SEPARATING ULTRAFILTERS ON UNCOUNTABLE CARDINALS

BY AKI KANAMORI AND ALAN D. TAYLOR

ABSTRACT

A uniform ultrafilter U on κ is said to be λ -separating if distinct elements of the ultrapower never project U to the same uniform ultrafilter V on λ . It is shown that, in the presence of CH, an ω -separating ultrafilter U on $\kappa > \omega$ is non- (ω, ω_1) -regular and, in fact, if $\kappa < \mathbf{N}_{\omega}$ then U is λ -separating for all λ . Several large cardinal consequences of the existence of such an ultrafilter U are derived.

§1. Introduction

We begin by establishing our notation and terminology. Throughout this paper κ , λ , μ etc. will denote infinite (but not necessarily regular) cardinals, and " λ will denote the set of all functions mapping κ to λ . Suppose now that U is an ultrafilter on κ . U is said to be uniform if every set in U has cardinality κ . The usual equivalence relation \sim_U on " λ is given by $f \sim_U g$ iff $\{\alpha < \kappa : f(\alpha) = g(\alpha)\} \in U$, and we let the equivalence class of f be denoted by $[f]_U$. The set of such equivalence classes can be linearly ordered by setting $[f]_U \leq [g]_U$, iff $\{\alpha < \kappa : f(\alpha) \leq g(\alpha)\} \in U$; the resulting structure is referred to as the ultrapower of λ with respect to U. If $f \in {}^{\kappa}\lambda$ then f projects U to an ultrafilter $f_*(U)$ on λ where $X \in f_*(U)$ iff $f^{-1}(X) \in U$. The ordering given by declaring $f_*(U) \leq_{RK} U$ is called the Rudin-Keisler ordering. The property of ultrafilters that we will consider here is given by the following.

DEFINITION 1.1. Suppose that U is a uniform ultrafilter on κ and $\lambda \leq \kappa$. Then U will be called λ -separating iff whenever $f_*(U)$ is a uniform ultrafilter on λ , the following implication holds:

$$\forall g \in {}^{*}\lambda([f]_{U} \neq [g]_{U} \Rightarrow f_{*}(U) \neq g_{*}(U)).$$

U is said to be separating if U is λ -separating for every $\lambda \leq \kappa$.

Received March 3, 1983 and in revised form January 2, 1984

The notion of a separating ideal was introduced in [10]; it is an easy exercise to show that an ultrafilter U is separating in the sense of Definition 1.1 iff the ideal on κ dual to U is separating in the sense of [10].

In Section 2, we consider non-regularity properties of separating ultrafilters and obtain some companion results to those of Pelletier [11]. In particular, we show that if U is an ω -separating ultrafilter on κ and CH holds, then U is non- (ω, ω_1) -regular, and if $\kappa < \aleph_{\omega}$ then U is non- (λ, λ^+) -regular for every $\lambda \le \kappa$. Several large cardinal consequences of the existence of a separating ultrafilter are discussed in Section 3. In Section 4, we show that if U is λ -separating and non- (λ, λ^+) -regular, then U is λ^+ -separating; this result is reminiscent of the well-known analogous result for λ -descendingly incomplete ultrafilters [3], [4], [9].

§2. Non-regularity properties of separating ultrafilters

Recall that a uniform ultrafilter U on κ is said to be (λ, μ) -regular iff there are μ sets in U any λ of which have empty intersection. Such a collection is called a (λ, μ) -regularizing family for U. If U fails to be (ω, κ) -regular, then U is said to be non-regular. Pelletier was the first to point out that separating ultrafilters possess a degree of non-regularity; his method of proof yields the following (although only a special case is explicitly stated in [11]).

THEOREM 2.1 (Pelletier [11]). Suppose that U is a separating ultrafilter on κ and that γ is a cardinal satisfying:

$$2^{2^{2^{\kappa}}} < 2^{\kappa}.$$

Then U is non- (γ, κ) -regular.

The above result, however, yields no information for the case $\kappa = \omega_1$. Thus, we take another approach to irregularity. This approach requires the following three lemmas, the first of which combines ideas of Blass [2] p. 34, Benda-Ketonen [1], and Jorgensen [6].

