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Giidel’s paper on formally undecidable propositions [3] raised the possibility that linite 
combinatorial theorems could be discovered which are independent of powerful axiomatic 
systems such as first-order Peano Arithmetic. An important advance was made by J. Paris in 
the late 1970’s; building on joint work with L. Kirby, he used model-theoretic techniques to 
investigate arithmetic incompleteness and proved theorems of finite combinatorics which were 
unprovable in Peano Arithmetic [ll]. The Paris-Harrington paper [ 131 gives a self-contained 
presentation of the proof that a straightforward variant of the familiar finite Ramsey Theorem 
is independent of Peano Arithmetic. In this paper, we consider a simple finite corollary of a 
theorem of infinite combinatorics of Erdiis and Rado [l] and show it to be independent of 
Peano Arithmetic. This formulation avoids the Paris-Harrington notion of re&iveZy Zurge finite 
set and deals with a generalized notion of partition. This shift of focus also provides for 
simplifications in the proofs and directly yields a level-by-level analysis for subsystems of Peano 
Arithmetic analogous to that in [12]. 

We have tried to provide a treatment of the proof whose organization and brevity make it 
suitable for expository purposes. These results were first discussed in 1982, and almost all the 
details worked out by a year later. We would like to thank Peter Clote for his later interest and 
involvement in this web of ideas. 

1. Definitions and the main retsuMs 

We begin by recalling Ramsey’s Theorem. Let [X]” denote the collection of 
subsets of X of cardinality n. If X is a set of natural numbers and if f is a function 
with domain [Xl”, we write f(xr, . . . , x,) for f({q, . . . , xn}) with the under- 
standing that x1 < x2 < - - - =C x,. In keeping with notation used in logic and in 
Ramsey theory, we identify each natural number n with the set of its 
predecessors: n = { 0, 1, . . . , n - 1). Also, we shall use N to denote the set of 
natural numbers as well as its cardinality. If n, k and r are either N or members of 
N, X-, (k): means that whenever f : [X] “+ r there is H E [Xl” such that f is 
constant on [HI”; in this case we say that H is homogeneous for f. Ramsey [14] 
established the Infinite Ramsey Theorem: 

For any n, r E N, N+ (N)‘: 
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as well as the Finite Ramsey Theorem: 

For any rz, r, k E N, there is an m E N such that rn+ (k):. 

In 1950, Erdos and Rado [l] established a generalization of Ramsey’s Theorem 
with no restrictions on the number of cells of the partition. If f has domain [Xl”, 
where X c N, we say that H E X is canonical for f if there is a u E n satisfying the 
following condition: if s, t E [HI” are construed as increasing functions mapping n 
into X, then 

f(s) =f(t)++s ( v = t 1 v. 

In other words, f(xo, . . . , x& = feO, . . . , Y~__~) -xi = yi for all i in v. We shall 
write v = v(H) when ZJ makes H canonical. By way of example, if v(H) = 8, then 
H is homogeneous for fin the usual sense; and if v(H) = n, then f is injective on 

[HI”. 
Using the Infinite Ramsey Theorem, Erdiis and Rado established: 

Theorem 1.1 [l]. For any n E N, if f : [N]” + N, then there is an infinite H E N 
canonical for f. 

The Infinite Ramsey Theorem in turn can be seen to be an immediate corollary 
of Theorem 1.1: because of the ‘ - ’ requirement in the definition of ‘canonical,’ 
if the range of the partition f is finite, then v = 0 is the only possible case. 

A function f : [Xl” -+ N, where X E N, is said to be regressive if f(s) < min(s) 
for alI s such that min(s) > 0. Of course, there cannot be large homogeneous sets 
for such functions in the usual sense, but there is a natural notion of 
homogeneity here: we say that a set H c X is min-homogeneous for f if 
rain(s) = min(t) implies f(s) = f(t); that is, if f 1 [H]” only depends on the 
minimum element. If k, n E N, the notation X+ (k)“,, means that whenever 
f : [x]” + N is regressive, there is H E [Xj” mm-homogeneous for f. 

The following is a straightforward corollary to the Erdiis-Rado result. 

Corollary 1.2. For any n E N, N-, (N)teg. 

Proof. The case n = 1 is trivial; so assume n > 1. Let f : N-, N be regressive and 
let H be an infinite canonical set for f with ZJ = v(H). We claim that either v = 0 
or v = (0). Suppose to the contrary that v contains some i # 0. If h is the least 
non-zero element of H, there would be arbitrarily many n-tuples from H with 
first element h which disagree on v and hence are mapped to different values less 
than h by f, a contradiction. Now, if v = 0, f is homogeneous on [H]“, and if 
v = {0}, f is m&homogeneous on [H]“, because f must be injective according to 
the minimum element; that is, f(s) = f (t) c, min(s) = min(t). 

Now consider the proposition 

For any n, k E N, there is an m E N such that m + (k)“,,. (*) 
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There is a simple argument by contradiction which establishes ( * ) from 
Corollary 1.2: if for some n, k E N, there are regressive counterexamples 
fm : [mln ---, m for every m E N, use f: [N]“-‘+ N defined by 

f&J, * * * , %I) =fx,(xo, . . * 9 %z-I> 

to derive a contradiction. 
It is the proposition (*) that we will prove independent of first-order Peano 

Arithmetic. The notion of regressive function comes from Set Theory and the 
combinatorics of regular cardinals. We will remark further on this connection 
later but here let us finish with the preliminaries necessary to state our main 
results. 

Peano Arithmetic, abbreviated PA, is the first-order theory in the language 
containing 0, 1, + , . , -K axiomatized by the defining properties of these primitive 
notions together with the induction scheme for all formulas (allowing param- 
eters). A function f : N + N is provably recursive in PA if f(m) = n just in case 
PAt-F(m, n) for some formula F(x, y) which is Al in PA satisfying 
PA k VX 3y F(x, y). Thus if f is a provably recursive function in PA, the fact that f 
is total is a consequence of PA. A function f is said to eventually dominate the 
function g iff f(n) >g(n) for all but at most a finite number of integers n E N. 

