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Introduction

The higher infinite refers to the lofty reaches of the infinite cardinalities of set
theory as charted out by large cardinal hypotheses. These hypotheses posit
cardinals that prescribe their own transcendence over smaller cardinals and
provide a superstructure for the analysis of strong propositions. As such they
are the rightful heirs to the two main legacies of Georg Cantor, founder of
set theory: the extension of number into the infinite and the investigation
of definable sets of reals. The investigation of large cardinal hypotheses is
indeed a mainstream of modern set theory, and they have been found to play a
crucial role in the study of definable sets of reals, in particular their Lebesgue
measurability. Although formulated at various stages in the development of set
theory and with different incentives, the hypotheses were found to form a linear
hierarchy reaching up to an inconsistent extension of motivating concepts. All
known set-theoretic propositions have been gauged in this hierarchy in terms
of consistency strength, and the emerging structure of implications provides a
remarkably rich, detailed and coherent picture of the strongest propositions of
mathematics as embedded in set theory.

The first of a projected multi-volume series, this text provides a compre-
hensive account of the theory of large cardinals from its beginnings through
the developments of the early 1970’s and several of the direct outgrowths lead-
ing to the frontiers of current research. A further volume will round out the
picture of those frontiers with a wide range of forcing consistency results and
aspects of inner model theory. A genetic account through historical progression
is adopted, both because it provides the most coherent exposition of the math-
ematics and because it holds the key to any epistemological concerns. With
hindsight however the exposition is inevitably Whiggish, in that the consequen-
tial avenues are pursued and the most elegant or accessible expositions given.
Each section is a modular unit, and later sections often describe how concepts
discussed in earlier sections inspired the next advance. With speculations and
open questions provided throughout, the reader should not only come to ap-
preciate the scope and significance of the overall enterprise but also become
prepared to pursue research in several specific areas.

In what follows a historical and conceptual overview is given, one that
serves to embed the sections of the text into a larger framework. In an appendix
larger and more discursive issues that may be raised by the investigation of large
cardinals are taken up. See Hallett [84], Lavine [94], Moore [82], and Fraenkel-
Bar-Hillel-Levy [73] for more on the development of set theory; several themes
that are only broached here are substantiated in at least one of these sources.

The Beginnings of Set Theory

Set theory had its beginnings in the great 19th Century transformation of math-
ematics that featured the arithmetization of analysis and a new engagement
with abstraction and generalization. Very much new mathematics growing out



Introduction vii

of old, the subject did not spring Athena-like from the head of Cantor but in a
gradual process out of problems in mathematical analysis. In the wake of the
founding of the calculus by Leibniz and Newton the function concept had been
steadily extended from analytic expressions toward arbitrary correspondences,
in the course of which the emphasis had shifted away from the continuum taken
as a whole to its construal as a collection of points, the real numbers. The first
major expansion had been inspired by the explorations of Euler and featured
the infusion of infinite series methods and the analysis of physical phenomena,
particularly the vibrating string.

Working out of this tradition the young Cantor in the early 1870’s es-
tablished uniqueness theorems for Fourier series in terms of their points of
convergence, theorems based on collections of reals defined through a limit op-
eration iterable into the infinite. In a crucial conceptual move Cantor began
to investigate such collections and infinitary enumerations for their own sake,
and this led first to basic concepts in the study of sets of reals and then to the
formulation of the transfinite numbers. Set theory was born on that December
1873 day when Cantor established that the reals are uncountable, i.e. there
is no one-to-one correspondence between the reals and the natural numbers,
and in the next decades was to blossom through the prodigious progress made
by him in the theory of ordinal and cardinal numbers. But a synthesis of the
reals as representing the continuum and the new numbers as representing well-
orderings eluded him: Cantor could not establish the Continuum Hypothesis,
that the cardinality 2%° of the set of reals is the least uncountable cardinality
N1, part of his problem being that he could not define a well-ordering of the
reals.

