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REGRESSIVE PARTITIONS AND BOREL DIAGONALIZATION

AKIHIRO KANAMORI

Several rather concrete propositions about Borel measurable functions of several
variables on the Hilbert cube (countable sequences of reals in the unit interval) were
formulated by Harvey Friedman [F1] and correlated with strong set-theoretic
hypotheses. Most notably, he established that a “Borel diagonalization” prop-
osition P is equivalent to: for any a S w and n € w there is an w-model of ZFC +
Jk(x is n-Mahlo) containing a. In later work (see the expository Stanley [St] and
Friedman [F2]), Friedman was to carry his investigations further into propositions
about spaces of groups and the like, and finite propositions. He discovered and
analyzed mathematical propositions which turned out to have remarkably strong
consistency strength in terms of large cardinal hypotheses in set theory.

In this paper, we refine and extend Friedman’s work on the Borel diagonalization
proposition P. First, we provide more combinatorics about regressive partitions and
n-Mahlo cardinals and extend the approach to the context of the Erdos cardinals
Kk — (y)3®. In passing, a combinatorial proof of a well-known result of Silver about
these cardinals is given. Incorporating this work and sharpening Friedman’s proof,
we then show that there is a level-by-level analysis of P which provides for each
n € w a proposition almost equivalent to: for any a < w there is an w-model of ZFC
+ 3k(x is n-Mahlo) containing a. Finally, we use the combinatorics to bracket a
natural generalization S of P between two large cardinal hypotheses.

To recapitulate some notation and concepts, let I be the unit interval of reals and
Q = “I (the Hilbert cube) the set of countable sequences drawn from 1. If n € @ and
¥,z € "Q, say that y ~ ziff there is a permutation p of w, which is the identity except
at finitely many arguments, such that y(i) o p = z{i) for each i < n. Let us say thata
function F with domain "Q is totally invariant if whenever y, z € "Q and y ~ z, then
F(y) = F(2). A function G with domain @ x "Q is right-invariant if whenever x € Q,
y,z€"Q,and y ~ z,then G(x, y) = G(x, z). Next, recall that a cardinal k is 0-Mahlo iff
Kk is (strongly) inaccessible, and inductively for n e w, k is (n + 1)-Mahlo iff k is
regular and every closed unbounded subset of x contains an n-Mahlo cardinal. k is
w-Mabhlo iff it is n-Mabhlo for every n € w.
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REGRESSIVE PARTITIONS AND BOREL DIAGONALIZATION 541
Friedman’s proposition P is Vn € wP,, where
P n

Suppose F: Q x "Q — I is Borel and right-invariant. Then for any m e w
there is a sequence {x;|k < m) of distinct elements of Q such that:
whenever s <t, <---<t,<m, F(x,, {X;,...,X, ) is the first coordi-
nate of x,,,.

(F)

As Friedman emphasized, “Borel” can be replaced by “finitely Borel,” i.e. of a finite
rank in the Baire hierarchy of functions, without affecting the strength of P. We
observe below that this can be further reduced to rank <3.

Friedman’s arguments actually show the following in ZFC — Power Set for any
n € w: (a) If for any a < w there is an w-model of ZFC + 3k (k is (n + 4)-Mahlo)
containing a, then P, , ,.(b) If P, , 4, then for any a < w there is an w-model of ZFC
+ 3k (x is n-Mabhlo) containing a. He also observed that P, implies that there is an w-
model of ZFC, and asked whether P; is independent of ZFC. We are initially
motivated by this question and by the slack in the overall proof, but our ramification
of P does not correlate directly with the P,’s, and so in particular the independence
of P, remains unresolved.

The following formulation was motivated by the fact that in some of Friedman’s
arguments with indiscernibles the top few were fixed.

If F:Q x"**Q > 1 and F,:Q x Q —» I are Borel and right-invariant
and F;:*Q — I is Borel and totally invariant, then for any m € w there is
a sequence {x;|i < m + 6) of distinct elements of Q such that:

(a) whenever s <ty < - <t,<m, Fy(xs, (X153 X005 Xons Xt 2> Xmsas
Xn+6) only depends on x;;

(b) whenever s <t < m + 6, F,(x,, x,) is the first coordinate of x,, ;
and

(©) F3(Xms XmsasXm+6) = F3(Xpms 2, Xm+ 4> Xm+6)-

Thus with (a) P, is like P, with side conditions about some further elements
Xpms---»Xms+e- These are somewhat involved, primarily because we have tried to
isolate in Borel fashion the minimum augmentation of P, necessary for our proofs.
From the esthetic point of view, eliminating the minor annoyance of F; and (c) is
desirable, and may be possible with a more subtle analysis. In any case, certainly P,
follows from P,,, by a Borel fusion of the three functions involved. We shall
establish:

THEOREM A. If for any a S w there is an w-model containing a of ZFC + 3x36
> K (k is n-Mahlo and L,[a] < L;s[a)), then P, , holds.

THEOREM B. If P, , holds (even just for Borel functions of rank <3), then for any
a S w there is an w-model of ZFC + 3k (x is n-Mahlo) containing a.

