Problem Set 9 - Solutions

2019 Math Boot Camp for the Political and Social Sciences

Some practice

1. We have

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=3 x^{2}(y+1)+e^{y} \\
& \frac{\partial f}{\partial y}=x^{3}+x e^{y}
\end{aligned}
$$

2. (a) $\nabla f=\langle 1,1\rangle$
(b) $\nabla f=\langle\cos (x) \sin (y), \sin (x) \cos (y)\rangle$
(c) $\nabla f=\left\langle e^{x+y^{2}}, 2 y e^{x+y^{2}}\right\rangle$
(d) $\nabla f=\left\langle 2 x y^{2}+y-1,2 x^{2} y+x-1\right\rangle$
(e) $\nabla f=\left\langle\frac{1}{x} \log (x+y)+\log (x) \frac{1}{x+y}, \log (x) \frac{1}{x+y}\right\rangle$
3. We have the constraint function $g(x, y)=x^{2}+y^{2}-4$. Thus Lagrange Multipliers give the condition

$$
\begin{aligned}
\nabla f & =\lambda \nabla g \\
\left\langle 2 x y, x^{2}+2\right\rangle & =\langle 2 \lambda x, 2 \lambda y\rangle
\end{aligned}
$$

So we have the three equations

$$
2 x y=2 \lambda x \quad x^{2}+2=2 \lambda y \quad x^{2}+y^{2}=4
$$

The first equation implies either $x=0$ or $\lambda=y$. If $x=0$ then the third equation gives $y= \pm 2$, so we have extreme values at the points $(0,2)$ and $(0,-2)$.
If $y=\lambda$, the the second equation rearranges to $x^{2}=2 y^{2}-2$, and we plug that into the third equation to get

$$
\begin{aligned}
2 y^{2}-2+y^{2} & =4 \\
3 y^{2} & =6 \\
y & = \pm \sqrt{2}
\end{aligned}
$$

Plugging these into the last give $x= \pm \sqrt{2}$. Thus our extreme values occur at the points

$$
\begin{equation*}
(0,-2) \quad(\sqrt{2}, \sqrt{2}) \quad(-\sqrt{2}, \sqrt{2}) \quad(\sqrt{2},-\sqrt{2}) \quad(-\sqrt{2},-\sqrt{2}) \tag{0,2}
\end{equation*}
$$

These give the following extreme values for $f(x, y)$

$$
\begin{array}{rl}
f(0,2)=4 & f(\sqrt{2}, \sqrt{2})=f(-\sqrt{2}, \sqrt{2})=4 \sqrt{2} \\
f(0,-2)=-4 & f(\sqrt{2},-\sqrt{2})=f(-\sqrt{2},-\sqrt{2})=-4 \sqrt{2} .
\end{array}
$$

4. We are trying to maximise $f(x, y)=x y$ subject to the constraint function $g(x, y)=x+y-20$. Thus Lagrange Multipliers give the condition

$$
\begin{aligned}
\nabla f & =\lambda \nabla g \\
\langle y, x\rangle & =\langle\lambda, \lambda\rangle
\end{aligned}
$$

So we have these three equations

$$
y=\lambda \quad x=\lambda \quad x+y=20
$$

The first two equations imply $x=y$, and plugging into the third gives $x=10$ and $y=10$, thus the largest value of the product is $10 \times 10=100$.
5. The total time taken is

$$
F\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)=x_{1}+5 x_{1}^{2}+x_{2}+3 x_{2}^{2}
$$

and we want to minimize this subject to the constraint function $g\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-1000$. Thus Lagrange Multipliers give the condition

$$
\begin{aligned}
\nabla f & =\lambda \nabla g \\
\left\langle 1+10 x_{1}, 1+6 x_{2}\right\rangle & =\langle\lambda, \lambda\rangle
\end{aligned}
$$

So we have these three equations

$$
1+10 x_{1}=\lambda \quad 1+6 x_{2}=\lambda \quad x_{1}+x_{2}=1000
$$

The first two equations give

$$
\begin{aligned}
1+10 x_{1} & =1+6 x_{2} \\
x_{1} & =\frac{3}{5} x_{2}
\end{aligned}
$$

Then plugging into the third gives

$$
\begin{aligned}
\frac{3}{5} x_{2}+x_{2} & =1000 \\
\frac{8}{5} x_{2} & =1000 \\
x_{2} & =\frac{5000}{8}=625
\end{aligned}
$$

and thus $x_{1}=\frac{3}{5} \times 625=375$. Thus the minimum total amount of time spent is

$$
F(375,625)=f_{1}(375)+f_{2}(625)=1,876,000 \text { seconds. }
$$

Which is ≈ 21.71 days.

Deeper Thinking

1.

2. The graph of $f(x)=\sin (x) \sin (y)$ looks like

If we look at the set $\sin (x) \sin (y)=0$, we see either $x=\ldots,-2 \pi,-\pi, 0, \pi, 2 \pi, \ldots$ or $y=$ $\ldots,-2 \pi,-\pi, 0, \pi, 2 \pi, \ldots$. Thus the set of points $f(x, y)=0$ is

