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Approximate spectral gaps for Markov chains mixing times in high dimensions*

Yves F. Atchadét

Abstract. This paper introduces a concept of approximate spectral gap to analyze the mixing time of reversible
Markov Chain Monte Carlo (MCMC) algorithms for which the usual spectral gap is degenerate or
almost degenerate. We use the idea to analyze a MCMC algorithm to sample from mixtures of
densities. As an application we study the mixing time of a Gibbs sampler for variable selection in
linear regression models. We show that properly tuned, the algorithm has a mixing time that grows
at most polynomially with the dimension. Our results also suggest that the mixing time improves
when the posterior distribution contracts towards the true model and the initial distribution is
well-chosen.

Key words. Markov Chain Monte Carlo algorithms, Markov chains mixing times, Spectral gaps, Canonical
paths, MCMC for mixtures of densities, High-dimensional linear regression models
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1. Introduction. Understanding the type of problems for which fast Markov Chain Monte
Carlo (MCMC) sampling is possible is a question of fundamental interest. The study of the
size of the spectral gap is a widely used approach to gain insight into the behavior of MCMC
algorithms. However this technique may be inapropriate when dealing with distributions with
small isolated local modes. To be more precise, let m be some probability measure of interest
on some measure space X, and let K be a Markov kernel with invariant distribution 7. For
the purpose of sampling from 7 using K, one can represent an isolated local mode (to which
K is sensitive) as a subset A such that K(z, X \ A) is small compared to w(X \ A) for all
x € A. In this case, K will have a small conductance, and a small spectral gap. Note however
that if 7(A) is also small (that is we are dealing with a small isolated mode A), then, since

A

/ m(dx)K(z, A) = / m(de)K(z, X \ A),
X\A

we see that the set A will be typically hard to reach in the first place. Hence, any finite-length
Markov chain {Xj,..., X, } say, with transition kernel K and initialized in X' \ A is unlikely
to visit A. Nevertheless, and since 7(A) is small, X,, may still be a good approximate sam-
ple from 7 for large n. This implies that the poor mixing time predicted by the standard
spectral gap may markedly differ from the actual behavior of these finite-length chains. Mo-
tivated by this problem, and building on the s-conductance of L. Lovasz and M. Simonovits
([Lovéasz and Simonovits(1993)]), we develop an idea of approximate spectral gap (that we call
(-spectral gap, for some ¢ € [0,1)) which allows us to measure the mixing time of a Markov
chain while discounting the ill-effect of overly small (and potentially problematic) sets.
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2 Y. ATCHADE

Mixtures are good examples of probability distributions with isolated local modes. We
use the idea to analyze a class of MCMC algorithms to sample from mixtures of densi-
ties. Much is known on the computational complexity of various MCMC algorithms for log-
concave densities (see e.g. [Lovasz and Simonovits(1993), Frieze et al.(1994), Lovasz(1999),
Lovasz and Vempala(2007)], and [Dwivedi et al.(2018)] and the references therein). However
these results cannot be directly applied to mixtures, since a mixture of log-concave densities
is not log-concave in general. By augmenting the variable of interest to include the mixing
variable, a Gibbs sampler can be used to sample from a mixture. A very nice lower bound on
the spectral gap of such Gibbs samplers is developed in [Madras and Randall(2002)]. We re-
examine [Madras and Randall(2002)]’s argument using the concept of (-spectral gap, leading
to Theorem 3.1 that gives potentially better dependence on the dimension.

Our initial motivation into this work is in large-scale Bayesian variable selection prob-
lems. The Bayesian posterior distributions that arise from these problems are typically mix-
tures of log-concave densities with very large numbers of components, and the aforemen-
tioned Gibbs sampler is commonly used for sampling (see e.g. [George and McCulloch(1997),
Narisetty and He(2014)]). We show that when properly tuned, the algorithm has a mixing
time that grows at most polynomially with p, the number of regressors in the model (Theorem
4.2). Our result derived from the approximate spectral gap also suggests that the mixing time
improves when a good initial distribution is used, provided that posterior contraction towards
the true model holds (Theorem 4.3).

The paper is organized as follows. We develop the concept of (-spectral gap in Sec-
tion 2. The main result there is Lemma 2.1. In Section 3 we study the mixing time of
mixtures of Markov kernels, and derive (Theorem 3.1) a generalization of Theorem 1.2 of
[Madras and Randall(2002)]. We put these two results together to analysis the linear regres-
sion model in Section 4. Some numerical simulations are detailed in Section 4.1.

2. Approximate spectral gaps for Markov chains. Let 7 be a probability measure on
some Polish space (X,B) (where B is its Borel sigma-algebra), equipped with a reference
sigma-finite measure denoted dz. In the applications that we have in mind, X is the Euclidean
space R? equipped with its Lebesgue measure. We assume that 7 is absolutely continuous
with respect to dx, and we will abuse notation and use 7 to denote both 7 and its density:

n(dz) = m(x)dx. We let L?(r) denote the Hilbert space of all real-valued square—integrable

(wrt 7) functions on X, equipped with the inner product (f, g) def Sy f(x)g(x)m(dz) with
associated norm || - ||2 . More generally, déf (| f (dx))l/ °. For

s = 400, ||f||sx is defined as the essential supremum of | f| with respect to =. If P is a Markov
kernel on X', and n > 1 an integer, P™ denotes the n-th iterate of P, defined recursively as

P (z,A) = def v PN z,d2)P(z, A), x € X, A measurable. If f : X — R is a measurable
function, then Pf: X — R is the function defined as Pf(z def Jv P v P(r,d2)f(2), v € &,
assuming that the integral is well defined. And if p is a probablhty measure on X, then puP

is the probability on X defined as pP(A def Sy 1(dz)P(z,A), A € B. The total variation
distance between two probability measures ,u, v is defined as

ef
i = vl & 2 sup (u(A) — v(A)).
AeB
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APPROXIMATE SPECTRAL GAPS FOR MARKOV CHAINS 3

76 Let K be a Markov kernel on X that is reversible with respect to w. That is for all
77 A,B € B,

8 /A (da) /B K (z, dy) = /B (de) /A K (z, dy).

79 We will also assume throughout that K is lazy in the sense that K (z, {z}) > 4. The concept
80 of spectral gap and the related Poincare’s inequalities are commonly used to quantify Markov

81 chains’ mixing times. For f € L2( ), we set m( o S J( ), Varg(f )dﬁf If — 7>
82 and E(f, f) 1 s J(f z))? (dx)K(x,dy). The spectral gap of K is then defined as
83 SpecGap(K) = L inf {5;{7;(‘];)), feL*n), st. Varg(f) > 0} .

84 It is well-known (see for instance [Montenegro and Tetali(2006)] Corollary 2.15) that if mo(dz) =}
85 fo(z)w(dx), and fo € L*(r), then

86 (2.1) oK™ — 7||2, < Varg(fo) (1 — SpecGap(K))"

87 Therefore, lower-bounds on the spectral gap can be used to derive upper-bounds on the mixing
88 time of K. In many examples, the conductance of K is easier to control than the spectral gap.
89 In these examples the concept of s-conductance introduced by L. Lovacz and M. Simonivits
90 ([Lovdsz and Simonovits(1993)]) as a generalization of the conductance has proven very useful,
91 particularly in problems where a warm-start to the Markov chain is available. For ¢ € [0,1/2),
92  we define the (-conductance of the Markov kernel K as

o: d:ef 1 f A :E AC) 1}

93 P (K) mf{(w(A) (A = 0)’ (<m(4) < 5 ("
94 where the infimum above is taken over measurable subsets of X. Note that ®¢(K) is the
95 standard conductance. Plainly put, ®¢(K) captures the same concept of ergodic flow as
96 ®g(K), except that in ®¢(K) we disregard sets that are either too small or too large under 7.
97 It turns out that ®¢(K) still controls the mixing time of K up to an additive constant that
98 depends on ( (see [Lovasz and Simonovits(1993)] Corollary 1.5). One important drawback of
99 the (-conductance is that the arguments that relate ®¢(K) to the mixing time of K (Theorem
100 1.4 of [Lovédsz and Simonovits(1993)]) is rather involved, and this has limited the scope and
101 the usefulness of the concept. Furthermore there are some problems where direct bound on
102 the spectral gap instead of the conductance is easier, or yields better results.

103 Motivated by the (-conductance, we introduce a similar concept of (-spectral gap that
104 directly approximates the spectral gap. Let || - [|x : L%*(w) — [0,00] denote a norm-like
105 function on L?(7) with the following properties: (i) ||af|l« = |all|fllx, (ii) if [|f]lx = O then
106 Varg(f) =0, and (iii)

107 (2.2) IK fllx < [Ifll, f € Li(m),

def

108 where L2(7) = {f € L*(7) : ||f|lx < oo}. For ¢ € (0,1), we define the (-spectral gap of K as

109 (2.3) SpecGap (K) L inf {\m, f € Li(n), Varg(f) > ¢, and || f|l« = 1} :
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4 Y. ATCHADE

We note that SpecGap.(K) depends on the choice of || - [|,. We note also that if ¢ = 0 and
| £lls = || f]l2.x, then we recover SpecGapy(K) = SpecGap(K). Furthermore, given f € L?(r),
and writing f = f — 7(f), we have

. f)  _m() = (fPh),
Vare(f) =5 w(f) -5

By the lazyness of the chain, (f, Pf>7r > 7(f?)/2, and we deduce that SpecGap;(K) is a
quantity that always belongs to the interval [0, 1]. The idea is somewhat similar to the con-
cept of weak Poincare inequality developed for continuous-time Markov semigroups with zero
spectral gap ([Liggett(1991), Cattiaux and Guillin(2009)]). One key difference is that weak
Poincare inequalities lead to sub-geometric rates of convergence of the semigroup, whereas
the idea of (-spectral gap as introduced here leads to a geometric convergence rate, plus an
additive remainder that depends on {. More precisely, we have the following analog of (2.1).
The proof is similar to the proof of (2.1).