Cantor came to view the finite and the transfinite as all of a piece, sim-
ilarly comprehendable within mathematics, and delimited by what he termed
the “Absolute” which he associated mathematically with the class of all or-
dinals and metaphysically with God. As part of this realist picture Cantor
viewed sets, at least until the early 1890’s, as inherently structured with a
well-ordering of their members. Ordinal and cardinal numbers resulted from
successive abstraction, from a set z to its ordertype = and then to its cardinality
z.

But such a structured view served to accentuate a growing stress among
mathematicians, who were already exercised about two related issues: whether
infinite collections can be investigated within mathematics at all and how far
the function concept is to be extended. The entrenched positions being finitism
and constructivism, there was open controversy after Ernst Zermelo [04] for-
mulated what he soon called the Axiom of Choice and established his Well-
Ordering Theorem, that the axiom implies every set can be well-ordered.

With axiomatization assuming a general methodological role in mathemat-
ics Zermelo [08a] soon published the first axiomatization of set theory. But as
with Cantor’s work the move was in response to mathematical pressure for a
new context: Beyond the stated purpose of securing set theory from paradox
Zermelo’s main motive was apparently to buttress his Well-Ordering Theorem
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by making explicit its underlying set existence assumptions. In the process, he
shifted the focus away from the transfinite numbers to a combinatorial view of
sets structured solely by € and simple operations. Extracted from a specific
proof (for the Well-Ordering Theorem in his [08]) Zermelo’s axioms had the
advantages of simplicity and open-endedness. The generative set formation ax-
ioms, especially Power Set, were to lead to Zermelo’s [30] later adumbration of
the cumulative hierarchy view of sets, and the vagueness of the definit property
in the Separation Axiom was to invite Thoralf Skolem’s [23] proposal to base
it on first-order logic.

Skolem’s move was in the wake of a mounting initiative, one that was to
expand set theory with new viewpoints and techniques as well as to invest
it with a larger foundational significance. Gottlob Frege is regarded as the
greatest philosopher of logic since Aristotle for developing his 1879 Begriffss-
chrift (quantificational logic), establishing a logical foundation for arithmetic,
and generally stimulating the analytic tradition in philosophy. The architect of
that tradition is Bertrand Russell who in his early years, influenced by Frege
and Giuseppe Peano, wanted to found all of mathematics on the certainty of
logic. The vaulting expression of that ambition was the 1910-3 three volume
Principia Mathematica by Alfred Whitehead and Russell. But Russell was ex-
ercised by his well-known paradox, one which led to the tottering of Frege’s
mature formal system. As a result Principia was encased in a complex logical
system of different types and intensional predications ultimately breaking under
his Axiom of Reducibility, a fearful symmetry imposed by an artful dodger.

It remained for David Hilbert to shift the ground and establish math-
ematical logic as a field of mathematics. Russell’s philosophical disposition
precluded his axiomatizing logic, but Hilbert brought it under scrutiny as he
did Euclidean geometry by establishing an axiomatic context and raising the
crucial questions of consistency and later, completeness. This largely syntactic
approach was soon given a superstructure when in response to intuitionistic
criticism by Luitzen Brouwer and Hermann Weyl, Hilbert developed proof
theory and proposed his program of establishing the consistency of classical
mathematics with his metamathematics. These issues gained currency because
of Hilbert’s preeminence, just as mathematics in the large was expanded by his
reliance on non-constructive proofs and transcendental methods. Through this
expansion the Axiom of Choice became a mathematical necessity, particularly
because of maximality arguments in algebra, and arbitrary functions became
implicitly accepted in the growing investigation of higher function spaces. With
the increasing emphasis on frameworks and structures, the power set operation
became incorporated into mathematics.