These results bracket the strength of P, , , reasonably closely. The existence of an
n-Mabhlo cardinal x and a 6 > « such that L,[a] < L;[a] follows easily from the
existence of an (n + 1)-Mahlo cardinal, but implies on the other hand the existence
in L[a] of many n-Mahlo cardinals below k by elementarity.

Consider next the following natural generalization of P, where y is any ordmal and
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542 AKIHIRO KANAMORI

<@Q = J,"Q the set of all finite sequences drawn from Q:

Suppose F: Q x ““Q — I is Borel and right-invariant. Then there is a
sequence {x.|& < y) of distinct elements of Q such that:
(S7) (i) whenever newand s < t; <--- <t, <7y, F(x,, {x;,...,%,,) only
depends on x,; and
(ii) whenever s < t <y, F(x,,X,) € Range(t).

As n varies in (i), we cannot expect that F(x,, {x,,...,X, )) is always the first
coordinate of x,, ;, but (ii) is a remnant of that condition. For concreteness, we shall
establish:

TueorReM C. If for any a S o there is an w-model of ZFC + 3x(k — (0 + ©)3°)
containing a, then S®** holds.

THEOREM D. If % holds (even just for Borel functions of rank < 3), then for any
a S o there is an w-model of ZFC + 3k(k is w-Mahlo) containing a.

There is considerable slack here, and we shall discuss refinements at the end of the
paper.

§1 reviews regressive partitions, provides the necessary results about them for the
n-Mahlo cardinals and the Erd6s cardinals k — (y)5®, and is of independent interest.
The Borel diagonalization results are established by following the main line of
argument of Friedman [F1], and we cite its lemmas and mainly detail the
modifications necessary. §2 is devoted to a proof of Theorem A, §3 to a proof of
Theorem B, and §4 to proofs of Theorems C and D.

§1. Regressive partitions. Friedman relied on characterizations in Schmerl [Sc]
of the n-Mahlo cardinals via certain partition properties. In this section we review
and further develop a systematic approach which clarifies the connections.

Let X be a set of ordinals and n a natural number. If f is a function with domain
[X]", we write f(xg,...,a,_,) for f({ag,...,2,-}), with the understanding that
0 < -+ < a,_,. Such a function is called regressive iff f(xo,...,2,-,) < 2y when-
ever oy < --- < a,_, are all from X and «, > 0. There is a natural motion of homo-
geneity for such a function f:Y € X is min-homogeneous for f iff whenever
dg < -+ < a,_,and By <--- < B, , are all from Y, ay = B, implies f(ag,...,% )
= f(Bos---»Ba—1)- In other words, f on an n-tuple from Y depends on the first
element. We write X — (y)7, iff whenever f on [X]" is regressive, there is an Y €
[X]? min-homogeneous for f.

In Kanamori and McAloon [KM] the proposition

(*) for any n, k € w there is an m € w such that m — (k)7

is shown to be equivalent to the Paris-Harrington proposition and hence
unprovable in Peano arithmetic. In fact, it is shown that () for fixed nis equivalent to
Paris-Harrington for fixed n and hence unprovable in IZ, _ |, induction restricted to
2, formulas.

Turning to the infinite case, the following characterization was established by
Hajnal, Kanamori and Shelah [HKS]:

THEOREM 1.1. The following are equivalent for k > @ and 0 < n < w:

(a) k is n-Mabhlo.

(b) For any y < k and unbounded X < x, X — (7)}e:>.

(c) For any closed unbounded C < x, C — (w)re>.
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REGRESSIVE PARTITIONS AND BOREL DIAGONALIZATION 543

(c) here complements a previous characterization of Schmerl [Sc], stated in the
present terminology as

THEOREM 1.2. The following are equivalent for k > w and n € w:

(a) x is n-Mahlo.

(b) For any m € w and unbounded X < x, X — (m)>.

(c) For any unbounded X < k, X — (n + 5)i>.

What will be relevant for Theorem B is 1.2 together with a variant of it,
established using the following previously known lemmata. The first is a careful
generalization of [HKS, 2.7],

LEMMA 1.3. Suppose that n > 3 and for some limit ordinal y, C and X are subsets of
n—o with C closed unbounded and min(C) < min(X). If C-+>(y);, and
X N &+ (P)reg for every & < n, then X +(7)teq-

ProoF. For each a € X, set Y(a) = sup(C n (o + 1)), an element of C since C is
closed unbounded and min(C) < min(X). We first define the type of a member of
[X]" according to C as follows: If ag <--- < a,_, are all in X, let {,....&}
enumerate the set {{/(«;)|i < n} in increasing order, and set r; = |{i | /(a;) = &;}| for
j < k. Then the type of {ag,...,®,_}is {ro,-...,r», which we can assume through
sequence coding is one natural number.