Lemma 2.1. Suppose that K is w-reversible, lazy, and satisfies (2.2). Fiz ¢ € [0,1). Sup-
pose that mo(dz) = fo(z)m(dx) for a function fo € L3(w). Then for all integer n > 1, we
have

Imo K™ — ml[2, < Var (K™ fo) < Varx(fo) (1 — SpecGap(K))" + ¢| fol[3-

Proof. See Section 5.1. |

It is also possible to control similarly the convergence to stationarity in the 1-Wasserstein
metric. Indeed, for any h € L?(7) we have

(24)  |mK™(h) — ( y—‘/ V(K™ fo(w) — 1) 1(da)| < [[hllany/Vars (K7 ).

Hence, if X' is a metric space and 7 is such that any Lipschitz function h on X belongs to
L?(7) (basically 7 has finite second moments), then under the assumptions of Lemma 2.1 we
have,

(2.5) Wi(moK™,m) %  sup  |moK™(h) — x(h)]
he [[h||Lip=1

<, g 1l Vare(fo) (1 = SpecGapc(K))" + Il ol
Lip—

def

where ||h|[Lip = sup,, |h(y) — h(z)|/d(y,z) is the Lipschitz norm of h, and where d is the
metric on X

2.1. llustration with the small local mode example. We now illustrate how the approx-
imate spectral gap can be used with the conceptual example described in the introduction.
For that purpose, in this section we assume that X = Ay U (X) for some measurable subset
Xo of X. We aim to capture the intuition that when Aj is small under 7, a Markov chain
with transition kernel K started in Ay typically does not suffer from the local modes in Aj.
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APPROXIMATE SPECTRAL GAPS FOR MARKOV CHAINS 5

Let By, be the trace sigma-algebra of B on &j. Let Ky, be the restriction of K on Xj.
That is Ky, is the transition kernel on (Xp, By,) defined as

Kxy(z,dy) = K(z,dy) + 6,(dy) K (z, &), z € Ap.

Using the reversibility of K, it is easy to show that the invariant distribution of Ky, is mx,,
the restriction of 7 to &y, and the spectral gap of Ky, is given by

1 Jx, S, 7(d2) K (2, dy)(f(y) — f(2))” }
— 00 L fi X =R,
2§ iy Jop D) () — gt
where the infimum is taken over all functions f € L?(m) such that

Ty S, m(d2)(dy) (f(y) — f(z))? > 0. The next result shows that the spectral gap of Ky, is
a lower bound for SpecGap(K).

Lemma 2.2. For ( € (0,1), and || - ||« = || - [lmx, for some m € (2,4+00], if 7(Xy) >
455
1-— (%) "% then we have

(2.6) SpecGapy, (K) e ing {

SpecGap:(K) > SpecGapy, (K).

Proof. See Section 5.2. [ |
Fix (o € (0,1). Suppose that we choose the initial distribution mg such that || fo||m .~ < B,
for some constant B > 1. In that case Lemma 2.1 with || ||« = ||+ |lm.x, and ¢ = (3/(B?) gives
foralln > 1,
(2.7) |moK™ — ||, < B? (1 — SpecGap(K))" + (3.

452
Therefore, if 7(Xp) > 1 — <f—0) " by Lemma 2.2 we obtain the following bound on the

mixing time:

o s (%)
K* =7l < V20, forall N> —— 0
o Tlltv < V2(o, for a ~ SpecGapy, (K)

In other words the mixing time of K can indeed be controlled by the spectral gap of Kx,. The

1082
and on the concentration properties of m on Xy. The successful use of the technique typically

hinges on controlling these two aspects. Further illustrations are given below.

2 1+m77
condition m(Xy) > 1 — ( % ) * puts a stringent constraint on the initial distribution g

2.2. Extension to reversible Markov semigroups. The idea can also be applied to continuous-}j
time Markov processes. We refer the reader to ([Bakry et al.(2013)]) for an introduction to
Markov semigroups. We consider a reversible Markov semigroup K = {Kj, t > 0}, where for
each t, K; is a Markov kernel on (X, B) that is reversible with respect to m. Let G denote
the generator of the semi-group that we assumed well-defined on a dense subspace A of L?(r)
that is stable under G and K3 such that for all ¢ > 0,

d

(28) ath == Kth == Gth, f S .A
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6 Y. ATCHADE

We make also the assumption that the domain A contains constant functions and is equipped
with a norm || - ||« such that || f||. = 0 implies that Var(f) =0, and for all t > 0

(2.9) IEKef I« < I flls, f€A
The Dirichlet form of K is defined as
def
&N = [ 1@)GHan(an).
For ¢ € [0,1), we can define the (-spectral gap of the semi-group K as
— J f(@)G f(z)m(dz)
Varr(f) = ¢

We have the analog of Lemma 2.1.

Lemma 2.3. Suppose that the semigroup K satisfies (2.9). Let v(dx) = f(z)w(dx) be a
probability measure on X, where f € A. Let { € [0,1) be such that A\¢(K) > 0. Then for all
t > 0 we have

(210)  A(K) Y inf{ . f €A, Var(f) > ¢, and || f||l, = 1} .

vk = 7|[f < Var(Kif) < Vare(f)e” <000 4 (] £12.
Proof. See Section 5.3. u

For ¢ = 0, A¢(K) corresponds to the classical spectral gap of the semigroup and Lemma
2.3 is the classical exponential convergence of the semigroup. This result can be applied to
Langevin diffusion processes. Suppose that X = R? equipped with the Lebesgue measure, and
n(dz) = e"U®) /Z, for a function U : RP? — R that is differentiable with Lipschitz gradient.
The Langevin diffusion process for 7 defines a reversible Markov semigroup with invariant dis-
tribution 7. The convergence rate of the semigroup toward 7 is a key ingredient in the analysis
of several recent MCMC algorithms, including the unadjusted Langevin algorithm and sto-
chastic gradient Langevin dynamics ([Welling and Teh(2011), Raginsky et al.(2017)]). When
U is convex, the semigroup is known to possess a spectral gap ([Bobkov(1999)]). Various exten-
sions beyond the convex case are also known and are well discussed in ([Bakry et al.(2008)]).
Lemma 2.3 offers another route, one that might be more effective when a good initial distri-
bution is available, and 7 has well-understood concentration properties. We leave the details
as possible future research.

3. Application: mixing times of mixtures of Markov kernels. To illustrate Lemma 2.1
we consider here the case where X = RP, and 7 is a discrete mixture of log-concave densities
of the form

(3.1) n(dz) o< Y 7(i, z)da,

i€l

where | is a nonempty finite set, and for ¢ € I, 7(4,-) : RP — [0, 00) is a measurable function.
As mentioned in the introduction, much is known on the computational complexity of various
MCMC algorithms for log-concave densities. However these results cannot be directly applied
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208 to mixtures, since for instance a mixture of log-concave densities is not log-concave in general.
209 Sampling from mixtures is more challenging than sampling from log-concave densities. For
210 instance it is shown in [Ge et al.(2018)] that no polynomial-time MCMC algorithm exists to
211 sample from mixtures of densities with inequal covariance matrix, if the algorithm uses only
212 the marginal density of the mixture and its derivative. However this result does not cover the
213  most commonly used strategy to deal with mixtures, namely the Gibbs sampler.

214 Gibbs sampling type algorithms work with the joint distribution on | x X defined as
i, x)dx
215 (3.2) 7(D x B) = ZED Jpm(i:2) DCIl, BeB.
Yier [y i w)dz’
216 Let w(i|lz) o< w(i,z) (resp. w(i) o [, m(i,x)dx) denote the implied conditional (resp.

217 marginal) distribution on |, and let m(dx) x 7r(z :I:)d:U be the implied conditional distribution
218 on X. For each i € |, let K; be a transition kernel on X with invariant distribution ;. We
219 assume that K; is reversible with respect to m;, and ergodic (phi-irreducible and aperiodic).
220  We then consider the Markov kernel K defined as

221 (3.3) K(z,dy) €3 n(ile) Ki(z, dy),

i€l
222 that is reversible with respect to m as in (3.1). In [Madras and Randall(2002)] the authors
223 developed a very nice lower bound on the spectral gap of K knowing the spectral gaps of the
224 K;’s. Their result goes as follows. Suppose that there exist x > 0, and a graph on | such that
225 whenever there is an edge between 4, j € |, it holds

226 (3.4) /Xmin (mi(x), mj(x)) dz > k.

