Problem Set 7

2019 Math Boot Camp for the Political and Social Sciences

Deeper Thinking

1. Compute $\sum_{k=0}^{n} \frac{1}{2^{k}}$. Can you make sense of $\sum_{k=1}^{\infty} \frac{1}{2^{k}}$?
2. Consider the function $f(x)=e^{x}$. Approximate the integral $\int_{0}^{5} e^{x} d x$ via rectangles 1 unit wide. Find a better approximation via trapeziums (i.e. the top can be an angled line) 1 unit wide. Is there any way to do better? Can you approximate by a quadratic?

Some practice

1. Graph the function $f(x)=25-x^{2}$. Draw rectangles of width 1 underneath it between $x=0$ and $x=5$ and add them up to approximate the area under the graph. Can you get a better approximation with thinner rectangles?
2. Compute the following integrals:
(a) $\int 3 d x$
(b) $\int x-2 x^{2} d x$
(c) $\int_{0}^{5}(x+1)^{2} d x$
3. Compute the areas under the following graphs between the given x-values:
(a) $f(x)=3$ between $x=1$ and $x=7$.
(b) $f(x)=2 x+2$ between $x=0$ and $x=3$.
(c) $f(x)=8 x-x^{2}$ between $x=0$ and $x=8$.
4. Compute the average value of $f(x)=x^{3}-3 x+2$ between $x=2$ and $x=4$.
5. The speed of a certain car is given by the function $f(t)=1+2 t+3 t^{2}$ over the course of a journey between times $t=0$ and $t=4$. What is the total distance travelled?
6. Read the exercises from Chapter 8 in [Moore-Siegel] and either do them or thoroughly convince yourself they're not worth your time.