LEMMA 2.2. Suppose that U is an $(\omega, 2^{\lambda})$ -regular uniform ultrafilter on κ and V is an arbitrary uniform ultrafilter on λ . Then there are $(2^{\lambda})^{+}$ distinct elements of the ultrapower, all of which project U onto V.

PROOF. Let $\{A_{\alpha}: \alpha < 2^{\lambda}\}$ be an $(\omega, 2^{\lambda})$ -regularizing family for U and let $\{X_{\alpha}: \alpha < 2^{\lambda}\}$ be an enumeration of the sets in V. It clearly suffices to show that for any collection $\{f_{\alpha}: \alpha < 2^{\lambda}\}$ of functions mapping κ to λ , we can find a function $f: \kappa \to \lambda$ so that

(a)
$$[f_{\alpha}] \neq [f]$$
 for every $\alpha < 2^{\lambda}$, and

(b) $f_{*}(U) = V$.

We will accomplish this by constructing
$$f: \kappa \to \lambda$$
 so that

(a')
$$f_{\alpha}(\xi) < f(\xi)$$
 for every $\xi \in A_{\alpha}$ and $\alpha < 2^{\lambda}$, and (b') $f^{-1}(X_{\alpha}) \supset A_{\alpha}$ for every $\alpha < 2^{\lambda}$.

For each
$$\xi < \kappa$$
, let $\mathcal{O}(\xi) = \{\alpha < 2^{\lambda} : \xi \in A_{\alpha}\}$. Since infinite intersections

of the
$$A_{\alpha}$$
's are empty, we know that $\mathcal{O}(\xi)$ is finite. Hence, if we let $X = \mathcal{O}(X) + \mathcal{O}(\xi)$ then $|X| = 1$ and so we can always $f(\xi) \in X$ so that for every

$$\bigcap \{X_{\alpha} : \alpha \in \mathcal{O}(\xi)\}\$$
, then $|X| = \lambda$ and so we can choose $f(\xi) \in X$ so that for every $\alpha \in \mathcal{O}(\xi)$ we have $f_{\alpha}(\xi) < f(\xi)$. Notice that

(a") if
$$\alpha < 2^{\lambda}$$
 and $\xi \in A_{\alpha}$ then $\alpha \in \mathcal{O}(\xi)$ so $f_{\alpha}(\xi) < f(\xi)$, and (b") if $\xi \in A_{\alpha}$ then $\alpha \in \mathcal{O}(\xi)$ so $f(\xi) \in X_{\alpha}$.

Since
$$(a'') \rightarrow (a') \rightarrow (a)$$
 and $(b'') \rightarrow (b') \rightarrow (b)$, the proof is complete.

The next lemma is again heavily based on ideas of Benda-Ketonen [1]; its statement is aided by the following bit of terminology.

Definition 2.3. If U is a uniform ultrafilter on κ , then \mathcal{F} will be called a λ -family for U iff \mathcal{F} consists of functions each mapping a set in U to λ so that if $f,g \in \mathcal{F}$ and $f \neq g$ then

$$|\{\xi \in \text{domain}(f) \cap \text{domain}(g) : f(\xi) = g(\xi)\}| < \kappa.$$

LEMMA 2.4. Suppose that U is a uniform $(\lambda^+, \lambda^{++})$ -regular ultrafilter on κ , and assume that there is a λ^+ -family for U of size λ^{++} . Then U is (λ, λ^+) -regular.

PROOF. Let
$$\{A_{\alpha}: \alpha < \lambda_{\alpha}^{++}\}$$
 show that U is $(\lambda^{+}, \lambda^{++})$ -regular and let $\{f_{\alpha}: \alpha < \lambda^{++}\}$ be a λ^{+} -family for U where $f_{\alpha}: X_{\alpha} \to \lambda^{+}$. Define $g: \kappa \to \lambda^{+}$ so that if

