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FINEST PARTITIONS FOR ULTRAFILTERS
AKIHIRO KANAMORI

If a uniform ultrafilter U over an uncountable cardinal « is not outright countably
complete, probably the next best thing is that it have a finest partition: a master
function f:x — w with f~'({n}) ¢ U for each n € w such that for any g: k — «, either
(a) it is one-to-one on a set in U, or (b) it factors through f (mod U), i.e. for some
function h, {a < k|h(f(2)) = g(«)} € U. In this paper, it is shown that recent
contructions of irregular ultrafilters over @, can be amplified to incorporate a finest
partition.

Henceforth, let us assume that all ultrafilters are uniform.

There has been an extensive study of substantial hypotheses, which are
nonetheless weaker than countable completeness, on ultrafilters over uncountable
cardinals. To survey some results and to establish a context, let us first recall the
Rudin-Keisler (RK) ordering on ultrafilters: If Uj is an ultrafilter over I, for i = 1, 2,
then U, <gg U, iff there is a projecting function y: I, — I, such that U, = ¢, (U,)
={X S|y X)) e U,}. Uy =g U, iff U, <px U, and U, <gg U, ; and U, <gg U,
iff U, <gg U, yet U, #gg U, . In terms of this ordering, if an ultrafilter U has a finest
partition f, then f,(U) over @ is maximum amongst all RK predecessors of U: for
any g:k — ,if g,(U) <gg U, then g is not one-to-one on a set in U, so since g factors
through f with some h, g,(U) = h,(f,(U)). Say now that an ultrafilter U over k >
is indecomposable iff whenever w < A < k, there is no V <z U such that V is a
(uniform) ultrafilter over A. In other words, whenever y: k — 4, there is a set X < 4
with |X| < Zsuch that  ~'(X) e U. By setting X; = {o < k| y(«) > S8}, we have for
regular 4 the equivalent notion of U being Z- -descendingly complete whenever

{(X;|p<i} U isva descending sequence, ie. ff < f implies X3 2 X5, then
(\p<1Xz€ U Since we are requiring 4 > , this is rather like having a k-complete
ultrafilter over a measurable cardinal x, except that countable completeness has
been left out.

Indecomposable ultrafilters were investigated by Prikry [P3], and Silver [Si]
showed that if U is an indecomposable ultrafilter over some x > 21, then U has a
finest partition. He used this result to establish that if there is an indecomposable
ultrafilter over an inaccessible cardinal, then 0* exists, and Ketonen [Ke2] provided
further consequences. Since then, Donder, Jensen, and Koppelberg [DJK ] used the

Received February 13, 1985; revised April 25, 1985.

©1986, Association for Symbolic Logic
0022-4812/86/5102-0006/$01.60

327

This content downloaded from 128.197.60.227 on Thu, 25 Sep 2014 15:26:41 PM
All use subject to JSTOR Terms and Conditions



328 AKIHIRO KANAMORI

core model K to weaken Silver’s hypothesis in various ways and to strengthen his
conclusion to the existence of an inner model with a measurable cardinal.

That indecomposability is not a vacuous concept was already known by Prikry
[P1]: he showed that if a k-complete ultrafilter U over a measurable cardinal « is
used in his well-known forcing, then in the generic extension any ultrafilter
extending U is indecomposable over k, now a strong limit cardinal of cofinality w.
Recently, Woodin (unpublished) showed how to collapse a measurable cardinal to
N, a strong limit cardinal, in such a way that there is an indecomposable ultrafilter
over it in the generic extension. Also, Sheard [Sh] showed how to change a
measurable cardinal to an inaccessible, non-weakly-compact cardinal in such a way
that there is an indecomposable ultrafilter over it in the generic extension. In all these
cases, by Silver’s result there is a finest partition.

Another substantial hypothesis on ultrafilters is irregularity. An ultrafilter U is
(4, k)-regular iff there are k sets in U such that any 4 of them have empty intersection.
An ultrafilter over k is simply regular iff it is (w, k)-regular. Regularity of ultrafilters
was first studied by Keisler, who asked whether every ultrafilter over w, was regular.
Prikry [P2] established that if V = L, then this is so; Ketonen [Kel] weakened the
hypothesis to 0* does not exist; and then Jensen (see [DJK]) used the core model K
to show that if CH holds and there is an irregular ultrafilter over w,, then there is an
inner model with a measurable cardinal.