227 If D(I) denotes the diameter of the graph thus defined!, Theorem 1.2 of [Madras and Randall(2002)]]
228 says that

220 (3.5) SpecGap(K) > m1n{7r( )SpecGap(K;)}.

2D(I)
230 The lower bound in (3.5) can be very small when | is large, particularly if some 7 ()
231 are exponentially small. We combine the approach in ([Madras and Randall(2002)]) with the
232 canonical path argument of ([Sinclair(1992), Diaconis and Stroock(1991)]) to develop a new
233 bound on the (-spectral gap of K. We make the following assumption.

234 H1. There ezist Iy C I, and {B;, i € Iy} a family of nonempty measurable subsets of X,
235 with the following property.
236 1. For eachi € Iy, m;(B;) > 1/2.
237 2. There exist k > 0 and a connected graph G on ly such that
238 (3.6) / min ( mi(2) ) ™ (2) > dz > &,
BiNB; mi(Bi) m;(B;)
239 whenever there is an edge in G between i and j.

!The diameter of a graph is the length (the number of edges) of the longest among all the shortest paths
between all pairs of vertices.
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One should view Uj;¢, {7} X B; as a subset of | x X' that captures most of the probability mass
of . The graph G captures the proximity between the conditional distributions. Indeed, (3.6)
implies that the total variation distance between the restriction of ; to B; and the restriction
of wj to B; is at most 2(1 — k).

Since G is assumed connected, for any distinct pair ¢,5 € lp we can find and pick a path
7i; that connects ¢ and j. We call 7;; the canonical path from ¢ to j. The number of edges on
7ij is denoted |7;;|. We then define

(3.7) m; < max Z |7ij‘w,

i,j€lo: Yij Dt

where the summation is taken over all distinct pair (7, j) whose canonical path ~;; goes through
node ¢. We define the local spectral gap of K; as SpecGap;(K;) = SpecGapg, (K;), where
SpecGapg, (K;) is defined as in (2.6).

Theorem 3.1. Let 7w as in (3.1), and K as in (5.3). Assume that H1 holds and K satisfies

(2.2) with some chosen pseudo-norm || - ||x. Set B ef Uie{i} % B;i and assume that there
exists ¢ € [0,1) such that for any function f € L2(r) satisfying || fll. = 1, it holds

68) 2 [ [ (f0) = 1) rldi,do)m(dsdy)
[ ]G - @) e e dy) <

where B¢ X (Ix X)\ B. Then

(3.9) SpecGap;(K) > (1+K8ml> rz%ll(r)l SpecGap;(K;).
Proof. See Section 5.4. [ |
Remark 3.2. The condition (3.8) can be easily handled. For instance if || - ||« = || - ||x,m for

some m € (2, 00|, then by Holder’s inequality the left hand side of (3.8) is easily bounded from
above by 107(B¢)*~2/™. In that case (3.8) holds if B satisfies 7(B) > 1 — (¢/10)*2/(m=2),

Note that the constant m; satisfies

D(lo)
(3.10) ™S e, ()

Hence the bound in (3.9) improves on (3.5), even when ¢ = 0. In problems where an exact draw
from 7(-|z) is not available, the kernel K in (3.3) is not usable. In these cases it is typical to
replace those exact draws by MCMC. Theorem 3.1 can be extended to such settings. However
we will not pursue this here for lack of space.

This manuscript is for review purposes only.
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0 4. Example: analysis of a Gibbs sampler. We consider the Bayesian treatment of a linear
regression problem with response variable z € R™, and covariate matrix X € R™*P, with a

1

2 spike-and-slab prior distribution on the regression parameter # € RP as in ([George and McCulloch(1997),J]
Narisetty and He(2014)]). More precisely, for some variable selection parameter § € A = o
{0,1}? and positive parameters pg, p1, we assume that the components of 6 are conditionally

independent, and 0;|{0 = 1} has density N(0, p; "), and 6;|{0 = 0} has density N(0, py '),

where N(u,v?) denotes the univariate Gaussian distribution with mean p and variance v2.

We further assume that given q € (0, 1), the prior distribution of ¢ is a product of Bernoulli

with success probability g, and restricted to be in A def {6 € A: ||d]]p < s}, for some sparsity

level s specified by the user. The resulting posterior distribution on A x RP? is

Tt = W

(@)

-~ 1 ~ = =

EN|

N NN DN NN
co

3
2

_lgpl
o 30 D5)0

e vod Xe\\zdg
det (27TD(5))

151l
280 (4.1) I1(6,d0|z) <1iq> 1a,(9)

281 where D5y € RP*? is a diagonal matrix with j-th diagonal element equal to P1_1 if 9; =1, and
282 po Lir 0; = 0. Note that we can always set s = p. The regression error o is assumed known.
283 'This model is very popular in the applications. Indeed, the posterior conditional distribution
284 TI(410, z) is a product of independent Bernoulli distributions constrained to be s-sparse:

285

—q)] 1-5; def 1

286 (4.2) 1I1(6]6, 1
0 (42) TEI9,2) o La, 1+A€%(P1—p0)0§.’

287

j:17"'7p7

T ’:]@

o8¢ where A X (1 —q)q '/po/p1. We will assume that sampling from (4.2) is easy. This is the
289 case when s = p (by direct independent sampling), or when s is large (by a simple rejection
290 scheme). A Metropolis-Hastings scheme could also be used, but we will focus our analysis on
291 cases where an exact draw is made from (4.2). Given 9, the conditional distribution of 6 given
202§ is Np(mg, 025s), with ms and s given by

203 (4.3 ms & ;X2 and o5 Y (X'X +02D7L)
(%)

294 Put together these two conditional distributions yields a simple Gibbs sampling algorithm for
295 (4.1). We consider the following version that is modified so that the resulting Markov chain
296 is lazy as required by our theory.

[Algorithm 4] For some initial distribution vy on RP, draw ug ~ vy. Given uo, . .., uy for some
k > 0, draw independently I;11 ~ Ber(0.5).
1. If Iypq =0, set ugy1 = ug.
2. I Iy =1,
(a) Draw 6 ~ II(-|ug, z) as given in (4.2), and
(b) draw ugi1 ~ N,(ms, 025s) as given in (4.3).
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10 Y. ATCHADE

We analyze the mixing time of the marginal chain {ug, & > 0} from Algorithm 4. As
easily seen, {ux, k> 0} is a Markov chain with invariant distribution

q Il ¢ 30" T
(4.4) (o)) o« 3 ( > o sl X0l g,
1- q det (27TD(5))

JTANS

which is of the form (3.1), and with transition kernel

(4.5) K(u,d) = 3" (wlu, 2) Béu(de) + %H(d0|w, z)] ,
wEA

which is of the form (3.3).

To proceed we introduce some notations. For § € A, and 6 € RP, we write #5 as a short

for the component-wise product of  and J, and we define 6°¢ defy 0, that is (5;? =1-4,

1 < j < p. For a matrix A € RI*P, A; (resp. Age) denotes the matrix of RI*I%llo (resp.

R2*(P=1%ll0)) obtained by keeping only the columns of A for which d; = 1 (resp. &; = 0).

When § = e; (the j-th canonical unit vector of RP) we write As (resp. Agsc) as A; (resp. A_j).

For two elements 6, 0’ of A, we write § 2 ¢’ to mean that §; = 1 whenever §7 = 1. The support

of a vector u € R? is the vector supp(u) € A such that supp(u); = 1 if and only if |u;| > 0.
An important role is played in the analysis by the matrices

def

1
Ls =1, + fQXD((;)X/,
(o

and the coherence of X defined as

—1
def ‘XJ/'Lé Xf’
C(s) = max max ——.
SEAs  j#L nlog(p)

We will make the assumption that C(s) does not grow with p. It can be easily checked that
if the columns of X are orthogonal then C(s) = 0. Furthermore, it can be shown that if X is
a realization of random matrix with i.i.d. standard Gaussian entries, then and provided that
n > As?log(p), it holds C(s) < ¢ for some absolute constants ¢, A. We refer the reader to the
Appendix for details. We make the following regularity assumption on the matrix X.

H2. 1. The matriz X is non-random and normalized such that
(4.6) 1X13=n, j=1,...,p.
Furthermore, there exists an integer so € {1,...,p — 1}, such that

v (XL Xse) v
A i e L — ) , v e Rl 0 < oflg <59 p > 0.
8 [18lj0<s0 nllvl|3

This manuscript is for review purposes only.
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Remark 4.1. The matrix Lgl can be loosely interpreted as the projector on the orthogonal
of the space spanned by the columns of Xs. Therefore, H2 rules out settings where a small
number of columns of X have the same column span as the column span of X. Indeed signal
recovery becomes nearly impossible in such settings. In can be shown that if X is a random
matrix with i.i.d. standard Gaussian entries then A > 0 for so of order n/log(p). We refer the
reader to the Appendix for details. 0

We also make some very mild assumptions pertaining to the prior parameters and to the
existence of a true model.