Our main results are 

Theorem A. The assertion (*) is not provable in PA. 

Theorem B. The function y(n) = the least m such that m --) (2n)f_ is not provably 
total in PA and eventually dominates every provably recursive function of PA. 

Theorem C. The function y2(n) = the least m such that m --, (n)& eventually 
dominates all primitive recursive functions; its rate of growth is approximately 
equal to that of the Ackermann function. 

These results are, respectively, Corollaries 2.3, 2.4 and 4.6 below. 
For comparison and for future reference, let us recall the Paris-Harrington 

variant of the Finite Ramsey Theorem which is also independent of PA, [13]. We 
say that HEN is rerativeZy large if H has at least as many elements as its 
minimum element, that is IHI 2 min(H). The notation X+, (k): requires that 
the appropriate partitions have relatively large homogeneous sets of cardinal@ 2 
k. Paris and Harrington showed that the proposition 

For any It, r, k E N, there is an m E N such that m+* (k); 

is true but not provable in PA. 

W-0 

Our paper owes a great deal to the Ketonen-Solovay paper [4]. There, a direct 
combinatorial proof of the Paris-Harrington result is given. This approach uses a 
level-by-level analysis of the rate of growth of the functions involved in terms of 
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the Gmegorczyk-Wainer hierarchy for the provably recursive functions of PA. 
Regressive functions are actually an integral part of [4] although homogeneity is 
still tied there to the notion of relativey large finite set. In an earlier manuscript 
version of [4] the analogies with combinatorial notions from the study of large 
cardinals in Set Theory were more explicitly developed. In Set Theory the key 
result on regressive functions is Fodor’s Lemma [2]: if f : K + K is regressive and K 
is a regular uncountable cardinal, then f is constant on a stationary subset of K. 
The result that K + (K)& for measurable cardinals K due to Rowbottom, [15]. 
The combinatorial theorem (*) is thus a true miniaturization of combinatorics on 
transfinite cardinal numbers. 

We next give a direct, finitistic proof that (PH) implies (*). This result appears 
as Lemma 1.8 in [4]. It can be formalized in PA or in Primitive Recursive 
Arithmetic (PRA); this is the first-order theory in the language containing 
O,l, +, .? < and a function symbol for each primitive recursive function, 
axiomatized by the defining properties of the primitive notions, the recursion 
equations for the primitive recursive functions and the induction scheme only for 
quantifier-free formulas. Induction for & formulas (i.e. allowing bounded 
quantifiers) is provable in PRA. 

Theorem 1.3 [4]. (PH) implies (*). 

Proof. Given n, k E N, first find m E N such that whenever h : [ml”+‘+ 3, there 
is H = m homogeneous for h such that IHI 1 min(H) + n and IHI 3 k + n. This 
self-refinement of PH is a straightforward consequence of it, cf. [ 13, 2.141. So 
given f : [rnln + m regressive, define g : [mln+‘+ 3 by 

i 

0 if&,..., &z-1) =f(-%, x2, * . . , GJ, 

&o, . . . ,h)= 1 iff(xo,...,x,-l)<f(xo, x2,. . . ,h), 

2 if&, . ..,~n-1)?f(~~,~2, . . . , G>. 

Let H E m be homogeneous for g and satisfy IHI 2 min(H) + n and IHI > k + II. 
As f is regressive, the first condition on H insures that g is constantly 0 on [H]“+l, 
else there would be too many different values off below min(H). By the second 
condition on H, we can take H’ to consist of the first k elements of H and have 
IH - H' I 2 n. We now argue that H’ is m&homogeneous for f as follows: given 
Xo<X,<** .<x,-~ and ~,,<y~<...<y~-~ all from H’, let z~<...<z,__~ be 
n - 1 elements in H such that zl > max(x,_l, Y,._~). Then f(xo, xl, . . . , x,_~) = 
f(xo, x2, . . . , X,-I, 2,) =f(~ ~3, . . . , zl, 22) =a . . =fb, zl, - . . , AH), and 
similarly for f(h yb . . . , y&. Thus f(-h, x1, . . . , x,-J =f(h yl, . . . , yA. 

The method of proof we will use in the next section to establish the 
independence of (*) from PA is model-theoretic; it is thus in the tradition of [13], 
[ll] and [S]. In [6], Kirby and Paris give an elegant independence result based on 
work of Goodstein and on [4]. Their result seems to require correlation with the 
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function hierarchies and thus far has eluded a quick model-theoretic treatment. 
In Section 3, we develop the combinatorics to carry through the [4] scheme for 

(*), thereby eliminating the original bootstraps arguments from relatively large. 
Finally, in Section 4 we refine the previous arguments as well as discuss 
generalizations of (*). Interestingly enough, the refinements provide a level-by- 
level analysis of subsystems of PA using indiscernibles. 

2. Independence 

The main purpose of this section is to provide a model-theoretic proof of the 
independence of (*) , which, stripped of exegesis, is remarkably brief. 
Harrington’s idea of diagonal indiscemibles for reducing full induction to 
induction for C, formulas is still crucial, but by focusing on (*) we can avoid the 
diverting combinatorics of [13] needed for procuring and spreading out the 
indiscemibles. The idea for the proof of the following proposition occurs in [9, p. 
4.061 and was also noticed by Laver. 

Proposition 2.1. Assume (*). For any e, k, II E N and formulas &, . . . , tpe in the 
language of arithmetic in at most n -I- 1 free variables, there is a set H E [Nlk which 
constitute diagonal indiscernibles for these formulas, i.e. given co -C c1 -C - - - < c, 

andcO<d,<--- -C d, all in H and any p < co, then 

lyi(P,C1,...,Cn)f)~i03,dl,... ,dn) 

holds for each i s e. 

