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Abstract 

Kanamori, A., Regressive partition relations, n-subtle cardinals, and Bore1 diagonalization, 

Annals of Pure and Applied Logic 52 (1991) 65-77. 

We consider natural strengthenings of H. Friedman’s Bore1 diagonahzation propositions and 

characterize their consistency strengths in terms of the n-subtle cardinals. After providing a 
systematic survey of regressive partition relations and their use in recent independence results, 

we characterize n-subtlety in terms of such relations requiring only a finite homogeneous set, 
and then apply this characterization to extend previous arguments to handle the new Bore1 

diagonahzation propositions. 

In previous papers [6,7] we showed how regressive partition relations provide a 
simplifying and unifying scheme for establishing the independence of the 
Paris-Harrington as well as the Friedman [3] propositions. In these contexts the 
more informative approach of using regressive partition relations to generate 
indiscemibles in models can replace the abstract diagonalization technique of 
Cantor and Gijdel for substantiating transcendence. Friedman’s proposition 
correlated with the n-Mahlo cardinals. Here we show how the regressive partition 
formulation leads directly to an extension that correlates with the n-subtle 
cardinals, far stronger in consistency strength. In Section 1 we provide a 
systematic survey of regressive partition relations, their use in independence 
results, and related open questions. In Section 2 we establish a regressive 
partition result about n-subtle cardinals, and finally in Section 3 we use it to 
motivate and characterize the aforementioned extension. 

1. Regressive partition relations 

Let X be a set of ordinals and n E o. If f is a function with domain [Xl”, we 
write f(ab, . . . , CY~-~) for f({LYo,. . . , CX~_~}), with the understanding that 
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cYo<* * * < a,,_i. Such a function is called regressive ifff(aO, . . . , CV~_~) < a0 

whenever a0 < - * - < an._1 all belong to X and cr, > 0. There is a natural notion of 
homogeneity for such a function f : Y E X is min-homogeneous for f iff whenever 
&)<** * < q-1 and Bo<...<&_i all belong to Y, a0 = PO implies 

f(ao,. . * , %-I) =f (PO, * * . , /3_,). In other words, f on an n-tuple from Y 
depends only on the first element. We write X+ (Y)“~~ iff whenever f on [Xl” is 
regressive, there is an Y E [Xly min-homogeneous for f. 

If the usual partition relation emanating from Ramsey’s Theorem can be 
viewed as a generalization of the Pigeon-Hole Principle, then the regressive 
partition relation can be regarded as a generalization of Fodor’s Theorem on 
regressive functions on stationary sets. The relation is actually a special case of 
the canonical partition relation of Erdos-Rado [2]. The following is an immediate 
consequence of their canonical generalization of Ramsey’s Theorem: 

For any n E w, o + (o)&. 

In Kanamori-McAloon [7] the direct “minaturization” of this proposition, 

(*I For any n, k E w there is an m E w such that rn+ (k)&, 

is shown to be equivalent to the well-known Paris-Harrington [8] proposition and 
hence unprovable (in a strong sense) in Peano Arithmetic. In fact, it is shown that 
(*) for fixed n is equivalent to Paris-Harrington for fixed n and hence unprovable 
in I&_,, induction restricted to &_, formulas. The transparent independence 
proofs in [7], which quickly provide indiscernibles for models, argue for the 
efficacy of regressive partitions in this context. We mention here two open questions: 

1.1. Question. Is the following proposition independent of Peano Arithmetic?: 
For any n E w there is an m E o such that m + (n + 2)&. 

The n + 2 here is the minimal value for a non-trivial partition relation and 
allows very little flexibility; the [7] independence proof ostensibly needs 2n (or rn 
for any real r > 1) in place of n + 2. There is an analogous open question 
concerning the Paris-Harrington proposition. 

In the context of the Friedman-Simpson Reverse Mathematics program, it has 
been observed that over the base theory RCA, (Recursive Comprehension 
Axiom), the system ACAo (Arithmetical Comprehension Axiom) is equivalent to 
the system axiomatized by o-+ (w):. It is not known whether the superscript 3 
can be replaced by 2. This is the so-called “3-2 Problem”, another problem about 
minimal hypotheses for transcendence, and has the following recursion-theoretic 
formulation: 

1.2. Question. Is there a recursive map f: [0]*-,2 such that for any infinite 
homogeneous H, 0’ sT H? 
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Clote has observed that over RCA,,, the system axiomatized by w + (w)& is 
equivalent to AC&, so that the exponent can be lowered if regressive partitions 
are used. 