 $\xi \in A_{\alpha}$ then $f_{\alpha}(\xi) < g(\xi)$. This is possible since ξ occurs in only λ many A_{α} 's. For each $\gamma < \lambda^+$ let $h_{\gamma}: \gamma \to \lambda$ be one to one and for each $\alpha < \lambda^{++}$ let

$$f'_{\alpha}: A_{\alpha} \to \lambda$$
 be given by $f'_{\alpha}(\xi) = h_{g(\xi)}(f_{\alpha}(\xi))$. Notice that $\{f'_{\alpha}: \alpha < \lambda^{++}\}$ is a λ -family for U . Without loss of generality, assume that for each $\alpha < \lambda^{+}$ there is a set $B_{\alpha} \in U$ so that $f'_{\alpha}(\xi) < f_{\lambda^{+}}(\xi)$ for every $\xi \in B_{\alpha}$. Finally, let $C_{\alpha} \in U$ be given by $C_{\alpha} = B_{\alpha} - \{\xi < \kappa : \exists \beta < \alpha (f'_{\beta}(\xi) = f'_{\alpha}(\xi))\}$. It is easy to see that $\{C_{\alpha}: \alpha < \lambda^{+}\}$ is a (λ, λ^{+}) -regularizing family for U .

The non-regularity results for separating ultrafilters that follow from Lemmas 2.2 and 2.4 are summarized in the following.

THEOREM 2.5. Suppose that U is a uniform ultrafilter on κ .

- (a) If U is λ -separating, then U is non- $(\omega, 2^{\lambda})$ -regular.
- (b) (CH). If U is ω -separating then U is non- (ω, ω_1) -regular; in particular, U is non-regular.

(c) (CH). If $\kappa < \aleph_{\omega}$ and U is ω -separating then U is non- (λ, λ^+) -regular for every λ .

PROOF. Parts (a) and (b) are immediate from Lemma 2.2. Part (c) follows from part (b), Lemma 2.4, and the observation that if $\kappa < \aleph_{\omega}$ and $\lambda < \kappa$ then there is a λ^+ -family for U of size λ^{++} . (One starts with a family of κ^+ eventually different functions from κ to κ , i.e. the case $\lambda = \kappa^-$, and then works one's way down to λ using the same argument that occurred in the proof of Lemma 2.4.)

§3. Large cardinal consequences

An ultrafilter U on κ is said to be weakly normal iff whenever $\{\alpha < \kappa : f(\alpha) < \alpha\} \in U$, there is a $\beta < \kappa$ so that $\{\alpha < \kappa : f(\alpha) \le \beta\} \in U$. U is said to be λ -indecomposable iff there is no uniform ultrafilter V on λ such that $V \le_{\Re \kappa} U$. Notice that if U is λ -indecomposable then U is λ -separating. The large cardinal consequences of the existence of a separating ultrafilter on κ that we obtain in this section are derived from the following well-known results.

THEOREM 3.1 (a) (Kanamori [7]). If there is a uniform non- (κ, κ^+) -regular ultrafilter U on κ^+ , then there is such an ultrafilter V on κ^+ which is also weakly normal and less than or equal to U in the Rudin-Keisler ordering.

- (b) (Kanamori [7] and Ketonen [8] independently). If there is a uniform ultrafilter U on a regular cardinal κ which in non- (ω, λ) -regular for some $\lambda < \kappa$, then there is such an ultrafilter V on κ which is also weakly normal.
- (c) (Jensen [5]). Suppose that $\kappa^{<\kappa} = \kappa$ and there is a uniform weakly normal ultrafilter on κ . Then there is an inner model with a measurable cardinal.
- (d) (Koppelberg for regular κ [5]; Donder for singular κ). Suppose that there is a uniform ultrafilter on κ which is λ -indecomposable for some regular $\lambda < \kappa$. Then there is an inner model with a measurable cardinal.

The following is now straightforward.

THEOREM 3.2. Suppose that U is an ω -separating ultrafilter on $\kappa > \omega$, and either

- (i) CH holds, or
- (ii) $\kappa > 2^{\kappa_0}$ and $\kappa^{<\kappa} = \kappa$.

Then there is an inner model with a measurable cardinal.

PROOF. Suppose first that (i) holds. Then either U is ω_1 -indecomposable, in which case we are done by Theorem 3.1(d), or there is a uniform ultrafilter V on ω_1 with $V \leq_{RK} U$. It is an easy exercise to show that in this case V is also

 ω -separating and, hence, non-regular by Theorem 2.5(c). But now we are done by Theorem 3.1(a) and (c).

If (ii) holds, then \widetilde{U} is non- (ω, λ) -regular for $\lambda = 2^{\aleph_0} < \kappa$ by Theorem 2.5(a). The desired result now follows from Theorem 3.1(b) and (c).

