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Abstract

In this lab, we will explore the Lorenz model from the xppall/ode
file that was downloaded with XPPAUT. We will make a bifurcation
diagram for this model and use this to give us intuition about the
dynamics of the full system in different parameter regimes. Then we
will make and explore our own .ode file for the van der Pol oscillator.

1 The Lorenz model

To begin:

1. Start your X-server

2. Click and drag lorenz.ode to xpp.bat. This should open XPP.

3. On the left side of the open window is a menu- choose Initialconds,
(G)o and you should see a very interesting orbit (the strange attractor
ooohh!) Remark: You can avoid repeatedly pointing and clicking by
hitting the keys indicated by capital letters, i.e. to do step 3 hit i then
g.

4. Notice the blue buttons at the top of the window marked ICs, BCs,
Delay, Param, etc. You can click these to open the current initial con-
ditions, boundary conditions, any delay, parameters, etc. Of particular
interest to us are the parameters. Try changing the parameter “r” and
see what happens. In between runs, you may want to Erase the phase
space (see menu).
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1.1 Setting up XPP for AUTO

In order to effectively use AUTO starting from XPP we need the system to
converge on a stable fixed point. Then AUTO will vary whatever parameter
we choose and in what direction we choose to continue this fixed point in
that parameter in find bifurcations.

5. We need to converge on a stable fixed point of the system. Set r = 0.5
in the Parameters window and hit “Ok”.

6. Go to the nUmerics menu and hit Total. Increase the total integra-
tion time to 300 and hit Enter on your keyboard. We need to run the
system long enough to be confident that it has converged. To leave this
sub-menu, hit the Escape key on your keyboard.

7. Go to Viewaxes, 2d and set your horizontal axis to t (time) and the
vertical axis to x. Set xmin=0, ymin=-20, xmax=300, ymax=20. To
leave this menu, you can click ”Ok” or hit the Tab button on your
keyboard. Remark: The Tab button is usually equivalent to clicking
”Ok” in XPPAUT menus.

8. Now run the system (Initialconds, Go). It appears to have converged
on a fixed point. To be sure hit (Initialconds, Last). This uses the
last data point computed by XPP as the new initial condition.

9. Now hit the blue “Data” button at the top of the screen. You can
page up and down to see if you XPP believes you are in fact on a fixed
point. In this case, since the fixed point is at the origin the system has
converged if you see all zeroes.

Remark 1. In theory, AUTO can start continuation from a periodic orbit
if you converge to it in XPP first. However, I have never successfully done
this.

Remark 2. In the nUmerics menu one can set Dt to be negative, which
reverses time. This may help if you want to start AUTO on an unstable fixed
point.
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1.2 Using AUTO

Once you are sure that the system has converged to the fixed point, you are
ready to run AUTO for the first time.

10. Choose File, Auto and the AUTO interface should pop up.

11. In the AUTO window, choose Parameter. We want r to be the bifur-
cation parameter, so make sure *Par1 is set to r. Hit Tab (or Ok).

12. Choose Axes, hI-lo. Hi-lo just means periodic orbits will be plotted
as a pair of curves corresponding to the maximum and minimum value
of the plotted variable along the orbit.

13. In the hI-lo menu, choose the Y-axis to correspond to the variable x.
Set xmin=0, ymin=-20, xmax=30, ymax=20. Close the window.

14. Choose the Numerics menu. Set Par max=30. AUTO will stop
running if the parameter of interest (r) exceeds “par max”. Close the
menu. For more information on the other items in the AUTO Numerics
menu, see Bard Ermentrout’s website (I sent the link on email).

15. Now choose Run, Steady state. You should see a pitchfork bifurca-
tion as r is increased. The outer, darker branch has stable fixed points
and the center branch has unstable fixed points. It also appears that
the stable branch loses stability near the right side of the diagram.
Let’s investigate.

16. Choose Grab. Hit the Tab button until you see the cross-like cursor
over the location where one of the stable fixed points loses stability. Hit
Enter to “choose” this point. On the bar at the bottom of the window
under the letters Ty you should see the letters HB. This indicates that
a Hopf Bifurcation occurs at this point

17. Now hit Run, Periodic. You should see two branches corresponding
to unstable periodic orbits of the system.

18. Now do the same continuation at the other Hopf bifurcation, i.e. Grab,
Tab until you get there, Enter,Run, Periodic.

Below is a picture of the bifurcation diagram I generated by following
these steps.
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You can save your own bifurcation diagrams using File, Postscript.

1.3 Optional: Using the information from AUTO to
explore the phase space

From the bifurcation diagram, we might expect that for any choice of r
between 1 and 14, the system decays to one of the two stable equilibrium
points. For r > 14 the behavior will be more complicated because of the
two families of unstable limit cycles, and we know that at some point the
dynamics converge to a strange attractor.

20. Close the AUTO window so that only XPP is still open.

21. Set the XPP window to its original settings: Viewaxes, 3D, xmin=-
20, xmax=20, ymin=-30, ymax=30, zmin=0, zmax=50, xlo=-1.5, xhi=1.5,
ylo=-2, yhi=2.

22. Try some different values of r and initial conditions. Can you figure
out where the strange attractor dynamics “start”?
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2 The van der Pol Oscillator

One version of the van der Pol oscillator is given by the following 2-dimensional
system:

ẋ = y −
(

1

3
x3 − x

)
ẏ = ε(a− x).

Here 0 < ε << 1 and a are parameters. We will now create our own .ode
file for this system.

1. Open the text file Lorenz.ode. Copy the text and paste it into a new
text document. We will modify this for our new .ode file.

Here is the data that I entered into the text window:

# van der Pol oscillator
init x=2 y=4
par eps=0.1 a=1.3
x′ = y − (1/3 ∗ x3 − x)
y′ = eps ∗ (a− x)
@ dt=.025, total=100, xplot=x,yplot=y, axes=2d
@ xlo=-3, xhi=3, ylo=-3, yhi=3
@ maxstor=20000
done

2. Once you have entered the text, save the file as “vanderpol.ode”.

3. Open vanderpol.ode with XPP.

4. You can view the nullclines of the system by hitting Nullclines, New.

4. Try varying the parameter a just above and below 1. What do you
notice? We may expect there to be a Hopf bifurcation.

5. Choose a value of a for which the system has a stable fixed point (Hint:
a > 1 will work) and make sure you have converged on this fixed point.
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6. Now open AUTO (File, AUTO). Make sure the bifurcation Parame-
ter is set to a and set up an appropriate viewing window using Axes,
hI-lo. I used a horizontal axis between 0.5 and 1.5, and a vertical axis
between -3 and 3.

7. Since we expect the Hopf bifurcation to occur to the left of our current
value of a we need to tell AUTO to decrease the parameter. In the
Numerics window, set Dt=-0.02.

8. Run, Steady state.

9. Grab the Hopf point and Run, Periodic. It’s the canard explosion!!
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Remark. You can make the curve look more connected by decreasing
the size of the mesh (increase Ntst in Numerics menu) or by increasing the
number of steps taken along any branch (increase Nmax). You can also
save the AUTO data in a .dat file which can be read into MATLAB or
Mathematica, and then “connect the dots” in one of those programs.
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