renaming. Since W.< im
plies 2K-= Kk, for each 6§ < ¥« and s ¢ W(§), we can en-

umerate Sk as {h § s £E < k}. To take care of more

s
£l
and more of the hs's, for each £ < k we shall define

£

functions gE: T€ + Kk such that:

{(f) Whenever § < n s £, s € W(E), and WG"S € W(8),

h that g, (x) = RE(n, (x)).
there is an x ¢ s suc ng n's
Once this is done, the proof can be completed by
+
defining fa: k + kK for o < ¥k by:
£,(8) = gg(ﬂg(a)).

To verify P _, let s ¢ [K+]K— and ¢ € “«k. By hypothesis,
K
there is a 8§ < k such that § £ £ < k implies

"s € W(§), where we can take § sufficiently large

'l
3 1
so that LR is injective on s. For some n 2 §, we have g
1T lls _l _ ’ t ) ‘
h 6 = ¢'W5 . (Here, L is clear from the contex
n ' i 8
as that inverse of T whose range is the top level.) W@Lﬁ
Then for any £ such that n £ £ < k, there is an ﬂwﬂ
" ,

™ S

§
X € WE"S such that gg(x) = h n (mg(x)). But if

d='ﬂ'g

All that remains is to define the functions g, so

as to satisfy (t). But doing this is easy: Fix & < «,

_;(x), then fa(g) = gg(x) = ¢ (o). o

19
and let {<SC'6C'nC>| L < k } enumerate all triples
<s,6,n> where § s n < £, 8 € W(E), and wé"s € W(S).
Now define exactly one value for gg in each of «~
stages inductively: If ¢ < k~, since only ¢ values

have been determined before the tth stage and s_ has

4
cardinality k , there is an x ¢ s such that gg(x) has
- mT."s
not yet been defined. Set gg(x) = h n (“G(X))’ where

§ = GC and n = nc. Finally, after ¢~ stages extend gE
arbitrarily to all of TE' This completes the construc-
tion of gg, and the prqof is thus complete. ‘1
Let us now turn to the work of Hajnal and Juhész
alluded to earlier. Pondering the existence of special
topological spaces of large cardinality, Hajnal and
Juhész realized in the early 1970's that concrete con-
structions readily follow from certain existential
principles concerning matrices of sets. The following
proposition is the strongest form of these principles,

and can be appropriately dubbed the Hajnal-Juh&sz

Principle:

(HT ) There is a collection {f,| o < ¥} c X2 so that
whenever p < ¥k and s: K™Xp -+ K+ is injective,
there is a vy < k such that: if x « [K—YJ<w and
{eTI T < p} ¢ *2, there is a ¢ < K~ with

e, ¢ £

T for every 1 < p,

s(c,T)
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In set-theoretic topology, HL and HS are acronymid‘f
for hereditarily Lindel8f and hereditarily separable, ‘1
respectively, and an L space is an HL space which is
not HS, whilst an S space is an HS space which is not
HL. There is quite a literature on the study of these
spaces nowadays, particularly in connection with
Martin's Axiom, and a good but older reference is M.E.
Rudin [Rul] Chapter 5. An initial version of HJK was
considered by Hajnal and Juhész with the restriction
to just p = 1. Taking the concrete case k = Wy {other-
wise, we would have to frame the discussion in general
terms around k -Lindel®f and x -separable), they show
[HJ1] that this restricted. principle implies the exis-
tence of normal S spaces of large cardinality, the so-
called HFD spaces, and establish its consistency by
forcing. Then Devlin [D] established this restricted
principle in L, directly using morasses. As Hajnal
and Juhdsz later realized, the full principle Hle im—‘
plies the existence of normal, strong S spaces of large
cardinality. (A strong S space is a space X such that

XI'I

is an S space for every n € w.} Kunen [Ku2] has
shown that under MA + —CH, there are no strong S
spaces.

