THE COMPLEAT ot

Akihiro Kanamori

Soon after Solovay [So] and Silver [Si] established the basic transcendence properties over
L of the existence of 0%, Solovay formulated an analogous set of integers of (“zero dagger”)
for inner models of measurability. Its definition became known through a timely survey
of set theory by Mathias which appeared in typescript in 1968 and later as Mathias [M].
Results about 0 appeared in Kunen[K], and it was further described in Dodd[Do]. Here, we

finally provide a detailed presentation of the theory of UT, establishing intimate connections
between the various generating classes of indiscernibles for inner models of measurability.

As for the ambient context, we assume familiarity with the theory of 0%. Kanamori-
Magidor[KM], Jech[J], and Devlin[De] all provide the necessary details; we shall follow the
development of the first. We also assume familiarity with the basic inner model structure
theory from Kunen[K]. In order to establish some terminology we review the major results:
An inner model of measurability is an inner model of ZFC of form L[U], where for some
ordinal x, L[U] | U is a normal ultrafilter over k. Incorporating U as a predicate, we
call (L[U],€,U) the s-model, since it is known that the only dependence is on x: If L{Up)
and L[U;] are both inner models of measurability for the same s, then Up = U;. For
convenience, we say that (L[Us], Ua, S tag)a<geon is the iteration of (L[U], €,U) meaning
that the ath iterated ultrapower of (L[U], €,U) is the sy-model (L[Ug], €, Uy) with iqg the
corresponding elementary embedding of the xy-model into the kg-model. The k,’s comprise
a closed unbounded class of ordinals, and every p-model for p > k appears in the iteration.

As for the organization of this paper, in §1 we formulate the necessary Ehrenfeucht-
Mostowski theory, show how a sufficently strong hypothesis generates inner models of mea-
surability with indiscernibles, and formulate 0!. In §2 we establish connections between
the classes of indiscernibles for the x-models for various x. Finally, in §3 we review various
characterizations of the existence of 0.

§1 Indiscernibles for the k-models

If (L[U],€,U) is the sk-model for some ordinal &, there exists under sufficient assump-
tions a set U# C & analogous to 0% that generates a closed unbounded class of indiscernibles
for the structure (L[U], €,U, €)¢<,. However, as the x-models for various x are merely iter-
ated ultrapowers of each other, one might expect a unifying transcendence principle. This
is successfully realized by the existence of the set of integers 0f. The basic idea behind
0f is to develop a canonical theory for structures of form (L[U), €,U) | “U is a nor-
mal ultrafilter over x” with two sets of indiscernibles, one below x and one above, that
together generate the structure. Proceeding to the development, we follow the main steps of
Kanamori-Magidor[KM]|§7.

If Ais a structure and X and Y are subsets of the domain of A so that X UY is
linearly ordered by a relation <, then (X, Y, <) (or in context, just (X,Y")) is a double set of
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indiscernibles for A iff for every formula (v1,...,vn4+s) in the languageof A; z; < ... <z,
and 71 <...<Fpalle Xj;andy1 <...<ysand §; <...<F,all €Y,

A'= w[wls"'azn3y1:"':ys] %ﬁ A |=¢[El:---:-£m§1:---:§s]-

We next recall that there is a formula ¢(vg,v;) that for any set A defines in L[A] a
well-ordering <p[4) of L[A] such that: for any limit § > w and =,y € Ls[4], = <ga ¥ ff
(Ls[A],€,ANLs[A]) E ¢[z,y]. In such (Ls[A], €, AN Ls[A]) we can define Skolem functions
for every formula 9 by taking <p[4-least witnesses; it is crucial to observe that using ¢, the
definition of the Skolem function for v can be taken to be the same for all such structures.

Consequently, if a structure (M, E, R) is elementarily equivalent to one of form {Ls[A], €, A)
for some limit ordinal § > w, then for any X C M we can consider the Skolem hull of X in
(M, E, R) to be well-defined, and given by Skolem terms closed under composition.

'_'I'th _ﬁ-_be the language of set theory augmented by one unary predicate symbol U, and
let L be L further augmented by new constants {c; | k € w} U {d} | ¥ € w}. By an EM
blueprint in this context we mean the theory in £ of some structure

(LC[U]J SH U: Lk, yk)kew

where ( is a limit ordinal > w; for some ordinal &, (L¢[U], €,U) = U is a normal ultrafilter
over k; and (zp | k¥ € w) and (yx | k¥ € w) are ascending sequences of ordinals such that
((zk | k € w), (yx | k € w)) is a double set of indiscernibles for (L¢[U], €,U) satisfying

T < & <y forevery k.