This is the best possible result on the consistency strength of the existence of a separating ultrafilter on some $\kappa > \omega$, except in cases like $\kappa \le 2^{\omega}$. When κ is strongly inaccessible, the following result shows that κ itself has substantial large cardinal properties.

THEOREM 3.4. Suppose that U is a separating ultrafilter on the strongly inaccessible cardinal κ . Then:

- (a) κ is in the ωth strong Mahlo class.
- (b) If the GCH holds below κ , then $2^{\kappa} = \kappa^{+}$.
- (c) Kurepa's Hypothesis for k fails.

PROOF. The proofs amount to a recasting of results in [12]. For (a), note first that by 2.5(a) and 3.1(b) we can assume that U is weakly normal. Moreover, it is easy to see that $| {}^{\kappa} \gamma / U | < \kappa$ for every $\gamma < \kappa$; i.e. if $f, g \in {}^{\kappa} \gamma$ and $[f]_{U} \neq [g]_{U}$ then $f_{*}(U) \neq g_{*}(U)$, and there are fewer than κ many ultrafilters on γ . By straightforward arguments (see proposition 8 of [12]) this is enough to verify that $\{\alpha < \kappa : \alpha \text{ is strongly inaccessible}\}$ is in U. We can now proceed by induction to establish that for each $n \in \omega$, $\{\alpha < \kappa : \alpha \text{ is } n \text{th-strongly Mahlo}\} \in U$. This is achieved by following the proof of theorem 6 of [12], using for the 1st case in that proof the fact that if $V \leq_{RK} U$, then V is also separating.

For (b), we again assume that U is weakly normal and $|{}^{\kappa}\gamma/U| < \kappa$ for every $\gamma < \kappa$ and call upon the proof of theorem 16 of [12]; this argument is essentially Scott's proof that if V is a normal ultrafilter on a measurable cardinal μ and $\{\alpha < \mu : 2^{\alpha} = \alpha^{+}\} \in V$, then $2^{\mu} = \mu^{+}$.

Finally, (c) follows in analogous fashion from theorem 7 of [12].

Whilst on the topic of large cardinals, let us mention a result of Sureson (unpublished). A normal ultrafilter on a measurable cardinal is separating, so it is natural to ask whether being a p-point, a well-known property of ultrafilters weaker than normality, is also a sufficient condition. Sureson established that this is not so. Specifically, she established that if κ is $2^{2\kappa}$ -supercompact (sic), then there is a p-point on κ which is not separating. Sureson has also shown that the consistency of the existence of a measurable cardinal is enough to obtain the consistency of the existence of a measurable cardinal which carries a non-separating p-point ultrafilter.

§4. A stepping up theorem

It is well-known that if λ is regular and U is a λ -indecomposable ultrafilter, then U is also λ^+ -indecomposable. (This was first proved by Chang [3] assuming $2^{\lambda} = \lambda^+$ and in general by Chudnovsky and Chudnovsky [4] and Kunen and Prikry [9].) The following result provides a partial analogue of this property for λ -separating ultrafilters.

THEOREM 4.1. Suppose that λ is regular and that U is λ -separating and non- (λ, λ^+) -regular. Then U is λ^+ -separating.

PROOF. Assume that U is a uniform ultrafilter on κ and that $f, g : \kappa \to \lambda^+$ show that U is not λ^+ -separating. We want to show that U is either (λ, λ^+) -regular or not λ -separating. For this, we will need the following lemmas.

LEMMA 4.2. There exists a collection $\{f_{\alpha}: \alpha < \lambda^{+}\}\$ of functions satisfying the following:

- (i) for each $\alpha < \lambda^+$, $f_\alpha : |\alpha| \rightarrow \alpha$ is a bijection, and
- (ii) if $\beta < \alpha < \lambda^+$ then $|\{\xi < \lambda : f_{\beta}(\xi) = f_{\alpha}(\xi)\}| < \lambda$.