H3. 1. There exists a true value of the parameter 0, € RP with sparsity support
0x € Ay, with ||0x]|0 = S«, such that p**I1(d,|z) > 1.
2. For some constant u > 0, the prior parameter q satisfies

q 1
4.7 —_—=
(4.7) g
3. The prior parameters pg, p1 satisfy
(4.8) 0<p1<po, 0°p< <1 — p1> n, and 1+ ZS < p?,
PO o°p1

for some absolute constant a > 0.

The last two parts of Condition (4.8) are easily satisfied and are imposed mostly to obtain
simple mathematical formulas. For some constant ¢ > 0, we introduce the event

1
& X! eRY: max sup — }(Lngj,z — X0,)| < \/conlog(p) ¢,
0€As 1<j<p O

We note if z ~ N(X0,,0%I,), and || X;|2 < /0, then the event z € & holds with high
probability, with ¢y = 2(s + 1).

Theorem 4.2. Suppose that H2-H3 hold. Fiz {y € (0,1). Suppose that s, the sparsity level
of the posterior distribution (4.1) is chosen such that 0 < s < sg with sy as in H2, and
Algorithm 4 is initialized from vy = II(-|6D, 2), for some arbitrary 61 € A,. Take z € &,
suppose that we choose u large enough such that

(4.9) u > 2max (2, §> . where 0% (a/ao + [10.]1C(5))%,
and the sample size n satisfies

Aguo?s, 1 e
(4.10) > 2010 5 Og(p)’ where 0, aof Amin1|0*j|,

n> ————= (%)
)\2@3 §: 0uj=

for some absolute constant Ag. Set

def . . X]/L(S_lX]
A1 = min min ———=,

This manuscript is for review purposes only.
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Then there exists a constant Ay that does not depend on n,p nor (y such that for all

1 su(1 4+ [|04]1%)n n
4.11) N> A 1 — —~ 1,,/——
i) N2> ls[og <C0> " o?A I o2

1
X max (1, €402

PO
n

p

>
=1

(802p0—n)\1)) «

we have

oK™ —TI(-[2)[lev < Co-

Proof. See Section 5.5. u

We note that our condition (4.9) is analogous to Condition C of [Yang et al.(2016)]. The
main term in the bound (4.11) is

PQ 20

1 2 _
1_(g —n\ 3
max (1’6402( a?po—n 1))pn M

which highlights the important impact of the prior parameter pg on the mixing of the algo-
rithm. If pg is chosen as py < nA;/(80?), then by (4.11), the mixing time scales as O(p2/*1).
Note that the ratio o/A; depends mainly on the correlation between the columns of X. Our
simulation results indeed confirm that dependence of the mixing time on X, however the
polynomial scaling O(pg/ A1) predicted by the theorem may be conservative.

PO 20

In contrast, if pg > nA;/(802) the bound predicts a mixing time that scales as O(e2?0p " 1 ),I
which is worst than O(e"p?/*1). This said, it is important to add that (4.11) is an upper bound
on the mixing time which may not be tight, and as such does not prove slow mixing.

We contrast these findings with the posterior contraction properties of the posterior dis-
tribution. According to [Narisetty and He(2014)], as n,p — oo, we need to let py grow faster
than n, and let p; be of order n/p? in order to guarantee posterior contraction of II. And
in their simulation section these authors suggest using pp = 10n/0? (although it is unclear
whether posterior contraction holds in that regime). In these regimes our results suggest that
the mixing time of Algorithm 4 grows faster than O(e"p?/*1). This description matches well
with our numerical experiments. But again (4.11) is only an upper bound on the mixing time,
and as such does not establish slow mixing.

Note that when posterior contraction holds the posterior distribution assigns increasingly
small probability to {§ : § 2 d.}. Hence a chain that starts in {6 : ¢ D d,} may have
markedly different mixing time than what is predicted by Theorem 4.2. To formalize this,
we shall focus on the unconstrained case where s = p in (4.1). We formalize the posterior
contraction as follows. Given k > 0, we define

Dy {5eA: 5626, ||l < |60+ k},

which collects models that contain the true model §, and have at most k& false-positives, and

This manuscript is for review purposes only.
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387 we Introduce the event
388

def

389 &= {z eR": TII(Dglz) > 1 , forall k£ >0,

o p%(k+1)

390 and max sup % ’<L§1Xj, z— X9*>‘ < con log(p)} )

391 628, ||8llo<so 1<j<p

392 for some constant cg. We will say that posterior contraction holds when z € £. We will not
393 directly establish this property. However several existing works suggest that this description
394 of the posterior contraction of II(-|z) holds. For instance under similar assumptions as above,
395 [Narisetty and He(2014)] show that II(Do|Z) > 1 — 25 with high-probability for positive con-
396 stants ap,as. And [Atchade and Bhattacharyya(2018)] shows that z € £ with high probabiity
397 for a slightly modified version of the posterior distribution (4.1).

398 Theorem 4.3. Assume H2-H3 and s = p in (4.1). Fiz {y € (0,1). Suppose that Algorithm

309 /4 is initialized from vy = I1(-|60), 2), for some 60 e D(sy—s,) such that FP def 16D 0 — s

100 satisfies
80
401 (4.12) FP<— Y (k+1)+ M
' ‘ ~ 4(u+a) 2(u + a)log(p)’

102 for some integer k < so — Sx. Suppose also that (4.9) and (4.10) hold. Then there exists a
403 constant A that does not depend on n,p nor (o such that for all z € £, and all

2p0 o
104 (4.13) N > AFP[log ((') + FPulog(p)] p " ™,
105 we have
406 KN —TI(-2)]tv < Co-
407 Proof. See Section 5.6. |
408 Condition (4.12) restricts the number of false-positives of the initial model 6() compared

409 to sg. This condition can be relaxed if the contraction of m on Dy, is faster than the polynomial
410 form assumed in the event &£.

411 Theorem 4.3 suggests that when posterior contraction holds (z € &), the mixing time
112 of Algorithm 4 with a good initialization is less sensitive to large values of py (the term
113 enz (3770 1 longer appear in (4.13)). For instance with pg = nA;/2 the mixing time is

414 at most O(FP?p/A1), which is better O(e™p@/*1).

415 One clear roadblock toward the practical use of this result is finding the initial 6 such

416 that 60 D 4&,. In practice various frequentist estimators such as the lasso can be used.

117 At least in a high signal-to-noise-ratio setting the lasso estimator is known to contain the

418 true model under mild assumptions (similar to H2). We refer the reader for instance to

119 ([Meinshausen and Yu(2009)]).

420 One of the first paper that analyzes the mixing times of MCMC algorithm in high-

421 dimensional linear regression models and highlights fast /slow mixing behaviors is [Yang et al.(2016)].J}

This manuscript is for review purposes only.
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422 Their posterior distribution is slightly different from what we looked at in this work. Specifi-
423 cally [Yang et al.(2016)] applied a Metropolized-Gibbs sampler to the marginal distribution of
424§, whereas we consider here a Gibbs sampler applied to the joint distribution of (d,6). These
425 authors show that in general their sampler has a mixing time that is exponential in p unless
126 the state space is restricted to models ¢ for which [|d]|o < s for some threshold s, in which case
127 the worst-case mixing time is O(s?>nplog(p)). To the extent that our bound in Theorem 4.2 is
128 tight, the better rate obtained by these authors can perhaps be interpretated as the positive
129 effect of marginalization and collapsing in Gibbs sampling ([Liu(1994)]).

130 4.1. Numerical illustrations. We illustrate some of the conclusions with the following sim-
431 ulation study. We consider a linear regression model with Gaussian noise N (0, o), where o2 is
432 set to 1. We experiment with sample size n = p, and dimension p € {500, 1000, 2000, 3000, 4000} .}
133 We take X € R™*P as a random matrix with i.i.d. rows drawn from N, (0, ¥) under two sce-
434 mnarios. A low coherence setting where ¥ = I,,, and a high coherence where 3;; = 0.9l7 -1l
135 After sampling, we normalized the columns of X to each have norm /n. We fix the number
436  of non-zero coefficients to s, = 10, and J, is given by

137 0 =1(1,...,1,0,...,0).
——
10 p—10

438 The non-zero coefficients of 6, are uniformly drawn from (—a — 1,—a) U (a,a + 1), where

lo
439 a=4 g(p)-
n
140 We use the following prior parameters values
n n nlb
441 u =2, plzﬁa Po € 22 g2 (-

142 These scalings of py and p; roughly matches the recommendations of [Narisetty and He(2014)]
113 to get posterior contraction of II(-|z). We use an initial distribution vy = II(:|6(, 2), where
111 60 is such that [|60) — &,]jo = 2p/10, with two scenarios. A scenario FN (false negative),
145 where 5 out of 10 of the true positive of &, are set to 0, and a scenario no FN, where §0) has
146 only false-positives. To monitor the mixing, we compute the sensitivity and the precision at
447 iteration k as

