SEPARATING ULTRAFILTERS
ON UNCOUNTABLE CARDINALS

BY
AKI KANAMORI AND ALAN D. TAYLOR

ABSTRACT
A uniform ultrafilter U on \kappa is said to be \lambda-separating if distinct elements of the ultrapower never project U to the same uniform ultrafilter V on \lambda. It is shown that, in the presence of CH, an \omega-separating ultrafilter U on \kappa > \omega is non-(\omega, \omega)\text{-regular and, in fact, if } \kappa < \aleph_\omega \text{ then } U \text{ is } \lambda\text{-separating for all } \lambda. Several large cardinal consequences of the existence of such an ultrafilter U are derived.

§1. Introduction

We begin by establishing our notation and terminology. Throughout this paper \kappa, \lambda, \mu etc. will denote infinite (but not necessarily regular) cardinals, and \mathfrak{A} will denote the set of all functions mapping \kappa to \lambda. Suppose now that U is an ultrafilter on \kappa. U is said to be uniform if every set in U has cardinality \kappa.

The usual equivalence relation \sim_U on \mathfrak{A} is given by \(f \sim_U g \) iff \(\{ \alpha < \kappa : f(\alpha) = g(\alpha) \} \subseteq U \), and we let the equivalence class of f be denoted by \([f]_U\). The set of such equivalence classes can be linearly ordered by setting \([f]_U \leq [g]_U\), iff \(\{ \alpha < \kappa : f(\alpha) \leq g(\alpha) \} \subseteq U \); the resulting structure is referred to as the ultrapower of \lambda with respect to U. If \(f \in \mathfrak{A} \) then \(f \) projects U to an ultrafilter \(f^*(U) \) on \lambda where \(X \in f^*(U) \) iff \(f^{-1}(X) \subseteq U \). The ordering given by declaring \(f^*(U) \leq_{RR} U \) is called the Rudin–Keisler ordering. The property of ultrafilters that we will consider here is given by the following.

DEFINITION 1.1. Suppose that U is a uniform ultrafilter on \kappa and \lambda \leq \kappa. Then U will be called \lambda-separating iff whenever \(f^*(U) \) is a uniform ultrafilter on \lambda, the following implication holds:

\[\forall g \in \mathfrak{A} \left([f]_U \neq [g]_U \Rightarrow f^*(U) \neq g^*(U) \right) . \]

U is said to be separating if U is \lambda-separating for every \lambda \leq \kappa.

Received March 3, 1983 and in revised form January 2, 1984

131
The notion of a separating ideal was introduced in [10]; it is an easy exercise to show that an ultrafilter \(U \) is separating in the sense of Definition 1.1 iff the ideal on \(\kappa \) dual to \(U \) is separating in the sense of [10].

In Section 2, we consider non-regularity properties of separating ultrafilters and obtain some companion results to those of Pelletier [11]. In particular, we show that if \(U \) is an \(\omega \)-separating ultrafilter on \(\kappa \) and CH holds, then \(U \) is non-(\(\omega, \omega_1 \))-regular, and if \(\kappa < \aleph_\omega \) then \(U \) is non-(\(\lambda, \lambda^+ \))-regular for every \(\lambda \leq \kappa \). Several large cardinal consequences of the existence of a separating ultrafilter are discussed in Section 3. In Section 4, we show that if \(U \) is \(\lambda \)-separating and non-(\(\lambda, \lambda^+ \))-regular, then \(U \) is \(\lambda^+ \)-separating; this result is reminiscent of the well-known analogous result for \(\lambda \)-descendingly incomplete ultrafilters [3], [4], [9].

\[\frac{1}{2} \]

\section{Non-regularity properties of separating ultrafilters}

Recall that a uniform ultrafilter \(U \) on \(\kappa \) is said to be \((\lambda, \mu)\)-regular iff there are \(\mu \) sets in \(U \) any \(\lambda \) of which have empty intersection. Such a collection is called a \((\lambda, \mu)\)-regularizing family for \(U \). If \(U \) fails to be \((\omega, \kappa)\)-regular, then \(U \) is said to be non-regular. Pelletier was the first to point out that separating ultrafilters possess a degree of non-regularity; his method of proof yields the following (although only a special case is explicitly stated in [11]).

