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3

Abstract. This paper introduces a concept of approximate spectral gap to analyze the mixing time of reversible4
Markov Chain Monte Carlo (MCMC) algorithms for which the usual spectral gap is degenerate or5
almost degenerate. We use the idea to analyze a MCMC algorithm to sample from mixtures of6
densities. As an application we study the mixing time of a Gibbs sampler for variable selection in7
linear regression models. We show that properly tuned, the algorithm has a mixing time that grows8
at most polynomially with the dimension. Our results also suggest that the mixing time improves9
when the posterior distribution contracts towards the true model and the initial distribution is10
well-chosen.11
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1. Introduction. Understanding the type of problems for which fast Markov Chain Monte15

Carlo (MCMC) sampling is possible is a question of fundamental interest. The study of the16

size of the spectral gap is a widely used approach to gain insight into the behavior of MCMC17

algorithms. However this technique may be inapropriate when dealing with distributions with18

small isolated local modes. To be more precise, let π be some probability measure of interest19

on some measure space X , and let K be a Markov kernel with invariant distribution π. For20

the purpose of sampling from π using K, one can represent an isolated local mode (to which21

K is sensitive) as a subset A such that K(x,X \ A) is small compared to π(X \ A) for all22

x ∈ A. In this case, K will have a small conductance, and a small spectral gap. Note however23

that if π(A) is also small (that is we are dealing with a small isolated mode A), then, since24 ∫
X\A

π(dx)K(x,A) =

∫
A
π(dx)K(x,X \A),25

we see that the set A will be typically hard to reach in the first place. Hence, any finite-length26

Markov chain {X0, . . . , Xn} say, with transition kernel K and initialized in X \ A is unlikely27

to visit A. Nevertheless, and since π(A) is small, Xn may still be a good approximate sam-28

ple from π for large n. This implies that the poor mixing time predicted by the standard29

spectral gap may markedly differ from the actual behavior of these finite-length chains. Mo-30

tivated by this problem, and building on the s-conductance of L. Lovasz and M. Simonovits31

([Lovász and Simonovits(1993)]), we develop an idea of approximate spectral gap (that we call32

ζ-spectral gap, for some ζ ∈ [0, 1)) which allows us to measure the mixing time of a Markov33

chain while discounting the ill-effect of overly small (and potentially problematic) sets.34
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2 Y. ATCHADÉ

Mixtures are good examples of probability distributions with isolated local modes. We35

use the idea to analyze a class of MCMC algorithms to sample from mixtures of densi-36

ties. Much is known on the computational complexity of various MCMC algorithms for log-37

concave densities (see e.g. [Lovász and Simonovits(1993), Frieze et al.(1994), Lovász(1999),38

Lovász and Vempala(2007)], and [Dwivedi et al.(2018)] and the references therein). However39

these results cannot be directly applied to mixtures, since a mixture of log-concave densities40

is not log-concave in general. By augmenting the variable of interest to include the mixing41

variable, a Gibbs sampler can be used to sample from a mixture. A very nice lower bound on42

the spectral gap of such Gibbs samplers is developed in [Madras and Randall(2002)]. We re-43

examine [Madras and Randall(2002)]’s argument using the concept of ζ-spectral gap, leading44

to Theorem 3.1 that gives potentially better dependence on the dimension.45

Our initial motivation into this work is in large-scale Bayesian variable selection prob-46

lems. The Bayesian posterior distributions that arise from these problems are typically mix-47

tures of log-concave densities with very large numbers of components, and the aforemen-48

tioned Gibbs sampler is commonly used for sampling (see e.g. [George and McCulloch(1997),49

Narisetty and He(2014)]). We show that when properly tuned, the algorithm has a mixing50

time that grows at most polynomially with p, the number of regressors in the model (Theorem51

4.2). Our result derived from the approximate spectral gap also suggests that the mixing time52

improves when a good initial distribution is used, provided that posterior contraction towards53

the true model holds (Theorem 4.3).54

The paper is organized as follows. We develop the concept of ζ-spectral gap in Sec-55

tion 2. The main result there is Lemma 2.1. In Section 3 we study the mixing time of56

mixtures of Markov kernels, and derive (Theorem 3.1) a generalization of Theorem 1.2 of57

[Madras and Randall(2002)]. We put these two results together to analysis the linear regres-58

sion model in Section 4. Some numerical simulations are detailed in Section 4.1.59

2. Approximate spectral gaps for Markov chains. Let π be a probability measure on60

some Polish space (X ,B) (where B is its Borel sigma-algebra), equipped with a reference61

sigma-finite measure denoted dx. In the applications that we have in mind, X is the Euclidean62

space Rp equipped with its Lebesgue measure. We assume that π is absolutely continuous63

with respect to dx, and we will abuse notation and use π to denote both π and its density:64

π(dx) = π(x)dx. We let L2(π) denote the Hilbert space of all real-valued square-integrable65

(wrt π) functions on X , equipped with the inner product 〈f, g〉π
def
=
∫
X f(x)g(x)π(dx) with66

associated norm ‖ · ‖2,π. More generally, for s ≥ 1, we set ‖f‖s,π
def
=
(∫
X |f(x)|sπ(dx)

)1/s
. For67

s = +∞, ‖f‖s,π is defined as the essential supremum of |f | with respect to π. If P is a Markov68

kernel on X , and n ≥ 1 an integer, Pn denotes the n-th iterate of P , defined recursively as69

Pn(x,A)
def
=
∫
X P

n−1(x,dz)P (z,A), x ∈ X , A measurable. If f : X → R is a measurable70

function, then Pf : X → R is the function defined as Pf(x)
def
=
∫
X P (x,dz)f(z), x ∈ X ,71

assuming that the integral is well defined. And if µ is a probability measure on X , then µP72

is the probability on X defined as µP (A)
def
=
∫
X µ(dz)P (z,A), A ∈ B. The total variation73

distance between two probability measures µ, ν is defined as74

‖µ− ν‖tv
def
= 2 sup

A∈B
(µ(A)− ν(A)) .75
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APPROXIMATE SPECTRAL GAPS FOR MARKOV CHAINS 3

Let K be a Markov kernel on X that is reversible with respect to π. That is for all76

A,B ∈ B,77 ∫
A
π(dx)

∫
B
K(x,dy) =

∫
B
π(dx)

∫
A
K(x,dy).78

We will also assume throughout that K is lazy in the sense that K(x, {x}) ≥ 1
2 . The concept79

of spectral gap and the related Poincare’s inequalities are commonly used to quantify Markov80

chains’ mixing times. For f ∈ L2(π), we set π(f)
def
=
∫
X f(x)π(dx), Varπ(f)

def
= ‖f − π(f)‖22,π,81

and E(f, f)
def
= 1

2

∫ ∫
(f(y)− f(x))2π(dx)K(x, dy). The spectral gap of K is then defined as82

SpecGap(K)
def
= inf

{
E(f, f)