448

1 & ZPle |8k, ]>0 1y, ;150
o SENk = =3 Agapboylge,s0  PREG = = sz T
450 5 i3 j=1 {0k ;|>0}
451 We empirically measure the mixing time of the algorithm as the first time k£ where both SENy
152 and PREC, reach 1, truncated to 2 x 10* — that is we stop any run that has not mixed by
453 20000 iterations. For the sampler of [Yang et al.(2016)], we stop any run that has not mixed
154 by 10° iterations. The average empirical mixing time thus obtained (based on 50 independent
455 MOCMC replications) are presented in Table 1 and Table 2.
156 We can make the following observations.
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p =500 p = 1000 p = 2000 p = 3000 p = 4000

po=n 866.3(3,204)  423.6(2,735) 147.1(575) > 4373 >871.0

FN po=n'%  >11,125.8 > 13,662.6 > 13,2371.6 > 15,948.0 > 16237.3
Yang et al.  5,244.2(1,379) 12,208.5(2,463) 27,617.6(5,803) 43,821.9(6,453) 54,697.9(5,611)
po=n 1(0) 1(0) 1(0) 1(0) 1(0)

no FN  po=n'5  30.9(81) 43.7(55) 123.2(251) 241.2(535) 215.3(250)
Yang et al.  5,191.0(1,503) 11,975.9(2,769) 26,877.8(4,786) 42,285.7(8,721)  56,264.3(10,362)

Table 1

Average empirical mixing time of the samplers in a low-coherence setting. Based on 50 simulation
replications. The numbers in parenthesis are standard errors. The notation > a means that some (or
all) of the replicated mizing times have been truncated.

p = 500 p=1000 p=2000 p=3000 p=4000

po=n >20,000 >19,200 > 18,400 > 17,870 > 19129.1

FN po =n'" > 20,000 >20,000 >20,000 > 20,000 > 20,000
Yang et al. > 100,000 > 91,177 > 75,373 > 83,246 > 84,972
po=n > 880.1 >1,200.1 >400.9  >800.96 > 900.1

no FN pg = n!?® > 416.8 >1,246.2 >8742  >4252 > 313.6
Yang et al. > 98,067 > 87,424 > 73,253 > 77,902 > 82,205

Table 2

Average empirical mizing time of the samplers in a high-coherence setting. Based on 50 simulation
replications. The numbers in parenthesis are standard errors. The notation > a means that some (or
all) of the replicated mizing times have been truncated.

. There is sharp difference in behavior between the low and high coherence settings.
. As predicted by our theory, Algorithm 4 mixes better when there is no false-negative

in the initialization. The algorithm of [Yang et al.(2016)] seems impervious to the
initialization. It should be noted in comparing the two algorithms, that an iteration
of the algorithm of [Yang et al.(2016)] costs roughly p times less than an iteration of
Algorithm 4.

. The third observation that can be drawn from the results is that when there are false-

negatives, Algorithm 4 mixes better with pg = n/0?, compared to py > n/o?, as
predicted by our result. The difference is less noticeable in the high-coherence setting.
This observation is also explained by our bound, since in a high-coherence setting, the
parameter o is expected to be large. Another observation here is that when there are
false-negatives in the initialization, the mixing time becomes highly variable (several
runs have hit the wallclock).

. Finally, we notice that the theory of [Yang et al.(2016)] does not fully describe the

behavior of their algorithm, as we see a significant degradation of performance in their
algorithm with high coherence design matrices, which cannot be clearly explained by
their result.

Overall, based on our theoretical analysis and the simulation study, our recommendation
when using Algorithm 4 is to set pg = n/0?, and to the extent possible to use the lasso sparsity
structure as initialization (or some other similar high-dimensional frequentist estimator).
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477 5. Proofs. The proof of Theorem 3.1 relies on the following lemma due to [Madras and Randall(2002)].}}
478 For a proof see their inequality (47). A direct argument by coupling can also be easily con-
479 structed.

480 Lemma 5.1. Let v(dz) = f,(z)dz, p(dz) = f,(x)dx be two probability measures on some
181 measurable space with reference measure dz, such that [min(f,(z), f,(z))dz > € for some
482 € > 0. Then for any measurable function h such that [ h?(z)v(dz) < oo and [ h*(z)u(dz) <
483 00, we have

184

[ (hly) = @) Puly)v(da)

5 < 225 [t~ o) Putanutan) + [ ) - no) Priagvtas)|.
488 5.1. Proof of Lemma 2.1. We first note that if a probability measure v is absolutely
489 continuous with respect to m with Radon-Nikodym derivative f,, then for any A € B,

490 VK (A) = / V(d2) K (z, A) = / / Fo(2)1a ()7 (d2) K (2, dy)

91 ~ [ [ @ wrnK @ = [ =) [ Kb

492 where the third equality uses the reversibility of K. This calculation says that vK is also

493 absolutely continuous with respect to m with Radon-Nikodym derivative  — K f,(x) def

194 [ K(z,dy)f,(y). More generally (VK )() K"f,(-), and

n 2

195 K™ — x|]2, = ( / ‘d(ff; ) @) -1 7r(d1‘)>
2

496 = (/ K" fu(z) — 1 W(dfff))

497 <|IK"f, — 15,

108 (5.1) = Var (K" f,).

199 Take f € L?(n). Since n(f) = 7(K f), we have
500
(5.2)

501 Varg(Kf) — Varz(f) = (Kf,Kf), = —// 2 r(dz) K2(x, dy),

503  where the last equality exploits the reversibility of K. By the lazyness of K we have

504 / / 2 7(de) K2(x, dy) > / / 2 7(da) K (z, dy).

This manuscript is for review purposes only.
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505 A proof of this statement is given for instance in [Montenegro and Tetali(2006)] (Equation
506 2.12). Using the last display together with (5.2), and the definition of E(f, f), we conclude
507 that for all f € L?(n),

508 (5.3) Var (K f) < Varz(f) = £(f, f)-

509 Fix ¢ € (0,1), and take f € L2(w). Suppose that ||f]|x > 0. If Var.(f) < ¢||f]|?, then, by
510 (5.3), Varg(K f) < min(Var(f),¢||f]|?). But if Var.(f) > ¢||f||?, then by (5.3),

N e (L)

11 Var, (1) < Vara(f) = 1126 (- o T

512 < Var,(f) — HszSpecGapC(K) (Var7T <”J{H > — g) ,
513 < Vars(f) (1~ SpecGapy(K)) + 5 | f[12SpecGap (K).

514 Note also that if || f||, = 0, then Var,(f) = 0 by the listed properties of ||-||«, and Var, (K f) = 0
515 by (5.3), so that the last display continue to hold. We conclude that for all f € L2(7),

516 Var (K f) < Varg(f) (1 — SpecGap,(K)) + C|| f[|2SpecGap, (K).
517 Given that Kf € L2(r) for all f € L2(r), we can iterate the above inequality to deduce that
518 for all f € L3(r), and for all n > 1,
519
520 Varg(K™f) < Varg(f) (1 — SpecGap,(K))"
521 + (SpecGap, (K) Z (1- SpecGapC(K))j | K712
Jj=0
522 < Varq(f) (1 — SpecGap.(K))" + ¢ f]2.
523

524 Now, if mg = fomr, the last display combined with (5.1) implies that
525 [moK™ — 7||3, < Varz (K" fo) < Var(fo) (1 — SpecGap(K))" + ¢| foll2,
O

526 as claimed.

528 5.2. Proof Lemma 2.2. Take f : X — R such that Var(f) > ¢, and || f|l« = || fllm,x = 1.
529  We have

531 2Var,(f) = /X i (f(y) — f(x))*m(dz)m(dy)
H3: — X 27'(' X )T — X 27T X )T .
52 2 /X 0 /X ) = @) m(anaay) + /X " /X U = @)y
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Using the convexity inequality (a + b)? < 2a? + 2b%, and Holder’s inequality,

/ / (F) — F(2)r(de)m(dy)
Xo J X\ X
< 2m(X) / () + 250\ ) [ 7))

X\ Xo
< 2m(XKo)m(X \ Xo) 1w | £112, - + 2m( X\ /"fo)llfllmr < 4m(X\ Xp) T

With similar calculation,
[ [ G - f@)Pre)m(dy) < 4n(\ ap)n(a\ ) < 20\ ),
X\X0 J X\ X

Using 7(Xp) > (¢/10)12/0m=2) we get

2Ware() =)= [ [ wda)m(an) () - 5@
onee (F.5) - fnod () — F(@))?
E(f, f x0Jxo™ K(z,dy L ecGa
Vare() - § ~ fxofm dx J7(@) (Flg) — F@)? = PP
The statement bound easily follows. U

5.3. Proof of Lemma 2.3. Take f € A. Without any loss of generality we assume that
7m(f) = 0. Then

d

(5.4) ;Varﬂ(th) < / (Kof)*(2)m(da) = 2 /X Kof (@)GEy f(2)r(da).

Suppose that [|K;f|« > 0. If Varg (K¢ f/||Ktf|«) > ¢, then from (5.4) and the definition of
A (K),

(5.5)

q ) K. f
3 Vare (K f) < —2|[ K fl2A (K) (V <||th||*> B <>

< =2 (K)Varg (K f) 4+ 20 (K) || K f 2.