Proof. We shall assume k 2 2n + 1 for technical reasons. Let m + (w)El’, where 
w+(k+n)p+z’. Givenxo<.a-<x,<m, if there is an i6e and ap<xo such 
that qi(p, ~1, - - - , G) ad vi@, xn+l, - - - 9 x,) have different truth values, then 
let f(xo, . . . , xb) be the least such p and i(xo, . . . , x,) the least such i. 

Otherwise, set f(xo, . . . , x,) = 0 and i(xo, . . . , x,) = e + 1. 
By hypothesis on m, there is a set Ho E [mlw which is min-homogeneous for f. 

Next, by hypothesis on w, there is an HI E [Holk+” and a lixed i s e + 1 such that 
1 . = i(xo, . . . , x& for every {x0, . . . , xb} E [HI]““. 

Suppose first that i = e + 1. Then let z1 < . . - < z, be the last n elements of HI, 
andH=H,--{zl,..., z,,}. Givenanyco<c,<-..<c,andc,<d,<.~.<d,all 
from H, for each i d e and each p < co, qi(p, cl, . . . , c,) must have the same 
truth value as qi(p, ~1, . . . , zn) and SO also must qi(p, dl, . . . , d,). 

Thus, the argument would be complete if we can derive a contradiction from 
the assumption that i s e. To this end, let x0 c - . - c x3n be all from HI. 
(Remember that we are assuming that k 3 2n + 1.) By the min-homogeneity of 
Ho, there is a fixed value p <x0 for f on any 2n + 1 sequence starting with x0. 
However, at least two of vi(p, ~1, . . . , x,), qi(p, x,+1, . . . , x%), and 
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q,@, x2,+1, * - * , xsn) must have the same truth value, contradicting the choice of 
i < e. 

Notice that this proposition is formalizable in any theory which has a truth 
predicate for the formulas concerned. We will only require it for & formulas in 
what follows, so we can take PRA as the theory, since there is a primitive 
recursive truth predicate for the & formulas. Of course, in a quick exposition. 
PRA can be replaced by PA. 

Also, there is a proof of the proposition using only (*) for exponent n + 1 

rather than 2n + 1, and this has implications in the level-by-level analysis of Paris, 

WI - see Section 4. 
We now turn to the standard sort of model-theoretic result leading to 

independence. Recall that any non-standard model M of enough of arithmetic has 
a proper initial segment which we can identify with N, the set of natural numbers. 
In general, if I is a proper initial segment of M, we write I < M. Also, if a, b E M 
and a E I < M yet b $ I, we write a < I < b. As our I’s will be closed under + and 

-7 we will regard them as substructures of M. Finally, [a, b] denotes as usual the 
closed interval {x 1 Q s x s b}. 

Theorem 2.2. Suppose that M t= PRA & [a, b]+ (2c)T,,, where c E M - N. Then 
thereisunI<Mwithu<I<bsuchthutIEPA. 

Proof. We shall first get < ci 1 i E N >, with a < Ci < b for each i, which constitute 
diagonal indiscernibles for all the & formulas, i.e., whenever 3 is -C, in say n + 1 
free variables, and i. < il < . * * < i, and i,, <jl < - . - <in, then 

Mb QP <ci,('J~Cp, Ci,, * . - 9 Ci,,)* $'(p, Cj,, * * * 9 Cjn))- 

One way to do this is as follows: Let a(k) assert that there are at least k 
diagonal indiscernibles in the interval between a and b for the first k & formulas 
(in some standard coding). By the proposition and the succeeding comment about 
PRA, it is easy to see that for each k E N, M k u(k): 

In the notation of the lemma, it suffices to find a min-homogeneous set of size 
aw for some regressive f on [[a, b]]““, where w, n E N. Remembering that 
c E M - N, we can define f on [[a, b]r by f(s) = f (first 2n + 1 elements of s). By 
[a, b]+ (2c)f,, there is a set X of size 2c min-homogeneous for f If we then let X 
consist of the first c elements of X, then X is min-homogeneous for f - the last c 
members of X can be used to extend any 2n + 1-tuple from X to a c-tuple from 
X. 

Note that we can take a(k) to be primitive recursive, since it can be gotten 
from the primitive recursive truth predicate for & formulas through bounded 
quantification. Hence, by ‘overspill’ (which in this case just asserts that N is not 
definable in M K PRA) there is a t E M -N such that Ml= a(t). We can take 
(ci 1 i E N) to be the first N of the t indiscemibles provided. 
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We now let I be determined by (ci 1 i EN), i.e., I= {x EM I3i (X <ci)}, and 

establish that I b PA: 
First, note that if i. < il < i2, then for any p < ci,,, p + ci, = ci2 would imply 

p + Ci, = Cj for any j > i2 by diagonal indiscernibility, contradicting the distinctness 
of the Ci’S. Hence, ciO + cil 6 ci, and SO I is closed under addition. 

Next, suppose that iO < il < i2 and for some p < cio, 

‘Ihen by adding ci, to both sides of the first inequality we get @ + 1) - cil < 

Ci, + ci,9 and for any j > i2, ciI + ci2 s Cj by the previous paragraph, so that 
(p + 1) . cil < ci. But this would contradict the diagonal indiscernibility applied to 
the second inequality of (#). Thus, there is no such p, and so ci, - Ci, Q Ci2 and I is 
closed under multiplication. 

It remains to establish that I satisfies the Induction schema. Notice that if 
p < Ci, and -$ is any & formula, then since & formulas are absolute between 
I< M and the ci’s are diagonal indiscemibles, 

Now to verify Induction, suppose that C#J is any formula in parameters po, . . . , pe 
and variable of induction x. It suffices to establish that if 3x #(PO, . . . , pe, x), 
then there is a <-least such x. But if @(PO, . . . , pe, f), we can slightly modify $ 
by using a primitive recursive pairing function to construe po, . . . , pe, 2 as one p 
and blocks of like quantifiers as one quantifier, find an i. such that p < ci,, and 
implement the above reduction to a Z. formula. But M satisfies Induction for X0 
formulas (allowing parameters) since M F PRA, and since I < M, so does I. 
Hence, I k PA. 