Throughout, Zermelian set theory grew as the mathematical repository
of foundational concerns and initiatives. As the first result of his axiomatic
set theory Zermelo [08a] himself put the Russell paradox argument to use to
show that for any set z there is a set y C x such that y ¢ x (so that there
is no universal set). Friedrich Hartogs [15] in effect converted the Burali-Forti
paradox into the existence for any set x of a well-orderable set y not injectible
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into z. Analyzing the Zermelo [08] proof Kazimierz Kuratowski [21] provided
that definition of the ordered pair, antithetical to Russell’s type-ridden theory,
which became the standard way to reduce the theory of relations to sets. And
then Skolem [23] made his proposal of rendering Zermelo’s Separation Axiom
in terms of properties expressible in first-order logic.

More than that, Skolem intended for set theory to be based on first-order
logic with € construed syntactically and without a privileged interpretation.
This becomes clear in his application of the Lowenheim-Skolem theorem to get
the Skolem paradox: the existence of countable models of set theory although
it entails the existence of uncountable sets. Ironically, Skolem intended by
this means to deflate the possibility of set theory becoming a foundations for
mathematics, but following Kurt Godel’s work Skolem’s syntactical approach to
set theory came to be accepted. And again the ways of paradox were absorbed
into set theory, as the Lowenheim-Skolem theorem came to play an important
internal role when semantic methods were ushered in by Alfred Tarski.

Skolem [23] also and Abraham Fraenkel [21,22] independently proposed
the addition of the Replacement Axiom to Zermelo’s list, and this axiom soon
figured in a counter-reformation of sorts. John von Neumann [23] introduced
the ordinals (transitive sets well-ordered by €) and showed that every well-
ordering is isomorphic to an ordinal, thereby restoring Cantor’s transfinite
numbers as sets. No longer were the numbers abstractions, but in the new
formulation became incorporated into the Zermelian framework of sets built
up by € and simple operations. Von Neumann’s particular approach to axiom-
atization fostered the liberal use of proper classes in set theory and brought
Replacement into prominence through its role in definitions by transfinite re-
cursion.

With these developments before him Zermelo [30] presented his final ax-
iomatization of set theory, incorporating Replacement and also Foundation.
This axiomatization was in second-order terms, allowed urelements, and es-
chewed the Axiom of Infinity, but shorn of these features it became the stan-
dard Zermelo-Fraenkel (ZFC) one when recast in the soon to emerge terms of
first-order logic. The Foundation Axiom had been prefigured as a restricting
possibility by Dmitry Mirimanov [17], Skolem [23], and von Neumann [25]. Zer-
melo offered a synthetic view of a succession of natural models for set theory,
each a member of a next, essentially realizing that Foundation ranks the sets in
these models into a cumulative hierarchy. In current terms the axiom stratifies
the formal universe V' of sets as |, Vi, where Vj is 0, V41 is the power set
of V,, and Vjy for limit ordinals d is the union of the V,’s for a < 4. In a
notable inversion this iterative conception came to be accepted after Godel’s
later advocacy as a heuristic for motivating the axioms of set theory generally,
its open-endedness moreover promoting a principle of tolerance for motivating
new hypotheses mediating toward Cantor’s Absolute. Foundation is the one
axiom unnecessary for the recasting of mathematics in set-theoretic terms, but
it came to be the salient feature that distinguishes structural investigations
specific to set theory. Indeed, it can be fairly said that modern set theory is



the study of well-foundedness, the Cantorian well-ordering doctrines adapted
to the Zermelian combinatorial conception of sets.

In the 1930’s Godel’s incisive analyses brought about a transformation of
mathematical logic based on new initiatives for mathematical elucidation. The
main source was of course his Incompleteness Theorem [31], which led to the
undecidability of validity for first-order logic and the development of recur-
sion theory. But starting an undercurrent, the earlier Completeness Theorem
[30] clarified the distinction between the semantics and syntax of first-order
logic and secured its key instrumental property, compactness. Then Tarski
[33,35] set out his schematic definition of truth in set-theoretic terms, exercis-
ing philosophers to a surprising extent ever since. The groundwork had been
laid for the development of model theory, and set theory was to be considerably
enriched since the 1950’s by model-theoretic techniques. First-order logic came
to be accepted as the canonical language because of its semantic dexterity,
Skolem’s earlier suggestion for set theory taken up generally, and higher-order
logics became downgraded as the workings of the power set operation in dis-
guise.