However, if Varz (K:f /|| K¢ f|l«) < ¢, we see that the right-hand side of (5.5) is nonnegative,
whereas from (5.4) and the properties of the generator we see that the left-hand side of (5.5)
is nonpositive. Note also that (5.5) continue to hold when ||K;f||, = 0. Hence for all f € A,
and for all ¢ > 0, we have

DVary (Ko f) < 22 (K WVars (Ko f) + 200 (K112

(5.6) =
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The lemma then follows from Gronwall’s lemma. More precisely, set a = C||f||2, 8 = 2A¢(K),
and u(t) = Var, (K;f). Hence (5.6) reads u/(t) < —pu(t) + afB. Setting v(t) = e, we have
d (u(t) _ o (t)v(t) — o' (t)u(t) _ u'(t) + Bu(t) < apeft,

de \ v(t) v(t)? u(t)
Integrating both sides yields the stated bound.
5.4. Proof of Theorem 3.1. Choose f € L2(r) such that || f|l = 1. We define

. def 1 N (A K (
et 5 [ (00— 7w ) e ).

From the definition

(5.7) 26(f.f) = /X /X () — f(2))? m(da) [Z (il) K, dy>]

i€l

7o) [ [ 1) = @) o) K, dy)
>2Y w(DE(S f) =2 w(DE(S )
i€l iclo
Using B = Uje,{i} x Bj, and B¢ e (1 x X)\ B, we have,
(5.8) 2Varg(f / / 2 7(di, dz)7(dj, dy)
+2//c 2))? 7(di, dz)7(dj, dy)
/ [ () f@)? 7(di, do)e(as dy).
For B as in (3.8), and expanding the first term on the right hand side of (5.8) it follows that

(5.9) 2<Varw(f)—g) / / (Fy) — F())? mi(da)mi(dy)

i€lg

+ Y anmBn(E;) / [ () - sy e T,
i, 13€l B; /B; mi(Bi) m;(B;)
Given an edge e in G, let us write e_ and e; to denote the two incident nodes of the edge.
For i # j € lg, let 7;; denotes the chosen canonical path between ¢ and j, and let ig,1,. .., 1%
be the nodes on that canonical path (with i = ¢, and iy = j). By introducing generic
variables z;, € B;,, one can write f(z;,) — f(zi,) = Zk 1 f(zi,) — f(zi,_,). Using this and the
Cauchy-Schwarz inequality, we have

RO LT
(5.10) /B /Bj(f(y) @) B = B,

9 ﬂéi(daﬂ We+<dy)
%J| Z/ /B )) We_(Be—)W€+(B€+)’

36713 -
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where |7;j| denotes the number of edges on the canonical path v;;. By Lemma 5.1 and using
also the assumption that m;(B;) > 1/2, the summation on the right-hand side of (5.10) is
upper bounded by

;/ / f(@))? me_(dz)me_(dy)
t Z/ /B (f(y) — f(2))® me, (dz)me, (dy)

ey
<8 Z / / 2 1 (de)m, (dy),

LG’Y

where the summation e € v;; is taken over all edges along the path v;; whereas the summation
L € ;4 is taken over all nodes ¢ along the path +;; including 7 and j. Hence

(511) > w(i)r()m(Bi)m(B)) /B [ v - r@y Zi‘é”? Zgﬁ

i#], 4,5€lo
<250 [ [ - om0

t€lg B. i,5€lo: vijoL

which together with (5.9) yields

(5.12) 2 (Varw(f) - g) < (1 + 8ml>

/ / 2 ()i (y).

i€ly
From the definition of SpecGap;(K;), we have
286:(f, 1)
5.13 i(do)m(dy) € ———F—
(5.13) / / )" mi(da)mi(dy) < SpecGap;(K;)’
which we use in (5.12), to arrive at
<> (L+%%) .
5.14 Var, -2 ) < — K w()E ([, f).
(5.14) (VorelN = §) < i Specian (i S el
(5.14) and (5.7) together yield,
ELT) o minie, SpecSap(fy) min SpecGap; (K;),

(Varﬂ(f) _ %> 1+ 8m 14 8my iclo

which together with the definition (2.3) implies the stated bound. O
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621 5.5. Proof of Theorem 4.2. We start with some basic calculations on the model.
622 Lemma 5.2. For 6,9 € A such that ¥ D 9, setting T dof % (p% — ,%)7 we have
623
T1(9]2) 1\ Bllo=18ll0 522 L5 " Xeo—5) (Tio-s10T7X (55 L5 Xo-8))  X(y_s)L5 'z
624 (5.15) = —
Hlz) P det (1 X LTlX
Ct \ Hw—sllo T T (p—g) s X (9-0)
625
626 Proof. We start with some basic calculations on the model. For any 4,6 € A, we have
N MWl ws (Pl 191~ 115lo pr 6720%2||Z7Xu||37%u’D691)udu
627 = — | — — .
I(3]z) — ws \po [ e a XU 5w DG,
— 21 / — ’ 1
g /gy a5l \/det (02D} + X'X) _pex(o2n)+x0x) ' xs
628 =—|=
ws \ Po

1 .
\/det (02D(791) +XIX> eﬁz’X(cr?D(_é;-f-X/X) X'z

620 By the determinant lemma (det(A+UV’) = det(A) det(I,, +V'A~1U) valid for any invertible
630 matrix A € R™" and U,V € R"*™) we have

" I9lo sl \/det (a D +X/X) \/det (In + 22 X D5 X")

631 = 1 .
W (g ) VD00

632 By the Woodbury identity which states that for any set of matrices U, V, A, C with matching
633 dimensions, (A+UCV) = A~ — A7WU(C1 + VATIU)"IV AL, we have
634

1 -1

-1 1 1
o 2 1 / / / / / /
635 X (0’ D((g) + X X) X' = —ZXD((;)X — —4XD(5)X (In + QXD((;)X> XD((;)X

1 ~1
636 =1, — (In + 2XD((;)X’> )
637 o

638 so that,
-1 —1
1 2—1 1 1
emz’x(a D +X'X) X'z e%—gz’(ln+o—2XD(5)X’) z
639 =

—1 -1
e%%z’X(UQD(_é;—l-X’X) X'z e%%z'(lnjuaizxp(mx') 2

640 We combine these developments together to conclude that

s (5.16) M(0]z)  wy [det(Ls) es?*ts *
S T(S]2) ~ ws || det (L) pyz'by =
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where, for § € A, we recall the definition Ls def I, + U—IQXD((;)X’. If ¥ D 9, setting 7 def

1 (i _ L) < 1/(c?p1), it is easily seen that

o2 \p1  po

Ly=Ls+7 Y  X;X].
§: 6;=0,0;=1

The determinant lemma then gives

det(Lg)
det(L(;)

= det, (I”g_g”o + TXgﬂ_é)Lng(ﬁ_(;)) .
And the Woodbury identity gives
L' =107  —rLiX I X/ S LI'X Txn g
v — s T Ths A (9-9) ( [9—dllo + T (9—s)Ls (19*5)> (-85 -

Combining the last two display in (5.16) yields the stated results. [ ]
Lemma 5.3. Assume H2. Let o and 8, be as in Theorem /.2. For z € &), we have

(5.17) max max |XJ/-L5_12|§ onlog(p),

SEAS ji 6,=0
and max max, |X;»Lglz| < [|6«]|lcon + v/ on1og(p).

0EAs j:dyj

Furthermore, if n > 4olog(p)/(82)\2), then

. . _ A
min  min |X}L; L2 > Z=6.n.
S€EA, i dyj=1 2

Proof. Set V &f (z — X0,)/o, so that

Z:O'V-l- Z H*ka,
klls*k:l

and
XiLy'z=oX[L;'V+ > 0.,X[L5 X,
k: 6*k:1
For z € &, |XJ(L(5_1V| < /conlog(p). If 6,; = 0 and 0, = 1, then |X}L51Xk| < C(s)\/nlog(p).l

Hence

max max [XjL5"z] < | 0v/eo+C(s) > 16wl | V/nlog(p) < /enlog(p).
s T k: 6*k=1

If 6,; = 1, then

XiLy's = oXIL7 WV + 0., XL X+ > 0k X)Ly X
k‘?éj 5*k:1
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Since X]’Lngj < || X; |3 = n, this implies, as we have done above that |XJ’-Lglz| < |0x]|com +
Vonlog(p). Similarly, if d,; = 1, then ]X]’-Lglz| > %|0*,j|XJ’-L(;1Xj, provided that we have
onlog(p) < %|9*,j|XJ’.L5_1Xj. Then using the definition of A1, we get

. . _ A
min  min_ |X}L; Ll > 2260
dEAS VE 5*j=1 2

Proof of Theorem 4.2. Fix (o € (0,1). We will apply Lemma 2.1 with || - |« = || - ||lx,c0-
Since K f is bounded when f is bounded, the kernel K satisfies (2.2) with this choice of
|- ||«. We recall that the initial distribution is taken as vy = II(-|6(), 2), for some initial choice
60 e A,. Let fy be the density of vy with respect to II(-|z). We Lemma 2.1 with ¢ = 0 to
conclude that

1

1 EY —N(|2)If <¢f,  for N 2 :
(5 8) ||l/0 (’Z)”tv_COa or - SpecGapO(K) Og<

Varfr(fo))
@ /)

To bound the spectral gap we apply Theorem 3.1 with the choices ( =0, | = A, lg = A,
and Bs = R?, and with a graph on A, constructed as follows: we put an edge between §(1)
and 6@ if §() 2 6@ or 6@ D 6M, and |6 — 6D |y = 1 (in other words the models 6™ and
6@ differ only in one variable). Clearly (3.8) holds, since II(A,|z) = 1. We then conclude
from Theorem 3.1 that

K

. > —.
(5.19) SpecGapy(K) > T 8mr

To bound the constants x and m; we develop a similar argument as in [Yang et al.(2016)].