Turning to the infinite case, we already mentioned the Erdos-Rado result for 
o. To get min-homogeneous sets of size K > co with exponent 2, A-* (K)&, 

simple arguments show that A can be taken accessible from K as in the familiar 
Erdos-Rado Theorem for ordinary partition relations. However, it turns out that 
for exponents 23 regressive partition relations provide characterizations of the 
n-Mahlo cardinals for n E o, as was first established by Schmerl. Recall that the 
n-Mahlo cardinals are the least large cardinals conceptually transcending inacces- 
sibility: K is 0-Mahlo iff K is (strongly) inaccessible; and K is n + 1-Mahlo iff every 
closed unbounded subset of K contains an n-Mahlo cardinal. The following was 
established by Schmerl in a different notation: 

1.3. Theorem (Schmerl [9]). The following are equivalent for cardinals K > o and 
n E 0: 

(a) K is n-Muhlo. 
(b) For any m E w and unbounded X E K, X-* (m&i3. 
(c) For any unbounded X E K, X+ (n + 5)zei3. 

Rather unexpectedly, a partition relation for K > o only requiring a finite 
homogeneous set characterizes a large cardinal. This idea is pursued in useful 
form for the n-subtle cardinals in Section 2. 

The following theorem completed the characterization of regressive partition 
relations. 

1.4. Theorem (Schmerl [9] for (b), Hajnal-Kanamori-Shelah [5] for (c)). The 
following are equivalent for cardinals K > o and 0 < n < w: 

(a) K in n-Mahlo. 
(b) For any y < K and unbounded X c K, X+ (y):e’,‘. 
(c) For any closed unbounded C E K, C+ (o):$*. 

Although the partition relation is preserved upon increasing the set on the left, 
imposing conditions on all unbounded X E K enables one to have characteriza- 
tions at K. Keeping this in mind, Theorems 1.3 and 1.4 show how one works one’s 
way up through the regressive partition relation for exponents n z 3: Getting 
non-trivial min-homogeneous sets of size m < o for n = 3 requires inaccessibility. 
Suddenly, getting one of size w for n = 3 requires a 1-Mahlo cardinal K. 

Moreover, we can then get min-homogeneous sets of any size <K for n = 3, as 
well as of any size <w for n = 4. Repeating the pattern, to get a min- 
homogeneous set of size w for n = 4 requires a 2-Mahlo, and so forth. 

We next discuss the interplay between these characterizations of n-Mahlo 
cardinals and a “Bore1 diagonalization” proposition of Friedman [3]. He 
formulated and investigated several rather concrete propositions about Bore1 
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measurable functions (and in later work about spaces of groups and the like, and 
finite propositions-see Stanley [lo] and Friedman [4]) which turned out through 
clever coding to have remarkably strong consistency strengths in terms of large 
cardinal hypotheses in set theory. 

To recapitulate some notation and concepts, let Z be the unit interval of reals 
and Q = “I (the Hilbert cube) the set of countable sequences drawn from 1. If 
nEwandy,ze”Q, saythaty - z iff there is a permutation p of o, which is the 
identity except at finitely many arguments, such that y(i) 0 p = z(i) for each i < n. 
Let us say that a function F with domain “Q is totally invariant iff whenever 
y, z E nQ and y - z, then F(y) = F(z). A function G with domain Q x “Q is right- 
invariant iff whenever x E Q, y,z E nQ, and y - z, then G(_x, y) = G(x, z). 

Friedman’s proposition P from his [3] is Vn E o P,, where 

(P,) Suppose F: Q x “Q + Z is Bore1 and right-invariant. Then for any m E w 
there is a sequence (xk 1 k c m) of distinct elements of Q such that: 
whenever s<t,<***<t,,<m, F(x,, (xf,, . . . , _q)) is the first 
coordinate of x,+i. 

Note the analogy between the conclusion and min-homogeneity. Friedman 
motivated P as a sequential generalization of a basic Bore1 diagonalization 
proposition that he established in ZFC: 

If F: Q+ Z is Bore1 and totally invariant, then there is an x E Q such 
that F(x) E the range of x. 