The first example of an irregular ultrafilter over w, was provided by Laver [L],
using a model of Woodin. First, let us reaffirm some notation. By an ideal over k is
meant a nontrivial, k-complete ideal over k. If I is such an ideal, then I* = {X
< k| X ¢ I} is the collection of I-positive measure sets, and I* = {X < k|k — X
€ I} is the filter over k dual to I. An ideal is A-dense iff thereis a set A <= I'* with |4|
= Asuch that the following condition holds: forevery X € I *, thereisa Y € 4 so that
Y < X (modlI),ie. Y — X € I. Woodin (unpublished) showed that starting from
strong determinacy hypotheses (e.g. ADg and @ is regular), a model of ZFC can be
constructed in which the following assertion holds:

(*) < and there is a normal, w,-dense ideal I over w,.

Laver [L] then established that a consequence of (x) is the existence of an irregular
ultrafilter over w,. Very recently, relying only on ZFC plus a large cardinal axiom,
Foreman, Magidor and Shelah [FMS] showed how to generically change a huge
cardinal to w, in such a way that there is an irregular ultrafilter over @, in the
extension. This evolved from their work on strong forcing axioms, and involves an
elaboration of Laver’s proof.

Finally turning to the task at hand, let us show how to amplify these constructions
of irregular ultrafilters over w, to incorporate a finest partition. This is quite a
strong property in the presence of CH (which holds in the above models). For
instance, with CH any ultrafilter U over w, with a finest partition f is easily seen to
satisfy |w®'/U| = |o®/f(U)| = 2° = w,, sinceif g,:w, — w has a factoring function
hi:w — o with {a < o, | h(f(@) = gi(@)} € U fori =0, 1, then

la <o, 'go(a) #g@)}eU iff {new|hyn)# h(n)}e f(U).

However, it is well known that for any regular ultrafilter V over w,, |o®!/V| = 2%

This content downloaded from 128.197.60.227 on Thu, 25 Sep 2014 15:26:41 PM
All use subject to JSTOR Terms and Conditions



FINEST PARTITIONS FOR ULTRAFILTERS 329

We shall provide a detailed construction from the Woodin hypothesis (*) above,
and, at the end of the paper, describe the corresponding modifications for the
Foreman et al. construction. This work also shows how to procure a separating
ultrafilter over w, (see [KT1] and [KT2]), answering a question of Taylor;
Baumgartner independently provided such an ultrafilter by similar means. We are
indebted to Alan Taylor for asking the question that ultimately resulted in this
paper.

THEOREM. Assume (*). Suppose that D is any (nonprincipal) ultrafilter over w, and
fiw, = wanymap suchthat f ~({n}) € I for everyn € w. Then there is an ultrafilter
U over w, extending I* such that f,(U) = D, and moreover f is a finest partition for
U.

COROLLARY. Assume (). Then there are ultrafilters U over w, and D over o such
that E <gy U iff E =gy D.

The corollary is immediate if we take D to be RK-minimal in the theorem, and
such ultrafilters, called Ramsey ultrafilters, can be easily constructed using CH, a
consequence of <. Also a U as in the corollary must be separating in the sense of
[KT1] and [KT2], by Rudin’s lemma: whenever y.(D) = D, ¥ must be the identity
on a set in D. Finally, notice that the situation of the corollary stands in stark
contrast to the rich RK structure below regular ultrafilters: If CH and V is a regular
ultrafilter over w,, then every ultrafilter E over w is <y V, and moreover there are
(2®)* functions w; — w distinct (mod V') all of which project V' to E (see Lemma 2.2
of [KT2]).

PrOOF OF THE THEOREM. The overall structure of the argument follows [L]. Let us
set up the necessary notational scaffolding. First of all, & will be used in the
following version, easily seen to be equivalent to the usual formulation: There are
{fe]x <@} such that fi:o x @ x w—o and whenever g:w, x ® x @ - wy,
fa|gla x @ x @ = f,} is stationary in w,.

Now set X, = f~'({n})e I*. Let 4 be a dense set of size w, for I, and (Y|&
< w, )y anenumeration of 4 U {F}, where Yo = &F.Set I' = {| JZ| Zisa countable
subset of 4}. Then |I'| = w, by CH, which is a consequence of <, and (¥ is the only
element of 'notin ™.