Given 6 € Ay, we call min(d, d,) the skeleton of §, and we let S def {min(é,0,), 0 € As} be the
set of all possible skeletons. Basically S is the set of submodels of the true model §,. Given
0 € Ag, we build our canonical path from § to J, as follows. First we build a path from § to
its skeleton (that is min(d, d,)) by successively removing from the model ¢ the variables X for
which d; = 1 and d,; = 0, in reverse index ordering. Then we build a path from the skeleton
to d, by adding to the skeleton the variables X; for which J; = 0 and ¢,; = 1 in their index
ordering. For example, if p = 6, J, = (1,1,1,0,0) and § = (0,0,1,0,1,1), then our canonical
path from J to Jdy is

(0,0,1,0,1,1) — (0,0,1,0,1,0) — (0,0,1,0,0,0) — (1,0,1,0,0,0) — (1,1,1,0,0,0).

Given 61,62 ¢ A,, let 612 be the node where the canonical path from (") to §, and the
canonical path from 6 to §, meet for the first time. Our canonical path Ys(1) 52) between NS

and 8 is then defined as follows. Follow the canonical path from 1) towards 8, until §(12),
then reverse direction and follow the path from 62 until 6(2). For instance if p = 6, d, =
(1,1,1,0,0,0) and 6 = (0,1,0,0,1,1), and 6§ = (1,1,0,1,1,0), then 62 = (1,1,0,0,0),
and our chosen canonical path from 6! to 6 is

(0,1,0,0,1,1) = (0,1,0,0,1,0) — (0,1,0,0,0,0) — (1,1,0,0,0,0) — (1,1,0,1,0,0) — (1,1,0,1,1,0).
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We claim that for the canonical paths constructed above we have

def m(6W]2)m (8@ |2)
(5:200 = max 2 Pow s | =Gy <8
5(1),5(2) €Ag: 75(1),6(2) B
and
(5.21) x% min /rnin(H(0|5(1),z),H(9]6(2),z)>d9
(1) ~§(2) Rp

1 [o? 1 —80 200 o
Z §min (1’ 0—27§O> min <1’e40.2 (n)\l 8 QPO)) p ZO )\92 ‘

where the minimum is taken over all connected pairs of nodes 6V, 6. Furthermore, we claim
that we can bound the variance of the initial density and get

Var(fo) 1 su(l + [|6x]%)n
5.22 1 —— | <Al — ==
(5.22) o (V50 ) < a (1o () + O
for some absolute constant A. (5.20) and (5.21) shows that
A 0'2[)0 . L (nA1—802pg))  —220 2
(5.23) SpecGapy(K) > - Tnin 1, 5, | min (1,6402 )p n 32

for some absolute constant A. We put (5.23) together with (5.22) and (5.18) to reach the
stated conclusion. The remaining of the proof consists in establishing the claims (5.20), (5.21)
and (5.22).

Proof of Equation (5.20). For (), §(2) € A,, we will use the obvious bound
”}’5(1)75(2)‘ < 2s.

Given § € A,, we denote A(8) the set of all ) € A, such that the canonical path from §(%)
to &, goes through §. Using this we can bound m; as

r(60)]2)m(5?)2) m(6W]z)
5.24 <2 s 2 “w(]z)
(G0) = 2 5(1%@) J(Q)ZGA m(lz) T e 5<1JEZA(6) ok

Let S & {min(d,4,), § € A,} be the set of all possible skeletons. Take 6V € A(5). We
will distinguish whether § € S or not. Suppose § ¢ S. Therefore, traveling the canonical
path from 6(1) toward 8, we arrive at § by removing only non-significant variables. Therefore,
assuming that [|[6()]jo = [|6]|o + ¢, and using (5.15), and H2, we have

(5.25) m(@Wls) L Y (XILy'e)? | < e
. €exX - z
m(8]z) — pwt P 202(1 +n7A) Je - put’
j: 68 =1,8;=0
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where Qo = max, sa)_ (XJ’-Lglz)Q. From Lemma 5.3, we get Qg < onlog(p). Using this
“9;

=1,6;=0
and the trivial inequality (’2) < pt, it follows that

s—||6]lo s o L
m(6W]2) 7(6M]2) pE
D GO 2 oR) S\ ) =
s eA(s) £=0 SMEA(S): [|6M]jo=]8l0+€ £=0

under the assumption that o?u)\ > p, and u > 4. Suppose now that 6 € S. Then A(6) is
comprised of the elements of A; whose skeletons are subsets of 4. Hence

m(6M]z) m(dol2) m(8M)]z)
2 m(dlz) 2 m(d]2) 2 m(do|z)

SWEA() 50€S:5230 5 EA(S): min(6M),5,)=30

The inner summation can be upper bounded by 2 as above. If § D dg and ||d]|o = ||dollo + 7,
we apply (5.15) again and get,

) _ Q3 \T" Q3 r
7'('(50|Z) S pu 1 + ?6 202(1+TS*TL) S pu+ae 402s,n ,
~(3]2) P

where we use H3-(3) to obtain 7/(1 + 7s,n) > 1/(2s,n), and ,/1 + = < p® and where

U2P1
_ 2 _
Q3 def min. 5,,=0,6,,=1 (X;Lgolz) . From Lemma 5.3 we get Q3 > %)\%nz, under the sample
condition n > 4plog(p)/(62)3) which is implied by (4.10). We conclude that
,
#(60)]2) m(0ol) _ o
— K 2 < 2 . uta 4025, < 4
565 0z) = 2 70)2) = D sl (pe =5

T
SMeA(s) 80E€S:6260

using the sample size condition in (4.10). This proves the claim (5.20).

Proof of Equation (5.21). Fix 6 6@ e Ay, such that 6 D 6@ or 63 C 60, and
||5(2) -5 llo = 1. Without any loss of generality, suppose that 62 2 61 and their difference
occurs on component j: (5](-2) = 1, while 5](.1) = 0. Then for all # € RP, we have
_ﬁ”Z_XGH%_%G,D(;%?))ede B 9]2

I SN | PV 2_1lpgp—1
a2l XOI=30D {0

m(o[sM,z) [ fawe
fRP €

(663, 2)
Let A denote the ratio of integrals in the last display. We can then write

/ min (H(0|5(1),z),H(9|5(2),z)>d9:/
Rp

R

92
min (1,Ae—<ﬂo—m>5) 11(6;]6, 2)db);.

Recall from (4.3) that the j marginal under T1(6;]0(?, 2) is the Gaussian distribution N (s, O'JZ),

where
0j =0y /6926(2)6]', and p; = egZé(z)X'z, 1<j5<p,
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and where e; denotes the j-th unit vector. Hence, for Z ~ IN(0, 1),

(5.26) / min (H(e|5<1>, 2), 11(0]5, z)> 9=E [min (1, Ae~
RP
1
2

(po—=r1)
2

(u]-+a]-Z>2)}

> —min (1, Aefw(l‘mﬂ’j)z) > %min (1, Ae_po(“?+aa2')) ,

using the fact that for any nonnegative function f, E(f(Z)) > P(|Z| < 1) min,,,j<; f(2). By

matrix block inversion, we work out 0]2- to

2 o?

g

2

0.2

(5.27) o; = =

-1
o2p1 + X]’. (In + U—IQX,jD((;(z)’j)X’?j) X; o2p1 +X L

<
(1)X An

where D5 ;y = D(50) ; is the (p — 1)-dimensional matrix obtained by removing the j-th row

and the j-th column of D(5<2)), and L(s(l) =1I,+ U—IQX_jD((;(l) j)X’_j.
_J 9

mean p; can be written as

(5.28)

XX, + 0% XX _1< X!z )
.
Hj 1 XX X X j+o D(5<2) 7 X'z

Consider first the case where j is such that d, ; = 0. Note that X L, )

nA1. Therefore, and using Lemma 5.3, and z € &, we obtain

olo
il < —/nToB ) olos(p)

n

Consider now the case where d, ; = 1. Then we have

By block inversion the

rr—1
XL (1)2

02p1+XL X;

J 5(1)

VXG> XL X >

1
ILL? < W Q*JX/L (I)X +o Conlog + E H*kX L (1)Xk;
(1) ki dup=1
2
<— =  (62(X'L}X)2+onlo )
<XLmX>< LX) enlosty)
2 91 g(p)
<205+ 550

On the other hand, using (5.15), the ratio of integrals A gives

2)?

1 (X]L5(1)
\/ \/1+TX’ 20% 1+ 7X L]

5(1) (1)
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where we recall that 7 = (p; ' — py')/o2. Note that if 6,; = 0, the term inside the exponential
in this last expression of A grows like plog(p)/A1 which is not fast enough to face off with the
term —po(,u? + 032). Hence we use instead the trivial lower bound A > 1 together with the
upper bounds on p; and sz- obtained above and (5.26) to conclude that

; (1) 2) > Loty 5 1 ~ 2pg olog(p)
(5.29) /Rp min (H(9|5 ,2), I1(0]6 ,z)) dé 26’ i’ > 5 exp . )\% .