This was in turn motivated by Cantor’s original topological proof that Z is not 
countable, which amounted to showing that “totally invariant” cannot be 
dropped from above. As Friedman emphasized, “Borel” can be replaced by 
“finitely Borel”, i.e. of a finite rank in the Baire hierarchy, without affecting the 
strength of P and thus bringing it into the fold of “concrete” mathematics. In 
particular, unlike other propositions like Suslin’s Hypothesis, P is absolute with 
respect to relativization to the constructible universe L. 

Friedman established: 

1.5. Theorem (Friedman [3]). The following are equivalent: 
(a) P(even just for finiteZy Bore1 functions). 
(b) For any u s o and n E 61, there is an o-model containing a of ZFC + 3~ (K 

is n-Muhlo). 

In the ,forward direction, Pn+4 is used with an appropriate right-invariant Bore1 
function to generate a finite sequence of reals that corresponds to a set of 
indiscernible ordinals in a “min” sense in an o-model of ZFC + V = L. The 
characterization 1.3 is then invoked to show that there is a n-Mahlo cardinal in 
the model, In the converse direction, given a Bore1 function F as hypothesized in 
P,,, one works with a countable w-model containing an a E o coding F of 
ZFC + 3~ (K is n-Mahlo). In the Levy collapse of an n-Mahlo cardinal K, 



Regressive partition relations 69 

ordinals <K are associated with members of Q, and Theorem 1.3 is used with a 
function based on corresponding forcing terms to verify P,,. 

Kanamori [6] refined the proof of Theorem 1.5 and developed more technical 
propositions p,, for n E o to provide near equivalences for a level-by-level analysis: 

1.6. Theorem (Kanamori [6]). For any n E CO: 

(4 Zfk+z holh ( even just for Bore1 functions of rank <3), then for any a G o 
there is an o-model containing a of ZFC + 3~ (K is n-Mahlo). 

(b) Zf for any a E o there is an w-model containing a of ZFC + 3~ 36 > K (K is 
n-Mahlo and L,[a] -C L,[a]), then p,,+2 holds. 

This was motivated by a question of Friedman, reminiscent of Questions 1.1 
and 1.2 in minimizing hypotheses, that remains unresolved: 

1.7. Question. Is P3 independent of ZFC? 

P2 may also be independent, with the overall scheme suggesting that it may 
entail the existence of an o-model of ZFC + 3~ (K is inaccessible). 

The refinement of Theorem 1.6 over Theorem 1.5 is based to a large extent on 
a succinct extension of Theorem 1.3: 

1.8. Theorem (Kanamori [6]). Suppose that n E CO and X is a set of ordinals such 
that X fl w = 0. Then X+ (n + .5):G3 iff X fl K is unbounded in K for some 
n-Mahlo cardinal K. 

The point is that the regressive partition relation for a single set X requiring 
only a finite min-homogeneous entails the existence of n-Mahlo cardinals. 
X fl o = 0 corresponds to the K > o case in Theorem 1.3, avoiding the known 
cases SO. Theorem 1.8 inspired an analogous assertion about n-subtle cardinals, 
which is the crucial ingredient in the extension of P in Section 3. 

2. n-subtle cardinals 

The n-subtle cardinals were introduced by Baumgartner [l] as generalizations 
of the subtle cardinals, isolated by Jensen and Kunen in their investigation of 
combinatorial principles in L. Compatible with V = L, the cardinals chart the 
territory between the weakly compact cardinals and the existence of OS in the 
hierarchy of large cardinal hypotheses in set theory. Through a combinatorial 
analysis of their incipient definitions, Baumgartner provided regressive partition 
characterizations to which Theorem 1.3 bears an evident relation. 

For X a set of ordinals and n E CO, we write X+ (y)& iff whenever f on [Xl” is 
regressive, there is a Y E [Xly homogeneous for f (in the usual sense). Requiring 
homogeneous rather than just min-homogeneous sets turns out to be a con- 
siderable strengthening. For present purposes, we can comprehend the n-subtle 
cardinals through the following characterization. 
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2.1. Theorem (Baumgartner [l]). Suppose that 0 < n < w. Then the folZowing are 
equivalent for a cardinal K: 

(a) K is n-subtle. 
(b) For any closed unbounded C E K, C+ (n + 2)feii. 
(c) For any closed unbounded C E K, and f regressive on [Cln+‘, there is an 

inaccessible cardinal A < K and an unbounded YE A homogeneous for f. 

The following is the needed analogue of Theorem 1.8; although the proof is 
similar, we include it because of the subtle differences. 