So enriched and fortified by axioms, results, and techniques axiomatic set
theory was launched on its independent course by Godel’s construction of L
[38,39] leading to the relative consistency of the Axiom of Choice and the
Continuum Hypothesis. Synthesizing what came before, Godel built on the
von Neumann ordinals as sustained by Replacement to formulate a relative
Zermelian universe of sets based on logical definability, a universe imbued with
a Cantorian sense of order.

Large Cardinals

If the forgoing in brief (and with interpretative twists) is the high tradition of set
theory from Cantor to Godel, large cardinals are the trustees of older traditions
in direct line from Cantor’s original investigations of definable sets of reals and
of the transfinite numbers. Before taking up the more continuous tradition
having to do directly with the transfinite the other tradition is described, one
that was to be revitalized in the 1960’s by major new initiatives.

Descriptive set theory is the definability theory of the continuum, the study
of the structural properties of definable sets of reals. In his most substantive
approach to the Continuum Hypothesis Cantor had structured the problem via
perfect sets and established that the closed sets have the perfect set property
(11.3). Related were his contributions to measure theory, a theory that led
to the Borel sets and of course to Lebesgue measure. The major incentives of
descriptive set theory have been to approach sets of reals through definability
as Cantor had done, and to investigate the extent of the regularity properties,
of which Lebesgue measurability and Cantor’s perfect set property are two.
In a seminal paper Henri Lebesgue [05] provided the first hierarchy for the
Borel sets and applied Cantor’s diagonalization argument to show that the hi-
erarchy is both proper and does not exhaust the definable sets of reals. The
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subject really began with Mikhail Suslin’s discovery [17] of the analytic sets
and fundamental results about this first level of the later projective hierarchy.
The subsequent development by Nikolai Luzin, Waclaw Sierpinski, and their
collaborators featured tree representations of sets of reals, and it was through
this opening that well-founded relations entered mathematical practice, the
later tradition leading to Foundation and the iterative conception being quite
separate and motivated by heuristics. The transfinite numbers, at least the
countable ones, gained a further legitimacy through their necessary involve-
ment in this work, contributing to the mathematical pressure for their general
acceptance. Pressing upward in the projective hierarchy, by the early 1930’s
the descriptive set theorists had reached an impasse, one that was to be later
explained by Go6del’s delimitative results with L. (These matters are taken up
in §812,13.)

The other, more primal Cantorian initiative, the mathematical investiga-
tion of the transfinite, was vigorously advanced into the higher infinite by Felix
Hausdorff [08]. Dismissive of foundational issues, he pursued the structure of
transfinite ordertypes for its own sake and was first to consider a large cardinal,
a weakly inaccessible cardinal, as a natural limit point. Paul Mahlo [11,12,13]
then studied stronger limit points, the Mahlo cardinals. Closure under the
power set operation, intrinsic to the Zermelian set concept, was later incorpo-
rated in the concept of a (strongly) inaccessible cardinal by Sierpinski-Tarski
[30] and Zermelo [30]. In the early semantic investigations before the general
acceptance of first-order logic these cardinals provided the natural models for
set theory, i.e. the corresponding initial segments of the cumulative hierarchy.
(These topics are developed in §1.)

Measurability, the most prominent of all large cardinal hypotheses, em-
bodied the first confluence of the Cantorian initiatives. Isolated by Stanistaw
Ulam [30] from measure-theoretic considerations related to Lebesgue measure,
the concept also entailed inaccessibility in the transfinite. Moreover, the initial
airing generated an open problem that was to keep the spark of large cardi-
nals alight for the next three decades: Can the least inaccessible cardinal be
measurable? (Measurability is discussed in §2.)