(In terms of the Indicator Theory of Paris and Kirby, the proof of 2.2 shows 
that 

Y(a, b) = max c([a, b]+ (2c)&) 

is an Indicator for models of PA.) 
Let rm(N) be the true I&, sentences of Arithmetic. We can include n,(N) in 

the independence result: 

Corollary 2.3. (*) i.s not provable in PA + n,(N). 

Proof. Let M k PA + n,(N), and a E M - N. We can suppose that there is a least 
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b such that M k [a, b]+ @a)&. By the Theorem, there is an I < M such that 
a < I < b and I k PA. but n, sentences persist downward, so I k n,(N). Finally, 
1 t=+x ([a, xl-, w&J, since the coding of subsets of any x E I is certainly 
absolute between I and M. 

The above corollary establishes our Theorem A. We now turn to Theorem B. 
We first argue by contradiction to show that the map V(n) = the least m([n, ml-, 
(2n)&,) eventually dominates every provably recursive function of PA. So 
suppose that p(n) <g(n) on an infinite set D 5 N for some provably recursive g. 
By an ultrapower construction with D in the ultrafilter, there is a non-standard 
elementary extension M > N with infinite a in M such that M F C(u) s g(u). By 
the construction in the proof of Corollary 2.3, there is I < M such that 
a < I <g(u) and IL PA. But then I L+y ly = g(u)] contradicting the assumption 
that g is provably recursive in PA. 

If we now define Y by v(n) = the least m such that rn+ (2n&,, then it is easy 
to correlate 9 to Y. For example, q(k) 6 v(2k) for any k: If m + (4k)zg, then for 
any regressive f : [[k, ml]” + m, define regressive 7 : [ml”” + m by f(s) = f (first k 
elements of s) if min(s) B k, and = 0 otherwise. If R E [m]4k is min-homogeneous 
for 7, since [k, m] t7 I? has at least 3k elements, let H be the first 2k of these. 
Then H is min-homogeneous for f, since the last k members of H can be used to 
extend any k-tuple from H to a 2k-tuple from i?. 

It is not difficult to show that if v(2n) dominates every provably recursive 
function of PA, so does v(n). We have thus established: 

Corollary 2.4. The function y(n) = the least m such that m --, (2n)&, is not 
provably total in PA and eventually dominates every provably recursive function 
of PA. 

We can now go on to establish as in [7] or [13] that, in PA (*) is actually 
equivalent to the l-Consistency of PA, i.e., the statement “PA together with the 
II,-theory of the universe is consistent.” Put yet another way, (*) is equivalent to 
the Gijdel statement Con(PA + T,), where T1 is the set of n,-sentences true 
according to some standard complete fl,-formula. Since (PH) is equivalent to this 
principle, we have: 

Corollary 2.5. (PH) and ( * ) are equivalent (and this is formalizable in PA). 

Very recently (March, 1985), Paris has established this corollary directly by clever 
combinatorial means. (See also the remarks after 4.7.) Of the several mathemati- 
cal propositions now known to be equivalent to the l-Consistency of PA, our 
proofs might argue for (*) as leading most directly to independence. 
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3. Combinatorics 

The emphasis of the previous section was on a short, global proof of the 
independence of (*). We now turn to further combinatorial consequences of (*), 
primarily in order to provide those adjustments to Ketonen and Solovey [4] 
needed when only (*) is assumed. Assuming a known functional hierarchy result 
about the functions provably recursive in PA, the elegant paper [4] establishes the 
independence of (PH) by entirely combinatorial means, that is to say by means 
directly formalizable in PRA without appeal to higher principles such as 
Compactness. In brief, they first recall the Grzegorczyk-Wainer Hierarchy 
(F, 1 a < qJ (where E O is the least ordinal E such that E” = E in ordinal 
exponentiation), a hierarchy of functions F, : N+ N which, under the ordering of 
eventual dominance, is increasing in LY and cofinal in the class of provably 
recursive functions. They then establish from (PH) that for any F,, there is an 
f : [N]” + N for some II E N such that any relatively large homogeneous set H for f 
has the property that x < y both in H implies F,(x) d y. Actually, they establish a 
level-by-level correlation: there is such an f : [N]” + N for F, just in case (Y < ‘yn_:! 
(where ( yi ] i E N) is inductively defined by y. = w and yi+l = w 5, so that 

EO = sup yi). Finally, they show that this directly implies that Ramsey functions in 
the context of (PH), for example a(n) = least m(m+* (n + l);), eventually 
dominate any F,, and thus that (PH) is not provable in PA. (Going beyond the 
results of [13], they complete their tour de force by providing careful upper 
bounds for a(n). However, we will not deal with this aspect here.) 

The following combinatorial propositions highlight the arguments needed to 
adopt the [4] scheme to (*). Routine applications of the Finite Ramsey Theorem 
are involved here as well as in [4], but recalling that that theorem is provable in 
PRA, everything will be formalizable in PRA. 

(For the rest of the section, our notation implicitly assumes that our 
min-homogeneous sets H are finite, when we need to adjust them by eliminating 
a max(H). This anticipates the [4] application, and no such adjustments are 
necessary for infinite H.) 

Proposition 3.1. There is a (primitive recursive) function p : N-t N such that: For 
any n, e E N, whenever 8: [N]“+ N is regressive for each i 6 e, there is a 
p : [N]“+’ *N regressive such that: If fi Is min-homogeneous for p, then 
H = fi - (p(e) U {max(fi)}) is min-homogeneous for each 5. 