Concerning L spaces, Hajnal and Juh&sz early on

[HJ2] formulated the following principle to construct
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L spaces of large cardinality:

(HJK) There is a collection {fa’ a < "} < “2 so that
whenever p < ¢~ and s: kK xp + kb is injective
and ¢: Kk Xp + 2, we have
) ] . ,
e < «| wo<k 3T (5, y (B) # o(a, 1))} < .

(Actually, they had a further condition on {f | a < K+}
o
to insure good separation properties for the space
constructed, but this is the crux of the matter.)
HT i i i i N -
¢ lmmediately implies PK, that HJK follows from HJK

is not unexpected, and details are provided in [Ka3].
The proof of the following theorem is also given in full

in [Ka3]; it can be culled [HJ1I[HI2] ana especially

.

[Jul where a simpler conclusion is derived,

‘Theorem 3 {Silver): 2°KT 2 K~

and WK -+ HJ

8§3. BURGESS' PRINCIPLE

Although we saw in 51 that the Hajnal-M&té Prin-

ciple follows from Prikry's Principle, Burgess [Bu2]

originally established the Hajnal-Maté Principle in 1,

from a more complicated principle. The following,

asserting the existence of what he calls quagmires,

can be dubbed Burgess' Principle. Here, the notation

for k-Kurepa trees developed in §2 is still in effect
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(B.) There is a quagmire, i.e. a x-Kurepa tree T with
tree ordering <, equipped with a binary relation
o and a ternary function Q such that:

(1) vy ¢ x implies that x and y are distinct ele-
ments on the same level, and < linearly
orders every level.

(2) Q is defined on triples <§,§,x> just in case
Y 9% < x, and for any such, y < QY ,X,%x)9 X

(3) (Commutativity) If y < X < x' < x, then
QQ(¥,%,x') ,x',x) = Q¥ %X,X).

(4) (Coherence) If z 4y 4 X < X, then
Q(z,y.0(y,x,x)) = Q(zZ,x%,x).

(5) (Completeness) If y 9 x ¢ T, then for some

£ < K, "g(y) a nE(x) and Q(NE(Y),";(X)IX) =Y.

The reader familiar with morasses will already see a
growing resemblance, and as with morasses, he or she
is advised to draw pictures to get the picture. BK
may seem a bit ad hoc, but it is really the next
natural rung in the evolutionary ladder toward'a
morass. Whereas WK merely hypothesized K+ cofinal
branches and a system of approximations by K~ size
subsets, B'< endows a linear order on these branches
which is moreover reflected in the 4 orderings through

the previous levels. Thus, B, incorporates an impor-

tant feature of morasses; the main ingredient which
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must still be added to get the full structure of a
morass is the limit continuity across levels. Burgess
[Bu2] established the following result:

Theorem 4 (Burgess): If 2% =« ana BK, then W..

|- The idea here is first to enumerate the powerset

P(Tg) as {Xgpl p < x} for each £ < k, using 2 = k.
For X € 'I‘Y and £,p < y let S(&,p,x) =
{Q(y,ng(x),x)l y < ng(x) and y ¢ XEp}. Finally, for

Y < k set W(y)

{S(E,p,x)| E,p < ¥ and x ¢ TY]' Then
this function W works, capturing more and more of the
images of the k™ size subsets of the top level as we
move to the right along < and upwards along < :
The Completeness condition (5) implies that any
X € TK has at most k <-predecessors. Hence, given any
S € [TK]K—, there is an x ¢ Ty such that y 9 x for
every y € s. Again by Completeness, for each y ¢ s
there is a g (y) < x such that Q(wg(y)(y),wg(y)(x),x)==y.
Set § = sup{&(y)| vy ¢ s}. Then an easy application of
Commutativity shows that for any § with 6 < § < k and
Yy € s, we have ng(y) < ng(x) and Q(wg(y),ng(x),x) = vy.
Finally, let p be such that Xép = wé“s. Then for any

£ 2 max(8,p), the above arguments confirm that

me's = S(G,p,ng(x)) € W(§), completing the proof.

