Problem Set 4

2019 Math Boot Camp for the Political and Social Sciences

Deeper Thinking

1. Consider the Markov chain corresponding to the matrix $A=\left(\begin{array}{ll}0.3 & 0.6 \\ 0.7 & 0.4\end{array}\right)$ with initial state $v_{0}=\binom{13}{0}$. Find a vector $v=\binom{x}{y}$ such that $A v=v$ and $x+y=13$. Compute $v_{1}, v_{2}, v_{3}, \ldots$. What do you notice?
2. Find all matrices A such that for every matrix B we have $A B=B A$.

Some practice

1. Compute $A B$ and $B A$ for $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & 2 \\ 1 & 2\end{array}\right)$.
2. Confirm $A A^{-1}=I$ and $A^{-1} A=I$ for $A=\left(\begin{array}{ll}5 & 3 \\ 4 & 3\end{array}\right)$. Can you prove it in general?
3. Compute $A v$ for:
(a) $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ and $v=\binom{1}{-1}$.
(b) $A=\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right)$ and $v=\binom{0}{3}$.
(c) $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right)$ and $v=\binom{2}{1}$.
4. For each of the following matrices A, graph the vectors $v_{1}=\binom{1}{0}, v_{2}=\binom{2}{2}$ and $v_{1}=\binom{-2}{1}$ on the same set of axes as $A v_{1}, A v_{2}$, and $A v_{3}$. What geometric transformation do these matrices correspond to?
(a) $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$
(b) $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$
(c) $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
5. Read the exercises from Chapters 12 and 14 in [Moore-Siegel] and either do them or thoroughly convince yourself they're not worth your time.