Varπ(f)
, f ∈ L2(π), s.t. Varπ(f) > 0

}
.83

It is well-known (see for instance [Montenegro and Tetali(2006)] Corollary 2.15) that if π0(dx) =84

f0(x)π(dx), and f0 ∈ L2(π), then85

(2.1) ‖π0K
n − π‖2tv ≤ Varπ(f0) (1− SpecGap(K))n .86

Therefore, lower-bounds on the spectral gap can be used to derive upper-bounds on the mixing87

time of K. In many examples, the conductance of K is easier to control than the spectral gap.88

In these examples the concept of s-conductance introduced by L. Lovacz and M. Simonivits89

([Lovász and Simonovits(1993)]) as a generalization of the conductance has proven very useful,90

particularly in problems where a warm-start to the Markov chain is available. For ζ ∈ [0, 1/2),91

we define the ζ-conductance of the Markov kernel K as92

Φζ(K)
def
= inf

{ ∫
A π(dx)K(x,Ac)

(π(A)− ζ)(π(Ac)− ζ)
, ζ < π(A) <

1

2

}
,93

where the infimum above is taken over measurable subsets of X . Note that Φ0(K) is the94

standard conductance. Plainly put, Φζ(K) captures the same concept of ergodic flow as95

Φ0(K), except that in Φζ(K) we disregard sets that are either too small or too large under π.96

It turns out that Φζ(K) still controls the mixing time of K up to an additive constant that97

depends on ζ (see [Lovász and Simonovits(1993)] Corollary 1.5). One important drawback of98

the ζ-conductance is that the arguments that relate Φζ(K) to the mixing time of K (Theorem99

1.4 of [Lovász and Simonovits(1993)]) is rather involved, and this has limited the scope and100

the usefulness of the concept. Furthermore there are some problems where direct bound on101

the spectral gap instead of the conductance is easier, or yields better results.102

Motivated by the ζ-conductance, we introduce a similar concept of ζ-spectral gap that103

directly approximates the spectral gap. Let ‖ · ‖? : L2(π) → [0,∞] denote a norm-like104

function on L2(π) with the following properties: (i) ‖αf‖? = |α|‖f‖?, (ii) if ‖f‖? = 0 then105

Varπ(f) = 0, and (iii)106

(2.2) ‖Kf‖? ≤ ‖f‖?, f ∈ L2
?(π),107

where L2
?(π)

def
= {f ∈ L2(π) : ‖f‖? <∞}. For ζ ∈ (0, 1), we define the ζ-spectral gap of K as108

(2.3) SpecGapζ(K)
def
= inf

{
E(f, f)

Varπ(f)− ζ
2

, f ∈ L2
?(π), Varπ(f) > ζ, and ‖f‖? = 1

}
.109
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4 Y. ATCHADÉ

We note that SpecGapζ(K) depends on the choice of ‖ · ‖?. We note also that if ζ = 0 and110

‖f‖? = ‖f‖2,π, then we recover SpecGap0(K) = SpecGap(K). Furthermore, given f ∈ L2(π),111

and writing f̄ = f − π(f), we have112

E(f, f)

Varπ(f)− ζ
2

=
π(f̄2)−

〈
f̄ , P f̄

〉
π

π(f̄2)− ζ
2

.113

By the lazyness of the chain,
〈
f̄ , P f̄

〉
π
≥ π(f̄2)/2, and we deduce that SpecGapζ(K) is a114

quantity that always belongs to the interval [0, 1]. The idea is somewhat similar to the con-115

cept of weak Poincare inequality developed for continuous-time Markov semigroups with zero116

spectral gap ([Liggett(1991), Cattiaux and Guillin(2009)]). One key difference is that weak117

Poincare inequalities lead to sub-geometric rates of convergence of the semigroup, whereas118

the idea of ζ-spectral gap as introduced here leads to a geometric convergence rate, plus an119

additive remainder that depends on ζ. More precisely, we have the following analog of (2.1).120

The proof is similar to the proof of (2.1).121

Lemma 2.1. Suppose that K is π-reversible, lazy, and satisfies (2.2). Fix ζ ∈ [0, 1). Sup-122

pose that π0(dx) = f0(x)π(dx) for a function f0 ∈ L2
?(π). Then for all integer n ≥ 1, we123

have124

‖π0K
n − π‖2tv ≤ Varπ(Knf0) ≤ Varπ(f0)

(
1− SpecGapζ(K)

)n
+ ζ‖f0‖2?.125

Proof. See Section 5.1.126

It is also possible to control similarly the convergence to stationarity in the 1-Wasserstein127

metric. Indeed, for any h ∈ L2(π) we have128

(2.4) |π0K
n(h)− π(h)| =

∣∣∣∣∫
X
h(x) (Knf0(x)− 1)π(dx)

∣∣∣∣ ≤ ‖h‖2,π√Varπ(Knf0).129

Hence, if X is a metric space and π is such that any Lipschitz function h on X belongs to130

L2(π) (basically π has finite second moments), then under the assumptions of Lemma 2.1 we131

have,132

133

(2.5) W1(π0K
n, π)

def
= sup

h: ‖h‖Lip=1
|π0K

n(h)− π(h)|134

≤ sup
h: ‖h‖Lip=1

‖h‖2,π
√

Varπ(f0)
(
1− SpecGapζ(K)

)n
+ ζ‖f0‖2?,135

136

where ‖h‖Lip
def
= supx 6=y |h(y) − h(x)|/d(y, x) is the Lipschitz norm of h, and where d is the137

metric on X .138

2.1. Illustration with the small local mode example. We now illustrate how the approx-139

imate spectral gap can be used with the conceptual example described in the introduction.140

For that purpose, in this section we assume that X = X0 ∪ (X c0 ) for some measurable subset141

X0 of X . We aim to capture the intuition that when X c0 is small under π, a Markov chain142

with transition kernel K started in X0 typically does not suffer from the local modes in X c0 .143

This manuscript is for review purposes only.



APPROXIMATE SPECTRAL GAPS FOR MARKOV CHAINS 5

Let BX0 be the trace sigma-algebra of B on X0. Let KX0 be the restriction of K on X0.144

That is KX0 is the transition kernel on (X0,BX0) defined as145

KX0(x,dy) = K(x, dy) + δx(dy)K(x,X c0 ), x ∈ X0.146

Using the reversibility of K, it is easy to show that the invariant distribution of KX0 is πX0 ,147

the restriction of π to X0, and the spectral gap of KX0 is given by148

(2.6) SpecGapX0
(K)

def
= inf

{
1

2

∫
X0

∫
X0
π(dx)K(x,dy)(f(y)− f(x))2

1
2

∫
X0

∫
X0
π(dx)π(dy)(f(y)− f(x))2

, f : X → R

}
,149

where the infimum is taken over all functions f ∈ L2
?(π) such that150 ∫

X0

∫
X0
π(dx)π(dy)(f(y)− f(x))2 > 0. The next result shows that the spectral gap of KX0 is151

a lower bound for SpecGapζ(K).152

Lemma 2.2. For ζ ∈ (0, 1), and ‖ · ‖? = ‖ · ‖m,π, for some m ∈ (2,+∞], if π(X0) ≥153