\begin{theorem}[Pelletier [11]]
Suppose that \(U \) is a separating ultrafilter on \(\kappa \) and that \(\gamma \) is a cardinal satisfying:
\[2^{2^{<\gamma}} < 2^\gamma. \]
Then \(U \) is non-(\(\gamma, \kappa \))-regular.
\end{theorem}

The above result, however, yields no information for the case \(\kappa = \omega_1 \). Thus, we take another approach to irregularity. This approach requires the following three lemmas, the first of which combines ideas of Blass [2] p. 34, Benda–Ketonen [1], and Jorgensen [6].

\begin{lemma}
Suppose that \(U \) is an \((\omega, 2^\kappa)\)-regular uniform ultrafilter on \(\kappa \) and \(V \) is an arbitrary uniform ultrafilter on \(\lambda \). Then there are \((2^\kappa)^+\) distinct elements of the ultrapower, all of which project \(U \) onto \(V \).
\end{lemma}

\begin{proof}
Let \(\{ A_\alpha : \alpha < 2^\kappa \} \) be an \((\omega, 2^\kappa)\)-regularizing family for \(U \) and let \(\{ X_\alpha : \alpha < 2^\kappa \} \) be an enumeration of the sets in \(V \). It clearly suffices to show that for any collection \(\{ f_\alpha : \alpha < 2^\kappa \} \) of functions mapping \(\kappa \) to \(\lambda \), we can find a function \(f : \kappa \rightarrow \lambda \) so that

\[\text{.} \]

(a) \([f_\alpha] \neq [f]\) for every \(\alpha < 2^\lambda\), and
(b) \(f_\alpha(U) = V\).

We will accomplish this by constructing \(f : \kappa \to \lambda\) so that
\((a') f_\alpha(\xi) < f(\xi)\) for every \(\xi \in A_\alpha\) and \(\alpha < 2^\lambda\), and
\((b') f^{-1}(X_\alpha) \supseteq A_\alpha\) for every \(\alpha < 2^\lambda\).

For each \(\xi < \kappa\), let \(\mathcal{O}(\xi) = \{\alpha < 2^\lambda : \xi \in A_\alpha\}\). Since infinite intersections of the \(A_\alpha\)'s are empty, we know that \(\mathcal{O}(\xi)\) is finite. Hence, if we let \(X = \bigcap\{X_\alpha : \alpha \in \mathcal{O}(\xi)\}\), then \(|X| = \lambda\) and so we can choose \(f(\xi) \in X\) so that for every \(\alpha \in \mathcal{O}(\xi)\) we have \(f_\alpha(\xi) < f(\xi)\). Notice that
\((a'')\) if \(\alpha < 2^\lambda\) and \(\xi \in A_\alpha\) then \(\alpha \in \mathcal{O}(\xi)\) so \(f_\alpha(\xi) < f(\xi)\), and
\((b'')\) if \(\xi \in A_\alpha\) then \(\alpha \in \mathcal{O}(\xi)\) so \(f(\xi) \in X_\alpha\).

Since \((a'') \rightarrow (a') \rightarrow (a)\) and \((b'') \rightarrow (b') \rightarrow (b)\), the proof is complete.

The next lemma is again heavily based on ideas of Benda–Ketonen [1]; its statement is aided by the following bit of terminology.

DEFINITION 2.3. If \(U\) is a uniform ultrafilter on \(\kappa\), then \(\mathcal{F}\) will be called a \(\lambda\)-family for \(U\) iff \(\mathcal{F}\) consists of functions each mapping a set in \(U\) to \(\lambda\) so that if \(f, g \in \mathcal{F}\) and \(f \neq g\) then
\[|\{\xi \in \text{domain}(f) \cap \text{domain}(g) : f(\xi) = g(\xi)\}| < \kappa.\]

LEMMA 2.4. Suppose that \(U\) is a uniform \((\lambda^+, \lambda^{++})\)-regular ultrafilter on \(\kappa\), and assume that there is a \(\lambda^+\)-family for \(U\) of size \(\lambda^{++}\). Then \(U\) is \((\lambda, \lambda^+)\)-regular.

