## **Quiz 6**, MA 225 A1, 6/20/12

Consider the sphere S of radius p centered at the origin. Use a triple integral to represent the volume of S in (a) spherical coordinates, (b) cylindrical coordinates and (c) Cartesian coordinates. Then evaluate one of these three integrals to calculate the volume.

**Solution.** (a) Volume =  $\int_0^{2\pi} \int_0^{\pi} \int_0^p \rho^2 \sin \phi d\rho d\phi d\theta$ 

(b) Volume = 
$$\int_0^{2\pi} \int_0^p \int_{-\sqrt{p^2-r^2}}^{\sqrt{p^2-r^2}} dz r dr d\theta$$

(c) Volume = 
$$\int_{-p}^{p} \int_{-\sqrt{p^2-x^2}}^{\sqrt{p^2-x^2}} \int_{-\sqrt{p^2-x^2-y^2}}^{\sqrt{p^2-x^2-y^2}} dz dy dx$$

The triple integral in part (a) is probably the easiest to compute. The result is  $\frac{4}{3}\pi p^3$ .