1−
(
ζ
10

)1+ 2
m−2

then we have154

SpecGapζ(K) ≥ SpecGapX0
(K).155

Proof. See Section 5.2.156

Fix ζ0 ∈ (0, 1). Suppose that we choose the initial distribution π0 such that ‖f0‖m,π ≤ B,157

for some constant B ≥ 1. In that case Lemma 2.1 with ‖ · ‖? = ‖ · ‖m,π, and ζ = ζ2
0/(B

2) gives158

for all n ≥ 1,159

(2.7) ‖π0K
n − π‖2tv ≤ B2

(
1− SpecGapζ(K)

)n
+ ζ2

0 .160

Therefore, if π(X0) ≥ 1 −
(
ζ
10

)1+ 2
m−2

, by Lemma 2.2 we obtain the following bound on the161

mixing time:162

‖π0K
N − π‖tv ≤

√
2ζ0, for all N ≥

log
(
B2

ζ2
0

)
SpecGapX0

(K)
.163

In other words the mixing time of K can indeed be controlled by the spectral gap of KX0 . The164

condition π(X0) ≥ 1−
(

ζ2
0

10B2

)1+ 2
m−2

puts a stringent constraint on the initial distribution π0165

and on the concentration properties of π on X0. The successful use of the technique typically166

hinges on controlling these two aspects. Further illustrations are given below.167

2.2. Extension to reversible Markov semigroups. The idea can also be applied to continuous-168

time Markov processes. We refer the reader to ([Bakry et al.(2013)]) for an introduction to169

Markov semigroups. We consider a reversible Markov semigroup K = {Kt, t ≥ 0}, where for170

each t, Kt is a Markov kernel on (X ,B) that is reversible with respect to π. Let G denote171

the generator of the semi-group that we assumed well-defined on a dense subspace A of L2(π)172

that is stable under G and Kt such that for all t ≥ 0,173

(2.8)
d

dt
Ktf = KtGf = GKtf, f ∈ A.174
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We make also the assumption that the domain A contains constant functions and is equipped175

with a norm ‖ · ‖? such that ‖f‖? = 0 implies that Varπ(f) = 0, and for all t ≥ 0176

(2.9) ‖Ktf‖? ≤ ‖f‖?, f ∈ A.177

The Dirichlet form of K is defined as178

E(f, f)
def
= −

∫
X
f(x)Gf(x)π(dx).179

For ζ ∈ [0, 1), we can define the ζ-spectral gap of the semi-group K as180

(2.10) λζ(K)
def
= inf

{− ∫X f(x)Gf(x)π(dx)

Varπ(f)− ζ
, f ∈ A, Varπ(f) > ζ, and ‖f‖? = 1

}
.181

We have the analog of Lemma 2.1.182

Lemma 2.3. Suppose that the semigroup K satisfies (2.9). Let ν(dx) = f(x)π(dx) be a183

probability measure on X , where f ∈ A. Let ζ ∈ [0, 1) be such that λζ(K) > 0. Then for all184

t ≥ 0 we have185

‖νKt − π‖2tv ≤ Varπ(Ktf) ≤ Varπ(f)e−2λζ(K)t + ζ‖f‖2?.186

Proof. See Section 5.3.187

For ζ = 0, λζ(K) corresponds to the classical spectral gap of the semigroup and Lemma188

2.3 is the classical exponential convergence of the semigroup. This result can be applied to189

Langevin diffusion processes. Suppose that X = Rp equipped with the Lebesgue measure, and190

π(dx) = e−U(x)/Z, for a function U : Rp → R that is differentiable with Lipschitz gradient.191

The Langevin diffusion process for π defines a reversible Markov semigroup with invariant dis-192

tribution π. The convergence rate of the semigroup toward π is a key ingredient in the analysis193

of several recent MCMC algorithms, including the unadjusted Langevin algorithm and sto-194

chastic gradient Langevin dynamics ([Welling and Teh(2011), Raginsky et al.(2017)]). When195

U is convex, the semigroup is known to possess a spectral gap ([Bobkov(1999)]). Various exten-196

sions beyond the convex case are also known and are well discussed in ([Bakry et al.(2008)]).197

Lemma 2.3 offers another route, one that might be more effective when a good initial distri-198

bution is available, and π has well-understood concentration properties. We leave the details199

as possible future research.200

3. Application: mixing times of mixtures of Markov kernels. To illustrate Lemma 2.1201

we consider here the case where X = Rp, and π is a discrete mixture of log-concave densities202

of the form203

(3.1) π(dx) ∝
∑
i∈I

π(i, x)dx,204

where I is a nonempty finite set, and for i ∈ I, π(i, ·) : Rp → [0,∞) is a measurable function.205

As mentioned in the introduction, much is known on the computational complexity of various206

MCMC algorithms for log-concave densities. However these results cannot be directly applied207
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to mixtures, since for instance a mixture of log-concave densities is not log-concave in general.208

Sampling from mixtures is more challenging than sampling from log-concave densities. For209

instance it is shown in [Ge et al.(2018)] that no polynomial-time MCMC algorithm exists to210

sample from mixtures of densities with inequal covariance matrix, if the algorithm uses only211

the marginal density of the mixture and its derivative. However this result does not cover the212

most commonly used strategy to deal with mixtures, namely the Gibbs sampler.213

Gibbs sampling type algorithms work with the joint distribution on I×X defined as214

(3.2) π̄(D ×B) =

∑
i∈D

∫
B π(i, x)dx∑

i∈I
∫
X π(i, x)dx

, D ⊆ I, B ∈ B.215

Let π(i|x) ∝ π(i, x) (resp. π(i) ∝
∫
X π(i, x)dx) denote the implied conditional (resp.216

marginal) distribution on I, and let πi(dx) ∝ π(i, x)dx be the implied conditional distribution217

on X . For each i ∈ I, let Ki be a transition kernel on X with invariant distribution πi. We218

assume that Ki is reversible with respect to πi, and ergodic (phi-irreducible and aperiodic).219

We then consider the Markov kernel K defined as220

(3.3) K(x,dy)
def
=
∑
i∈I

π(i|x)Ki(x,dy),221

that is reversible with respect to π as in (3.1). In [Madras and Randall(2002)] the authors222

developed a very nice lower bound on the spectral gap of K knowing the spectral gaps of the223

Ki’s. Their result goes as follows. Suppose that there exist κ > 0, and a graph on I such that224

whenever there is an edge between i, j ∈ I, it holds225

(3.4)

∫
X

min (πi(x), πj(x)) dx ≥ κ.226

IfD(I) denotes the diameter of the graph thus defined1, Theorem 1.2 of [Madras and Randall(2002)]227

says that228

(3.5) SpecGap(K) ≥ κ

2D(I)
min
i∈I
{π(i)SpecGap(Ki)} .229

The lower bound in (3.5) can be very small when I is large, particularly if some π(i)230

are exponentially small. We combine the approach in ([Madras and Randall(2002)]) with the231

canonical path argument of ([Sinclair(1992), Diaconis and Stroock(1991)]) to develop a new232

bound on the ζ-spectral gap of K. We make the following assumption.233

H1. There exist I0 ⊆ I, and {Bi, i ∈ I0} a family of nonempty measurable subsets of X ,234

with the following property.235

1. For each i ∈ I0, πi(Bi) ≥ 1/2.236

2. There exist κ > 0 and a connected graph G on I0 such that237

(3.6)