PROOF. Let \(\{A_\alpha : \alpha < \lambda^{++}\}\) show that \(U\) is \((\lambda^+, \lambda^{++})\)-regular and let \(\{f_\alpha : \alpha < \lambda^{++}\}\) be a \(\lambda^+\)-family for \(U\) where \(f_\alpha : X_\alpha \to \lambda^+\). Define \(g : \kappa \to \lambda^+\) so that if \(\xi \in A_\alpha\) then \(f_\alpha(\xi) < g(\xi)\). This is possible since \(\xi\) occurs in only \(\lambda\) many \(A_\alpha\)'s. For each \(\gamma < \lambda^+\) let \(h_\gamma : \gamma \to \lambda\) be one to one and for each \(\alpha < \lambda^{++}\) let \(f'_\alpha : A_\alpha \to \lambda\) be given by \(f'_\alpha(\xi) = h_{\mathcal{O}(\xi)}(f_\alpha(\xi))\). Notice that \(\{f'_\alpha : \alpha < \lambda^{++}\}\) is a \(\lambda\)-family for \(U\). Without loss of generality, assume that for each \(\alpha < \lambda^+\) there is a set \(B_\alpha \subseteq U\) so that \(f'_\alpha(\xi) < f_\alpha(\xi)\) for every \(\xi \in B_\alpha\). Finally, let \(C_\alpha \subseteq U\) be given by \(C_\alpha = B_\alpha - \{\xi < \kappa : \exists \beta < \alpha : (f'_\beta(\xi) = f'_\alpha(\xi))\}\). It is easy to see that \(\{C_\alpha : \alpha < \lambda^+\}\) is a \((\lambda, \lambda^+)\)-regularizing family for \(U\).

The non-regularity results for separating ultrafilters that follow from Lemmas 2.2 and 2.4 are summarized in the following.

THEOREM 2.5. Suppose that \(U\) is a uniform ultrafilter on \(\kappa\).
(a) If \(U\) is \(\lambda\)-separating, then \(U\) is non-\((\omega, 2^\lambda)\)-regular.
(b) (CH). If \(U\) is \(\omega\)-separating then \(U\) is non-\((\omega, \omega_1)\)-regular; in particular, \(U\) is non-regular.
(c) (CH). If $\kappa < \aleph_\omega$ and U is ω-separating then U is non-(λ, λ^*)-regular for every λ.

Proof. Parts (a) and (b) are immediate from Lemma 2.2. Part (c) follows from part (b), Lemma 2.4, and the observation that if $\kappa < \aleph_\omega$ and $\lambda < \kappa$ then there is a λ^*-family for U of size λ^{++}. (One starts with a family of κ^+ eventually different functions from κ to κ, i.e. the case $\lambda = \kappa^+$, and then works one's way down to λ using the same argument that occurred in the proof of Lemma 2.4.)

§3. Large cardinal consequences

An ultrafilter U on κ is said to be weakly normal iff whenever $\{\alpha < \kappa : f(\alpha) < \alpha\} \subseteq U$, there is a $\beta < \kappa$ so that $\{\alpha < \kappa : f(\alpha) \leq \beta\} \subseteq U$. U is said to be λ-indecomposable iff there is no uniform ultrafilter V on λ such that $V \leq_{RK} U$. Notice that if U is λ-indecomposable then U is λ-separating. The large cardinal consequences of the existence of a separating ultrafilter on κ that we obtain in this section are derived from the following well-known results.

Theorem 3.1 (a) (Kanamori [7]). If there is a uniform non-$((\kappa, \kappa^+)\$)-regular ultrafilter U on κ^+, then there is such an ultrafilter V on κ^+ which is also weakly normal and less than or equal to U in the Rudin–Keisler ordering.

(b), (Kanamori [7] and Ketonen [8] independently). If there is a uniform ultrafilter U on a regular cardinal κ which in non-(ω, λ)-regular for some $\lambda < \kappa$, then there is such an ultrafilter V on κ which is also weakly normal.

(c) (Jensen [5]). Suppose that $\kappa^{< \kappa} = \kappa$ and there is a uniform weakly normal ultrafilter on κ. Then there is an inner model with a measurable cardinal.