Just as Silver's Principle establishes Prikry's

Principle, Burgess' Principle establishes an extended



184

Prikry's Principle, first formulated by Rebholz [Re]l
soon after morasses first saw the light of day.

Rebholz' Principle is the following:

+ :
(R)) There is a collection {fa| a < k } of functions

ok

with f : a + a, so that whenever s ¢ [x ] and
o

» is a regressive function with domain = s
(i.e. ¢(a) < o for a € s), then

[{g < Ns] voes (£ () # ¢ (a)) ] < x.

KT = ¢ to be
Using morasses (and <>K, although 2 K seems
sufficient by a more complicated proof), Rebholz es-
tablished that if v = L, then RK holds for every
successor cardinal x. Clearly, R, is equivalent to
the following principle if we compose each fa with a

+
bijection o e«» x for v £ a < K ¢

+ :
i ns
(R;) There is a collection {ga| a < k } of functio
+ K
with g,: ® > K, SO that whenever s ¢ |k ] and

¢: s » k, then |{£ < N s Vaes (g (£) # d(a))}]<x.

+
Also, it is easy to see, by considering {gark la < x },
1

that:

R’< -+ PK'

ll 12 7 S e arxr tition

u v
ever f: [A]2 + vy, there is an X ¢ [A1" and a Y ¢ [A]

with UX < NY, and f"{<€,z>| &€ ¢ X and ¢ « Y} # v.

185
Note that the negation X # [u:v]i implies A ﬁ-[ﬂ+ﬂ]$,
and so provides a strong counterexample to the ordinary
partition symbol. Rebholz formulated his principle

with the following immediate consequence in mind;

+ -q2
Re = kA k71 .

(If {gal a > k*} is as provided by R;, set

F(B,a) = ga(B) for B8 > o to get a counterexample.)

The conclusion here is stronger than the negative
polarized partition relation entailed by PK, and the
difference is revealing: there, each fa need only be:
K + Kk, and here, we must have an elongated fa: o+ a.
Incidentally, this is the best possible limitative
result, since Shelah [S] established in ZFC + GCH that:
If x > w is regular and y+ < Kk, then K+ - (k+y)§.
Rebholz [Re] also provides an application of RK to the
theory of free subsets for set mappings, answering a
question of MAtE.

The following derivation highlights the lateral

approximations provided by < in BK

Theorem 5 (Kanamori): (2K = k and BK)* RK

- As mentioned in the proof of Theorem 4, by the
Completeness condition, any x e TK has at most «
9-predecessors. Hence, as TK has cardinality > «k, it

must have a subset well-ordered by < in order-type k*
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So, by renaming and trimming, we might as well assume

further that:
(6) T‘< = K+, and for o,B < K+, we have o @ B
iff a < B.

To prove the theorem, it suffices to establish the
more tractable Ré. By Theorem 4, there is a function
W satisfying the clauses of Silver's Principle for our
tree T. Thus, by ZK_ =k, for each § < x and s ¢ w(s),
we can enumerate Sk as {hZ\ 8§ < £ < k}, and define
functions gg: TE + k satisfying the condition (+),
just as in the proof of Theorem 2. Finally, let us
define fa: a + ¢ for o < kt as follows:

if ¢ < o, by Completeness, there is a p such that
wp(c) < ﬂp(a). Let pz be the least such p, and set
£.(0) = gpa(ﬂpa(a)).

g 4

This definition undexrscores the importance of <4; once

an ordering of the top nodes is established, < reflects*f

and completely approximates this ordering through the

lower levels.
To verify R;, let s ¢ tkT1* and ¢ e S¢. There
is a & < k such that:

(a) § £ £ < k implies wg"s e W(E), and

(b) 6 s £ < x and a < B ¢ s implies m (a) < HE(B)AJ

and Q(ﬂg(a),ng(ﬁ),ﬁ) = a.