The proof is an adaptation of the Harrington idea in [13], Lemmas 2.7 and 2.8, 
to which the following lemmas correspond: 

Lemma 3.2. Zf f : [N]” + N is regressive, then H c N is min-homogeneous for f iff 
f every u c H of cardinal@ n + 1 is min-homogeneous for f. 
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Proof. If H E N is not min-homogeneous, let x0 < - - - < x~__~ be the lexigraphi- 
tally least sequence drawn from H such that there are x0 < y, < a . . < y,__, all 
from H with f(xo, x1, . . . , x,_~) #f(xo, y,, . . . , y,_ 1), where we can take 
(Yl, . . * 3 Y~-~) to be the lexigraphically least with this property. If i is the least 
such that Xi # yi, then it is not difficult to see that f(xo, . . . , x,_,) =f(xo, . . . , xi, 

_Yi, yi+l, * * * 9 ~~-2) and thus U= (~0,. . .,xi, yi, yi+l, . . ..yn-I} is not min- 
homogeneous for J 

For any x E N, let log(x) = least d E N such that 2d 2 x. Then any y <x can be 
represented as (Ye, . . . , y,og(w~- & in binary notation, with each yi < 2. Notice that 
2 log(x) + 1 d x for every x 2 7. (So 7 plays a peculiar role in the present context 
for a reason entirely different than in [13, p. 11371.) The following lemma allows 
us to press down the values of a regressive function further, at the cost of 
increasing the exponent. 

Lemma 3.3. If f : [N]” -+ N ti regressive,’ there is an f : [N]“+‘+ N regressive such 
that: 

(i) f(s) < 2 log(min(s)) + 1, and 
(ii) if I? is min-homogeneous for f, then H = I? - (7 U (max(@)) is min- 

homogeneous for f. 

Proof. Write f(s) = (ye(s), . , . , ~~-r(s))~, where d = log(min(s)). Define f on 
[NJ”-l by: 

0, if either x0 < 7, or {x0, . . . , x,} 

is min-homogeneous for f, 

f(Xo, . - - 7 G) = 2i + yi(Xo, . . . , x,-J + 1, otherwise, where i < log(xo) is 
the least such that {x0, . . . , x,} 

is not min-homogeneous for Yi. 

Then f is regressive and satisfies (i). 
To verify (ii), suppose that fi is min-homogeneous for f and H is as described. 

If f 1 [Hln+’ = {0}, then we are done by the previous lemma. Suppose on the 
contrary that there are x0 < - - - <x, all in H such that 7(x0, . . . , x,) = 2i + 
yi(xO, . * - ) x,__~) + 1. Given any s, t E [{x0, . . . , xn}]” with min(s) = min(t) = x0, 
note that p(s U (max(8))) =f(xo, . . . , x,) =f(t U {max(@}) by min- 
homogeneity. But then, Y,(S) = Yi(t), so that {x0, . . . , x,} was mm-homogeneous 
for yi after all - a contradiction. 

Proof of Proposition 3.1. Note that, given any e E N, for sufficiently large x E N, 
(2 log(x) + l)c+l sx; let p(e) be the least such x. We shall verify the proposition 
using this p. So, suppose that n, e, and fi for is e are as given. To each & 
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associate x as in the previous lemma, and define p on [ZVlnfl by: 

p(s) u&>Y * * * 9 .t(s>), if min(s) ap(e), = 
0 otherwise. 

By the definition of p, p can be coded as a regressive function. Since p(e) 2 7 for 
any e, the proof is now complete because of the previous lemma. 

The next important juncture in [4] is Lemma 1.8, the verification of (*) for 
relatively large homogeneous sets and some straightforward generalizations of it. 
We discussed in Section 1 how (PH) implies (*), and the generalizations are 
inductively derivable from (*) alone. Actually, [4] in Lemma 1.9 requires a 
self-refinement of (*) in which the values on the min-homogeneous set are 
non-decreasing; the following proposition accomplishes the task directly from (*): 

Proposition 3.4. Iff : [N] n + N is regressive, there are o1 : [N]“+’ + N regressive and 

02 : WI n+l+ 2 such that: If H E N of cardinal&y > n + 1 is both min-homogeneous 
for o, and homogeneous for 02, then H - {max(H)} is min-homogeneous for f 
and ifs, t E [HI” with min(s) < min(t), then f(s) 6 f(t). 

Proof. Define o1 : [Nln+‘+ N by: 

ol(xo, . . . , x,) = min(f(xo, . . . , h-J, f (xl, . . . , x,)), 

and a,: [N]“+‘* 2 by: 

+(x0, - ’ - , &) = 
0 iff(x0, - . . , x,-l) sf(% - - . ,&A 

1 otherwise. 

Now let H be as hypothesized, and suppose first that a2 is constantly 0 on 
[HI*+‘. By using max(H) as the last argument in applications of ol, it is 
straightforward to see that the conclusions of the Proposition are satisfied. 

Assume to the contrary that a2 is constantly 1 on [H]“+l. Let x0 < - - - < x,+~ be 
n + 2 elements from H. Then f(xo, . . . , x,_~) > f(xl, . . . , x,) > f(x2, . . . , x,_~) 
by two applications of a,, so that oI(xo, . . . , xn) = f(xl, . . . , x,) and 
%(X0, x2, * * * 9 &+J =fb2, - - * 9 %2+1 ). But this contradicts the mm-homogeneity 
of crl on H, and the proof is complete. 

[4] now proceeds to establish the results about the Grzegorczyk-Wainer 
Hierarchy alluded to earlier. They rely on an inductive bootstraps argument 
based on relatively large homogeneous sets, but we describe how this can be 
avoided. To be concrete, we establish the analogue to their prototype result for 
F, (their Theorem 1.9); the corresponding juncture in the general case (their 
Theorem 3 S) can be handled similarly. 

For any function f : N + N, let F’(x) = F(x), and inductively, Fn+‘(x) = 
F(F”(x)). The first o + 1 functions in the Grzegorczyk-Wainer Hierarchy are: 

&(.X)=x+1; F,+,(x) = F”,+‘(x); and F,(x) = F,(x). 
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It can be shown by induction that if m 6 n and x d y, then F,(x) d F,(y), a fact 
assumed below. 