Next, define M = {4,,|i,n € w} to be an array iff (i) M <= I, and (ii) | J; 4, < X,
(mod I). With CH, enumerate as (M, | a < w,y all arrays, so that each array occurs
cofinally often.

Finally, let J be the ideal generated by I U {f~'(X)| X ¢ D}, so that

AeJ* iff {n|X,nAel*}eD.

We will now construct a sequence {F,|a < w,) by induction, so that the
following conditions hold: each F, is a countable family of subsets of w;a < f
implies F, = F;; and F, U J* has the finite intersection property (fi.p.). (Idea:
(Uz<aw, F, w J* will generate the desired ultrafilter.)

Atlimit stages 0 < wy,set F; = ( J, <5 F,. Also,if weset W, = Ua<s Yromim» Where
f31s from our < sequence, and ( J;  J, W, has the f.i.p. with respect to F; U J*, then
set Fy,y = F5u {{Ji(Jn Wi} Otherwise, set F;,, = F;. (Idea: We incorporate g:
w, = w, where W,, = X, n g '({i}).)

Suppose now that we already have F,, ,. Consider the array M, = {A4,,|i,n € w}.
If ( J; Un Ain is not in the filter generated by F, ., U J*,set F,,, = F,, ;. Otherwise,
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330 AKIHIRO KANAMORI

we will add | J, Ay, to 4 to get E, ., for a carefully chosen h:w — . (Idea: We
take care of factormg g:w, = w, where 4, = X, 0 g~ '({i}))
First, let F,, , = {H;|j € }, and set H; = ﬂ,<J . Now set

Kj={m|X,,,nHjm UUA«'»-EF}‘

Then K; € D since by assumption [ J; U,, A;, is in the filter generated by F, ., U J*.
Also, by definition of array, X,, n H; 0 { )i (. 4i = H; 0 | ;i A;, except on a set
in I. For each me K, let k(m) = the largest j <m such that me K;. Then
Hym 0 JiAin€ I, so by countable completeness of I there is an h( ) such
that Hyy O Apmm € I'*. Finally, set B = |, Aymym-

Then, for every j, B n H; e J*: Consider m € K; — j. Then j < k(m), s0 H; 0 Apgmym
el*, ie. {m|X,nBn Hel"} 2K;—j. But Kj — j e D. (This is the only place
where we use the fact that D is nonprincipal.) Thus, all conditions continue to be
satisfied if we set F,,, = F,,, U {B}.

This completes the construction. Let U be the filter generated by | J, <o, Fo U J*.

We took care of all arrays. The following lemma says that any g: @, — @ can be
“reduced” to an array, by invoking the & sequence.

LEMMA 1. Suppose that {S;|i € w} is such that | ); S; has the f.i.p. with respect to U.
Then there isan array {A,, | i,n € w} such that, for everyn € o, A;, < S; n X, (mod I),
and \ )i\ J, Ain € U.

Proor. Let (C,|a <®,) be an enumeration of all finite intersections
from (J,<w, B, and if C, 0 (S;n X,)el”, choose g(a,i,n) so that Yy,
c C, N (S; n X,) (mod I), and set g(x,i,n) = 0 otherwise. For closed unboundedly
many f8 < w,, {C,|a < B} is the set of finite intersections from F;. So using <, find
such a f, a limit ordinal, such thatg [ f x @ x @ = f}.

Set Ay, = Ja<p Yrpim € I'- Thus, A, € S; 1 X, (mod I). Since { J; S; has the f.i.p.
with respect to U, for any o < 3,

{n|X,,nCanUS,-el*}eD.

For any n in this set, there is an i such that C, n §; » X, e I'"". Hence, Y, , € I*
and so C, n A;, € I". Thus,

{m|anCanUUA,~,,el*}eD.

(i {n A, thus has the f.i.p. with respect to F; U J*, and by the construction at stage
B, \Ji U Ai, was added, and hence is in U.

The next two lemmas are the important consequences of Lemma 1.

LeMMA 2. U is an ultrafilter over w,.

PROOF. Suppose that X < w, has the f.i.p. with respect to U. We will show that X
€ U.In Lemma 1, take each S; = X. Then for the corresponding array {4,,|i,n € }
we have  ); |, Ai, € X (mod 1), and | );{ ), 4;, € U.

LEMMA 3. If g:w, — o, thengfactors through f (mod U).