(d) (Koppelberg for regular κ [5]; Donder for singular κ). Suppose that there is a uniform ultrafilter on κ which is λ-indecomposable for some regular $\lambda^\prime < \kappa$. Then there is an inner model with a measurable cardinal.

The following is now straightforward.

Theorem 3.2. Suppose that U is an ω-separating ultrafilter on $\kappa > \omega$, and either

(i) CH holds, or

(ii) $\kappa > 2^{\omega_1}$ and $\kappa^{< \kappa} = \kappa$.

Then there is an inner model with a measurable cardinal.

Proof. Suppose first that (i) holds. Then either U is ω_1-indecomposable, in which case we are done by Theorem 3.1(d), or there is a uniform ultrafilter V on ω_1 with $V \leq_{RK} U$. It is an easy exercise to show that in this case V is also
ω-separating and, hence, non-regular by Theorem 2.5(c). But now we are done by Theorem 3.1(a) and (c).
If (ii) holds, then \(\overline{U} \) is non-(ω, \(\lambda \))-regular for \(\lambda = 2^\omega < \kappa \) by Theorem 2.5(a).
The desired result now follows from Theorem 3.1(b) and (c).

This is the best possible result on the consistency strength of the existence of a separating ultrafilter on some \(\kappa > \omega_1 \) except in cases like \(\kappa \leq 2^\omega \). When \(\kappa \) is strongly inaccessible, the following result shows that \(\kappa \) itself has substantial large cardinal properties.

\textbf{THEOREM 3.4.} Suppose that \(U \) is a separating ultrafilter on the strongly inaccessible cardinal \(\kappa \). Then:

(a) \(\kappa \) is in the \(\omega \)th strong Mahlo class.
(b) If the GCH holds below \(\kappa \), then \(2^\alpha = \kappa^+ \).
(c) Kunen's Hypothesis for \(\kappa \) fails.

\textbf{PROOF.} The proofs amount to a recasting of results in [12]. For (a), note first that by 2.5(a) and 3.1(b) we can assume that \(U \) is weakly normal. Moreover, it is easy to see that \(|\gamma/\mu| < \kappa \) for every \(\gamma < \kappa \); i.e., if \(f, g \in \gamma \) and \([f]_\mu \neq [g]_\mu \) then \(f_*(U) \neq g_*(U) \), and there are fewer than \(\kappa \) many ultrafilters on \(\gamma \). By straightforward arguments (see proposition 8 of [12]) this is enough to verify that \(\{\alpha < \kappa : \alpha \text{ is strongly inaccessible}\} \in U \). We can now proceed by induction to establish that for each \(n \in \omega \), \(\{\alpha < \kappa : \alpha \text{ is } n\text{-th strongly Mahlo}\} \in U \). This is achieved by following the proof of theorem 6 of [12], using for the 1st case in that proof the fact that if \(V \equiv_k U \), then \(V \) is also separating.

For (b), we again assume that \(U \) is weakly normal and \(|\gamma/\mu| < \kappa \) for every \(\gamma < \kappa \) and call upon the proof of theorem 16 of [12]; this argument is essentially Scott's proof that if \(V \) is a normal ultrafilter on a measurable cardinal \(\mu \) and \(\{\alpha < \mu : 2^\alpha = \alpha^+\} \in V \), then \(2^\alpha = \mu^+ \).

Finally, (c) follows in analogous fashion from theorem 7 of [12].

Whilst on the topic of large cardinals, let us mention a result of Sureson (unpublished). A normal ultrafilter on a measurable cardinal is separating, so it is natural to ask whether being a \(p \)-point, a well-known property of ultrafilters weaker than normality, is also a sufficient condition. Sureson established that this is not so. Specifically, she established that if \(\kappa \) is \(2^\omega \)-supercompact (sic), then there is a \(p \)-point on \(\kappa \) which is not separating. Sureson has also shown that the consistency of the existence of a measurable cardinal is enough to obtain the consistency of the existence of a measurable cardinal which carries a non-separating \(p \)-point ultrafilter.
§4. A stepping up theorem

It is well-known that if λ is regular and U is a λ-indecomposable ultrafilter, then U is also λ^+-indecomposable. (This was first proved by Chang [3] assuming $2^\lambda = \lambda^+$ and in general by Chudnovsky and Chudnovsky [4] and Kunen and Prikry [9].) The following result provides a partial analogue of this property for λ-separating ultrafilters.