Proposition 3.5. There are functions z1 : [N]“+ N regressive, t2: [N]2-+ N 
regressive, and t3: [N12+ 2 so that the following is true: Suppose H c N of 
cardinality ~2 is: (a) min-homogeneous for z1 and has the property that if 
s, t E [HI2 with min(s) < min(t), then zl(s) d zl(t); (b) min-homogeneous for t2; 
and (c) homogeneous for z3. Then for any x < y both in H, F,(x) 6 y. 

Proof. Define r1 : [N]“3 N by: 

w, Y) = 
0 if F,(x) GY, 
e - 1 otherwise, where e is the least such that y < F,(x). 

Notice that 0 < e s x here, since & is the successor function and F,(X) = F,(X). 
Thus, z1 is a well-defined regressive function. 

Next, define z2 : [ N12+ N by: 

~269 Y) = 
0 if F,(x) sy, 

k - 1 otherwise, where Fk,,CX,Y,(x) c y < Fr,‘i,,,)(x). 

r2 is also a well-defined regressive function, since 0 < k 6 x by an appeal to the 
definition of the F,‘s. 

Finally, define z3 : [N12+ 2 by: 

t36, Y) = 
0 if F,(x)Gy, 

1 otherwise. 

Suppose now that H is as hypothesized. To conclude the argument, we shall 
establish that z3 is constantly 0 on H. Assume to the contrary, and let x < y < z 
all be from H. If e - 1 = rr(x, y) and k - 1 = r,(x, y), then 

F:_,(x) a y < z < F::;(x) 

by m&homogeneity. However, the leftmost inequality implies F,k?:(x) Q &-1(y) 
since the F,‘s are non-decreasing. Also, e - 1 s z,(Y, z) by condition (a) of the 
Proposition on H, so that 

Thus, we have arrived at the contradiction z < z. 

With these arguments in hand, one can reorganize the [4] scheme in several 
ways to establish that functions like y(n) = least m(m+ @n&J eventually 
dominate every F, with a< co. We should point out a weakness of our 
Propositions as they now stand: If we trace the exponent n needed to procure one 
regressive function to combine the two functions z1 and z, of Proposition 3.5, 
then first by Proposition 3.4 we need a ol: [N13+ N taking z1 = f in that 
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proposition, and then we must combine r2 and CQ by Proposition 3.1, to finally 
get one function: [N14 + N. But by analogy with the level-by-level correlation in 
[4] between y1 and (Y < Y~__.~ alluded to at the beginning of the section, we ought to 
be able to get the exponent down from 4 to 3. The following proposition provides 
the necessary augmentation to Proposition 3.1, by showing that we can 
incorporate one function: [Nln+‘+ N into the proceedings. 

Proposition 3.6. Let p : N + N be as in Proposition 3.1. For any n, e E N, 
whenever 5 : [N]” 4 N is regressive for each i s e, and f : [Nlnf14 N is regressive, 
there are pl: [Nln+’ 4 N regressive and p2 : [IV]“+‘4 2 such that if I? is both 
min-homogeneous for p1 and homogeneous for p2, then H = l? - (p(e) u 
{max(I?)}) is min-homogeneous for each 5 with i d e and for f. 

Proof. The idea is extend the proof of Proposition 3.1 by taking advantage of the 
fact that in Lemma 3.3, if H is sufficiently large and min-homogeneous for 7, then 
f on [H]n+’ is in fact constantly 0. So, for i d e, let x correspond to fi as before, 
and define p2 : [Nln+l+ 2 by: 

P2W = 
0 if E(s) # 0 for some i d e, 
1 otherwise. 

Then define p1 : [Nl,+l* N regressive by 

P*(s) = 
. . , i’;(s)) if p2(s) = 0 and min(s) ap(e), 

otherwise. 

As before, p1 can be coded as a regressive function. 
Suppose now that Z? is as hypothesized, and H is as 

[Hln+’ were constantly 0, we can derive a contradiction 
defined from B. If p2 on 
as in the proof of Lemma 

3.3. Thus, p1 on [H]n+’ must be constantly 1, and so the proof is complete. 

It can now be checked in detail that (the idea of the proof of) this proposition 
can be used to prove results for (*) fully analogous to [4]. 

4. Refinement and generaiization 

In this concluding section, we discuss first technical improvements for previous 
propositions which have a consequence about subsystems of PA, and then a 
generalization of (*) based on the growth rate of functions. 

Let I& be the subsystem of PA consisting of the defining properties of the 
primitive notions together with the induction schema restricted to & formulas. 
Thus, LX1 already subsumes PRA. Let (PH)n denote the restriction of PH to fixed 
exponent It, and (Y)~ the restriction of (*) to fixed exponent n. Paris in his 
meticulous paper [12] ramifies his model-theoretic analysis of PA by providing a 
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strong level-by-level correlation of LX,, for n > 0 with several propositions, 
including (PH),+r. Although the idea of diagonal indiscemibles may seem 
tailored for a global proof, we show how it can be used in a level-by-level analysis 
with the focus on (*)n. Such a possibility was considered by Hajek, and perhaps 
others. 

First, we outline a result of Clote which will correlate the coming results with 

(PH)fl+1. The quick proof of Theorem 1.3 actually shows that (PH),+l implies 
(*)n. Clote noticed that by working through Mills’ notion of arboricity [lo], the 
result can be sharpened to what we shall later see is best possible. 

Proposition 4.1 (Clote). For II > 0, (PH)n implies (*)n. 