The further development of the higher infinite was to depend on model-
theoretic techniques brought into set theory in the course of its larger devel-
opment. Godel’s L was the first example of an inner model, a class (definable
by a formula of first-order logic) including all the ordinals, which with € re-
stricted to it is a model of the axioms. Godel with L had in fact established the
minimum possibility for the set-theoretic universe, and large cardinals were to
provide the counterweight first in reaction and then for generalization. Godel’s
realist speculations, especially about Cantor’s Continuum Problem, contained
the seeds of later heuristic arguments for large cardinal hypotheses:

The set-theoretic universe V' viewed as the cumulative hierarchy J, Va
is open-ended and under-determined by the set-theoretic axioms, and invites
further postulations based on reflection and generalization. In 1946 remarks
Gadel [90: 151] suggested reflection in terms of a set-theoretic proposition be-
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ing provable in “the next higher system above set theory”, which proof being
replaceable by one from “an axiom of infinity”. This ties in with V' cast as Can-
tor’s Absolute being mathematically incomprehendable, so that any property
ascribable to it must already hold in some sufficiently large V,,, some proper-
ties leading directly to large cardinal hypotheses. In a 1966 footnote Godel
[90: 260ff] acknowledged “strong axioms of infinity of an entirely new kind”,
generalizations of properties of Xy “supported by strong arguments from anal-
ogy”. This ties in with Cantor’s unitary view of the finite and transfinite,
with properties like inaccessibility and measurability technically satisfied by N,
being too accidental were they not also ascribable to higher cardinals. Both
reflection and generalization are latent in the eternal return of successive do-
mains as envisioned by Zermelo [30]. Whatever the heuristics, the theory of
large cardinals like other mathematical investigations was to be driven by open
problems and growing structural elucidations. (These matters are taken up in
§3. Other heuristic arguments are described in Maddy [88, 88a].)

The generalization of first-order logic allowing infinitary logical operations
was to lead to the solution of that problem of whether the least inaccessi-
ble cardinal can be measurable. Tarski [62] defined the strongly compact and
weakly compact cardinals by ascribing natural generalizations of the key com-
pactness property of first-order logic to the corresponding infinitary languages.
A strongly compact cardinal is measurable, and a measurable cardinal is weakly
compact. Tarski’s student William Hanf [64] then established (4.7) that there
are many inaccessible cardinals (and Mahlo cardinals) below a weakly compact
cardinal. In particular, the least inaccessible cardinal is not measurable. Hanf’s
work radically altered size intuitions about properties coming to be understood
in terms of large cardinals. (These topics are developed in §4.)

In the early 1960’s set theory was veritably transformed by structural ini-
tiatives based on new possibilities for constructing well-founded models and
establishing relative consistency results. This was due largely to the invention
of forcing by Paul Cohen [63,64], who happened upon a remarkably fertile
technique for producing extensions of models of set theory. In a different vein,
a seminal result of Dana Scott [61] stimulated the investigation of elementary
embeddings of inner models. The ultraproduct construction of model theory
was just gaining currency when Scott took an ultrapower of V itself to estab-
lish (5.5) that if there is a measurable cardinal, then V # L. Large cardinal
hypotheses thus assumed a new significance as a means for maximizing possi-
bilities away from Godel’s delimitative construction. And Cantor’s Absolute
notwithstanding, Scott’s construction began the liberal use of manipulative
inner model constructions in set theory. It was in this richer setting that mea-
surable cardinals came to play a central structural role, being necessary for
securing well-founded ultrapowers (see 5.6 and before): There is an elemen-
tary embedding j3: V. — M for some inner model M iff there is a measurable
cardinal. (These matters are taken up in §5.)

With reflection arguments emerging in the model-theoretic approaches
taken in set theory, Azriel Levy [60a] established their broader significance and
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the close involvement of Mahlo cardinals. Then Hanf-Scott [61] formulated
the indescribable cardinals, directly positing reflection properties in terms of
higher-order languages, and showed that these cardinals provide a schematic
approach to comparing large cardinals by size. Levy [71] then provided a
systematic analysis, features of which were to occur in later contexts. (Inde-
scribability is described in §6.)

