Problem Set 7 - Solutions

2019 Math Boot Camp for the Political and Social Sciences

Some practice

1.

We have rectangles of width 1 and heights

$$
\begin{array}{rrr}
f(1)=25-1^{2}=24 & f(2)=25-2^{2}=21 & f(3)=25-3^{2}=16 \\
f(4)=25-4^{2}=9 & f(5)=25-5^{2}=0 &
\end{array}
$$

Thus we have an approximate area of

$$
1 \times 24+1 \times 21+1 \times 16+1 \times 9+1 \times 0=70 .
$$

Of course the calculation gets messier with smaller rectangles, but here at least is a picture for width $\frac{1}{2}$.

2. (a) $\int 3 d x=3 x+c$, where c is an unknown constant.
(b) $\int x-2 x^{2} d x=\frac{1}{2} x^{2}-\frac{2}{3} x^{3}+c$, where c is an unknown constant.
(c) $\int_{0}^{5}(x+1)^{2} d x=\int_{0}^{5} x^{2}+2 x+1 d x=\frac{1}{3} x^{3}+x^{2}+\left.x\right|_{0} ^{5}=\frac{125}{3}+25+5=\frac{215}{3}$.
3. (a) $\int_{1}^{7} 3 d x=\left.3 x\right|_{1} ^{7}=21-3=18$.
(b) $\int_{0}^{3} 2 x+2 d x=x^{2}+\left.2 x\right|_{0} ^{3}=9+6=15$.
(c) $\int_{0}^{8} 8 x-x^{2} d x=4 x^{2}-\left.\frac{1}{3} x^{3}\right|_{0} ^{8}=256-\frac{512}{3}=\frac{256}{3}$.
4. The average is given by

$$
\frac{1}{4-2} \int_{2}^{4} x^{3}-3 x+2 d x=\frac{1}{2}\left(\frac{1}{4} x^{4}-\frac{3}{2} x^{2}+\left.2 x\right|_{2} ^{4}\right)=\frac{1}{2}(64-24+8-4+6-4)=23 .
$$

5. The total distance travelled is given by

$$
\int_{0}^{4} 1+2 t+3 t^{2} d t=t+t^{2}+\left.t^{3}\right|_{0} ^{4}=4+16+64=84
$$

Deeper Thinking

1. There are a few ways to compute this sum, but we'll give a tricky way using a formula we derived a few days ago.
On Problem Set 1 we saw that

$$
x^{n+1}-y^{n+1}=(x-y)\left(x^{n}+x^{n-1} y+\ldots+x y^{n-1}+y^{n}\right)=(x-y) \sum_{k=0}^{n} x^{n-k} y^{k} .
$$

Letting $x=1$ and $y=\frac{1}{2}$ we get

$$
1-\frac{1}{2^{n+1}}=\left(1-\frac{1}{2}\right) \sum_{k=0}^{n} \frac{1}{2^{k}}=\frac{1}{2} \sum_{k=0}^{n} \frac{1}{2^{k}}
$$

and thus multiplying through by 2 we get

$$
\sum_{k=0}^{n} \frac{1}{2^{k}}=2-\frac{1}{2^{n}}
$$

Then we can say

$$
\sum_{k=0}^{\infty} \frac{1}{2^{k}}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{2^{k}}=\lim _{n \rightarrow \infty}\left(2-\frac{1}{2^{n}}\right)=2
$$

2.

The sum we are computing for this approximation is

$$
1+e+e^{2}+e^{3}+e^{4} \approx 85.79
$$

To upgrade to sloped lines we get

Since they are all of width 1 , the area of each trapezium is $\frac{\text { short side }+ \text { long side }}{2}$, so we compute

$$
\frac{1+e}{2}+\frac{e+e^{2}}{2}+\frac{e^{2}+e^{3}}{2}+\frac{e^{3}+e^{4}}{2}+\frac{e^{4}+e^{5}}{2} \approx 159.5
$$

I'll leave you to think about what the quadratic approximation might look like...