∫
Bi∩Bj

min

(
πi(x)

πi(Bi)
,
πj(x)

πj(Bj)

)
dx ≥ κ,238

whenever there is an edge in G between i and j.239

1The diameter of a graph is the length (the number of edges) of the longest among all the shortest paths
between all pairs of vertices.
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One should view ∪i∈I0{i}×Bi as a subset of I×X that captures most of the probability mass240

of π̄. The graph G captures the proximity between the conditional distributions. Indeed, (3.6)241

implies that the total variation distance between the restriction of πi to Bi and the restriction242

of πj to Bj is at most 2(1− κ).243

Since G is assumed connected, for any distinct pair i, j ∈ I0 we can find and pick a path244

γij that connects i and j. We call γij the canonical path from i to j. The number of edges on245

γij is denoted |γij |. We then define246

(3.7) m1
def
= max

ι∈I0

∑
i,j∈I0: γij3ι

|γij |
π(i)π(j)

π(ι)
,247

where the summation is taken over all distinct pair (i, j) whose canonical path γij goes through248

node ι. We define the local spectral gap of Ki as SpecGapi(Ki) = SpecGapBi(Ki), where249

SpecGapBi(Ki) is defined as in (2.6).250

Theorem 3.1. Let π as in (3.1), and K as in (3.3). Assume that H1 holds and K satisfies251

(2.2) with some chosen pseudo-norm ‖ · ‖?. Set B̄
def
= ∪i∈I0{i} × Bi and assume that there252

exists ζ ∈ [0, 1) such that for any function f ∈ L2
?(π) satisfying ‖f‖? = 1, it holds253

254

(3.8) 2

∫
B̄

∫
B̄c

(f(y)− f(x))2 π̄(di,dx)π̄(dj,dy)255

+

∫
B̄c

∫
B̄c

(f(y)− f(x))2 π̄(di,dx)π̄(dj,dy) ≤ ζ,256
257

where B̄c
def
= (I×X ) \ B̄. Then258

(3.9) SpecGapζ(K) ≥
(

κ

1 + 8m1

)
min
i∈I0

SpecGapi(Ki).259

Proof. See Section 5.4.260

Remark 3.2. The condition (3.8) can be easily handled. For instance if ‖ · ‖? = ‖ · ‖π,m for261

some m ∈ (2,∞], then by Holder’s inequality the left hand side of (3.8) is easily bounded from262

above by 10π̄(B̄c)1−2/m. In that case (3.8) holds if B̄ satisfies π̄(B̄) ≥ 1− (ζ/10)1+2/(m−2).263

Note that the constant m1 satisfies264

(3.10) m1 ≤
D(I0)

mini∈I0 π(i)
.265

Hence the bound in (3.9) improves on (3.5), even when ζ = 0. In problems where an exact draw266

from π(·|x) is not available, the kernel K in (3.3) is not usable. In these cases it is typical to267

replace those exact draws by MCMC. Theorem 3.1 can be extended to such settings. However268

we will not pursue this here for lack of space.269
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4. Example: analysis of a Gibbs sampler. We consider the Bayesian treatment of a linear270

regression problem with response variable z ∈ Rn, and covariate matrix X ∈ Rn×p, with a271

spike-and-slab prior distribution on the regression parameter θ ∈ Rp as in ([George and McCulloch(1997),272

Narisetty and He(2014)]). More precisely, for some variable selection parameter δ ∈ ∆
def
=273

{0, 1}p and positive parameters ρ0, ρ1, we assume that the components of θ are conditionally274

independent, and θj |{δ = 1} has density N(0, ρ−1
1 ), and θj |{δ = 0} has density N(0, ρ−1

0 ),275

where N(µ, v2) denotes the univariate Gaussian distribution with mean µ and variance v2.276

We further assume that given q ∈ (0, 1), the prior distribution of δ is a product of Bernoulli277

with success probability q, and restricted to be in ∆s
def
= {δ ∈ ∆ : ‖δ‖0 ≤ s}, for some sparsity278

level s specified by the user. The resulting posterior distribution on ∆× Rp is279

(4.1) Π(δ, dθ|z) ∝
(

q

1− q

)‖δ‖0
1∆s(δ)

e
− 1

2
θ′D−1

(δ)
θ√

det
(
2πD(δ)

)e− 1
2σ2 ‖z−Xθ‖22dθ,280

where D(δ) ∈ Rp×p is a diagonal matrix with j-th diagonal element equal to ρ−1
1 if δj = 1, and281

ρ−1
0 if δj = 0. Note that we can always set s = p. The regression error σ is assumed known.282

This model is very popular in the applications. Indeed, the posterior conditional distribution283

Π(δ|θ, z) is a product of independent Bernoulli distributions constrained to be s-sparse:284

285

(4.2) Π(δ|θ, z) ∝ 1∆s(δ)

p∏
j=1

[
qj
]δj [1− qj

]1−δj , qj
def
=

1

1 +Ae
1
2

(ρ1−ρ0)θ2
j

, j = 1, . . . , p,286

287

where A
def
= (1− q)q−1

√
ρ0/ρ1. We will assume that sampling from (4.2) is easy. This is the288

case when s = p (by direct independent sampling), or when s is large (by a simple rejection289

scheme). A Metropolis-Hastings scheme could also be used, but we will focus our analysis on290

cases where an exact draw is made from (4.2). Given δ, the conditional distribution of θ given291

δ is Np(mδ, σ
2Σδ), with mδ and Σδ given by292

(4.3) mδ
def
= ΣδX

′z and Σδ
def
=
(
X ′X + σ2D−1

(δ)

)−1
.293

Put together these two conditional distributions yields a simple Gibbs sampling algorithm for294

(4.1). We consider the following version that is modified so that the resulting Markov chain295

is lazy as required by our theory.296

[Algorithm 4] For some initial distribution ν0 on Rp, draw u0 ∼ ν0. Given u0, . . . , uk for some
k ≥ 0, draw independently Ik+1 ∼ Ber(0.5).