Scott’s result that if there is a measurable cardinal then V # L naturally
led to refinements both weakening the hypothesis and strengthening the con-
clusion. Notably, the first moves were made in the context of the infinitary
combinatorics then being developed by Paul Erdos and his collaborators, the
study of partition properties, which are transfinite generalizations of a result of
Frank Ramsey [30]. Frederick Rowbottom [64, 71] then established a partition
property for measurable cardinals (7.17), and using model-theoretic methods
showed that such properties already imply that there are only countably many
reals in L (8.3). This blending of model theory and infinitary combinatorics
led to a spectrum of large cardinals positing strong versions of the Lowenheim-
Skolem theorem, the Rowbottom and Jénsson cardinals in particular generating
intriguing questions. Weaving in the crucial model-theoretic concept of a set of
indiscernibles Jack Silver [66,71] then analyzed what came to be regarded as
the essence of transcendence over L, encapsulated by him and Robert Solovay
[67] as a set 0% of integers coding a collection of sentences uniquely speci-
fied by indiscernibility conditions. Beyond a web of implications encircling the
merely negative conclusion V' # L, the existence of 0% is a strikingly infor-
mative assertion about just how starkly L is generated in a transcendent V.
Subsequent results have buttressed the existence of 0% as a pivotal hypothesis,
and its isolation is the first real triumph for large cardinals in the elucidation
of set-theoretic structure. (These matters are taken up in Chapter 2.)

Returning to the early 1960’s, if Godel’s construction of L had launched
axiomatic set theory as a distinctive field of mathematics, then Cohen’s tech-
nique of forcing began its transformation into a modern, sophisticated one.
Starting with his work on the Continuum Hypothesis many problems that had
been left unresolved were shown to be independent, as set theorists were pre-
sented a remarkably general and flexible scheme with intuitive underpinnings
for constructing models of set theory. The thrust of research gradually deflated
the Cantor-Godel realist view with an onrush of new models, and shedding
some of its foundational burden set theory became an intriguing mathematical
subject where formalized versions of truth and consistency became matters for
combinatorial manipulation as in algebra. From Skolem relativism to Cohen
relativism the role of set theory for mathematics became even more evidently
one of an open-ended framework rather than an elucidating foundation. From
this point of view, that the ZFC axioms do not determine the cardinality 2%°
of the set of reals seems an entirely satisfactory state of affairs. With the
richness of possibility for arbitrary reals and mappings, no axioms that do not
directly impose structure from above should constrain a set as open-ended as
the collection of reals or its various possibilities for well-ordering.
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Inaccessible cardinals figured from the beginning in this sea-change, first
in the concept of the Levy collapse and then in its use in Solovay’s inspiring
result [65b, 70] that if there is an inaccessible cardinal, then in a submodel of a
forcing extension every set of reals is Lebesque measurable and has the perfect
set property. (The Axiom of Choice necessarily fails in this submodel.) As Co-
hen’s independence of the Continuum Hypothesis did for the transfinite, this
result on the regularity of sets of reals not only resolved old axiomatic issues
but reinvigorated the Cantorian initiatives by suggesting new mathematical
possibilities. Solovay [69] soon applied the ideas of his proof to show that mea-
surable cardinals directly imply the regularity properties at the level of Godel’s
delimitative results with L, revitalizing the classical program of descriptive set
theory. Then Donald Martin and Solovay (cf. their [69]) applied large cardinal
hypotheses at the level of 0% to push forward the old tree representation ideas,
with the hypotheses cast in the new role of securing well-foundedness in this
context. (These matters are taken up in Chapter 3.)