Theorem 4.1. Suppose that λ is regular and that U is λ-separating and non-(λ, λ^+)-regular. Then U is λ^+-separating.

Proof. Assume that U is a uniform ultrafilter on κ and that $f, g : \kappa \to \lambda^+$ show that U is not λ^+-separating. We want to show that U is either (λ, λ^+)-regular or not λ-separating. For this, we will need the following lemmas.

Lemma 4.2. There exists a collection $\{f_\alpha : \alpha < \lambda^+\}$ of functions satisfying the following:

(i) for each $\alpha < \lambda^+$, $f_\alpha : |\alpha| \to \alpha$ is a bijection, and

(ii) if $\beta < \alpha < \lambda^+$ then $|\{\xi < \lambda : f_\alpha(\xi) = f_\beta(\xi)\}| < \lambda$.

Proof. For $\alpha < \lambda$, choose any f_α satisfying (i). Suppose now that $\lambda \leq \alpha < \lambda^+$ and that f_β has been defined for each $\beta < \alpha$. Let $\{g_\xi : \xi < \lambda\}$ enumerate $\{f_\beta : \beta < \alpha\}$ in order-type λ and let $\{\gamma_\xi : \xi < \lambda\}$ enumerate α in order-type λ. We will define a bijection $f_\alpha : \lambda \to \alpha$ by a back and forth induction involving λ steps, where at step $\xi < \lambda$ we specify values for $f_\alpha(\xi)$ and $f_\alpha^{-1}(\gamma_\xi)$. In order to ensure that (i) and (ii) hold we need only do this so that f_α remains one to one and the following are satisfied:

(iii) if $\eta \leq \xi$ and $f_\alpha(\xi)$ has not yet been defined then $f_\alpha(\xi) \neq g_\eta(\xi)$;

(iv) if $\eta \leq \xi$ and $f_\alpha^{-1}(\gamma_\eta)$ has not yet been defined then $f_\alpha^{-1}(\gamma_\eta) \neq g_\xi^{-1}(\gamma_\eta)$.

It is easy to see that this is possible. To see that (ii) holds notice that if $\eta < \lambda$ and $f_\alpha(\xi) = g_\eta(\xi) = \gamma_\eta$, then $\xi < \max\{\eta, \eta'\}$; i.e. if $f_\alpha(\xi)$ was defined at stage ξ and $\xi \equiv \eta$ then $f_\alpha(\xi) \neq g_\eta(\xi)$ by (iii) and if $f_\alpha(\xi)$ was defined at stage $\eta' < \xi$ then $f_\alpha^{-1}(\gamma_\eta) \neq g^{-1}(\gamma_\eta)$ by (iv).

Now, to complete the proof of Theorem 4.1 we define, for each $\alpha < \lambda^+$, a function $h_\alpha : \lambda^+ - (\alpha + 1) \to \lambda$ by

$$h_\alpha(\beta) = f_\beta^{-1}(\alpha).$$

Recall that $f, g : \kappa \to \lambda^+$ were chosen so that $[f]_U \neq [g]_U$ but $f_*(U)$ and $g_*(U)$ are the same uniform ultrafilter on λ^+. Without loss of generality, assume that $f(\xi) < g(\xi)$ for every $\xi < \kappa$. We consider 3 cases.
Case 1. \(\{ \alpha < \lambda^+: (h_\alpha \circ f)_*(U) \text{ is not uniform on } \lambda \} \) has cardinality \(\lambda^+ \).

In this case we get a cardinal \(\mu < \lambda \), a set \(Z \subseteq \lambda^+ \) and for each \(\alpha \in Z \) a set \(X_\alpha \subseteq U \) so that \(|Z| = \lambda^+ \) and \(h_\mu(f(X_\alpha)) \subseteq \mu \). Let \(Y_\alpha = X_\alpha - \{ \gamma < \kappa : f(\gamma) \leq \alpha \} \).