1. If Ik+1 = 0, set uk+1 = uk.
2. If Ik+1 = 1,

(a) Draw δ ∼ Π(·|uk, z) as given in (4.2), and
(b) draw uk+1 ∼ Np(mδ, σ

2Σδ) as given in (4.3).
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We analyze the mixing time of the marginal chain {uk, k ≥ 0} from Algorithm 4. As297

easily seen, {uk, k ≥ 0} is a Markov chain with invariant distribution298

(4.4) Π(dθ|z) ∝
∑
δ∈∆s

(
q

1− q

)‖δ‖0 e
− 1

2
θ′D−1

(δ)
θ√

det
(
2πD(δ)

)e− 1
2σ2 ‖z−Xθ‖22dθ,299

which is of the form (3.1), and with transition kernel300

(4.5) K(u,dθ)
def
=
∑
ω∈∆

Π(ω|u, z)
[

1

2
δu(dθ) +

1

2
Π(dθ|ω, z)

]
,301

which is of the form (3.3).302

To proceed we introduce some notations. For δ ∈ ∆, and θ ∈ Rp, we write θδ as a short303

for the component-wise product of θ and δ, and we define δc
def
= 1 − δ, that is δcj = 1 − δj ,304

1 ≤ j ≤ p. For a matrix A ∈ Rq×p, Aδ (resp. Aδc) denotes the matrix of Rq×‖δ‖0 (resp.305

Rq×(p−‖δ‖0)) obtained by keeping only the columns of A for which δj = 1 (resp. δj = 0).306

When δ = ej (the j-th canonical unit vector of Rp) we write Aδ (resp. Aδc) as Aj (resp. A−j).307

For two elements δ, δ′ of ∆, we write δ ⊇ δ′ to mean that δj = 1 whenever δ′j = 1. The support308

of a vector u ∈ Rp is the vector supp(u) ∈ ∆ such that supp(u)j = 1 if and only if |uj | > 0.309

An important role is played in the analysis by the matrices310

Lδ
def
= In +

1

σ2
XD(δ)X

′,311

and the coherence of X defined as312

C(s) def
= max

δ∈∆s

max
j 6=`

∣∣∣X ′jL−1
δ X`

∣∣∣√
n log(p)

.313

We will make the assumption that C(s) does not grow with p. It can be easily checked that314

if the columns of X are orthogonal then C(s) = 0. Furthermore, it can be shown that if X is315

a realization of random matrix with i.i.d. standard Gaussian entries, then and provided that316

n ≥ As2 log(p), it holds C(s) ≤ c for some absolute constants c, A. We refer the reader to the317

Appendix for details. We make the following regularity assumption on the matrix X.318

H2. 1. The matrix X is non-random and normalized such that319

(4.6) ‖Xj‖22 = n, j = 1, . . . , p.320

Furthermore, there exists an integer s0 ∈ {1, . . . , p− 1}, such that321

λ
def
= min

δ: ‖δ‖0≤s0
inf

{
v′
(
X ′δcL

−1
δ Xδc

)
v

n‖v‖22
, v ∈ Rp−‖δ‖0 , 0 < ‖v‖0 ≤ s0

}
> 0.322
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Remark 4.1. The matrix L−1
δ can be loosely interpreted as the projector on the orthogonal323

of the space spanned by the columns of Xδ. Therefore, H2 rules out settings where a small324

number of columns of X have the same column span as the column span of X. Indeed signal325

recovery becomes nearly impossible in such settings. In can be shown that if X is a random326

matrix with i.i.d. standard Gaussian entries then λ > 0 for s0 of order n/ log(p). We refer the327

reader to the Appendix for details.328 �329

We also make some very mild assumptions pertaining to the prior parameters and to the330

existence of a true model.331

H3. 1. There exists a true value of the parameter θ? ∈ Rp with sparsity support332

δ? ∈ ∆s, with ‖δ?‖0 = s?, such that ps?Π(δ?|z) ≥ 1.333

2. For some constant u > 0, the prior parameter q satisfies334

(4.7)
q

1− q
=

1

pu
.335

3. The prior parameters ρ0, ρ1 satisfy336

(4.8) 0 < ρ1 < ρ0, σ2ρ1 ≤
(

1− ρ1

ρ0

)
n, and

√
1 +

ns

σ2ρ1
≤ pa,337

for some absolute constant a > 0.338

The last two parts of Condition (4.8) are easily satisfied and are imposed mostly to obtain339

simple mathematical formulas. For some constant c0 > 0, we introduce the event340

E0
def
=

{
z ∈ Rn : max

δ∈∆s

sup
1≤j≤p

1

σ

∣∣〈L−1
δ Xj , z −Xθ?

〉∣∣ ≤√c0n log(p)

}
,341

We note if z ∼ N(Xθ?, σ
2In), and ‖Xj‖2 ≤

√
n, then the event z ∈ E0 holds with high342

probability, with c0 = 2(s+ 1).343

Theorem 4.2. Suppose that H2-H3 hold. Fix ζ0 ∈ (0, 1). Suppose that s, the sparsity level344

of the posterior distribution (4.1) is chosen such that 0 < s ≤ s0 with s0 as in H2, and345

Algorithm 4 is initialized from ν0 = Π(·|δ(i), z), for some arbitrary δ(i) ∈ ∆s. Take z ∈ E0,346

suppose that we choose u large enough such that347

(4.9) u > 2 max
(

2,
%

λ

)
, where %

def
= (σ

√
c0 + ‖θ?‖1C(s))2 ,348

and the sample size n satisfies349

(4.10) n ≥ A0uσ
2s? log(p)

λ2θ2
?

, where θ?
def
= min

j: δ?j=1
|θ?j |,350

for some absolute constant A0. Set351

λ1
def
= min

1≤j≤p
min
δ∈∆s

X ′jL
−1
δ Xj

n
.352
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Then there exists a constant A1 that does not depend on n, p nor ζ0 such that for all353

354

(4.11) N ≥ A1 s

[
log

(
1

ζ0

)
+
su(1 + ‖θ?‖2∞)n

σ2λ

]
×max

(
1,

√
n

σ2ρ0

)
355

×max
(

1, e
1

4σ2 (8σ2ρ0−nλ1)
)
× p

ρ0
n

2%

λ2
1 ,356

357

we have358

‖ν0K
N −Π(·|z)‖tv ≤ ζ0.359

Proof. See Section 5.5.360

We note that our condition (4.9) is analogous to Condition C of [Yang et al.(2016)]. The361

main term in the bound (4.11) is362

max
(

1, e
1

4σ2 (8σ2ρ0−nλ1)
)
p
ρ0
n

2%

λ2
1 ,363

which highlights the important impact of the prior parameter ρ0 on the mixing of the algo-364

rithm. If ρ0 is chosen as ρ0 ≤ nλ1/(8σ
2), then by (4.11), the mixing time scales as O(p%/λ1).365

Note that the ratio %/λ1 depends mainly on the correlation between the columns of X. Our366

simulation results indeed confirm that dependence of the mixing time on X, however the367

polynomial scaling O(p%/λ1) predicted by the theorem may be conservative.368

In contrast, if ρ0 > nλ1/(8σ
2) the bound predicts a mixing time that scales asO(e2ρ0p

ρ0
n

2%

λ2
1 ),369

which is worst than O(enp%/λ1). This said, it is important to add that (4.11) is an upper bound370

on the mixing time which may not be tight, and as such does not prove slow mixing.371

