Problem Set 4 - Solutions

2019 Math Boot Camp for the Political and Social Sciences

Some practice

1.

$$
\begin{aligned}
& A B=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 \times 2+2 \times 1 & 1 \times 2+2 \times 2 \\
3 \times 2+4 \times 1 & 3 \times 2+4 \times 2
\end{array}\right)=\left(\begin{array}{cc}
4 & 6 \\
10 & 14
\end{array}\right) \\
& B A=\left(\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
2 \times 1+2 \times 3 & 2 \times 2+2 \times 4 \\
1 \times 1+2 \times 3 & 1 \times 2+2 \times 4
\end{array}\right)=\left(\begin{array}{ll}
8 & 12 \\
7 & 10
\end{array}\right)
\end{aligned}
$$

2.

$$
\begin{aligned}
& A A^{-1}=\left(\begin{array}{ll}
5 & 3 \\
4 & 3
\end{array}\right) \frac{1}{3}\left(\begin{array}{cc}
3 & -3 \\
-4 & 5
\end{array}\right)=\frac{1}{3}\left(\begin{array}{cc}
5 \times 3+3 \times-4 & 5 \times-3+3 \times 5 \\
4 \times 3+3 \times-4 & 4 \times-3+3 \times 5
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I \\
& A^{-1} A=\frac{1}{3}\left(\begin{array}{cc}
3 & -3 \\
-4 & 5
\end{array}\right)\left(\begin{array}{ll}
5 & 3 \\
4 & 3
\end{array}\right)=\frac{1}{3}\left(\begin{array}{cc}
3 \times 5+-3 \times 4 & 3 \times 3+-3 \times 3 \\
-4 \times 5+5 \times 4 & -4 \times 3+5 \times 3
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
\end{aligned}
$$

3. (a) $A v=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)\binom{1}{-1}=\binom{1 \times 1+2 \times-1}{2 \times 1+1 \times-1}=\binom{-1}{1}$
(b) $A v=\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right)\binom{0}{3}=\binom{3 \times 0+-1 \times 3}{1 \times 0+1 \times 3}=\binom{-3}{3}$
(c) $A v=\left(\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right)\binom{2}{1}=\binom{0 \times 2+1 \times 1}{1 \times 2+2 \times 1}=\binom{1}{4}$
4. (a) The matrix $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ corresponds to dilating by a factor of 2 along the x-axis, as can be seen in the diagram

(b) The matrix $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ corresponds to reflecting across the origin (or equivalently a 180° rotation), as can be seen in the diagram

(c) The matrix $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ corresponds to a 90° counterclockwise rotation, as can be seen in the diagram

Deeper Thinking

1. For $v=\binom{x}{y}$ the equation $A v=v$ gives equations

$$
\begin{aligned}
& 0.3 x+0.6 y=x \\
& 0.7 x+0.4 y=y
\end{aligned}
$$

In fact these equations are exactly the same, so we just focus on the first, $0.7 x=0.6 y$. Combined with our condition $x+y=13$ we get $x=6$ and $y=7$, so $v=\binom{6}{7}$.
I'll leave you to compute $v_{1}=A v_{0}, v_{2}=A v_{1}$, etc and see what you notice.
2. What conditions on $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ mean that for every B we have $A B=B A$? We can check at least if $A=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$ then it will satisfy $A B=B A$ for every B. In fact we can see that these are the only A that work by considering the following two cases for B :

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & a \\
0 & c
\end{array}\right) \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
b & 0 \\
d & 0
\end{array}\right) \\
& \left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
c & d \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
a & b
\end{array}\right)
\end{aligned}
$$

The fact that we need $A B=B A$ on the left tell us $a=d$ and $c=0$. The fact that we need $A B=B A$ on the right tell us $a=d$ and $b=0$.
So we get that the only A that can work are $A=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$.