Next let g attest to C+>(y)7, and g, attest to X N +>(y)7,, for & < n. Since C,
X €1 — o, we can assume by renumbering that the ranges of g and the g.’s do
not contain any number coding a type. Now define G on [ X ]" as follows:

9(‘/’(0‘0),---,(//(“"- l)) if w(dO) <---< l//(an— 1)’

gg(%s---’“nq) if Yloy) =--- = ¥l 1)
G(0gs-neslyq) = where ¢ is the next element of C
after ¥ (),

type of {«g,...,,—}, otherwise.

(In the second clause, that we start with ¥(a,) is not a misprint; that n > 3 is called
upon here.) G is regressive, so suppose that Y = X is min-homogeneous for G. We
can assume that Y has at least n + 1 elements, and let f, < f; be its least two
elements.

Assume first that ¥(f8,) = ¥(pB,). If there were a further f € Y such that y(f,)
< Y(B), then there would be two sequences of length nfrom Y, both starting with f,
and with different types—one with #, and one without. This is contradictory, so ¥
must be constant on Y. Thus, by the second clause of G, Y cannot have ordertype y.

Assume next that y/(f,) < ¥(f,). Suppose first that there were a further € Y such
that y(B,) < ¥(pB). Then if ¢ were not one-to-one on Y, one can again generate two
appropriate sequences of length n from Y, both starting with f, and with different
types, to derive a contradiction. Thus, i must be one-to-one on Y, and by the first
clause of G, Y cannot have ordertype 7.

In the remaining case of ¥/(f,) < ¥(f,) with Y(B) = Y(B,) for every further f € Y,
we can invoke the second clause of G to again show that Y cannot have ordertype y.
This completes the proof. W

The following is part of 2.2 of [Sc]:

LEMMA 14. If n > @ and n ~ y —(4)]},, for every y <n, then n is a strong limit
cardinal.
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544 AKIHIRO KANAMORI

PROOF. If to the contrary there were a cardinal Asuch that 4 < n < 2% then we can
use the Sierpinski partition: Let {s,|a < n} be distinct members of *2, and define f
on [ ~ 213 by: f(xo,,,a,) = least & such that s, () # s,,(£). There cannot be a
four-element min-homogeneous set for this partition. W

Finally, the following is a translation of Schmerl’s property S;(n — 1, n + 2,
n + 5) from [Sc]:

LemMA 1.5, If 0 < n < w, n is inaccessible, and C < n is a closed unbounded set
consisting of strong limit cardinals which are not (n — 1)-Mahlo, then C+(n + 5)%>.

These preliminaries lead to our desired result:

THEOREM 1.6. If X N w = &, then X — (n + 5)ie® iff X N « is unbounded in
for some n-Mahlo cardinal k.

PrOOF. 1.2 confirms one direction. For the converse, let  be least such that
X A n—(n+ 5)i%> We shall show that # is n-Mahlo:

First of all, a simple argument shows that # must be a limit ordinal. It follows from
1.3 that:

(*) For any closed unbounded C < # with C n @ = & and min(C) < min(X),
C—(n+5)%s

Considering the closed unbounded sets {min(X)} U (y ~ y) for y < #, we can then
conclude from 1.4 that » must be a strong limit cardinal. If # were singular, then for
any closed unbounded D < # of ordertype cf(r7) with min(D) > cf(), we can define a
one-to-one regressive function on [D]"*3 with range < cf(y). But then (*) would be
contradicted with C = {min(X)} U D. Hence, n is inaccessible. Finally, if n were not
n-Mabhlo, then n > 0 and 1.5 contradicts (¥). M

Let us next consider the natural generalization of our partition relation to all
finite sequences: If X is a set of ordinals, write X — (y); iff whenever f on [X]*¢is
regressive, there is a Y € [X]” min-homogeneous for f|[X]" for every n. In this
context, we shall say that Y is simply min-homogeneous for f. We first observe that
the weakest possibility here provides another characterization. Let X — (<)
mean that X — (k)7 for every k € .

THEOREM 1.7. If X nw = &, then X — (<w);g iff X N x is unbounded in x for
some w-Mabhlo cardinal .

PROOF. Suppose first that X N x is unbounded in x for an w-Mahlo cardinal .
If f on [X]<“is regressive and k € w, define g on [X]* by

g(élv'-aék) = <f(§l’§2)’ f(51,§2363)9"-9f(é!’--"€k)>'

As X consists of infinite ordinals, we can regard g as regressive through coding, and
for any set € [X]** min-homogeneous for g the first kK members will be min-
homogeneous for f.

The converse is analogous to 1.6. Take 7 to be least such that X n n - (<w);5,
and show that # must be w-Mahlo by establishing the analogous version of 1.3 and
using 1.4and 1.5. W

The relation X — ()5, unlike X — (y)7,,, turns out to be closely related to well-
known partition relations requiring actually homogeneous sets. If X is a set of
ordinals, recall that X — (y); means that whenever f:[X]<“ — §, thereisa Y e

[X 1" homogeneous for f,ie.|f“[Y]"| =1 for every n. For y > w the Erdos cardinal
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REGRESSIVE PARTITIONS AND BOREL DIAGONALIZATION 545

k(y) of Silver [Sil] is the least k satisfying x — (y);“. The following initial
observation is simple:

PROPOSITION 1.8. Suppose that y > w is a limit ordinal and X — (y);%. If & is such
that for any o <y, o + & <7y, then X — (3)5°.