R id
RN
i

18

H

ere, we can accomplish (b) using Completeness and
C

ommutativity much the same as in the proof of Theoren

4, Notice the following FACT: If T <Ns, § <<
r == KI

and there is an o ¢ s
]
uch that ng(;) < ng(a), then

for every B ¢ s we al
also have nE(;) < WE(B). This is

s . . ,
© by transitivity of v if a < B, and by the Coheren
ce

condition (4) if B < q.
:n-"
Now for some n 2 §, we have h § S.= pem -1 Set
5§ - e
E = {r < Nsg
| Jaes3E<n ("g(C) 4 T (@) and

Q(wg(c),ng(a),a) = Z)}. Clearly |E| < k; E consists

of the exceptional ordinals:

Su
ppose that [ ¢ (M\s - E). By Completeness and

t o j '
he FACT, there is a fixed e with n € p < x such that
| a

_ o«
p pg for every a ¢ s (where pg was defined in the

course of the definition
of fa)' Now we can complete

the proof as in Theorem 2. By condition (+) on th
e

gg'sl there iS an x e "S g =
m SuCh that X
" D D( )
h ] = T
( S(x)). But if a .(X) € S, then

f - _ n
0L(C) gp(x) = ¢(a) . This establishes Ré. 4

The following diagram summarizes the implications

in the first three sections assuming the GCH:

o« W
=
=
A

(<]
A

= A Fal
Lo IR Slhe ofiR
| [ &%
A1

I e o«

o
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I do not know whether any converses are true.

§4, GENERALIZATIONS

This section considers versions of the various
combinatorial principles also available at limit car-
dinals; perhaps the main interest in these generali-
zations lies ih the consequent limitative results in
the partition calculus which counterpoint the positive
results available from large cardinals. So, let me
provide the backdrop of historical context, first of
all for the polarized partition relation.

In general, the proposition

K K

™) K } |2
seem to hold but rarely. The earliest result along
these lines was due to Erdds and Rado [ER] Theorem 48,
who established (*) for x = w. Hajnal [H] then es-
tablished (*) for k a measurable cardinal; see also
Chudnovsky [C] and Kanamori {Kall for some refinements.
Chudnovsky claims without proof in his paper that (*)
holds for k a weakly compact cardinal, and proofs have
since been provided by Wolfsdorf [Wol, Shelah, and
Kanamori [Ka2].

For successor cardinals k, we saw in 81 that PK

denies (*) in strong fashion. Unpublished work of
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Laver [L] provides a positive consistency result: Say
that a non-trivial ideal over a regular cardinal k >

is a Laver ideal iff whenever X ¢ P(k) - I with

+
+ .
|X| = k7, there is a Y ¢ [X1* so that: whenever

< .
ze [yl , then Nz ¢ I. Notice that any measure

over a measurable cardinal k is dual to a Laver ideal

over k. Laver noted that the existence of a Laver
ideal implies (*) (where the 2 can be replaced by any

ordinal < «). Refining an argument of Kunen [Kul], he

then established the relative consistency of w, carry-

ing a Laver ideal, by forcing over a ground model
satisfying ZFC and a strong large cardinal hypothesis,

the existence of a huge cardinal.
The study of the even rarer g

(**) ko (a)g for every o < k_

also has a rambling history. After years of partial’

results and conjectures, Baumgartner and Hajnal [BH]

established (**) for k = w, as a consequence of a more

general result which they established in elegant
fashion by using Martin's Axiom and an absoluteness
argument, Avoiding these tricks of the trade, Galvin
[G] provided a direct proof which is a combinatorial

tour de force. More recently, Tedorcevic has announced

further refinements. It is not known whether (**)

holds for k a measurable cardinal; perhaps the best
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partial result is due to Laver. He was first to ob-

serve that if there is a Laver ideal over k, then

K+ - (K+K+l,a)§ for every a < K+. I established

Laver's result without knowing of it, and a full proof

is provided in [Ka4]. Also in [Ka4] is the result that

if k is a weakly compact cardinal, then

K+ -+ (K+K+l,[K:K+])§, a technical statement somewhat

stronger than K+ -+ [K:K]g, which already follows from

the known relation (*) for weakly compact cardinals.