The perfect set property led to the first instance of a new phenomenon
in set theory: the derivation of equiconsistency results based on the comple-
mentary methods of forcing and inner models. A large cardinal hypothesis
is typically transformed into a proposition about sets of reals by forcing that
“collapses” the cardinal to N; or “enlarges” the power of the continuum to the
cardinal. Conversely, the proposition entails the same large cardinal hypothesis
in the clarity of an inner model. Solovay’s result provided the forcing direction
from an inaccessible cardinal to the proposition that every set of reals has the
perfect set property. But Ernst Specker [57] had in effect established that if
every set of reals has the perfect set property (and RX; is regular), then N is
inaccessible in L (11.6). Thus, Solovay’s use of an inaccessible cardinal was nec-
essary, and its collapse to X; complemented Specker’s observation. Years later,
Saharon Shelah [84] was able to establish the necessity of Solovay’s inaccessible
also for the proposition that every set of reals is Lebesgue measurable.

The emergence of such equiconsistency results is a subtle vindication of
earlier hopes of Godel: Propositions can indeed be resolved if there are enough
ordinals, how many being specified by positing a large cardinal. But the res-
olution is in terms of the Hilbertian concept of consistency, the methods of
forcing and inner models being the operative modes of argument. In a new
synthesis of the two Cantorian initiatives, hypotheses of length concerning the
extent of the transfinite are correlated with hypotheses of width concerning
sets of reals. There is a telling antecedent in the result of Gerhard Gentzen
[36,43] that the consistency strength of arithmetic can be exactly gauged by
an ordinal &g, i.e. transfinite induction up to that ordinal in a formal system of
notations. Although Hilbert’s program of establishing consistency by finitary
means cannot be realized, Gentzen provided an exact analysis in terms of or-
dinal length. Proof theory blossomed in the 1960’s with the analysis of other
theories in terms of such lengths, the proof theoretic ordinals.

In the late 1960’s a wide-ranging investigation of measurability was car-
ried out with forcing and inner models. These developments not only provided



Introduction XV

an illuminating structural analysis, but suggested new questions and provided
paradigms for the subsequent investigation of stronger hypotheses. Solovay
[66,71] brought the concept of saturated ideal to the forefront, establishing
an equiconsistency result about real-valued measurability. Subsequent work
showed that saturated ideals are a flexible generalization of measurability that
can occur low in the cumulative hierarchy. Exploiting the technique of iterated
ultrapowers developed by Haim Gaifman [64], Kenneth Kunen [70] established
the main structure theorems for inner models of measurability. Not only do
these models have the minimal structure of Godel’s L, but they turn out to be
exactly the ultrapowers of each other, and such coherence amounts to strong
evidence for the consistency of the concept of measurability. Kunen also estab-
lished a characterization of the existence of 0% in terms of the non-rigidity of L:
0% exists iff there is an elementary embedding j: L — L. Solovay isolated a set

0f that plays an analogous role for inner models of measurability that 0% does
for L, and its existence has a similar characterization in terms of non-rigidity.
(These topics are developed in Chapter 4.)

Even as measurability was being methodically investigated, Solovay and
William Reinhardt were charting out stronger hypotheses. Taking the concept
of elementary embedding as basic they independently formulated the concept
of supercompact cardinal as a generalization of both measurability and strong
compactness, and Reinhardt formulated the stronger concept of extendible car-
dinal with motivating ideas based directly on reflection. Reinhardt briefly
considered an ultimate reflection property along these lines, but in a dramatic
turn of events Kunen [71b] established that this prima facie extension is in-
consistent: There is no elementary embedding j: V — V. Kunen’s argument
turned on what seemed to be a combinatorial contingency, but his particular
formulation has stood as the upper bound for large cardinal hypotheses. The
initial guiding ideas shaped and delimited by a mathematical result, hypotheses
just on the verge of this inconsistency were subsequently analyzed, as well as
the weaker n-huge cardinals and Vopénka’s Principle to chart the terrain down
to the extendible cardinals. The supercompact cardinals in particular became
prominent as a source of new combinatorics and relative consistency results.
Also, when refinements of elementary embedding in the form of extenders were
formulated, weakenings of supercompactness in the form of strong, Woodin, and
superstrong cardinals came to play crucial roles in later developments. (These
topics are developed in Chapter 5.)