A basic observation to keep in mind is that any structure (L/[U], €,U) where ( is a limit
ordinal > w and (L¢[U],€,U) [ U is a normal ultrafilter over &, a double set (X,Y) of
ordinal indiscernibles satisfying X € xand Y N (x+ 1) = 0 uniquely determines an EM
blueprint, so long as X and Y are both infinite.

_The next two lemmata are as for Df/‘. For any theory Tin L', let T~ denote its restriction
to L. Note for here and later that if U is interpreted by a normal ultrafilter in a structure,
then U is a way of denoting the corresponding measurable cardinal in the structure.

1.1 Lemma: Suppose that T is an EM blueprint. Then for any a and v, there is a
model M = M(T,a,v) of T~ unique up to isomorphism such that:

(a) There is a double set (X,Y) of indiscernibles for M with X UY C onM, X of
ordertype a and Y of ordertype v under <M, and 2 <M JUM <M y for every ¢ € X and

y € Y. Moreover, for any formula $(vy,...,vp4s) in L, 2y <M ... <M 2, all € X, and
y <M. <My, alle,

M |=1f«'[$1:--—:93my1:---=%] i.ﬁ 1!«'(60,...,0-,‘._1,12!‘:0,...,({,._1) eT,
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(b) The Skolem hull of X UY in M is again M. -

If M(T, a,7) is well-founded, then its transitive collapse is of form (Ls[U], €, U) for some
limit ordinal § > w. In this case,

we identify M(T, a,v) with (Ls[U],€,U).

1.2 Lemma: Suppose that T is an EM blueprint. Then M(T,a,v) is well-founded for
every a,v iff

(1) M(T, a,~) is well-founded for every a,y < w;.

_|

We next describe a sufficient hypothesis that leads quickly to EM blueprints with potent
properties.

1.3 Lemma: Suppose that there is a k-model for some ordinal & and a Ramsey cardinal
> k. Then there is an EM blueprint satisfying (I) of 1.2.

Proof: Let (L[U],€,U) be the x-model with iteration (L[Us), Ua,ka)tag)a<BecOn, and
v a Ramsey cardinal > &. Let A be a cardinal such that Ky = A < v. (This is for later
extractions from this proof; A = w; suffices for present purposes.) In what follows, we rely
on Kunen[70]3.9 concerning how the i,4’s move ordinals. The set

Z={0<v|0>X A in(0) =6}

has cardinality v, so let Y € [Z]” be a set of indiscernibles for the structure

(LV[U-\] €, UA) K’ﬂ)new-

Set X = {ko | @ < A}. ig) fixes every member of Z U {v}, so Kunen[70]3.3 implies that
X is a set of indiscernibles for (L,[U)], €,U)) allowing parameters from Z. Consequently,
a simple argument shows that (X,Y) is a double set of indiscernibles for (L, [U,], €,U)).
Hence, (X,Y) determines an EM blueprint, and since X and Y are uncountable, this EM
blueprint satisfies (I) by an argument as for 0#.

Assuming the hypothesis of 1.3, we can deduce the existence of an EM blueprint fully
analogous to 0%#. (Actually, a weaker partition property than Ramsey will do, but this
involves distracting technical details.) On the basis of the proof of 1.3, specify that

(i) A < v are uncountable cardinals (in V') and (L, [U],€,U) |= U is a normal ultrafilter
over A,

(ii) (X,Y) is a double set of indiscernibles with X € [A]* and Y € [v ~ (A +1)]*, and
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(iii) X and Y have the least possible wth elements. Finally,
(iv) Tp is the corresponding EM blueprint.
1.4 Lemma: The following conditions hold for T' = Ty:
(Ila) For any n + s-ary Skolem term t, T contains the sentence:
O B /Y Y uu — B0y s pCantydpyes <y By ) <
(IIb) For any n + s-ary Skolem term t, T contains the sentence:
tlen; o g Gyl ssly—1) € OB—{Ch5: sytr—tatosians i) € dy
(IIla) For any m + n + s + 1-ary Skolem term t, T contains the sentence:
t(co,y ... Cmin; doy---y85-1) < Cm —
t(coy. .y Cmanydoy. .oy ds—1) = t(C0y. -+ yCm—1,Cmtntly--+sCmt2ntl, d0y. .., ds—1).
(IIIb) For any n+ v + s + 1-ary Skolem term t, T contains the sentence:
o 7 T WY/ TRy
£0ens s o5 Cnaty By vy pagn) = 05 vvy Eamt s By v gllmt iy psady ooy Geppg s