PrOOF. By Lemma 1, find an array {4,,|i,n € o} such that 4,, < g~ '({i}) n X,

’
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FINEST PARTITIONS FOR ULTRAFILTERS 331

(mod I),and | J; | J, 4in € Fy U J* for some f§ < w,. This array is some M, for o > B,
and a corresponding T = { }, Ay, Was added to F,., in the construction. Now

Z=UUMu— (g "IN X el
So 1 n
{a <o |h(f@)=g@} 2T (0, —Z)eU.

To complete the proof, we need the following result from Laver [L]:

LEMMA 4 (LAVER). If an ultrafilter V over a regular cardinal k >  is k-generated
over the dual of a normal ideal H over k (i.e. V is generated by H* U T, where|T| = k),
then V must be weakly normal: whenever {a < k |Y(x) < o} € V for Y.k — k, there is
ad < k such that {a < k|y(a) < d} e V.

The following lemma about weakly normal ultrafilters is simple to see:

LEMMA S. If V is a weakly normal ultrafilter over a regular cardinal k > w, then for
any y: k — k, either \y is strictly increasing on a set in V, or else is bounded (mod V), i.e.
there is an n < «k such that {o|y(a) < n} e V.

PrOOF. Given the , define ¢ by ¢(x) = least f such that () < ¥(f). Thus,
P(x) < aforevery o < k. If {a| Pp(x) = &} € V, then clearly y is strictly increasing on
this set. If {o|¢(x) <a} €V, by weak normality there is a § < such that
{o| p(a) < 6} € V. Then if we set n = sup{y/(p)|p < &}, then {a|Y(x) < n} e V.

Now the proof is complete. The U constructed above must be weakly normal by
Lemma 4, and hence by Lemma 5 any g: @, — @ is either one-to-oneonasetin U, or
else is bounded (mod U). In the latter case, we can bijectively identify the range of g
with a subset of w, and hence by Lemma 3 see that g factors through f (mod U).

Let us now turn to the modification for the Foreman et al. [FMS] construction.
Say that an ideal over « is layered iff there is a continuous, increasing chain of
Boolean algebras (B, |a < k*) such that P(x)/I = | ),<.+ B,, |B,| = k for each «,
and thereis astationary S < {o < k* | cf(x) = x} such thatforeacha € S, B,isa <«-
complete algebra and a regular subalgebra of P(x)/I. Foreman et al. first show how
to use a huge cardinal to construct a layered ideal over w,. Then they show that the
conditions on a layered ideal are enough to further force without adding any new
subsets of @, so as to procure a generic sequence (U, |« < w, ), where each U, is an
ultrafilter on B,, so that U = | J,<,, U, is a weakly normal ultrafilter over w,
extending I*.

They also develop a careful version of the forcing which ensures that for any
g:w; = o, there is a §: @, — w such that the equivalence class mod I of g~ '({n})
€ B, for each ne w, and {a < w|g(x) = g(o)} € U. (This corresponds to the &
argument of our Lemmas 1 and 3.) Thus, |0“!/U| = w, can be arranged, since | B|
= w, and CH holds in the model. To further arrange a finest partition for U, we can
first dovetail the construction of our theorem into the Foreman et al. construction
of the initial U, on B in the ultrafilter sequence, so that U, has a finest partition for
functions g: @, — w such that the equivalence class mod I of g ' ({n}) € B, for every
n € w.(To avoid conflicts, we can incorporate the construction of our theorem using
< restricted to the stationary set w, — S, where S is as in the definition of layered
ideal.) Now, the careful version of the Foreman et al. construction applied to this B,
will result in a finest partition for U. Notice that (x) is still a comparatively strong
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332 AKIHIRO KANAMORI

assumption, since our theorem provides a direct construction from (x), whereas the
argument just outlined is a forcing consistency proof.

Actually, the Foreman et al. argument works for any regular 4 less than the huge
cardinal, to procure a non-(4,A%)-regular ultrafilter over i*. However, our
incorporation of a finest partition seems to be limited to the case 4 = w, if one
examines the details of going from F,,, to F,,, in the construction. Thus, we can
ask:

Question 1. If . > w, can there be ultrafilters U over A* and D over 1 such that
E <gx U iff E<gg D?

Question 2. Can there be ultrafilters U; over w; for i = 0, 1, 2 such that E <z U,
iff E=gg Uy or E=¢¢ U,?
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