2.2. Theorem. Suppose that 0 <n < o and X is a set of ordinals such that 
x n 2 = 0. Zf x+ (n + 2)“,+,f, then X n K is unbounded in K for some n-subtle 
cardinal K. 

Unlike Theorem 1.8 this is not an equivalence, with X the set of successor 
ordinals below an n-subtle cardinal being a counterexample. The refinement to 
X fl2 = 0 is the natural one in the present context, but the first lemma toward the 
theorem provides a more useful condition. 

2.3. Lemma. Under the assumptions of Theorem 2.2, X+ ( y)& iff X - w += 

(I9.W. 

Proof. In the non-trivial direction, suppose that f is regressive on [X - CO]“; we 
must find an Y E [X - 01” homogeneous for f. Define g on [Xl” as follows: 

( 

f(s) ifsno=0, 

g(s) = 
min(s) - 1 if s G 0, else 
o if 1s n 01 is even, 

1 if 1s tl wl is odd. 

g is regressive since X tl2 = 0, so by hypothesis there is an Y E [Xly 
homogeneous for g. We can, of course, assume that y > It. If YE o, we can 
easily derive a contradiction using the second clause of g. If Y tl w # 0 and 
Y - w # 0, then we can easily derive a contradiction using the third and fourth 
clauses of g. Hence, Y n w = 0, and we are done. Cl 

The following lemma contains the crux of Theorem 2.2. 

2.4. Lemma. Suppose that 2 G n < w and for some limit ordinal r,r, and C and X 
are subsets of r~ - w with C closed unbounded. Zf C+ ( y)Fepr and X n lj -e ( y)gegr 
for every 5 < 17, then X+ (YK,,. 

Proof. We first handle the cases n 23. Set c=CU{w}. For each CUEX set 

V(CU) = SUP@ n (CX + I)), an element of C since C is closed unbounded and 
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min(X) 3 o. We first define the type of a member of [Xl” according to C as 
follows: If cue < * * . < CU,_~ all belong to X, let (go, . . . , 5;) enumerate the set 
{ ~(a~) 1 i < n} in increasing order, and set 5 = ) {i 1 q( a$ = ljj} 1 for i s k. Then 
the type of { cr,, . . . , an_l} is (rot . . . , rk), which we can assume through 
sequence coding is a natural number # 1. 

Next, let g attest to C+ (y):_ and g5 attest to X rl g+ (y)&, for g < q. Since 
C,X G r,i - o, we can assume through renumbering that the ranges of g and of 

the gE’s do not contain 1 or any number coding a type. Now define G on [Xl” as 
follows: 

G(cu,, . . . , q_J = I 
1 if w = W(ao) <a . . < ~(LY_~), 

dvJ(~o), . . . 9 $4~1)) if 0 < TV < * * * < Han-d, 

gg(ab9 . . . 9 WI-I) if W(ao) =. . . = Q(an-l), 
where 5 is the next element of 
C after q(a,), 

type of {LYE, . . . , an-l} otherwise. 

G ‘is regressive, so suppose that YE X is homogeneous for G. We can assume 
that Y has at least it + 1 elements. 

Using it 2 3 and the last clause of G, it is simple to see that q must be either 
constant or injective on Y. If I# is constant on Y, then Y cannot have ordertype y 
by the third clause of G. If ‘1’ is injective on Y, then v(min(Y)) # w by the first 
clause of G. In this case, Y cannot have ordertype y by the second clause of G. 
This completes the proof for it 2 3. 

In the special case it = 2, for every infinite ordinal p let f’, be a bijection 
between p and the even ordinals less than p, and f”, a bijection between p and 
the odd ordinals #l less than p. Now define G on [Xl’ as before, but modulated 
by these functions: 

We can now argue as before, discerning cases by whether the constant value on 
the homogeneous set is even or odd. The proof of Lemma 2.4 is complete. Cl 

Proof of Theorem 2.2. With the given hypotheses, let tl be the least ordinal such 
that X II q + (n + 2)“;:. Then r~ > w by a simple argument. By Lemma 2.3 we 
can assume that X n w = 0. But then Lemma 2.4 implies that for any closed 
unbounded C E 11, C+ (n + 2)$, i.e. rl is n-subtle. 0 
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3. The proposition H 

The clear analogy between Theorems 1.8 and 2.2 and the formulation and 
analysis in [6] of Zjn (which we did not bother to state here) leads to the following 
extension of P: 

H is Vn H,, 

where 

Suppose that F’ : Q X nQ + Z and Z$ : Q x Q --* Z are Bore1 and 
right-invariant such that F,(x, y) E the range of x for x E Q and 
y E nQ. Then for any m E o there is a sequence (xi 1 i < m ) of 
distinct elements of Q such that: 

(a) if s < t < m, then F,(x,, x,) is the first coordinate of x,+~, 
and 

(b) (xi 1 i <m) is homogeneous for FI. 