Proof: A simple argument by contradiction establishes (Ila) from sup(X) = A and
similarly, (IIb) from sup(Y) = v. An argument as for 0% establishes (IIla) and (IIIb) from
the minimality of the wth elements of X and Y respectively and the fact that A and v are
cardinals. -

If an EM blueprint satisfies (I), then for any «,~ temporarily let

(O | g < ), (677 | € < 7)) and T2

denote the double set of indiscernibles and the measurable cardinal of M(T, @, ) respec-
tively. The x notation anticipates the following:

1.5 Lemma: Suppose that T' is an EM blueprint satisfying (I)-(II). Then for any f3,6:

(a) {xg’ﬁ"s | 7 < B} is a closed set of ordinals, unbounded in xg‘ﬁ’a if B is a limit ordinal
> w.

(b) Ifw<a<p andw <y < § with a,y limit ordinals, then

xﬁv’“"" = x'{’ﬁ ¥ for every < a.

Proof: (a)(Ila) implies that the set is unbounded in xg'ﬂ ' if B is a limit ordinal > w.

(I1Ta) implies that the set is closed (by an argument as for 0%, also used below).
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(b) Let H be the Skolem hull of

(X584 g <o} U{g? 1 €<}

in M(T,3,68). Then its transitive collapse is M(T a,7) by uniqueness. We shall show that
T’ﬁ § C the domain of H. This suffices, since the collapsing isomorphism consequently

ﬁxes every member of {xT'ﬁ's | 7 < a} ma,kmg this set the lower set of the double set of

indiscernibles for M(T, @, 7), and also x2'*7 = xT'#¥ by (a) for  as well as for S.

To show that xZ#*¢ C the domain of H, let ¢ < x1## be arbitrary. Suppressing the
superscript 1% from our indiscernibles for convenience,

M(T\8,6)
o=t s [Xﬂm =X?Im—1:xC0="':XCur"Eo:"'a"‘E.s—J

for some Skolem term t and the indiscernibles listed in ascending order with g,—1 < a < (p.
Applying (IIIb) with » = 0 we can replace §; by ¢ for i < s, and then applying (IIla) we can
replace {; by 7m—-1+1% for7 < n+1. Since a and « are limit ordinals, the resulting expression
shows that ¢ is in the domain of H. -

1.6 Lemma: Suppose that T is an EM blueprint satisfying (I)-(IIl), w < v < §, and
v and a are limit ordinals (allowing o = 0). Then if M(T,a,8) = (L¢[D],€, D), say, the
Skolem hull of

DE | n<a} U{g™ 1 €<}

in M(T, e, ) s (L,[D],€,D N L,[D]), where . = :.?‘“"5. Consequently,

M(T,a,v) = (L,[D],€,DN L,[D]) and L?’“” = g’“‘é for every £ < 7.

Proof: Let H be the stated Skolem hull. Then its transitive collapse is M(T,a,7)
by uniqueness. By the argument for 1.5(b) with @ = g (and a simple version for a = 0),
xL$ C the domain of H, so that M(T, a,v) must be of form (L,[D], €, D DLJD]) for some
t. We can now complete the proof by showing that . = :,T“ ¢ just as for the 0% theory. -

By 1.5 and 1.6, if T' is an EM blueprint satisfying (I)-(III), then for any 5,£, and o with
a a limit ordinal (possibly 0), we can unambiguously set

x',I; = x;l;'ﬁ"" for any limit ordinals 8, with 8 > 7, and
L?’a = L{’a” for any limit ordinal 4 > ¢, and
yie = {L?‘a | £ € On}.

Finally, we specify that if o is a limit ordinal,
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DT is the normal ultrafilter over xZ in the sense of M(T, o, w).