PrOOF. If f:[X]°“ — 4, define g on [X]= by setting g(&,...,&,) = 0 unless n
= 2k > 0, in which case:

if & < 3;else

if S, &) =f(§k+l9"~’€2k),
if f(&s-08) > f(rrsens Sk
if f(&sen &) < fGhvrreesEan)-

g is regressive, so let Y € [X]” be min-homogeneous for g. 2 € g“[ Y] would lead
to an infinite descending sequence of ordinals, and 3 € g“[ Y]~ would lead to too
many ordinals below J by a simple argument using the fact that & < y implies o + 6
< y. Hence, g“[Y]*“ < {0,1} and consequently Y ~ 4, which also has ordertype
7, is homogeneous for f: For any k € o, given &, <--- < and {; < -+ <{; allin
Y~4,let gy <---<n be all in Y so that max(&,,{,) <n,. Then f(&,...,&)
= f(n,---»m) = f(&,---,{) by definition of g. W

In the process of seeking further connections, we came upon a direct com-
binatorial proof of a well-known result of Silver [Si1]. The proof is given here for its
intrinsic interest, and because its nominal generalization will lead to the next result.

PROPOSITION 1.9 (SILVER [Sil]). If y = w is a limit ordinal and 6 < x(y), then
k() = (15

PROOF. Set k = k(y). First of all, that x — (y)3¢ is easy to see: If f:[k]™° — 4,
define g:[xk]“” -2 by setting g(&,...,&,)=0 if n=2k and f(§,....,&) =
f(&Es1seesEan),and g(&, ..., &,) = 1 otherwise. By a simpler version of the proof of
1.8, any set homogeneous for ¢ is also homogeneous for f.

Suppose now that we are given f:[x]<® — J, where 6 < «, and let g: [6]°° — 2
attest to 8+ (7)5%. Define h: [] < — 4 by setting h(¢, ..., &,) = Ounless n = 3’5’ for
some i, j > 0, in which case:

g(éO""v'fn) =

N = O

(0 if f(&,....<) = f(&i+ 154> 20)s
Ui f(&,.. 0 8) > fEiv e o),

h(é é)-— 2 if <f(éik+ls""é|‘(k+1))|k<j>
Pl is an ascending enumeration of
j ordinals homogeneous for g,

3 otherwise.

\

By the previous paragraph, there is a Y € [x]” homogeneous for h. If he[yjq=e
= {0}, then Y is homogeneous for f as before. So, let us assume to the contrary that,
for some 7 = 3'5%, h“[Y]" # {0}, and derive a contradiction:

Note first that we also have A“[Y]" # {1}, else there would be an infinite
descending sequence of ordinals. If {(;| B < y) is the ascending enumeration of Y,
we can define n; = f({p+1,---»Lip+1)) forevery f <y, sinceyis a limit ordinal. As
h“[Y]" # {0}, {1}, <ns| B < y> must be a strictly increasing sequence. In particular,
for any natural number of the form 35/ for arbitrary j > 0, we must also have
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546 AKIHIRO KANAMORI

h“[Y]" # {0}, {1}. We now show that h“[ Y]" = 2 for such n. This would complete
the proof, for then {1, | < y} would be homogeneous for g, since every finite sub-
set of it is, contradicting the choice of g.

To do this for a given n = 35/ with j > 0, apply Ramsey’s theorem j times to get
aninfinite W < {n,;| B < @} homogeneous for every g|[6]* with k < j. Letn,, < -
<1ng, be the first j elements of W. Then h on any n-tuple starting with
C;,,l+1,...,C;(ﬁl“),c,fhﬂ,...,C;(,,2+1,,...,C;,,’,,,1,...,(;%“) has value 2. Hence,
h“[Y]" = {2} by homogeneity.

THEOREM 1.10. Suppose y > w is a limit ordinal. For any unbounded X < k(y),
X ().

PROOF. Suppose f is regressive on [ X ]* and for each § < x(y) let g5: [6]°° - 2
attest to &+ (y)3°. Define h: [X]=“ — 4 by setting h(&,,...,&,) = 0 unless n = 375/
for some i, j > 0, in which case:

0 iff(fmfla--wfi)=f(50a5i+1,--~a¢2i),
Lif f(&o, 815580 > f(&os Civnsre-nr Eai),
h(Co,.--» &) =42 if {f(&o, Eikr1s---» i+ 1)) | k < j) is an ascending enumeration
of j ordinals homogeneous for g;,,
3 otherwise.

Since | X| = k(y), there is a Y € [X]” homogeneous for h. The rest of the proof
proceeds just as in 1.9 to show that Y must be min-homogeneous for f as well. B

If actually homogeneous sets are required in the partition relation rather than
min-homogeneous sets, this theorem no longer holds, and the relation in particular
fails for nonstationary X. Baumgartner [B] considered this stronger partition
relation and developed his y-Erdés cardinals as a generalization of x(y). 1.10 holds
with x(y) replaced by any y-Erdds cardinal, by a straightforward modification of the
proof.