Proof (outline). The following notions are due to Mills [lo]. If A c N and 
f : N+ N, an f (x)-small-branching A-tree is a tree T with field A such that aTb 
implies a < b, and any a E A has at most f(a) immediate successors in T. Set 
A0 = A - {max(A)}. Then A is O-ford c-f (x)-arboreal if IAl > c + 1; and 
inductively, A is (n + 1)-fold -‘( )- b c J x ar oreal if for every f(x)-small-branching 
A-tree T, there is a path P through T such that P” is n-fold c-f (x)-arboreal. 
Finally, if X c N and F : [Xln+’ + N, say that H c N is pre-homogeneous for F iff 
F 1 [IYIn+’ only depends on the first n elements, i.e., F(x,, . . . , x,_ 1, a) = 
F(x,, . . . , x,-~, b) for any x0 < - . - <x,_, < a < b all from H. 

The argument of [lo, Lemma 3.51 establishes the following: Suppose c, n 2 1 
and A is n-fold t-x2X-arboreal with min(A) > 0. Suppose also that f with domain 
[A]“+l is regressive. Then, there is an H c A such that H is pre-homogeneous for 
f and Ho is (n - 1)-fold c-x2*-arboreal. 

Thus, the following is an immediate corollary by induction, since pre- 
homogeneous and min-homogeneous coincide at exponent 2: For any n, suppose 
c 2 1 and A is n-fold (c - 1)-x”-arboreal with min(A) > 0. Then, A + (c)r&‘. 

Finally, [lo, Theorem 3.61 provides careful lower and upper bounds on the sizes 
of A such that A+, (n + 2)2+l in terms of arboricity. It is immediate from this 
theorem that for any n, if A is such that min(A) 3 max{r?, 2c}, A*, (n + 2),“t1 
implies that A is n-fold (c - n - 1)-x”-arboreal, and thus that A-+ (c - n):,‘. 
Careful information is provided here which more than suffices to show that 

(PH),+l implies (*)n+l for any n. 

,Paris [12, Theorem 3.61 established that in El, (PH),_l is equivalent to the 
l-Consistency of Izl, for n 2 1. (Recalling the discussion at the end of Section 2, 
this means Con(IZ’, + TI), where TI is the set of n, sentences true according to 
some standard complete n, formula.) With Proposition 4.1 in hand, we shall 
focus on (*)n+l and show how it can be used to generate indiscemibles to 
establish the l-Consistency of I.& To do this, we first establish the conclusion of 
Proposition 2.1 assuming only (*)n +1, improving the (*)2n+1 of the short proof 
given. The following lemma should have a familiar ring: 
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Lemma 4.2. There are three regressive functions qI, q2, q3 : [N12+ N such that 
whenever H is n&-homogeneous for all of them, then H = fi-(the last three 
elements of I?) has the property that x -C y both in H implies xx s y. 

Pm& Define ql, q2, q3: [N12+ N by: 

%(X9 Y) = 
0 ifx+x=Zy 

y -x otherwise, 

r/2(x9 Y) = 
0 ifxsx<y 
u otherwise, where u . x Q y < (u + 1) - x, 

and 

otherwise, where xv< y <x~‘. 

Suppose that fi is as hypothesized, and let z1 < z2< 2, be the last three 
elements of H. If x < y are both in fi - {z3}, then since ql(x, y) = ql(x, z3), 
clearly we must have ~(x, y) = 0. Hence, q1 on [fi - {z3}12 is constantly 0. 

Next, assume that x < y are both in fi - {z2, z3} and q2(x, y) = u > 0. Then 

by min-homogeneity, and (u + 1) - x s x + y by adding x to both sides of the first 
inequality, which in turn is <y + y s z2 by the previous paragraph. But this leads 
to the contradiction z2 < z2. Hence, on [H - {z2, z3}12 is constantly 0. 

Finally, we can iterate the argument to show that r/3 on [fi - {z,, z,, z3}12 is 
constantly 0, and so the proof is complete. 

This is all that we will need of a clearly inductive argument which proceeds 
through the classical Grzegorczyk Hierarchy, or equivalently, through (F, 1 n E 
0) of Section 3. 

Here is the heralded improvement: 

Proposition 4.3. The conclusion of Proposition 2.1 already follows from (*),, +1. 

Proof. Given the e, k, n E N and formulas &,, . . . , tpe in at most n + 1 free 
variables, Crst define CJ : N + N by q(x) = largest d E N such that 2”+’ - d s x, and 
then define f : [Nln+‘_* N by: 

f(xo, * - . , GA= (6ip li~e&p<q(xd) 

where 

6, = 
0 if ?/J)i(p,Xl, . . ..X.)is true, 
1 otherwise. 
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By definition of 4, we can code f as a regressive function. 
The idea now is to combine the functions of the previous lemma with f to get a 

min-homogeneous set spread out enough to accommodate q. However, a direct 
application of Proposition 3.6 would be restricted to it b 2, so we use an idea 
similar to the proof of that proposition. First define g : [IV]*+ 4 from the functions 
of the previous lemma as follows: 

g(x9 Y) = 
0 if ?Ij(X,Y)=Oforj=1,2,3, 
i otherwise, where i is the least such that qj(x, y) # 0. 

Then define h : [Nln+‘+ N regressive by: 

h(xo, . . ..xn)= 
Vj(%, x1) if g(xO, x,) =i > 0, 

f(%, - * * > x,) otherwise. 

(We assume from here that n > 0, else the Proposition is trivial.) 

By (*)n+l> let Ho of cardinality 2e+1 + 2k + 3 be min-homogeneous for h and 
homogeneous for g. Let z1 < z2 < z3 be the last three elements of H,, and set 
Hl = Ho - {zl, z2, z3}. If g on [HI]* were constantly i > 0, then we can derive a 
contradiction as in the previous lemma. Thus, we can assume that h = f on 
[HIIn+‘, and x < y both in Hl implies xx s y. 

Now let H, consist of the last 2k elements of Hl. Then x < y both in H2 implies 
2ce+l)X < xx Q Y since 2e+1 d x, so that x s q(y). Thus, if H3 consists of every other 
element of H2, then H3 constitutes the desired k diagonal indiscernibles since Hz 
is min-homogeneous for f. 