1.7 Lemma: Suppose that T is an EM blueprint satisfying (I)-(III) and o is a limit
ordinal. Then:

(a) (LIDI], €, DY) is the xX-model, and whenever £ < (,
(L,_?“[Dg:‘]:eapz) = (Ltg',a[Dg],E,Dg‘)-

Y EWES RN—— . LR —
(c) {x | 7 € On} and YT* are closed unbounded classes of ordinals.

: [(dé]For a;;)a cardinal A > w, x3 = X and if A > «q, LA = X and so M(T,a, ) =
LDz, €, D

(¢e) If T is any EM blueprint satisfying (I)-(III), then T = T.
Proof: For (a), note that 1.6 implies that there is a D such that

M(T, a,7) = (Lg,a [D], €, D N L 1.«[D]) for any limit ordinal v > w.
E g

Hence, (L[D], €, D) is the xZ-model. By indiscernibility, (xI)+XP] < L * for any ¢. In
particular, D C L 7, [D] by the proof of the GCH in L[D], and so D = DT The rest of (a)
and the lemma is just as for the 0% theory. -

' . i T . .
We shall soon derive more information about the x; ’s and g "®s, incorporating successor

o’s into the scheme using iterated ultrapowers. As with 0%, the hypothesis of 1.7 implies
through its (a) and (d) that for any limit ordinal o > w,

the satisfaction relation for (L[DI], €, DT) is definable in ZFC.

We point out without further mention that because of this, various upcoming assertions like
the following about inner models are directly formalizable.

1.8 Lemma: For any limit c, ({xg | 7 < a}, YT 4s a double class of indiscernibles

for the xI-model such that the Skolem hull of {x{ | 7 < a} U YT in the model is again
the model. -

With 1.7(e) in hand, we stipulate that
0f is the unique EM blueprint satisfying (I)-(III)

if there is one, and use the accepted



DJr exists

with the intended meaning. Through a recursive arithmetization of L', of is regarded as a
subset of w. The following summarizing theorem highlights some of the features:

1.9 Theorem (Solovay):
(a) If there is a k-model for some ordinal k and a Ramsey cardinal > & (e.g. if there

are two measurable cardinals), then ot ezists.

() of exists iff for every cardinal A > w, there is a A-model and a double class (X,Y)
of indiscernibles for it such that: X C ) is closed unbounded, Y C On ~ A+ 1 is a closed

unbounded class, X U {A}UY contains every cardinal > w and the Skolem hull of X UY in
the A\-model is again the model.

In this last situation, since there are regular cardinals and there are strong limit cardinals,
every member of Y is inaccessible in the A-model by indiscernibility. Hence, as Solovay noted,

the existence of 0f implies the existence of set, transitive €-models of measurability. To be
sure, we can say much more about the size of the indiscernibles, along the lines of 9.17.

Solovay also established the direct analogues for 0 of the results on the definability of
0%.

1.10 Theorem (ZF+DC)(Solovay): The relation R C “w defined by

R(z) < 0f exists A z€¥2 A {m | m(m)=1}=01-
is . A

1.11 Corollary:

(a) 0f s absolute for transitive €-models of ZF+DC such that wy C M in the following
sense: M |= There is an EM blueprint satisfying (I)-(11I) iff of € M, in which case
M E 0f 4s the unique EM blueprint satisfying (I)-(I11).

(b) of s a A} subset of w which is not a member of the sK-model for any ordinal k.
Proof: (a) uses the Shoenfield Absoluteness Theorem. For (b), if to the contrary of

were a member of the k-model for some x, by iterating ultrapowers we can assume that « is
a cardinal. But this is a contradiction by (a) and 1.9(b). -

§2. Relationships among the Classes of Indiscernibles

Having developed the analogue of the 0% theory, we now proceed to derive more infor-
mation with iterated ultrapowers that sharpens the focus. For the rest of this paper, we
stipulate that



(L[U], €, U) is the E-model where % is least possible, and
(L[Us), Uns K, ic8)a<pcon is the iteration of (L[U], €,U).

By a previous remark, all the x-models for various & appear in this iteration.

The results quickly follow from the basic uniqueness property of 1.1 tailored for 0 and
x-models and stated here for emphasis.

2.1 Lemma: For any a, there is at most one double class (X,Y) of indiscernibles for
the ko-model with X C ko of ordertype o and Y C On ~ (ke + 1) such that:

(a) For any formula ¥(vi,...,Vn+s) inL, 21 <...,<epall€ X, andy; <...<ys all
€Y

the kq-model satisfies Y[z1,. .., Zn,Y1,---,¥s] o P(co,---,cn-1,do,. - ,ds—1) € of.

