MA 122– Exam 1

July 18, 2011

In order to receive full credit, please show all work– You may use a calculator, but all derivatives and integrals must be computed by hand. Good luck!

Problem 1 Compute the indefinite integral: $\int x^2 e^{2x} dx$. Solution Use substitution: Let $u = x^2$, du = 2xdx.

$$\int x^2 e^{2x} dx = \int e^u du$$
$$= e^u + C$$
$$= e^{x^2} + C$$

Problem 2 Let $f(x) = x^2$ and $g(x) = \sqrt{x}$. (a) Calculate the area between f and g on the interval [0, 1]. Solution

Area =
$$\int_0^1 (\sqrt{x} - x^2) dx$$
$$= \left(\frac{2}{3}x^{3/2} - \frac{1}{3}x^3\right)\Big|_0^1$$
$$= \frac{1}{3}$$

(b) Sketch f and g on the same set of axes. Label your graph and indicate the quantity you found in part (a).

Problem 3 Let $f(x, y) = (x - 1)^2 + y^2$.

(a) Find and classify all critical points of f. Justify your answer using the two "Theorems" from class.

Solution Critical points satisfy $\frac{\partial f}{\partial x} = 0$ or $\frac{\partial f}{\partial y} = 0$:

$$\frac{\partial f}{\partial x} = 2(x-1)$$
$$= 0$$
$$\Rightarrow x = 1$$

On the other hand,

$$\frac{\partial f}{\partial y} = 2y$$
$$= 0$$
$$\Rightarrow y = 0$$

and so we see the only critical point of f is (1,0). To classify this point we calculate the second partial derivatives, and use Theorem 2 from p469:

$$f_{xy}(1,0) = 0, \ f_{xx}(1,0) = 2, \ f_{yy}(1,0) = 2$$

and so $AC - B^2 = 2(2) - 0^2 = 4 > 0$. Therefore the critical point is a *local minimum* (actually a global minimum in this case).

(b) Sketch a graph of f in the 3D coordinate system.

The graph of f is a paraboloid which opens upward and with vertex at x = 1, y = 0, z = 0.