We contrast these findings with the posterior contraction properties of the posterior dis-372

tribution. According to [Narisetty and He(2014)], as n, p→∞, we need to let ρ0 grow faster373

than n, and let ρ1 be of order n/p2 in order to guarantee posterior contraction of Π. And374

in their simulation section these authors suggest using ρ0 = 10n/σ2 (although it is unclear375

whether posterior contraction holds in that regime). In these regimes our results suggest that376

the mixing time of Algorithm 4 grows faster than O(enp%/λ1). This description matches well377

with our numerical experiments. But again (4.11) is only an upper bound on the mixing time,378

and as such does not establish slow mixing.379

Note that when posterior contraction holds the posterior distribution assigns increasingly380

small probability to {δ : δ + δ?}. Hence a chain that starts in {δ : δ ⊇ δ?} may have381

markedly different mixing time than what is predicted by Theorem 4.2. To formalize this,382

we shall focus on the unconstrained case where s = p in (4.1). We formalize the posterior383

contraction as follows. Given k ≥ 0, we define384

Dk
def
= {δ ∈ ∆ : δ ⊇ δ?, ‖δ‖0 ≤ ‖δ?‖0 + k} ,385

which collects models that contain the true model δ? and have at most k false-positives, and386
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we introduce the event387
388

E def
=

{
z ∈ Rn : Π(Dk|z) ≥ 1− 1

p
u
2

(k+1)
, for all k ≥ 0,389

and max
δ⊇δ̃?: ‖δ‖0≤s0

sup
1≤j≤p

1

σ

∣∣〈L−1
δ Xj , z −Xθ?

〉∣∣ ≤√c0n log(p)

}
,390

391

for some constant c0. We will say that posterior contraction holds when z ∈ E . We will not392

directly establish this property. However several existing works suggest that this description393

of the posterior contraction of Π(·|z) holds. For instance under similar assumptions as above,394

[Narisetty and He(2014)] show that Π(D0|Z) ≥ 1− a1
pa2 with high-probability for positive con-395

stants a1, a2. And [Atchade and Bhattacharyya(2018)] shows that z ∈ E with high probabiity396

for a slightly modified version of the posterior distribution (4.1).397

Theorem 4.3. Assume H2-H3 and s = p in (4.1). Fix ζ0 ∈ (0, 1). Suppose that Algorithm398

4 is initialized from ν0 = Π(·|δ(i), z), for some δ(i) ∈ D(s0−s?) such that FP
def
= ‖δ(i)‖0 − s?399

satisfies400

(4.12) FP ≤ u

4(u+ a)
(k + 1) +

log
(

80
ζ2
0

)
2(u+ a) log(p)

,401

for some integer k ≤ s0 − s?. Suppose also that (4.9) and (4.10) hold. Then there exists a402

constant A that does not depend on n, p nor ζ0 such that for all z ∈ E, and all403

(4.13) N ≥ AFP
[
log
(
ζ−1

0

)
+ FPu log(p)

]
p

2ρ0
n

%

λ2
1 ,404

we have405

‖ν0K
N −Π(·|z)‖tv ≤ ζ0.406

Proof. See Section 5.6.407

Condition (4.12) restricts the number of false-positives of the initial model δ(i) compared408

to s0. This condition can be relaxed if the contraction of π on Dk is faster than the polynomial409

form assumed in the event E .410

Theorem 4.3 suggests that when posterior contraction holds (z ∈ E), the mixing time411

of Algorithm 4 with a good initialization is less sensitive to large values of ρ0 (the term412

e
1

4σ2 (8σ2ρ0−nλ1) no longer appear in (4.13)). For instance with ρ0 = nλ1/2 the mixing time is413

at most O(FP2p%/λ1), which is better O(enp%/λ1).414

One clear roadblock toward the practical use of this result is finding the initial δ(i) such415

that δ(i) ⊇ δ?. In practice various frequentist estimators such as the lasso can be used.416

At least in a high signal-to-noise-ratio setting the lasso estimator is known to contain the417

true model under mild assumptions (similar to H2). We refer the reader for instance to418

([Meinshausen and Yu(2009)]).419

One of the first paper that analyzes the mixing times of MCMC algorithm in high-420

dimensional linear regression models and highlights fast/slow mixing behaviors is [Yang et al.(2016)].421
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Their posterior distribution is slightly different from what we looked at in this work. Specifi-422

cally [Yang et al.(2016)] applied a Metropolized-Gibbs sampler to the marginal distribution of423

δ, whereas we consider here a Gibbs sampler applied to the joint distribution of (δ, θ). These424

authors show that in general their sampler has a mixing time that is exponential in p unless425

the state space is restricted to models δ for which ‖δ‖0 ≤ s for some threshold s, in which case426

the worst-case mixing time is O(s2np log(p)). To the extent that our bound in Theorem 4.2 is427

tight, the better rate obtained by these authors can perhaps be interpretated as the positive428

effect of marginalization and collapsing in Gibbs sampling ([Liu(1994)]).429

4.1. Numerical illustrations. We illustrate some of the conclusions with the following sim-430

ulation study. We consider a linear regression model with Gaussian noise N(0, σ2), where σ2 is431

set to 1. We experiment with sample size n = p, and dimension p ∈ {500, 1000, 2000, 3000, 4000}.432

We take X ∈ Rn×p as a random matrix with i.i.d. rows drawn from Np(0,Σ) under two sce-433

narios. A low coherence setting where Σ = Ip, and a high coherence where Σij = 0.9|j−i|.434

After sampling, we normalized the columns of X to each have norm
√
n. We fix the number435

of non-zero coefficients to s? = 10, and δ? is given by436

δ? = (1, . . . , 1︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
p−10

).437

The non-zero coefficients of θ? are uniformly drawn from (−a− 1,−a) ∪ (a, a+ 1), where438

a = 4

√
log(p)

n
.439

We use the following prior parameters values440

u = 2, ρ1 =
n

p2.1
, ρ0 ∈

{
n

σ2
,
n1.5

σ2

}
.441

These scalings of ρ0 and ρ1 roughly matches the recommendations of [Narisetty and He(2014)]442

to get posterior contraction of Π(·|z). We use an initial distribution ν0 = Π(·|δ(i), z), where443

δ(i) is such that ‖δ(i) − δ?‖0 = 2p/10, with two scenarios. A scenario FN (false negative),444

where 5 out of 10 of the true positive of δ? are set to 0, and a scenario no FN, where δ(i) has445

only false-positives. To monitor the mixing, we compute the sensitivity and the precision at446

iteration k as447
448

SENk =
1

s?

p∑
j=1

1{|δk,j |>0}1{|δ?,j |>0}, PRECk =

∑p
j=1 1{|δk,j |>0}1{|δ?,j |>0}∑p

j=1 1{|δk,j |>0}
.449

450

We empirically measure the mixing time of the algorithm as the first time k where both SENk451

and PRECk reach 1, truncated to 2 × 104 – that is we stop any run that has not mixed by452

20000 iterations. For the sampler of [Yang et al.(2016)], we stop any run that has not mixed453

by 105 iterations. The average empirical mixing time thus obtained (based on 50 independent454

MCMC replications) are presented in Table 1 and Table 2.455

We can make the following observations.456
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p = 500 p = 1000 p = 2000 p = 3000 p = 4000