§2. Getting P, , ,. This section is devoted to establishing

THEOREM A. If for any a S w there is an w-model containing a of ZFC + k36
> K (x is n-Mahlo and L,[a] < L ;[a]), then P, . , holds.

Toward P, , ,, let us make the natural switch from I to #(w) and suppose that F,:
°P(w) x "T5(°P(w)) » P(w) and F,: °P(w) x “P(w) — P(w) are both Borel and
right-invariant, and F;: *(°#(w)) - () is Borel and totally invariant. Let a € @
code Borel codes for F,, F,, and F;, and let M be a countable w-model of ZFC +
(V = L[a]) + “kis n-Mahlo, é > k,and L,[a] < Ls;[a].” V = L[a] can be included
since n-Mabhlo cardinals relativize; for convenience we shall henceforth argue with
L in place of L[a] since the proof is the same.

Working in M, consider the “Levy collapse” forcing notion consisting of finite
partial functions:§ x @ — M such that f(«,n) € a. (Friedman instead used con-
ditions f such that f(a,n) € V,, but with M = V = L we can replace V, by L, in his
arguments, and hence, by coding, by a.)

Asin [F1], for each generic object G over M and limit ordinal « € M we can define
the crucial sets J(G, a) € “2(w) associated with the collapse of « to w. Following the
analysis of [F, 5.1.14 and 5.4.1], there are finitely many axioms of ZFC, conjoined
together to form a sentence o, such that for limit ordinals o < oy < -+ < a4 <0
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REGRESSIVE PARTITIONS AND BOREL DIAGONALIZATION 547

with L, . F o, the set
Hl(a’ala~'*aan+6)
= {(k,f)| k€  and fl--k € F,(J(G,a), <J(G,a,)......J (G, oy 6)))}
is of form
(1) ={x€La|Lan+6}=¢l(x’asals---,au+5)}

with constants from L, , allowed in the formula ¢,. Here, the restrictionto L, .
follows from standard forcing facts, and right-invariance is used to cut down the
possibilities to x € L,, since only the restrictions of the conditions to the domain
(o« + 1) x @ are relevant.

Similarly, for limit ordinals « < 8 < é with Ly = o the set
Hy(@B) = {(k, f) |k € @ and [ |-k & F,(J(G, %), J(G, B)}

is of form
2 ={xeL,|L;E ¢y(x,0)}.

Finally, for limit ordinals « < f <y < é with L, = ¢ the set

Hy(@,B.7) = {k|ke w and f |-k € Fy(J(a, G), J(B.G), J (7. G))}

by total invariance is of form
(3) = {kew|L,E ¢k, p)}.

The next task is to get appropriately homogeneous sets for H;, H, and Hj.
Continuing to work in M, set

C={a<k|L, <L},

a closed unbounded subset of x. Next, since L, < L; so that Ly ZFC, we can
use the reflection principle in L; to find ordinals k < d; < d; < 6,, < 0,,+1 <
8,,+2 < 0for ¢ < { < w, such that each L;, = o and they preserve ¢,,ie.if i < j <
w, + 2, then L = ¢,(x, y) iff L; = ¢,(x, y) for all parameters x, y € L, .. Towards
(b) of P,, ,, note that automatically

whenever o < f < yarealle C u {§;|i < w, + 2},

4
( ) HZ(a’ﬂ) = Hz(a’ '}’)

by (2) and elementarity.
Next, since H;: [0]° - 2(w) and |Z(w)| = w,, there are four ordinals ¢, < & <
&, < &3 < w, such that, towards (c) of P, ,,

(5) H3(5§o,5m2’5m;+2) = H3(6§2’5mzaéwz+2)-

To verify P, ,, let me w be given. Setting o,, = g, U1 = Opys Ims2z = Og,s
Upt3 = Oeys Omia = Ouys Omis = Oy 415 ANA Upig = 042, the Gy 046 Will
provide corresponding X,,, ..., Xn+¢ i0 B, ,, and we will invoke the characteriza-
tion 1.2 to obtain the further homogeneity for H,. H, is not regressive, but there is
a simple strategem available: Let X = {y,|x € C} < « be any set such that o < f
both € C implies ™ < 7, < y;,-and define H} on [X]"*? by

+
H:()’a,)’a,""’y’"”) = Hl(asalv'"an+2’am’am+Z,am+4’am+6)'
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548 AKIHIRO KANAMORI

Since P(x) < L,., we can consider Hi to be regressive on X by (1). By 1.2, let
{74, |1 < m} in ascending enumeration be a set min-homogeneous for H7. Then,

whenever s <t; < - <tpa,<mands<u; <---<u,,, <m,
H(as,ana-'-’a:,,.zsam’am+23am+47am+6)

= H(assaulw")au",zvamvam-i-2,am+4aam+6)'

(6)

Using (4), we can now complete the argument as in [F1,5.1.16] by getting
slightly different generics G; for i < m + 6 so that s <t < m + 6 implies

