
MA 122– Exam 2

August 1, 2011

In order to receive full credit, please show all work– You may use a calculator, but all
derivatives and integrals must be computed by hand. Good luck!

Problem 1 Compute the following derivatives and integrals. When evaluating definite
integrals, give exact answers with values taken from the unit circle (i.e. no decimal approx-
imations). Be sure to show your work.

(a) d
dx

(cos(x3))

Solution Use the chain rule:

= (− sin(x3))(3x2)

= −3x2 sin(x3)

(b) d
dx

(cos3(x))

Solution

= (3 cos2(x))(− sin(x))

= −3 sin(x) cos2(x)

(c)
∫ 3π

4
π
4

sin θ
cos3 θ

dθ

Solution Use substitution: let u = cos θ so that −du = sin θdθ and∫ 3π
4

π
4

sin θ

cos3 θ
dθ =

∫ −√2/2
√
2/2

− 1

u3
du

=
1

2
u−2
∣∣∣−√2/2√

2/2

= 0



Problem 2 Find the dimensions of the square S centered at the origin for which the
average value of f(x, y) = x2y2 over S is equal to 100.

Hc, 0L

H0, cL

H0, -cL

H-c, 0L

Solution From the average value formula, we know that the average value of f over the
square S is equal to

1

Area of S

∫ ∫
S

f(x, y)dA =
1

(2c)(2c)

∫ c

−c

∫ c

−c
x2y2dxdy

=
1

4c2

∫ c

−c
y2
(
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3
− −c

3

3

)
dy

=
c

6

(
c3

3
− −c

3

3

)
=
c4

9
.

We want to find c so that the average value is equal to 100, i.e.

c4

9
= 100

and so c =
√

30 ≈ 5.477. The dimensions of the square are 2c by 2c, which is approximately
10.955 by 10.955.



Problem 3 Consider
∫ 2

0

∫ 4

x2
4x

1+y2
dydx. (a) Sketch a graph of the region of integration,

and then describe it as both a regular x region and a regular y region. (b) Evaluate the
double integral in any way that you can (without a calculator).

Solution

y = x2

y = 4

x = 0

H2, 4L

R
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Regular x region: {(x, y)|x2 ≤ y ≤ 4, 0 ≤ x ≤ 2}
Regular y region: {(x, y)|0 ≤ x ≤ √y, 0 ≤ y ≤ 4}
In order to evaluate the integral, we switch the order of integration using the limits from

the regular y region we found above.∫ 2

0

∫ 4

x2

4x

1 + y2
dydx =

∫ 4

0

∫ √y
0

4x

1 + y2
dxdy

=

∫ 4

0

4

1 + y2

[∫ √y
0

xdx

]
dy

=

∫ 4

0

2

1 + y2

[
x2
∣∣√y
0

]
dy

=

∫ 4

0

2y

1 + y2
dy

Now we use substitution on the remaining integral:∫ 4

0

2y

1 + y2
=

∫ 17

1

1

u
du

= ln |u|
∣∣17
1

= ln(17).



Problem 4 Revenues from boat shoe sales in a particular store are given approximately
by

R(t) = 3 + 2 cos

(
πt

6

)
, 0 ≤ t ≤ 24

where R(t) is the revenue in thousands of dollars for a month of sales t months after June 1.

(a) Find the exact value R(2) and interpret the result in the context of this problem.

Solution R(2) = 4. This means that the revenue taken in by the store from boat shoe
sales was approximately $4000 during the month of August (i.e. two months after June 1).

(b) Find all local maxima and minima of R for 0 < t < 24.

Solution We first find the critical points of R by setting R′(t) = 0:

R′(t) = −2π

6
sin

(
πt

6

)
R′(t) = 0

⇒ sin

(
πt

6

)
= 0

⇒ πt

6
= kπ, k ∈ Z+

⇒ t = 6k.

Since we are restricting to 0 < t < 24, we see that 0 < 6k < 24 ⇒ 0 < k < 4. In other
words, k = 1, 2, or 3 so that there are exactly three critical points: t = 6, t = 12 and t = 18.

To determine which critical points are maxima and which are minima, we compute R′′(t)
and evaluate it at the three points.

R′′(t) = −2π2

62
cos

(
πt

6

)
= −π

2

18
cos

(
πt

6

)
We find that

R′′(6) = −π
2

18
cosπ

=
π2

18
> 0

and so t = 6, R = 1 is a local minimum. Next,

R′′(12) = −π
2

18
cos(2π)

= −π
2

18
< 0



so that t = 12, R = 5 is a local maximum. Finally,

R′′(18) = −π
2

18
cos(3π)

=
π2

18
> 0

and so t = 18, R = 1 is another local minimum.

(c) How much revenue did the store take in during the first year?

Solution∫ 12

0

(
3 + 2 cos

(
πt

6

))
dt =

(
3t+

12

π
sin

(
πt

6

)) ∣∣∣12
0

=

(
36 +

12

π
sin(2π)

)
−
(

0 +
12

π
sin(0)

)
= 36

This tells us that the store took in $36, 000 in revenue for boat shoes during the first year.

(d) Use part (b) to help you sketch a graph of R(t), and label all points found in part
(b). Indicate the quantity found in part (c) on your graph. Be sure to include all important
labels.
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The shaded region in the graph has area equal to 36, the number found in part (c) above.



Problem 5 (Extra credit to be added to Quiz 2 or Exam 2– whichever produces
the better grade) Give an example of a real-world situation (other than revenue) that could
be modeled by a periodic function, and explain why. Estimate the period and explain your
choice. Sketch and label a corresponding graph.

Answer will vary widely. See me if you would like to talk about this problem.


