Problem Set 1 - Solutions

2019 Math Boot Camp for the Political and Social Sciences

Some practice

1. Consider the sets $A=\{1,3,5,7,9\}$ and $B=\{1,2,3,4,5\}$.
(a) $A \cap B=\{1,3,5\}$.
(b) $A \cup B=\{1,2,3,4,5,7,9\}$.
(c) The mean of A is $\frac{1}{5}(1+3+5+7+9)=5$.
(d) The mean of B is $\frac{1}{5}(1+2+3+4+5)=3$.
2. $\frac{128}{24}=\frac{16}{3}$ and $\frac{24}{128}=\frac{3}{16}$, so
(a) $\frac{128}{24} \times \frac{24}{128}=\frac{16}{3} \times \frac{3}{16}=1$
(b) $\frac{16}{3}+\frac{3}{16}=\frac{256}{48}+\frac{9}{48}=\frac{265}{48}$
3. $3 t-5 t+4=2$, so collecting like terms we get $-2 t=-2$. Thus $t=1$.
4. $(2-b)(b+3)=0$ so either $2-b=0$ or $b+3=0$. Thus the solution is $b=2$ or $b=-3$.
5. $(2 x+3 y)^{2}=(2 x+3 y)(2 x+3 y)=4 x^{2}+6 x y+6 x y+9 y^{2}=4 x^{2}+12 x y+9 y^{2}$.
6. $x^{2}+5 x+6=(x+2)(x+3)$.
7. $\frac{x^{2}+x}{x y+x+y+1}=\frac{x(x+1)}{(x+1)(y+1)}=\frac{x}{y+1}$.

Deeper Thinking

1.

$$
A \cap B=\{\text { the set of all multiples of } 6\}
$$

Some good examples to try when searching for a generalisation would be multiples of 3 and 5 . Then try multiples of 2 and 4 . Any conjectures?
2.

$$
\begin{aligned}
& x^{2}-y^{2}=(x-y)(x+y) \\
& x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \\
& x^{4}-y^{4}=(x-y)\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)=(x-y)(x+y)\left(x^{2}+y^{2}\right)
\end{aligned}
$$

So there's always the factor of $(x-y)$, but sometimes there's more! Any conjectures?
3. Start with the quadratic equation $a x^{2}+b x+c=0$. Then

$$
\begin{aligned}
a x^{2}+b x+c & =a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right) \\
& =a\left(x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}+\frac{c}{a}-\frac{b^{2}}{4 a^{2}}\right) \\
& =a\left(\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a^{2}}\right) \\
& =a\left(x+\frac{b}{2 a}-\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)\left(x+\frac{b}{2 a}+\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)
\end{aligned}
$$

Thus we see that we have solutions $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
4. Assume that it was possible, so $\sqrt{2}=\frac{p}{q}$, with p, q whole numbers with no common factors (this turns out to be crucial). Then

$$
\begin{aligned}
\sqrt{2} & =\frac{p}{q} \\
2 & =\frac{p^{2}}{q^{2}} \\
2 q^{2} & =p^{2}
\end{aligned}
$$

This shows p is even, so we can write $p=2 k$. Then

$$
\begin{aligned}
2 q^{2} & =(2 k)^{2} \\
2 q^{2} & =4 k^{2} \\
q^{2} & =2 k^{2}
\end{aligned}
$$

This shows q is even, but p and q can't both be even since then they have a common factor of 2 ! Thus we have a contradiction and it must be impossible.