FZ(J(GS’ as)a J(G,, at)) = J(Gs+ 1> s+ l)(O)

Hence, with (1)—(6) the set {x;|i < m + 6}, where x; = J(G;,;), satisfies P,,,. W

Proposition Cin [F1,§3] is a consequence of P,. In [F1], Friedman shows that C
is provable in ZF + AC,, ~ Power Set + “P(w) exists,” but not provable in ZF +
(V = L) ~ Power Set. A simple version of the foregoing proof shows that P; is
also provable in the first theory: In an w-model M= 7+ (V = L), where 7 is a
conjunction of sufficiently many ZFC axioms excluding Power Set, consider the
Levy collapse of w, to w and just use a sequence {&;|i < m) such that L; < L,
for i < j < m together with (2) and (4).

§3. Getting n-Mahlo cardinals. This section is devoted to establishing

THEOREM B. If P, . , holds (even just for Borel functions of rank < 3), then for any
a S o there is an w-model of ZFC + 3k(k is n-Mahlo) containing a.

Let £ be the language of second-order arithmetic augmented by “class” variables
for subsets of P(w). A formula ¢ of £ is X} if it has k — 1 alternations of second-
order quantifiers beginning with an existential quantifier, followed by only bounded
numerical quantifiers. For each x < w, let [x| = {{m|2"3™ € x} | n € 0} = P(w); the
class variables range over |x|’s. Modifying Friedman’s notion of (n,k)-critical
sequence, if d € w we say that (x;|i < d + 6) is an n-crucial sequence iff each x; = @
and:

(i) forall s <t < d + 6 and X} formulas ¢, we have x; € |x,| and {j € o||x,| =
$(j, X)) € 1%+ 115

(i) for all s <t <u <d+ 6 and X} formulas ¢, we have |x,| = ¢(x,) iff |x,| =
P(x,);

(iii) for any X3 formula @, |xz46|5= @(1Xal, 1X444l) & P(IXa42l, |xa44l); and

(iv)forall s<t, <---<t,<dand s <u, <---<u,<d and Z} formulas ¢,
we have

|xd+6| = ¢(xsa |xllia e Ixt,.la |xd|, de+2|’ lxd+4|)
« ¢(xss |Xu,|, ) 'xu,.ls delv 'xd+2|’ lxd+4|)-

Friedman’s further parameter k was for ~} formulas, but in our approach we only
require X}. Thus, P, restricted to Borel functions of Baire rank < 3 will suffice to
establish the following analogue of {F1,5.1.40]:

LemMA 3.1. If n > 0 and P, holds, then for any d € w there is an n-crucial sequence
(x;li<d+6).

ProOF. Let d be given. For x € “P(w) let X = {2"3™ | m € x(n)}, and let Rng(x) be
the range of x. For any formula ¢ of %, let # ¢ denote is Godel number in some fixed
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arithmetization. Now define F,: “P(w) x "**(“P(w)) - P(w) by:

Fl(x: <xls-- .,X,,+4>)
= {#¢|¢is 2} and Rng(x,+4) = @(X, Rng(x,),..., Rng(x,+3))}-
(Implicit here is that x € Rng(x,+4) and Rng(x;) = Rng(x,,,) for i <n + 4, else
Fi(x,{x{,...,X,-4) = &; analogous remarks apply below.)

Next, define F,: “P(w) x “P(w) — P(w) as follows for x, y € “P(w):

Case 1. There is a Z} formula ¢ such that {j e o |Rng(y) = ¢(j,X)} ¢ Rng(y).
Then let ¢ be such a formula with #¢ the least possible, and set F,(x,y) =
{j € 0| Rng(y) = () %)}.

Case 2. Thereis no such ¢. Then set Fy(x,y) = {#¢ | ¢ is 2} and Rng(y) = ¢(x)}.

Finally, define F;: *(“P(w)) = P(w) by

Fy(x,y,2) = {#¢| ¢ is 2} and Rng(z) = $(Rng(x), Rng(y))}.

F, and F, are Borel, and morcover are right-invariant since only the Rng(x;)’s and
Rng(y) matter. Similarly, F; is totally invariant. Letting {x;|i < d + 6) be as in the
conclusion of P, withm = d and formulated with P(w) replacing I, we can now show
that (X;|i < d + 6 is n-crucial:

First of all, for any s <d + 6 Case 1 of the definition does not apply to
F,(x, X4 ) since it is the first coordinate of x, ,. Thus, by using some simple ¢’s we
can se¢ that Rng(x,) = Rng(x,, ). It follows generally that if s <t < d + 6, then
Rng(x,) = Rng(x,). But then, F,(x,, x,) € Rng(x,,,) = Rng(x,), and so Case 1 does
not apply. Hence, (ii) in the definition of n-crucial sequence holds for our X;’s, and so
also does (i) sincefors <t <d + 6

{a € | Rng(x) = $(a,%,)} = {a € w|Rng(x,.,) = ¢(a, %)} € Rng(x,s ).
Finally, (iii) and (iv) follow from the definitions of F; and F;. W