PROOF. For $\alpha < \lambda$, choose any f_{α} satisfying (i). Suppose now that $\lambda \leq \alpha < \lambda^+$ and that f_{β} has been defined for each $\beta < \alpha$. Let $\{g_{\xi} : \xi < \lambda\}$ enumerate $\{f_{\beta} : \beta < \alpha\}$ in order-type λ and let $\{\gamma_{\xi} : \xi < \lambda\}$ enumerate α in order-type λ . We will define a bijection $f_{\alpha} : \lambda \to \alpha$ by a back and forth induction involving λ steps, where at step $\xi < \lambda$ we specify values for $f_{\alpha}(\xi)$ and $f_{\alpha}^{-1}(\gamma_{\xi})$. In order to ensure that (i) and (ii) hold we need only do this so that f_{α} remains one to one and the following are satisfied:

- (iii) if $\eta \le \xi$ and $f_{\alpha}(\xi)$ has not yet been defined then $f_{\alpha}(\xi) \ne g_{\eta}(\xi)$;
- (iv) if $\eta \leq \xi$ and $f_{\alpha}^{-1}(\gamma_{\xi})$ has not yet been defined then $f_{\alpha}^{-1}(\gamma_{\xi}) \neq g_{\eta}^{-1}(\gamma_{\xi})$. It is easy to see that this is possible. To see that (ii) holds notice that if $\eta < \lambda$ and $f_{\alpha}(\xi) = g_{\eta}(\xi) = \gamma_{\eta}$, then $\xi < \max\{\eta, \eta'\}$; i.e. if $f_{\alpha}(\xi)$ was defined at stage ξ and $\xi \geq \eta$ then $f_{\alpha}(\xi) \neq g_{\eta}(\xi)$ by (iii) and if $f_{\alpha}(\xi)$ was defined at stage $\eta' < \xi$ then $f_{\alpha}^{-1}(\gamma_{\eta'}) \neq g^{-1}(\gamma_{\eta'})$ by (iv).

Now, to complete the proof of Theorem 4.1 we define, for each $\alpha < \lambda^+$, a function $h_{\alpha}: \lambda^+ - (\alpha + 1) \to \lambda$ by

$$h_{\alpha}(\beta) = f_{\beta}^{-1}(\alpha).$$

Recall that $f, g : \kappa \to \lambda^+$ were chosen so that $[f]_U \neq [g]_U$ but $f_*(U)$ and $g_*(U)$ are the same uniform ultrafilter on λ^+ . Without loss of generality, assume that $f(\xi) < g(\xi)$ for every $\xi < \kappa$. We consider 3 cases.

Case 1. $\{\alpha < \lambda^{+}: (h_{\alpha} \circ f)_{*}(U) \text{ is not uniform on } \lambda\}$ has cardinality λ^{+} .

In this case we get a cardinal $\mu < \lambda$, a set $Z \subseteq \lambda^+$ and for each $\alpha \in Z$ a set $X_{\alpha} \in U$ so that $|Z| = \lambda^+$ and $h_{\alpha}(f(X_{\alpha})) \subseteq \mu$. Let $Y_{\alpha} = X_{\alpha} - \{\gamma < \kappa : f(\gamma) \le \alpha\}$. Notice that $Y_{\alpha} \in U$ since $f_{*}(U)$ is a uniform ultrafilter on λ^+ . We claim that $\{Y_{\alpha} : \alpha < \lambda^+\}$ shows that U is (λ, λ^+) -regular. To see this, suppose not and choose γ occurring in λ many Y_{α} 's. Let $\beta = f(\gamma)$. Since $h_{\alpha}(\beta) < \mu$ we get a set $A \subseteq \lambda^+$ so that $|A| = \lambda$ and for each $\alpha, \alpha' \in A$ we have $h_{\alpha}(\beta) = h_{\alpha'}(\beta)$. (Notice that for each such α we have $h_{\alpha}(\beta)$ defined since $\gamma \in Y_{\alpha} \to f(\gamma) > \alpha \to \beta > \alpha$. Thus $\alpha < \beta$ so $\beta \in \text{domain}(h_{\alpha})$.) But now we have $f_{\beta}^{-1}(\alpha) = f_{\beta}^{-1}(\alpha')$, contradicting the fact that f_{β} is one to one.

Case 2. $\{\alpha < \lambda^+ : [h_\alpha \circ f]_U = [h_\alpha \circ g]_U\}$ has cardinality λ^+ .