Here, of course, “homogeneous” means that F(x,, (x~,, . . . , q)) is independent 
of the choice of s <cl<* * * <t,, Cm. The lack of dependence even on s 
corresponds to the move to homogeneity from min-homogeneity, and the “choice 
function” condition F,(x, y) E range of x corresponds to regressiveness. The 
diagonalization analogy between H, and P, is maintained in the use of F2 and (a) 
which figure in the proof below; from an esthetic point of view, eliminating them 
is desirable, and may be possible with a more subtle analysis. 

The following is the main theorem of the paper. Because of the analogy 
established between the n-Mahlo and n-subtle cardinals, the proof amounts to a 
modification of the proof of Theorem 1.5. Consequently, we only provide details 
on the amendments, based in the forward direction on the approach of [6]. 

3.1. Theorem. The following are equivalent: 
(a) H (even just for Bore1 functions of rank ~3). 
(b) For any acw and O<n<w, there is an w-model containing a of 

ZFC + 3~ (K is n-subtle). 

Remark. A level-by-level analysis along the lines of 1.6 is presumably possible at 
the cost of developing more technical propositions akin to p,,; a finer proof than 
the one below would then have to be developed. 

Proof. (a)+(b) As in [3], let 9 be the language of second-order arithmetic 
augmented by class variables for subsets of .9(w) (but no quantifiers for these 
variables). Any A G 9(w) is regarded as a structure for 9 in the natural way, 
with first-order variables ranging over members of A that happen to be integers, 
second-order variables ranging over members of A, and class variables ranging 
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over arbitrary subsets of A. A formula r+9 of 9 is J$ if it has k - 1 alternations of 
second-order quantifiers beginning with an existential quantifier, followed by only 
bounded first-order quantifiers. For x z o let Ix]= {{m [2”3” E x} 1 n E w} 

E 9(o). Modifying Friedman’s notion of (n, k)-critical sequence, say that 
(xi 1 i < d) for d E o is an n-subline sequence iff each xi E o and: 

(i) for all s < t <d and all ,$ formulas IZJ we have x, E Ix,/ and {j E o 1 x,1 k 

di, x,1> E I-G+IL and 
(ii) for all t1 < - - - < t,, < d, u1 < * * * < u,, < d, a E (X”intt,, U,)( and J$ formulas I/J 

in a finite collection Y (described below), we have 

Ixtn+J L v(a, k,l, . . . , Ixtnl) iff k++J k 5% Ixu,l, . . , T I-4). 
Here, Y is a finite collection of 2; formulas which can be determined a priori, so 
that the above indiscernibility property for these formulas suffices to push through 
the main argument below for (a)+ (b) of the theorem. The use of 2; formulas 
follows [6], and is the reason why we can restrict H to Bore1 functions of rank <3. 

3.2. Lemma. Zf n > 0 and H,,,, holds, then for any d E o there is an n-sublime 

sequence of length d. 

Proof. To apply H,+l, we make the natural switch from Z to 9(w). For 
x E “9(o) let R = {2”3m I m E x(n)} and Rng(x) be the range x. For any formula 
3 of 6p let #I/ denote its GGdel number in some fixed arithmetization. 

Define Z$ : “9(o) X “+‘(“9(0))* B(w) and g: n+2( “9( 0)) ---, 0 X 3 as follows: 

Suppose that x, x1, . . . , x,,+~ E “LP(co). 

Case I. There is a 2; formula r+9 E Y as in (ii) above and a E Rng(x) such that 
either 

(Ia) Rng(x,) b $~(a, Rng(x), Rng(xl), . . . , Rng(x,-l)) and 

Rw(x,+d LYG, Rnghh . . . , Rng(x,)), 
or 

(Ib) Rng(x,) LlV(a, Rng(x), Rng(xJ, . . . , Rq(x,-l)) and 

Rng(x,+J b V(a, Rng(.d, . . . , RngW). 