Continuing with the overall proof, we next switch to a set-theoretic context and
produce sequences of ordinals satisfying certain indiscernibility requirements.
Friedman works with w-models of a set theory T consisting of the axioms:
(i) extensionality, (ii) pairing, (iii) union, (iv) transitive closures, (v) 4,-separation,
(vi) “there is no largest ordinal,” (vii) “for every ordinal a, L, exists,” (viii) Vx3Ja(x €
L,), and (ix) transfinite recursion on € for all formulas. Modifying Friedman’s
notion of (n, k)-special sequence and [F1,5.1.31], we establish the following, where
4, and Z, refer to the usual Levy hierarchy of formulas in set theory:

LEMMA 3.2. Let me w, and set d =m + 1. If there is an n-crucial sequence
(x;|i < d + 6),then there is an w-model o of T and “ordinals” {o;|i < m + 1} in the
sense of & such that:

(@=L, =L, and

(b) whenevers <t; <---<t,<mands <u; <---<u,<m = f <o,and $
is X,, then

vd F: ¢(ﬁ,ds,d,l,...,M,",(Xm,dm+l) o ¢(ﬁ,as,au,,...,aun,am,a,,,+ l)'

Proor. The proof amounts to checking that the hypotheses are enough to push
Friedman’s argument through:

Clause (i) of n-crucial shows for p < d + 6 that every set hyperarithmeticin x,is in
|x, 44| (cf. [F1, 5.1.32]). Let K, for p < d + 6 be the set of all #F T coded'in |x,|
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such that 4 is well-founded in the sense of |x,, , ,|. Clause ii) of n-crucial is enough to
verifytanalogues of [Ft, 5.1.33 and 5.1.34].
As1in [F1,5.1.35],for p < M + 5 we have

I |x44+ ¢ = “there is a proper initial segment of an element of K, ,
which is longer than all the elements of K,.”

An application of clause (iv) of n-crucial shows that
(11) K, can be replaced by K, in(I}forp<d —2=m — 1.

(Because of our parsimonious formulation of n-crucial, it must be checked that X :
formulas suffice in all the foregoing; an important point is that isomorphisms
between initial segments of models of T, being analogous of L,’s, are unique.)

Finally,asin [F1] we can turn K , , into a structure & coded in |x,;, 5| and seen to
be an w-model of T in [x,,¢|. In o we can define ordinals «; for i <m as the
supremum of heights of models in K;, «,, as the supremum of heights of models in
K, and a,, ., as the supremum of heights of models in K, ,. Then {a;|i <m + 1)
is an increasing sequence by the previous paragraph, since o; for i <m — 1 can be
defined using structures in K; , ; by (), &, { in K, %, using structures in K, , ,, and
O, + 1 USINg structures in K, 4 by (I).

We shall show that & together with {a;|i < m + 1) satisfy the conclusion of the
lemma. In what follows, recall first that in the Levy hierarchy bounded quantifiers
¥x € y and 3x € y are allowed in a formula without contributing to its complexity,
and then note that in models of T, by using universal formulas and least witnesses
and (ix) of T, any X, formula can be shown equivalent to a %, ; formula without
bounded quantifiers.

Towards (a) of the lemma, it is well known that in general the satisfaction relation
forany Lyisin Ly,,,s0 & &= L, =L, ,, is properly affirmable. (a) follows from
(iii) of n-crucial, since for any sentence , &/ k= “L, = 7 is now seen as a 23 (even
Z1)assertionin|x,.¢| about |x,| and [x,, .| by the remark about the Levy hierarchy,
and o &= “L,_, = 1 is the analogous assertion in {x,, ¢| about |x,, 5| and {x;+ 4}
(b) of the lemma follows from a similar indiscernibility argument using (iv) of n-
crucial, and so the proof is complete. W

We can now complete the proof of Theorem B. Assume its hypothesis P.,, 50
that for any m € w there are o/, {a;|i < m + 1} asin 3.2 with nreplaced by n + 2. Fix
m > n + 5and a corresponding pair &, {«;}i < m + 1} with {a,,,...,%,) lexigraphi-
cally least in .«Z, and work from now on inside .2/

By the arguments of [F1,5.1.19-5.1.23], using 3.2(b} together with the X,-
definability of satisfaction for L, , we have L, F ZFC. Hence by 3.2(a) we have
L = ZFC. To conclude the proof it suffices by 1.6 to verify that

L

X + 3

Am+1

o, ~ @01+ 5)ig

(since, stepping outside of ./ for a moment, (L, )¥ will then be the required w-
model—note that the satisfaction relation for L, ,, inside o/ and outside are the
same since .« is an w-model, and so the coding of formulas is the same). If this were
to fail, there would be an L, , -least counterexample map f X;-definable in &/
from a,, and o,,,,. Now forany 0 <s <t <. <ty <mand s<u; <--- <
Uppr <mL, . FEB=flog0,....q,,,) isa X statement in </ about §, o, &, ...,
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O sys Oms %mays and L, F B = fla,a,,...,%, ;) is a corresponding state-
ment about f, o, 0, .. .0, 5+ OmsGm+1- Thus, by 3.2(b), {o;|0 < i < m} is min-
homogeneous for f, which is a contradiction.