With this charting out of the higher infinite, the extensive research through
the 1970’s and 1980’s considerably strengthened the view that the emerging hi-
erarchy of large cardinals provides the measuring rod of exhaustive principles
against which all possible consistency strengths can be gauged. First, the
various hypotheses though arising from diverse motivations and historical hap-
penstance nonetheless form a linear hierarchy, one neatly delimited by Kunen’s
inconsistency result. Typically for two large cardinal hypotheses, below a car-
dinal satisfying one there are many cardinals satisfying the other, in a sense
prescribed by the first. Moreover, the weaker hypotheses through strong forms
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of measurability have been bolstered by a variety of equiconsistency results
involving combinatorial propositions low in the cumulative hierarchy. In this
respect, particularly intriguing is the work on the Singular Cardinals Problem,
which showed that something as basic as rendering 2" large for singular strong
limit cardinals k essentially requires large cardinals. Finally, a variety of strong
propositions have been informatively bracketed in consistency strength between
two large cardinal hypotheses: The stronger hypothesis implies that there is
a forcing extension in which the proposition obtains; and if the proposition
obtains, there is an inner model satisfying the weaker hypothesis. Supercom-
pactness has often figured as the upper bound, but sometimes n-hugeness and
even the hypotheses just short of Kunen’s inconsistency have played this role.
(This wide-ranging exploration is the subject of volume II.)

If set theory serves as an open-ended framework for mathematics, as an
autonomous field of mathematics it has become a remarkably successful investi-
gation of well-foundedness, in large measure because large cardinals have been
found to provide an elegant and fully sufficient superstructure for the study of
consistency strength.

Determinacy

One of the great successes for large cardinals has to do with perhaps the most
distinctive and intriguing development in modern set theory. Although the
determinacy of games has roots as far back as Zermelo [13], the concept for
infinite games only began to be seriously explored in the 1960’s when it was
realized that it led to the regularity properties for sets of reals. Jan Mycielski
and Hugo Steinhaus in their [62] proposed the Aziom of Determinacy, at least
for some inner model since it contradicts the Axiom of Choice. Then in 1967
Solovay made an initial connection with large cardinals and David Blackwell
[67] with methods of descriptive set theory. Investigating further consequences
of determinacy, fine mathematicians like Solovay, Martin, Yiannis Moschovakis,
Kunen, and Alexander Kechris soon established an elaborate web of connections
in the unabashed pursuit of structure for its own sake. Determinacy hypotheses
seemed to settle many questions and provide new modes of argument, leading
to an opaque realization of the old Cantorian initiatives concerning sets of reals
and the transfinite with determinacy replacing well-ordering as the animating
principle. By the late 1970’s a more or less complete theory for the projective
sets was in place, and with this completion of a main project of descriptive set
theory attention began to shift to questions of overall consistency.

Martin [70] had early on shown that the existence of a measurable cardi-
nal implies the determinacy of games for analytic sets, and through the 1970’s
he established results equating many measurable cardinals with levels of a
difference hierarchy for analytic sets and then showed that a large cardinal
hypothesis near Kunen’s inconsistency implied determinacy at the next projec-
tive level. Then in the mid-1980’s Matthew Foreman, Menachem Magidor, and
Shelah made a major breakthrough about strong large cardinal hypotheses,
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and although not directly involving determinacy Martin, John Steel, and Hugh
Woodin were able to build on this to establish the consistency of the Axiom
of Determinacy relative to large cardinals. Woodin in fact established that the
Aziom of Determinacy is equiconsistent with the existence of infinitely many
Woodin cardinals, pinpointing the axiom in consistency strength above mea-
surable cardinals but far below supercompact cardinals. This unifying result
was a resounding triumph for the modern methods of set theory and an un-
expected affirmation of the relevance of large cardinals. Woodin’s subsequent
results about other determinacy hypotheses and infinite combinatorics speak
to the great progress that has been made and the promise of deeper insights
to come. (These matters are taken up in Chapter 6.)