Then let a, be such an a so that a = x(n) with n minimal, and for this a let I+!J~ be a 
such a ly with #r,!~ minimal. Set 

4(x, (x1, . . . , x,+~)) = ao, and 

g(x, Xl, . . . > x 

(#&, 1) if (Ia) holds, 

n+l) = 1 (#q,,, 2) if (Lb) holds. 

Case II. There is no such I/J. Then set 

4(x, (xl, . . . , x,+~)) =x(O), and g(x, x1, . . . , x,+J = ((40). 
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Next, define F2 : “9(o) x “9(w)+- P(o), just as in 3.1 of [6], as follows: 
Suppose that x, y E “B(o). 

Case 1. There is a 2; formula $ such that {Z E w 1 Rng(y) l= #(Z, z)} $ Rng(y). 
Then let &, be such a formula with ## minimal, and set F,(x, y) = {Z E 

w ] Rng(y) k &(i, z)>. 

Case 2. There is no such #. Then set F-&K, y) = { #$J ( @ is 2: and Rng(y) b 

9(9]* 

Suppose now that d E w is given, assuming d 2 n + 4 for non-triviality. Fl and 
F2 satisfy the hypotheses of ZZ,,, (after the switch from Z to 9(w)), and since Y 
in (ii) of n-sublime is finite, the range of g is finite. Hence, we can first apply ZZ,,, 
to get a sequence sufficiently long so that, by an application of the Finite Ramsey 
Theorem we can extract a subsequence (pi 1 i < d) satisfying the conclusions of 
H n+l and so that g is constant on ascendingly indexed IZ + 2-tuples drawn from 

the subsequence. 
We can now show that (pi 1 i <d) is n-sublime. By the argument for 3.1 of [6] 

using F2, clause (i) must be satisfied. It is easy to check that the constant value of 
g must be (0, 0), and hence by a straightforward indiscernibility argument clause 
(ii) must also be satisfied. This completes the proof of Lemma 3.2. 0 

The rest of the proof of (a)+(b) is just as in [3] and [6]. Starting with a 
sufficiently long IZ + l-sublime sequence, we can build an w-model of ZFC with 
an initial segment of the xi’s in the sequence corresponding to “ordinals” in the 
model. By Theorem 2.2 and the indiscernibility property (ii) of n-sublime, we can 
then show that in the model there must be an n-subtle cardinal. It can be checked 
in the argument of [6] that, indeed, only finitely many 2: formulas, which we had 
anticipated with the collection Y, need be involved in (ii) of sublime. Finally, for 
the precise statement of (b), given any a E w it can be used as a parameter in the 
2; formulas in the definition of n-sublime so that it will be a member of 1x11. 

(b)-,(a) In this direction we try to exhibit the main ideas by following [3] as 
closely as we can, foregoing the refinements of [6], for the benefit of the reader. 
In particular, we outline the argument with - in the definition of “right- 
invariant” replaced by =, where x0 =x1 means that x0 and x1 have the same 
range. The distracting modifications for getting the result with - are just as in [3]. 

Toward the verification of H,, (n > 0) and maintaining the switch from Z to 
9(w), suppose that F, : “9(w) X “(“9(w))+ P(o) such that F,(x, y) E the range 
of x and F2 : YP(o) x “9(o)+ 9(w) are both Bore1 and right-invariant. Let 
a E w code Bore1 codes for Fl and F2, and let M be a countable o-model 
containing a of ZFC + “K is n + l-subtle”. Let C by the “Levy collapse” forcing 
notion in M, consisting of finite partial functions f : K X CO+ Vr such that 
f(cu, i) E v:. r -’ 

Suppose now that G 5 C is generic over M. Define G : K X CO+ Vf by 
G((u, i) =x iff 3f E G (f(a; i) =x). For x EM, set E(G, x) = {k E o IIf E G 
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((k, f) E x)}. Finally, for limit ordinals 6 < K define T(G, 6) E “9(o) by 
T(G, 6)(m) = E(G, G(6, m)). 

The following is Lemma 5.12 of [3] and is established using right-invariance: 

3.3. Lemma. Suppose that 6 < d1 < K are limit ordinaki and f E C. Then for any 

k E o, 

f Lk E Z-$(T(fi;, a), T(&, 6,)) iff f I((6 + 1) x 0) b k E F,(T(e, 6), T(C, 6,)). 

The analogous assertion holds for FI. 