FN
ρ0 = n 866.3(3, 204) 423.6(2, 735) 147.1(575) > 437.3 > 871.0
ρ0 = n1.5 > 11, 125.8 > 13, 662.6 > 13, 2371.6 > 15, 948.0 > 16237.3
Yang et al. 5, 244.2(1, 379) 12, 208.5(2, 463) 27, 617.6(5, 803) 43, 821.9(6, 453) 54, 697.9(5, 611)

no FN
ρ0 = n 1(0) 1(0) 1(0) 1(0) 1(0)
ρ0 = n1.5 30.9(81) 43.7(55) 123.2(251) 241.2(535) 215.3(250)
Yang et al. 5, 191.0(1, 503) 11, 975.9(2, 769) 26, 877.8(4, 786) 42, 285.7(8, 721) 56, 264.3(10, 362)

Table 1
Average empirical mixing time of the samplers in a low-coherence setting. Based on 50 simulation

replications. The numbers in parenthesis are standard errors. The notation > a means that some (or
all) of the replicated mixing times have been truncated.

p = 500 p = 1000 p = 2000 p = 3000 p = 4000

FN
ρ0 = n > 20, 000 > 19, 200 > 18, 400 > 17, 870 > 19129.1
ρ0 = n1.5 > 20, 000 > 20, 000 > 20, 000 > 20, 000 > 20, 000
Yang et al. > 100, 000 > 91, 177 > 75, 373 > 83, 246 > 84, 972

no FN
ρ0 = n > 880.1 > 1, 200.1 > 400.9 > 800.96 > 900.1
ρ0 = n1.5 > 416.8 > 1, 246.2 > 874.2 > 425.2 > 313.6
Yang et al. > 98, 067 > 87, 424 > 73, 253 > 77, 902 > 82, 205

Table 2
Average empirical mixing time of the samplers in a high-coherence setting. Based on 50 simulation

replications. The numbers in parenthesis are standard errors. The notation > a means that some (or
all) of the replicated mixing times have been truncated.

1. There is sharp difference in behavior between the low and high coherence settings.457

2. As predicted by our theory, Algorithm 4 mixes better when there is no false-negative458

in the initialization. The algorithm of [Yang et al.(2016)] seems impervious to the459

initialization. It should be noted in comparing the two algorithms, that an iteration460

of the algorithm of [Yang et al.(2016)] costs roughly p times less than an iteration of461

Algorithm 4.462

3. The third observation that can be drawn from the results is that when there are false-463

negatives, Algorithm 4 mixes better with ρ0 = n/σ2, compared to ρ0 > n/σ2, as464

predicted by our result. The difference is less noticeable in the high-coherence setting.465

This observation is also explained by our bound, since in a high-coherence setting, the466

parameter % is expected to be large. Another observation here is that when there are467

false-negatives in the initialization, the mixing time becomes highly variable (several468

runs have hit the wallclock).469

4. Finally, we notice that the theory of [Yang et al.(2016)] does not fully describe the470

behavior of their algorithm, as we see a significant degradation of performance in their471

algorithm with high coherence design matrices, which cannot be clearly explained by472

their result.473

Overall, based on our theoretical analysis and the simulation study, our recommendation474

when using Algorithm 4 is to set ρ0 = n/σ2, and to the extent possible to use the lasso sparsity475

structure as initialization (or some other similar high-dimensional frequentist estimator).476
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5. Proofs. The proof of Theorem 3.1 relies on the following lemma due to [Madras and Randall(2002)].477

For a proof see their inequality (47). A direct argument by coupling can also be easily con-478

structed.479

Lemma 5.1. Let ν(dx) = fν(x)dx, µ(dx) = fµ(x)dx be two probability measures on some480

measurable space with reference measure dx, such that
∫

min(fµ(x), fν(x))dx > ε for some481

ε > 0. Then for any measurable function h such that
∫
h2(x)ν(dx) <∞ and

∫
h2(x)µ(dx) <482

∞, we have483

484 ∫
(h(y)− h(x))2µ(dy)ν(dx)485

≤ 2− ε
2ε

[∫
(h(y)− h(x))2µ(dy)µ(dx) +

∫
(h(y)− h(x))2ν(dy)ν(dx)

]
.486

487

5.1. Proof of Lemma 2.1. We first note that if a probability measure ν is absolutely488

continuous with respect to π with Radon-Nikodym derivative fν , then for any A ∈ B,489

νK(A) =

∫
ν(dx)K(x,A) =

∫ ∫
fν(x)1A(y)π(dx)K(x, dy)490

=

∫ ∫
1A(x)fν(y)π(dx)K(x, dy) =

∫
A
π(dx)

∫
K(x, dy)fν(y),491

where the third equality uses the reversibility of K. This calculation says that νK is also492

absolutely continuous with respect to π with Radon-Nikodym derivative x 7→ Kfν(x)
def
=493 ∫

K(x, dy)fν(y). More generally d(νKn)
dπ (·) = Knfν(·), and494

‖νKn − π‖2tv =

(∫ ∣∣∣∣d(νKn)

dπ
(x)− 1

∣∣∣∣π(dx)

)2

495

=

(∫
|Knfν(x)− 1|π(dx)

)2

496

≤ ‖Knfν − 1‖22,π497

= Varπ(Knfν).(5.1)498

Take f ∈ L2(π). Since π(f) = π(Kf), we have499

500

(5.2)

Varπ(Kf) − Varπ(f) = 〈Kf,Kf〉π − 〈f, f〉π = −1

2

∫ ∫
(f(y)− f(x))2 π(dx)K2(x,dy),501

502

where the last equality exploits the reversibility of K. By the lazyness of K we have503 ∫ ∫
(f(y)− f(x))2 π(dx)K2(x,dy) ≥

∫ ∫
(f(y)− f(x))2 π(dx)K(x,dy).504
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A proof of this statement is given for instance in [Montenegro and Tetali(2006)] (Equation505

2.12). Using the last display together with (5.2), and the definition of E(f, f), we conclude506

that for all f ∈ L2(π),507

(5.3) Varπ(Kf) ≤ Varπ(f)− E(f, f).508

Fix ζ ∈ (0, 1), and take f ∈ L2
?(π). Suppose that ‖f‖? > 0. If Varπ(f) ≤ ζ‖f‖2?, then, by509

(5.3), Varπ(Kf) ≤ min(Varπ(f), ζ‖f‖2?). But if Varπ(f) > ζ‖f‖2?, then by (5.3),510

Varπ(Kf) ≤ Varπ(f)− ‖f‖2?E
(

f

‖f‖?
,
f

‖f‖?

)
511

≤ Varπ(f)− ‖f‖2?SpecGapζ(K)

(
Varπ

(
f

‖f‖?