(b) The Skolem hull of X UY in the kq-model is again the model. -

Proof: In brief, if (X,Y) and (X,Y) were two such classes, then the order-preserving
injection X UY — X UY extends to an isomorphism of the kq-model into itself and hence
must have been the identity. -

Dropping the superscript T by uniqueness, in the presence of 0f there are corresponding
classes

{xn | m € On}and Y* ={¢f | £ € On}

for every limit & as defined before 1.7 and with the properties ascribed by it. By 1.8, for
every limit ordinal a, ({xy | 7 < @},Y®) satisfies 2.1(a)(b) for the Xo- model. In particular,
the (X,Y) of 2.1 need not determine an EM blueprint: X can be finite, with (0,Y?) for the
xo-model being an example. In fact, Y0 is the basis of the next lemma, one which is not
surprising in view of the canonicity properties of of.

2.2 Lemma:
(a) For every a, (X,Y) = ({ry | 7 < a}, t0o YO) satisfies 2.1(a)(b) for the xq-model.
(b) Xn = &y for every n, and i0e YO =Y for every limit ordinal a.

Proof: We first show that xo = so. Clearly, ko < xo by definition of kg. For the
converse, we work in some generality for a later inference. Let A be a regular cardinal such
that k), = A = x»; there are arbitrarily large such A by the iterated ultrapower theory and
1.7(d). In what follows, we rely on the fact that by 1.8, ({xn [ 7 < A}, Y?) satisfies 2.1(a)(b)
for the A-model. By Kunen[70]3.3, if E is the proper class of cardinals > A fixed by 1q,
then ({x, | 7 < A}, E) is a double class of indiscernibles for the A-model. Note that this pair
satisfies 2.1(a) for this model: There are infinitely many Xn's in the set {x; | 7 < A}, and
E CY? as Y contains every cardinal > A. Let N be the transitive collapse of the Skolem
hull of {x, | 7 < A} U E in the A\-model, and = the collapsing isomorphism. Then N is
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again the A-model since 7(A) = A. Hence, m(k,) = x5 for every 7 < A by 2.1. Consequently,
Xn < Ky for every 7 < A since 7 is collapsing.

Now that we know xg = Xp, we can argue as follows for any a: Remembering that
(L[Ua), €,Us) is the kq-model, by the representation of iterated ultrapowers in Kunen [70]§2
any z € L[Uy] is of form & = dgo(f)(Kqy,- - -, Kq,) for some function f € L[Up) and 71 <
... < Tn < a. Since kg = Xo, f is definable in the ko-model from elements in Y?, and so
i0a(f) is definable in the xq-model from elements in igo Y°. Hence, {ry |7 < @}, t0a YO)
satisfies 2.1(b) for the x4-model.

Next, take any regular cardinal A > a such that 5y = A = x,. It follows from a previous
remark that ({x, | 7 < A},i0y"Y?) satisfies 2.1(a) for the A-model. Hence, the elementarity
of ig) shows that ({sy | 7 < a},i0a Y°) satisfies 2.1(a) for the xg-model.

(b) of the lemma is now a direct consequence of 1.8 and 2.1. 4

We can now define Y* for successor ordinals a by:
Y® =igq Y.

These Y*’s are also closed unbounded classes by the usual argument from (IIb) and (IIIb)
of 0F. Save for a small initial shift, the Y*’s are the same:

2.3 Lemma: For any o < §:
(a) YB =ig“(Y® N (B+1) U (Y ~ (B8+1))), a disjoint union.
(b) If B < min(Y'®), then Y = Y=,

Proof: Any: € Y* is inaccessible in the £,-model. Since the iteration of inner models

of measurability beyond the xo-model can be defined in the model using Uy, i4s(t) = ¢ for
any 8 < t.)

The following overall theorem describes the global coherence of x,-models and their
indiscernibles.

2.4 Theorem: Assume 01 ezists. Then for every o there ts a class Y* of ordinals
characterized by:

(a) Y® is closed unbounded and ({x, | 7 < a},Y?) is a double class of indiscernibles for
the ko-model.

(b) The Skolem hull of {x, | 7 < @} UY®* in the xo-model is again the model.