Notice that \(Y_\alpha \subseteq U \) since \(f_\mu(U) \) is a uniform ultrafilter on \(\lambda^+ \). We claim that \(\{ Y_\alpha : \alpha < \lambda^+ \} \) shows that \(U \) is \((\lambda, \lambda^+)-\text{regular} \). To see this, suppose not and choose \(\gamma \) occurring in \(\lambda \) many \(Y_\alpha \)'s. Let \(\beta = f(\gamma) \). Since \(h_\alpha(\beta) < \mu \) we get a set \(A \subseteq \lambda^+ \) so that \(|A| = \lambda \) and for each \(\alpha, \alpha' \in A \) we have \(h_\alpha(\beta) = h_{\alpha'}(\beta) \). (Notice that for each such \(\alpha \) we have \(h_\alpha(\beta) \) defined since \(\gamma \in Y_\alpha \rightarrow f(\gamma) > \alpha \rightarrow \beta > \alpha \). Thus \(\alpha < \beta \) so \(\beta \in \text{domain}(h_\alpha) \).) But now we have \(f_\beta^{-1}(\alpha) = f_\beta^{-1}(\alpha') \), contradicting the fact that \(f_\beta \) is one to one.

Case 2. \(\{ \alpha < \lambda^+: [h_\alpha \circ f]_U = [h_\alpha \circ g]_U \} \) has cardinality \(\lambda^+ \).

Let \(Z \) be the set of such \(\alpha \) and choose \(X_\alpha \subseteq U \) for each \(\alpha \in Z \) so that \(h_\mu \circ f(\gamma) = h_\alpha \circ g(\gamma) \) for every \(\gamma \in X_\alpha \). We claim that the collection \(\{ X_\alpha : \alpha \in Z \} \) shows that \(U \) is \((\lambda, \lambda^+)-\text{regular} \). To see this, suppose not and choose \(\gamma \) occurring in \(\lambda \) many \(X_\alpha \)'s. Then for each such \(\alpha \) we have \(f_\gamma^{-1} \circ (\alpha) = f_\gamma^{-1} \circ (\alpha') \) and so \(f_\gamma^{-1} \) and \(f_\gamma^{-1} \) agree on a set of size \(\lambda \). Thus \(f(\gamma) = g(\gamma) \), contradiction.

Case 3. Otherwise.

In this case we have at least one \(h_\alpha \) so that

\[
[h_\alpha \circ f]_U \neq [h_\alpha \circ g]_U
\]

and \((h_\alpha \circ f)_*(U) \) is a uniform ultrafilter on \(\lambda \). Since \(f_\alpha(U) = g_\alpha(U) \) it follows that \((h_\alpha \circ f)_*(U) = (h_\alpha \circ g)_*(U) \) and so \(U \) is not \(\lambda \)-separating in this case.

Combining Theorem 4.1 with the non-regularity results in Theorem 2.5(b) and (c), we obtain the following.

Theorem 4.3 ([3]). Assume that \(U \) is an \(\omega \)-separating ultrafilter on \(\kappa \). Then

(a) \(U \) is \(\omega_1 \)-separating, and

(b) if \(\kappa < \aleph_\omega \), then \(U \) is a separating ultrafilter (i.e., \(\lambda \)-separating for all \(\lambda \)).

It is worth noting that the converse of Theorem 4.3(a) is not provable. In fact, the existence of an \(\omega_1 \)-separating ultrafilter on \(\omega_1 \) has no large cardinal consequences. For example, if \(2^{\omega_1} = \omega_2 \), then a straightforward inductive construction yields a uniform ultrafilter \(U \) on \(\omega_1 \) having the property that any \(f : \omega_1 \rightarrow \omega_1 \) is either bounded (mod \(U \)) or one to one (mod \(U \)). (This was pointed out to us several years ago by Prikry.) But, as shown in [10], every ideal (in particular: \(U^* \)) is separating with respect to one-one functions, and so \(U \) is \(\omega_1 \)-separating.
REFERENCES

BOSTON UNIVERSITY
BOSTON, MA 02215 USA

AND

UNION COLLEGE
SCHENECTADY, NY, USA