Problem Set 5

2019 Math Boot Camp for the Political and Social Sciences

Deeper Thinking

1. For a function $f(x)$ find a condition on $f^{\prime \prime}(x)$, the second derivative (i.e. the derivative of the derivative), that determines whether a given a point such that $f^{\prime}(x)=0$ is a maximum or minimum.
2. Inductively (i.e. step-by-step) with polynomials construct a function $f(x)$ such that

$$
f(0)=1, \quad f^{\prime}(0)=1, \quad f^{\prime \prime}(0)=1, \quad f^{\prime \prime \prime}(0)=1, \quad f^{\prime \prime \prime \prime}(0)=1, \quad f^{\prime \prime \prime \prime \prime}(0)=1, \quad \ldots
$$

and so on. Graph it. Do you notice anything?
3. Inductively (i.e. step-by-step) with polynomials construct a function $f(x)$ such that

$$
f(0)=0, \quad f^{\prime}(0)=1, \quad f^{\prime \prime}(0)=0, \quad f^{\prime \prime \prime}(0)=-1, \quad f^{\prime \prime \prime \prime}(0)=0, \quad f^{\prime \prime \prime \prime \prime}(0)=1,
$$

and so on. Graph it. Do you notice anything?

Some practice

1. Find the derivative of the following functions from (i) the definition and (ii) linearity and the power rule:
(a) $f(x)=5$
(b) $f(x)=x$
(c) $f(x)=(x+1)^{2}+1$
(d) $f(x)=2 x-x^{2}$
(e) $f(x)=(x-3)(x+2)+x$
2. Graph the function $f(x)=x^{2}$ and its tangent lines at $x=1$ and $x=-1$.
3. Graph the function $f(x)=x^{3}-3 x^{2}+4$ on one set of axes and its derivative $f^{\prime}(x)$ on a set directly below it. What are the x-intercepts of $f^{\prime}(x)$? What do they correspond to on the graph of $f(x)$?
4. A farmer is building a rectangular pen for her chickens, using an existing brick wall as one of the sides. She has 40 m in total of wire fencing to use. What is the maximum area of pen she can make?
5. Read the exercises from Chapter 5 in [Moore-Siegel] and either do them or thoroughly convince yourself they're not worth your time.