For the precise statement of Theorem B, given any a < w it can be used as a
parameter in the 2} formulas in the definition of n-crucial, so that it will be a
member of |x, | and hence of the final w-model (L, )¢. W

§4. On S”. In this last section, we indicate how the arguments of §§2 and 3 can be
used to establish corresponding results about S7. We first establish

THEOREM C. If for any a S w there is an w-model of ZFC + 3x(kx = (0 + )3°)
containing a, then S®* holds.

The argument is in fact a simpler version of §2 and closer to the original proof of
[F1], so we merely outline the main steps.

Given F:°2(w) x “°(°P(w)) > #(w) Borel and right-invariant, let ¢ = w be
a Borel code for F and M a countable w-model of ZFC + (V = L[a]) + “k —
(w + w)3°.” From Silver [Si2] the property A — ()5 relativizes to L[a] for any
y < w9, We will take k to be k(w + w) in the sense of M, and, for convenience,
henceforth argue with L in place of L[a] since the proof is the same.

Working in M, consider the Levy collapse of « to w,, and for each generic object
G over M and limit ordinal « € M define sets J(G, a) € “%(w) associated with the
collapse of « to w as in [F1]. As before, for any n € w and limit ordinals o < oy < ---
<o, < k with L, = ZFC, the set

H(a,ay,...,0,) = {(k f)|k € ® and f|-k € F(J(G,a), (J(G,ay),..., (G, %,)))}
is of form

(1) ={xeL,|La"F=¢(x,a,a1,...,a,,_1)}

with constants from L, allowed in the formula ¢.

It is well known that x = k(w + w) is inaccessible, so C = {a < k| L, = ZFC}
has cardinality k. Using the H* strategem of §2 and 1.10, we can therefore extract
a Y e [C]®*® min-homogeneous for H. The sequence {J(G,a)|a € Y) (here there
are no adjustments of G) then satisfies S°*“: condition (ii) is automatic from the
definition of the J(G,o)sand (1). W

Now the analogue of Theorem B:

THEOREM D. If S°*° holds (even just for Borel functions of rank <3)then for any
a S  there is an w-model of ZFC + 3x(x is w-Mahlo) containing a.

Following §3, we say that {x;|i < @ + 4) is a crucial sequence iff each x; < w and

(i) forall s < t < @ + 4 and X'} formulas ¢ we have {j € o||x,| = ¢(j, x,)} € |x,
and

(ii) forallnew,s < t, < - - <t,<w+4ands<u; < <u,<w+ 4andall
X} formulas ¢, we have

|xw+4| t= ¢(xs’ |X”|, Ty Ixt,.[) « ¢(xs7 len |a T |xu,.|)'
Arguing as in 3.1, §°* 5 establishes that there is such a sequence.
Proceeding as in 3.2, we next verify that there is an w-model &/ of T and
“ordinals” {«;|i < w + 1} in the sense of ./ such that:
(@=L, =L and

X+ 1?
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(b) whenever new, s<t;<---<t,<w+1 and s<uy, <<y, <w+1,
A= f <a,and ¢is Z,, then

A =GB, 0. .. 0,) < (B o, ... a,)

The details are simpler than in 3.2 because of the full indiscernibility in (b): Defining
K; as before, &7 is the structure resulting from K, , ,, and (g [i < w + 1) is taken
with o; the supremum of the heights of models in K;. (a) and (b) now follow directly;
for L, =L, ,,, given a sentence 7, that o/ = “L, = t” is an assertion about x;,
1%, X0+ 2|5 |Xe 1+ 4] for any fixed x; with i < w used as a dummy variable, and that
o E“L, ,  F1” is the analogous assertion about x;, {X,4l, [Xp42ls [X0+al-

To complete the argument, taking <{a,,®,,0;,,> the lexigraphically least
possiblein .« is enough to insure that L, = ZFC by Friedman’s arguments, and the
rest goes through as before to show that L, | F a, ~ © = (<o) since the initial
segments of {«;|i < @) will be min-homogeneous for the L, . -least counter-
example. The proof is then complete because of 1.7. B

We make some concluding remarks on Theorems C and D. First of all, in
Theorem C we took x(w + w) for convenience because of 1.10, but we could have
started with the hypothesis “for any unbounded X < «x, X — (w + 5)75 to get S©*°
in anticipation of Theorem D. Note that Theorem C holds in general with w + @
replaced by any limit ordinal which is standard in every w-model of ZFC, say
ordinals <w{¥. Inany case, by going to a more involved principle §©, we could have
established a result analogous to Theorem A from an w-model of ZFC + 36 >
K(w)(Lwylal < Ls{a]). Above all, it is of course desirable to strengthen the
conclusion of Theorem D from 3x(k — (< w)55) to Ix(k — (w)72) to achieve a near
equivalence, but we saw no way of getting infinite homogeneous sets inside the -
models using Borel methods.

Aew + 1
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