However if d,; = 1, By Lemma 5.3, and under the sample size condition (4.10) we have

92
X *J X X .
( JLcS(l) ) = ( JL(S(l) )

Noting that 1 < TX/L X, we deduce that

51
A> /Po
It follows in this case that

log(p) | o2
(:30) [ i (10616, 2), 11615, 2)) o > 5 i (1,Ae oo (202, + 25820 “m))
Rp

2 -1 _8o2
. 0'2p0 . % (X . <1>XJ 8 po) _zpoglog(p)
min | 1,4/ ———— | min | 1,e 402
o“p1t+n
1 o2 _ 200 o
> —mi <1, 20} min (1 e1o7 (P87 po))p noAZ,
2 2n

where we have used the fact that min(1,ab) > min(1, a)min(1,b) valid for all nonnegative
numbers a, b, c. We combine (5.29) and (5.30) to obtain (5.21).

1
G*JX]Lé(l)XJ

T 402

>

N =

Proof of Equation (5.22). Since II(0|z) = 3", TI(9]2)TL(0]9, z) > TI(60|2)11(0]6D, 2),
we have . )
mepo,:) 11 T(5) (57| 2)
0@k~ TE0) ~ T0.09) 1(a0)) TE0])’
(i) def

where 3,” = min(50),8,). We apply (5.15) twice (to each ratio), and use H2, to get

1(3,02) TG 12) _ uso—fs. o)
< U 0 %110 : ! )
0z 06 et sy oo+ 75550, L0 X560

—1
L x o (I o 4TX! L LT X . ) X’ L LT
% 62" 5&') (5*759)( 16 =500 T (5, sy 5D (54 —5) (Ge—s®) 507

L5l , o
< ptlidllo=s») (1 nH5||0 o2’ m”X 5£i))L6£i)ZH2.
o?p1

fo(0) =
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Under the assumption p"$*I1(d.|z) > 1 (H3-(1)), and since ||d]|o < s, we conclude that

2 S*Q S*Q
(5.31) I follroo < p" (1 + UZ;) erT < pluta)sgsink

where the second inequality uses (4.8), and where Q1 = max;.5, ,—1(X J’.L(;&%Z)Q. From Lemma

5.3, we get Q1 < 4n?||0,||%, using the sample size condition (4.10). (5.31) then becomes

(uta)s 2541041207 As(1410x[130)n
v Varz(fo) < [l follreo <p e o3 <e o )
for some absolute constant A. The claim follows by taking the log. |

5.6. Proof of Theorem 4.3. The proof is very similar to the proof of Theorem 4.2.
Fix (o € (0,1), and z € €. First we bound the uniform norm of the density of the initial
distribution vy as in (5.31). Noting here that the skeleton of 8() is d,, we get the simpler
bound

nFP
[ follzco <2 <p“ 1+ 2> < gp(uta)FP.
o°p1
In view of this bound, we set
CQ
(5.32) ¢ = jp—Q(qua)FP’

8

which gives (|| fol|Z o, < ¢§/2. Therefore, we can readily apply Lemma 2.1 with this particular
value of ¢ to get

1 1
5.33 KN —T(|2)|2, < ¢, for N> —log| ).
(5.33) KN TG < G for N2 oo tos
We lower bound the approximate spectral gap via Theorem 3.1, and using the same approach
as in Theorem 4.2. We apply Theorem 3.1 with the choices | = A, lg = Dy, endowed with the
same graph as in proof of Theorem 4.2, and Bs = RP. First we need to check (3.8). For z € £,
¢ as in (5.32), we have

10 80 Hoopp 1
T (1 - H(Dk’z)) < 72]72( Ta)FP w(k+1) < 17
¢ G JrC

where the last inequality follows from condition (4.12). In other words we have II(Dg|z) >
1 — (¢/10), which by Remark 3.2 implies (3.8). We then conclude from Theorem 3.1 that

K

5.34 SpecG K)> —
(5.34) pecGap;(K) > 1.

where xk and m; are defined using D;. We bound these terms as in Theorem 4.2 with some
important simplifications due the facts that all models here belong to Dy. In particular, since
Dy C A, we readily have

(5.35) my < 8k.
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Similarly, the lower bound on & also simplifies. Because §) and §®) can differ only at a
component j such that d,; = 0 (a non-important variable), we see that only the lower bound
(5.29) applies. Hence k can be taken as

1 -0
(5.36) k=-p " M.
2
The theorem follows from the same calculations as in the proof of Theorem 4.2. 0

Appendix A. Some technical results. We make use of the following standard Gaussian
deviation bound.

Lemma A.1l. Let Z ~ N(0, I,,), and uq,...,un be vectors of R™. Then for all x > 0,

2

P | max |[(u;, Z)| > max l|lwl2 (ac—i—log(N))] < =

1<j<N 1<5<

Lemma A.2. Suppose that X € R™ P is a random matriz with i.i.d. standard Normal
entries. Given an integer s, and positive constants o,y and p, set

def
= max max

a.
SEA: ||6]lo<s i#], 6,=0

X} (In s XX+ X(;CX(;c)

Then there exist some universal finite constants cy,a, A such that for n > As®log(p), the
following two statements hold with probability at least 1 — %: for pal > 0 taken small enough
and

(A.1) o?sp1 < cgy/nlog(p),
it holds that

(A.2) Cop < 2c¢py/nlog(p), and

XL LT Xse 1
min inf{u( 90°0 5 d )u) ueRPT 0 < ||supp(u)|o < 8} > .

8: |16]lo<s n||ul3 — 32

Proof. For a matrix M € R"*P we set

"(M'M
v(M,s) e inf{u()u

D 2.0, Jullo < }
nllul

and for kg = 1/64 and ¢p = 8, we define
g { e R™P: v(M,s) > kg, max ||Mj]l2 < 2y/n,
1<j<p

i (052> /5. and x| 00,0 | < co/nTog(p)
J

1<5<p
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By Theorem 1 of [Raskutti et al.(2010)], Lemma 1-(4.2) of [Laurent and Massart(2000)], and
standard Gaussian deviation bounds, we can find universal constants a, A, such that for n >
Aslog(p), we have P(X ¢ &) < 2. So to obtained the statement of the lemma, it suffices to
consider some arbitrary element X € £ and show that (A.2) holds.

Fix 0 € A such that ||d]jo < s. We set Mjs def n+a%plX5X(’5, sothat Ls = Mg—l—a%pngcch.
The Woodbury identity gives
(A.3)

1 1 -1
-1 —1 -1 —1 —1
XLy Xy, = X) My Xy, — P XMy Xye <156”0 + o X Mj X50> X} M5 1 X,

If C1 = maxy XéM(;ng, and Cp = maxy.j, 5,=0 |XJ’-M(;1Xg|, then we deduce easily from (A.3)
that for all j # k such that J; = 0,

_ 1
(A.4) | XIL; ' X < Co+ P (C +pC3) .

In order to proceed, we need to bound the term XjM(;le. Easily, for X € £, we have
XIMXG < (1K1 < an.

Another application of the Woodbury identity gives

1 1 !
-1 / /
Therefore, for k # j

1 1 -1
XM7'X, = X' X, — — X' X5 | I — XiX Xt X,
jis Sk ik o2p, 5< ||5||o+0_2p 5 6> 5Nk

Using X € &, we educe for j # k, and 6; = 0,

1 —1
XJ/-X(; (15”0 + 0'2/)X3X6> X(/;Xk

1
< — |1 X5X XX,
o2pr < o 1K Xll2ll X512

2 1 I
< Coslog(p) + coy/5108(p) < ¢gy/nlog(p),

> Ko

for n > As?log(p), for some constant A. It follows that

| X[ M Xpe| < 2c0v/nlog(p).

We combine this with (A.4) to obtain that for j # k such that 6; =0,

_ 1 1
(A.6) |X;L; LX< 3cpy/nlog(p) (1 + 02pgpco nlog(p)) + 1602—/)0712 < 8cpy/nlog(p),
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for pg large enough. (A.6) says that Cy < 8cpy/nlog(p), for X € &, as claimed.
For j such that §; = 0, (A.5) gives

_ 1 1 !
XJ,M& lXj = HXJH% — T_QPIXJ/'X(; <I||5|0 —+ 70 X{;Xg) X(/;Xj

2p1
X555
> || X115 — ]
> X503 - ==
n
A7 > —
(A7) >

since n > Aslog(p), and by taking A large enough (A > 4¢2/k¢). Equation (??) then yields

1
—1 —1 —1 2
XILF1X; > XIM; Xj—702p0||XgCM5 X;3

1
—1 -1 2 -1 2
= X! M; Xi = e (XJM' X%+ > (XM X,)
k: 6,=0,k+#j
For 2p, < 62, it follows that
XLX > - 2 16o) (4c2nlog(p)
jts 43 = 8_02p0 p—| HO)( Con ng),

which together with (A.6) and (A.1) implies that for any u € RP such that §¢ O supp(u), and
lsupp(u)|lo < s, we have

_ n
W X5 Ly ' Xoeu > 3—2HuH§, -

as claimed.
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draft of the manuscript.
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