Now the corresponding model-theoretic result: 

Theorem 4.4. Suppose that n > 0 and M I= PRA & [a, b] + (c)k:‘, where c E M - 
N. Then there is an I C M with a < I < b such that I k I&. 

Proof. We proceed as in the proof of Theorem 2.2. First, we can get diagonal 
indiscemibles (ci 1 i E N) in the interval [a, b] for all & formulas but in at most 
n + 1 free variables, using Proposition 4.3. Let Z < M be determined by the ci’s, 
and note that I is closed under addition and multiplication. (The proof in 
Theorem 2.2 works only for n 2 2, but we could cite Proposition 4.3 where we 
spread out the indiscernibles directly.) Finally, the verification of the Induction 
schema for Z,, formulas proceeds as before, since we only need n alterations of 
quantifiers. 

Corollary 4.5. If n > 0, (*)n+l is not provable in I&, + n,(N). 

Proof. As for Corollary 2.3. 
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Proceeding as with (*), we can observe that 

Y(a, 6) = max ~([a, b] + (c)F&l) 

is an indicator for models of I&, and that in PRA, (*)n+l implies Con(I& + TI), 
the l-Consistency of Ic,. 

We have the following corollaries: 

Corollary 4.6. The function yz(n) = the least m such that m --) (n)& eventually 
dominates every primitive recursive function; its rate of growth is approximately 
that of the Ackermann function. 

Corollary 4.7. If n > 0, the following are equivalent in 12,: 

(a) (PH),+I, 
(b) (*),,+I, 
(c) Con&Z, + T,). 

Corollary 4.6 is our Theorem C; the proof of its first part is entirely analogous 
to that of Corollary 2.4. The proof of the second part is part of the proof that in 

PRA, (*)n+1 implies Con&$, + TI). Corollary 4.7 follows from the result of Paris 
[12] mentioned earlier, that (PH),+I is equivalent to Con(& + T,). Our 
argument with indiscemibles may be more direct than Paris’ argument from 

(PH),+l- However, at present we see no way to establish C&I.& + TI) implies 

(*) n+l other than to go through his argument using concepts from [4] and 
developing the [4 ] scheme for (*). Very recently (March 1985), Paris has provided 
a clever combinatorial argument to show that (*)n+I implies (PH)n+I directly. 

We now discuss a simple way to extend (*) based on the growth rate of 
functions, in the spirit of [8]. Given any F : iV +N, n EN, and XcN, say that a 
function f : [Xl” --, N is F-regressive if f(s) < F(min(+s)) for all s such that 
F(min(s)) > 0. For n, k, m E N, m + (k)F-reg means that whenever f : [mln --j N is 
F-regressive, there is an H E [ml” min-homogeneous for f. Consider now the 
propositions 

For any n, k, EN, there is an m E N such that m + (k)$--reg. (*b 

Thus, (*) is just the special case when F is taken to be the identity function, and 
for any F, (*)F follows from the Erdiis-Rado Theorem 1.1 by the same sort of 
argument as for (*). The corresponding generalization of (PH) discussed in [8] 
results from replacing relatively large by ]H] 2 F(min(H)). 

The following characterization makes clear how (*)F can be incorporated into 
the known contexts: 

bposition 4.8. For any increasing function F : N+ N, (*)r is equivalent to: For 
any n, k E N, there is an m E N such that whenever f : [rnln + m is regressive, there 
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is an H E [m]” which is min-homogeneous for f and has the property that x < y 
both in H implies F(x) Q y. 

Proof. In the forward direction, define g : [N12+ N by 

g is clearly F-regressive, and whenever H finite of cardinality >2 is min- 
homogeneous for g, then g on [H - {max(H)}12 is constantly 0. By (*)F we can 
find an m sufficiently large such that: given any f : [m]” + m regressive, we can 
combine it with g 1 [ml2 by a version of Proposition 3.1, and find a min- 
homogeneous set for both f and g of cardinality k. 

For the converse, the argument of [13, Lemma 2.141 can be used. Define 
h : N + N by h(x) = largest y such that F(y) d x (and 0 if there is no such y). Now 
given n, k E N, let m be as provided, and suppose that f : [ml” ---) N is F- 
regressive. Define f on [rnln by: 

. , h&-J), if h(xi) Z h(xj) for 0 6 i <j <n, 
otherwise. 

Since this value is <F(h(x,)) <x0, whenever F(h (x0) f 0, f is a regressive 
function. So, let H E [ml” be min-homogeneous for f, satisfying: x < y both in H 
implies F(x) G y. Consider H = {h(x) 1 x E I?}; the last condition on H guarantees 
that h is one-to-one on I?, so that IHI = k. H is clearly min-homogeneous for f. 

We can now proceed as in [8] to formulate for each n E N a function G, based 
on some complete I?,-formula so that over PA, (*)G, is equivalent to the 
n-Consistency of PA, i.e. Con(PA + T,) where T, is the set of H,-sentences true 
according to a standard complete II,-formula. Moreover, one can continue this 
process into the transfinite as in [8] with a hierarchy of faster and faster growing 
functions. 

We conclude with some remarks on regressive partition relations and the 
Reverse Mathematics program of Friedman, Simpson and others. It has been 
observed that over the base theory RCA0 (Recursive Comprehension Axiom), 
the system AC& (Arithmetic Comprehension Axiom) is equivalent to the system 
axiomatized by the principle N+ (N);. It is not known whether the supercript 3 
can be replaced by 2. This is the so-called ‘3-2 problem,’ which has the following 
recursion-theoretic formulation: Is there a recursive map f : [N12* 2 such that for 
any infinite homogeneous H, 0 ’ + H? Peter Clote has observed that over RC&, 
the system axiomatized by N-, (N)$, is equivalent to AC&. Thus the exponent 
can be lowered if regressive partitions are used. 
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