Let Z be the set of such α and choose $X_{\alpha} \in U$ for each $\alpha \in Z$ so that $h_{\alpha} \circ f(\gamma) = h_{\alpha} \circ g(\gamma)$ for every $\gamma \in X_{\alpha}$. We claim that the collection $\{X_{\alpha} : \alpha \in Z\}$ shows that U is (λ, λ^+) -regular. To see this, suppose not and choose γ occurring in λ many X_{α} 's. Then for each such α we have $f_{f(\gamma)}^{-1}(\alpha) = f_{g(\gamma)}^{-1}(\alpha)$ and so $f_{f(\gamma)}^{-1}$ and $f_{g(\gamma)}^{-1}$ agree on a set of size λ . Thus $f(\gamma) = g(\gamma)$, contradiction.

Case 3. Otherwise.

In this case we have at least one h_{α} so that

$$[h_{\alpha} \circ f]_{U} \neq [h_{\alpha} \circ g]_{U}$$

and $(h_{\alpha} \circ f)_{*}(U)$ is a uniform ultrafilter on λ . Since $f_{*}(U) = g_{*}(U)$ it follows that $(h_{\alpha} \circ f)_{*}(U) = (h_{\alpha} \circ g)_{*}(U)$ and so U is not λ -separating in this case.

Combining Theorem 4.1 with the non-regularity results in Theorem 2.5(b) and (c), we obtain the following.

THEOREM 4.3 ([3]). Assume that U is an ω -separating ultrafilter on κ . Then

- (a) U is ω_1 -separating, and
- (b) if $\kappa < \aleph_{\omega}$, then U is a separating ultrafilter (i.e., λ -separating for all λ).

It is worth noting that the converse of Theorem 4.3(a) is not provable. In fact, the existence of an ω_1 -separating ultrafilter on ω_1 has no large cardinal consequences. For example, if $2^{\omega_1} = \omega_2$, then a straightforward inductive construction yields a uniform ultrafilter U on ω_1 having the property that any $f: \omega_1 \to \omega_1$ is either bounded (mod U) or one to one (mod U). (This was pointed out to us several years ago by Prikry.) But, as shown in [10], every ideal (in particular: U^*) is separating with respect to one-one functions, and so U is ω_1 -separating.

REFERENCES

- 1. M. Benda and J. Ketonen, Regularity of ultrafilters, Isr. J. Math. 17 (1974), 231-240.
- 2. A. Blass, Orderings of ultrafilters, Thesis, Harvard, 1970.
- 3. C. C. Chang, Descendingly incomplete ultrafilters, Trans. Am. Math. Soc. 126 (1967), 108-118.
- 4. G. Chudnovsky and D. Chudnovsky, Regularnye i ubyvajusche nepolnye ultrafiltry, Dokl. Akad. Nauk SSR 198 (1971), 779-782.
- 5. H. Donder, R. Jensen and B. Koppelberg, Some applications of the core model, in Set Theory and Model Theory (R. B. Jensen and A. Prestel, eds.), Lecture Notes in Math., No. 872, Springer-Verlag, 1981, pp. 55-97.
- 6. M. Jorgensen, Images of ultrafilters and cardinality of ultrapowers, Am. Math. Soc. Notices 18 (1971), 826.
- 7. A. Kanamori, Weakly normal filters and irregular ultrafilters, Trans. Am. Math. Soc. 220 (1976), 393-399.
 - 8. J. Ketonen, Some combinatorial properties of ultrafilters, Fund. Math. 107 (1980), 225-235.
- 9. K. Kunen and K. Prikry, On descendingly incomplete ultrafilters, J. Symb. Logic 36 (1971), 650-652.
- 10. A. Mekler, D. Pelletier and A. Taylor, A note on a lemma of Shelah concerning stationary sets, Proc. Am. Math. Soc. 83 (1981), 764-768.
- 11. D. Pelletier, A result on the cardinality of ultrapowers, Abstracts Am. Math. Soc. 82T-04-144, 3 (1982) 185
- 12. K. Prikry, On descendingly complete ultrafilters, in Cambridge Summer School in Mathematical Logic (A. R. D. Mathias and H. Rogers Jr., eds.), Lecture Notes in Math., No. 337,
- Springer-Verlag, 1973, pp. 459-488.

 13. A. Taylor, Regularity properties of ideals and ultrafilters, Ann. Math. Logic 16 (1979), 33-55.

BOSTON UNIVERSITY BOSTON, MA 02215 USA

AND

Union College Schenectady, NY, USA