Moreover, for any a < f3, iag Y = YP, and if 7P is a collapsing isomorphism from the
Skolem hull of {k, | 1 < a}UY?P in the sg-model into its transitive collapse, then: 78 (k,) =
Kn forn < a, 8(rg) = Kq, and 78"YP = Y,

Proof: The characterization of ¥* follows from 2.1 and the fact that two closed un-
bounded classes have many common members.
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For the assertion about 72, the transitive collapse must be the x-model for some x with

({7B(k,) | 7 < o}, 78“YP) satisfying 2.1(a)(b) for that k-model. Because of the ordertype o
of the lower set of this pair, the only possibility by uniqueness is & = K, and the conclusions
follow, also by uniqueness. -

Thus, the existence of 0t leads to remarkable conclusions about the simple generation
of inner models of measurability and their relation to each other. Taking into account

the absoluteness result 1.11(a), for every a the r,-model is a subclass of L[OT], and is
moreover definable in L[Uf] as U, M(UT,C!,’)!), i.e. by taking the lower set of indiscernibles

of ordertype a and “stretching” the upper set. The resulting systems of indiscernibles are
closely interrelated by iterated ultrapowers and Skolem hulls as described in 2.4.

§3. When of Exists

We finally review some characterizations of the existence of 0f. Kunen’s well-known

result that 0% exists iff there is a (non-trivial) elementary embedding: L < L has the
following analogue:

3.1 Theorem: The following are equivalent:
(a) of ezists.

(b) The k-model exists for some ordinal k and there is an elementary embedding of the
model into itself with critical point > k.

Proof: In the forward direction, for any a let Y* be the closed unbounded class for the
ke-model as given by 0f and & any order-preserving injection of {x, | 7 < a} UY™® into itself
such that h(ky) = Kk, for n < o and h(t) > ¢ for some ¢ € Y*. Then the usual argument
shows that h induces an elementary embedding of the kq-model into itself as desired.

The converse can be established by following any of the 0% arguments of Jech[J], Kana-
mori-Magidor[KM], or Dodd[Do], using the following basic observation: If M and N are
transitive, j : M < N, and j|sq + 1 is the identity on ko + 1, then M = L[U,| iff
N = L[Uy|. The forward direction is for ultrapower arguments, and the latter, for Skolem
hull arguments. -

One can go on to show that every embedding as in 3.1(b) is induced by an A as described in
the proof.

The existence of 0 does not imply the existence of measurable cardinals, only the xq-
models (L[Uy,], €,U,). The following is a slight reformulation of an observation of Kunen in
the presence of a measurable cardinal.

3.2 Proposition (Kunen[70]): Suppose that k is a measurable cardinal and (L[U], €,U)
the k-model. Then the following are equivalent:

(a) 0f ezists.
(b) n++L[U] o oF
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Proof: The forward direction is clear; every (real) cardinal > & is in the class Y™ of indis-

cernibles for the k-model given by UT, and hence large in the model by simple indiscernibility
arguments.

For the converse, first note that in our continuing terminology & = ko and U = U, for
some o. Since the iteration of (L[U], €, U) can be defined in L[U] using U, kqtw < £TTE],
Also, if F is the filter over Kq4w generated {Ka4n | 7 € w}, ie.

X eF iff Im{kgin | m<n<w}CX,

then L[F) is the Kq4,-model.
Suppose now that W is any x-complete ultrafilter over s and jy : V < My ~ VF/W.

Then by assumption

KB & xHHU] < o8 o Jw(k).

Also {katn | n € w} € Mw since “Mw C Mw, and hence F N Mw € Mw so that
L[F] = L[F N My] is definable in My . Consequently,

Myw |= There is a p-model for some p < jw(k),

so that by elementarity there is a p-model for some p < k. By 1.3 this entails the existence
of 0. 4

As Kunen observed, it follows that if there is a measurable cardinal & such that k* < 2%,
then 0F ezists. This was the first inkling of a genuine impediment to forcing at measurable
cardinals: the measurability of x imposes sufficient constraints on P(x) so that achieving
kT < 2% requires strong hypotheses and presumably a new forcing approach. Such an
approach was to be discovered by Silver (see Jech[J] or Kanamori-Magidor[KM]§25).

The further results on hypotheses sufficient to imply the existence of of depend on the
theory of the Core Model K; see Donder-Koepke[DK].
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