Problem Set 9

2019 Math Boot Camp for the Political and Social Sciences

Deeper Thinking

- 1. Plot some points of the graph $z = x^2 + y^2$. What shape do you get?
- 2. Consider the function $f(x, y) = \sin(x)\sin(y)$. What does the graph z = f(x, y) look like? What does the set of points f(x, y) = 0 look like?
- 3. Look back over the topics we've studied this week. Which do you feel good about, which do you feel need some more attention? One good exercise is the following pick a concept and come up with an exercise you would use to teach it to someone.

Some practice

- 1. For the function $f(x,y) = x^3(y+1) + xe^y$ compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
- 2. Compute ∇f for each of the following functions:
 - (a) f(x,y) = x + y
 - (b) $f(x, y) = \sin(x) \sin(y)$
 - (c) $f(x,y) = e^{x+y^2}$
 - (d) $f(x,y) = x^2y^2 + xy x y$
 - (e) $f(x,y) = \log(x)\log(x+y)$
- 3. Find the extreme values of $f(x, y) = x^2y + 2y$ subject to the constraint $x^2 + y^2 = 4$.
- 4. If two numbers x and y satisfy x + y = 20, what is the largest value of the product xy?
- 5. A politician is organising their campaign trail, and has two final cities to consider. To secure x_1 votes in city one takes time $f_1(x_1) = x_1 + 5x_1^2$, and to secure x_2 votes in city two takes time $f_2(x_2) = x_2 + 3x_2^2$, both measured in seconds. If she needs 1000 votes from these two cities, what is the minimum amount of time she can spend campaigning in them in days?
- 6. Read the exercises from Chapters 15 and 16 in [Moore-Siegel] and either do them or thoroughly convince yourself they're not worth your time.
- 7. Pat yourselves on the back! It's been great working with you all.