For successor cardinals, we saw in §3 that RK denies

(**) in strong fashion. In the positive direction,

there is again Laver's result about a Laver ideal over

Wy, starting with the consistency strength of a huge

cardinal. Gray also has some partial positive results.
Turning to the subject at hand, just as P|< and

RK deny partition relations for successor cardinals,

there are weaker versions which delimit the situation

for possibly limit cardinals.

+ K
(WPK) There is a collection {fal o < K} € K SO that
+.K s
whenever s ¢ [k J° and ¢ € "k, we have

[{g < x| Waes(£ (E) # ¢(a))}] < «.

+ .
i i ctions
(wR) There is a collection {fal a < k' } of fun
+ K .
f : o - o so that whenever s ¢ [k ] and ¢ is a
o
regressive function with domain = s, then

1{e < Ns| Voaes(£,(6) # o(a))}]| < .
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There are versions of the other combinatorial princi-
ples with the requisite strength (one is stated for WK
in [Ka3]), but to discuss them would take us somewhat

afield. 1In direct analogy to previous results, we

have:
wPI< -+
K k|2

+ 2
wRK -+ K #+ [K.K]K

I established [Ka2][Kad4] the consistency of these pro-
positions via a forcing which does not (too much) dis-

turb the universe; e.g. for the stronger wRK,

Theorem 6 (Kanamori): If the ground model satisfies

< + . K .
kK = Kk, then there is a x -c.c., <k-distributive

forcing extension in which wRK holds. (Furthermore,

properties like the Mahloness of k are preserved.)

The proof involves a new and elegant kind of den-
sity argument, first seen in the work of Shelah. By
itself, this is a piecemeal result, and to genuinely
contrast the positive partition relations from large
ca:dinals, the actual situation in L must be ascer-
tained. Recent and continuing work of Shelah and
Stanley [SS1][SS2] and Velleman [V] have made the for-
midable apparatus of the (k,l)-morass (a gap-1 morass
at k) more tractable (at least for some) by providing

a Martin's Axiom-type characterization. That is,
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certain partial orders and collections of dense sets
are described, and the existence of a morass is shown
to be equivalent to the proposition that for every
such partial order and every such collection F of
dense sets, there is an F-generic filter in the usual

sense. The partial order used in the pfoof of Theorem

6 is a paradigm case of a canonical limit partial order,

in the sense of Shelah and Stanley. It was to handle
such orders that led Shelah and Stanley to extend
their characterization of morasses. They show how
canonical limit partial orders can be accommodated in
a Martin's Axiom-type ‘characterization for (x,1l)-
morasses "with built-in { principle", when there is
a non-reflecting stationary subset of «, i.e. an

S ¢ «k which is stationary in k yet SN a is not stat-
ionary in o for any o < k. They establish that such
morasses with built-in <> principle exist in L, and,
of course, it is a well-known result of Jensen [Je]
that in L, a regular k > w is not weakly compact iff
there is a non-reflecting stationary subset of «.
Velleman is also developing a scheme along similar
lines, but with a more concise formulation. Assuming
that the partial order used in Theorem 6 fits into
either the Shelah-Stanley or Velleman scheme in its

final form, we have the following characterization of
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weak compactness in L:

Theorem 7: If V = L, then the following are equiva-
lent for regular x »> w:

(1) ¥ is not weakly compact
(ii) wR
K

(1ii) wp
K

+ -
K K
(iv) [ J #
K KjK
(v) k* 7 [K:K]i

This is the heralded counterpoint to large cardinals.
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