With the choice function condition F,(x, y) E range of x, the values of FI are 
determined by even less of the given condition, and this opens the door to the 
application of n-subtlety. In what follows, we write p )I 9 for p decides @, i.e. 
p IF 9 or p II--@. 

3.4. Lemma. Suppose that 6 < a1 < - - - < 6, < K are limit ordinals, f E C, and 

k E o. Zf 

f II k E F,(T(t‘, 0 T(G‘, a,), . . . > T@, hd), 

then there is a g d f and a y < S such that 

g I(v x W) II k E F,(T@, a), T(6 b), . . . > T@, 42). 

Proof. Since F,(x, y) E range of X, let g d f be such that 

g 112 = T(ti, Q(m) = F,(T(G, 6), T(e;, 6,), . . . , T(G;, 6,)) 

for some term z and m E o. By definition of T and E, we can consider z to be 
definable from G ( (y x o) for some y < 6. We now show that g 1 (y X w) II k E 

K((T(e, a), T(t% &I), . . . , T@‘, 4,))). 
Let h s g ) (y x CO) be arbitrary, and set j = max{i + 1 1 3a (( a; i) E domain of 

h)). 
Define g E C by 

{ 

g(a, i) if (Y < y and g(a; i) is defined, 

~(cY, i) = g(a; i + j) if cy 3 y and g(cu, i) is defined, 

undefined otherwise. 

By an automorphism argument, it follows that 

2 It-z = T(e;, 6)(m +j) = F,(T(G, a), T(c, 6,), . . . , T(G, 6,)). 

But clearly g and h are compatible, so we are done. Cl 

Continuing now with the main argument, we work in M. Let C = {(Y < K 1 a is 
a strong limit cardinal}. Since n + l-subtle cardinals are inaccessible, C is a closed 
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unbounded subset of K. Define a function H on [Cl,+’ as follows: Suppose that 
6,, < 6, < . - - < &+I all belong to C. 

Cu.re I. There is an f E C and a k E o such that either 

(Ia) 

or 

(Ib) 

By Lemma 3.4 we can assume that for some y < &, 

f 1 (Y x 0) II k E F,W~, W, W% h), - - - , TV% 6,)). 

Taking f least possible in some fixed well-ordering and y least possible for this f, 
set 

H(&, 61, * * * > 
cf 1 (y x o), 1) 

‘,+‘) = { (f ( (y X o), 2) 

if (Ia) holds, 

if (Ib) holds. 

Case II. There is no such f E C and k E o. Then set H( &, 6i, . . . , 6,+1) = 

(O,O>. 
We can regard H as a regressive function on [C]n+2 through coding, since the 

number of possibilities for f in Case I is small. Suppose that YE C is 
homogeneous for H. Then assuming that ]Y] 3 n + 3, Case I cannot occur on 
ascending n + 2-tuples drawn from Y: If for some 6,, < - . - < Sn+2 all belonging to 
Y and O<i<2, 

H(&, . . . , &+J = (g, i> = H(4 . . . , &+2), 

then g decides k E F,(T(e;, a,), . . . , T(C, a,,,)) in one way by the second 
equality, but by the first equality and definition, g is extendible to a condition that 
decides it in the other way. Hence, Case II occurs, and the argument of [3] can 
now be used to get a homogeneous sequence for Fi. 

To further handle F,, note that by Theorem 2.1(c) we can assume that Y is 
unbounded in some inaccessible cardinal A. Hence, Theorem 1.3(b) is more than 
enough so that with the original [3] argument based on Lemma 3.3, we can 
extract arbitrarily long finite subsequences of Y min-homogeneous for a regres- 
sive function corresponding to F2 and show that the full conclusion of H,,, can be 
satisfied. This completes our (indication of) the proof of the main Theorem 
3.1. 0 

We point out that Lemma 3.4 was needed to insure that H can be regarded as 
regressive on a closed unbounded set c_ K so that we can extract a homogeneous 
set by subtlety. The function corresponding to F2 based on Lemma 3.3 need only 
be regressive on an unbounded set c_ A to extract a min-homogeneous set, so a 
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simpler strategem is available-see the H: idea at the end of the proof of 

Theorem A in [6]. 

As in [6] it is possible to develop an infinitary version of H,, with an 

FI : Q x <OQ + Z to get a principle with consistency strength at least that of 

ZFC + 3~ Vn (K is n-subtle). However, getting an equiconsistency result seems 

difficult here. 
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