)
− ζ

2

)
,512

≤ Varπ(f)
(
1− SpecGapζ(K)

)
+
ζ

2
‖f‖2?SpecGapζ(K).513

Note also that if ‖f‖? = 0, then Varπ(f) = 0 by the listed properties of ‖·‖?, and Varπ(Kf) = 0514

by (5.3), so that the last display continue to hold. We conclude that for all f ∈ L2
?(π),515

Varπ(Kf) ≤ Varπ(f)
(
1− SpecGapζ(K)

)
+ ζ‖f‖2?SpecGapζ(K).516

Given that Kf ∈ L2
?(π) for all f ∈ L2

?(π), we can iterate the above inequality to deduce that517

for all f ∈ L2
?(π), and for all n ≥ 1,518

519

Varπ(Knf) ≤ Varπ(f)
(
1− SpecGapζ(K)

)n
520

+ ζSpecGapζ(K)
∑
j≥0

(
1− SpecGapζ(K)

)j ‖Kn−j−1f‖2?521

≤ Varπ(f)
(
1− SpecGapζ(K)

)n
+ ζ‖f‖2?.522

523

Now, if π0 = f0π, the last display combined with (5.1) implies that524

‖π0K
n − π‖2tv ≤ Varπ(Knf0) ≤ Var(f0)

(
1− SpecGapζ(K)

)n
+ ζ‖f0‖2?,525

as claimed.526 �527

5.2. Proof Lemma 2.2. Take f : X → R such that Varπ(f) > ζ, and ‖f‖? = ‖f‖m,π = 1.528

We have529

530

2Varπ(f) =

∫
X0

∫
X0

(f(y)− f(x))2π(dx)π(dy)531

+ 2

∫
X0

∫
X\X0

(f(y)− f(x))2π(dx)π(dy) +

∫
X\X0

∫
X\X0

(f(y)− f(x))2π(dx)π(dy).532

533

This manuscript is for review purposes only.



18 Y. ATCHADÉ

Using the convexity inequality (a+ b)2 ≤ 2a2 + 2b2, and Holder’s inequality,534

535 ∫
X0

∫
X\X0

(f(y)− f(x))2π(dx)π(dy)536

≤ 2π(X0)

∫
X\X0

f(x)2π(dx) + 2π(X \ X0)

∫
X0

f(x)2π(dx)537

≤ 2π(X0)π(X \ X0)1− 2
m ‖f‖2m,π + 2π(X \ X0)‖f‖2m,π ≤ 4π(X \ X0)1− 2

m .538

539

With similar calculation,540 ∫
X\X0

∫
X\X0

(f(y)− f(x))2π(dx)π(dy) ≤ 4π(X \ X0)π(X \ X0)1− 2
m ≤ 2π(X \ X0)1− 2

m .541

Using π(X0) ≥ (ζ/10)1+2/(m−2), we get542

2(Varπ(f)− ζ

2
) ≥

∫
X0

∫
X0

π(dx)π(dy)(f(y)− f(x))2.543

Hence544

E(f, f)

Varπ(f)− ζ
2

≥
∫
X0

∫
X0 π(dx)K(x,dy)(f(y)− f(x))2∫

X0

∫
X0 π(dx)π(dy)(f(y)− f(x))2

≥ SpecGapX0
.545

The statement bound easily follows.546 �547

5.3. Proof of Lemma 2.3. Take f ∈ A. Without any loss of generality we assume that548

π(f) = 0. Then549

(5.4)
d

dt
Varπ(Ktf) =

d

dt

∫
X

(Ktf)2(x)π(dx) = 2

∫
X
Ktf(x)GKtf(x)π(dx).550

Suppose that ‖Ktf‖? > 0. If Varπ(Ktf/‖Ktf‖?) > ζ, then from (5.4) and the definition of551

λζ(K),552

553

(5.5)
d

dt
Varπ(Ktf) ≤ −2‖Ktf‖2?λζ(K)

(
Varπ

(
Ktf

‖Ktf‖?

)
− ζ
)

554

≤ −2λζ(K)Varπ(Ktf) + 2ζλζ(K)‖Ktf‖2?.555556

However, if Varπ(Ktf/‖Ktf‖?) ≤ ζ, we see that the right-hand side of (5.5) is nonnegative,557

whereas from (5.4) and the properties of the generator we see that the left-hand side of (5.5)558

is nonpositive. Note also that (5.5) continue to hold when ‖Ktf‖? = 0. Hence for all f ∈ A,559

and for all t ≥ 0, we have560

(5.6)
d

dt
Varπ(Ktf) ≤ −2λζ(K)Varπ(Ktf) + 2ζλζ(K)‖f‖2?.561
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The lemma then follows from Gronwall’s lemma. More precisely, set α = ζ‖f‖2?, β = 2λζ(K),562

and u(t) = Varπ(Ktf). Hence (5.6) reads u′(t) ≤ −βu(t) + αβ. Setting v(t) = e−βt, we have563

d

dt

(
u(t)

v(t)

)
=
u′(t)v(t)− v′(t)u(t)

v(t)2
=
u′(t) + βu(t)

v(t)
≤ αβeβt.564

Integrating both sides yields the stated bound.565 �566

5.4. Proof of Theorem 3.1. Choose f ∈ L2
?(π) such that ‖f‖? = 1. We define567

Ei(f, f)
def
=

1

2

∫
Bi

∫
Bi

(f(y)− f(x))2 πi(dx)Ki(x, dy).568

From the definition569
570

(5.7) 2E(f, f) =

∫
X

∫
X

(f(y)− f(x))2 π(dx)

[∑
i∈I

π(i|x)Ki(x, dy)

]
571

=
∑
i∈I

π(i)

∫
X

∫
X

(f(y)− f(x))2 πi(dx)Ki(x, dy)572

≥ 2
∑
i∈I

π(i)Ei(f, f) ≥ 2
∑
i∈I0

π(i)Ei(f, f).573

574

Using B̄ = ∪i∈I0{i} × Bi, and B̄c
def
= (I×X ) \ B̄, we have,575

576

(5.8) 2Varπ(f) =

∫
B̄

∫
B̄

(f(y)− f(x))2 π̄(di,dx)π̄(dj,dy)577

+ 2

∫
B̄

∫
B̄c

(f(y)− f(x))2 π̄(di,dx)π̄(dj,dy)578

+

∫
B̄c

∫
B̄c

(f(y)− f(x))2 π̄(di,dx)π̄(dj,dy).579
580

For B̄ as in (3.8), and expanding the first term on the right hand side of (5.8) it follows that581
582

(5.9) 2

(
Varπ(f)− ζ

2

)
≤
∑
i∈I0

π(i)2

∫
Bi

∫
Bi

(f(y)− f(x))2 πi(dx)πi(dy)583

+
∑

i 6=j, i,j∈I0

π(i)π(j)πi(Bi)πj(Bj)

∫
Bi

∫
Bj

(f(y)− f(x))2 πi(dx)

πi(Bi)

πj(dy)

πj(Bj)
.584

585

Given an edge e in G, let us write e− and e+ to denote the two incident nodes of the edge.586

For i 6= j ∈ I0, let γij denotes the chosen canonical path between i and j, and let i0, i1, . . . , i`587

be the nodes on that canonical path (with i0 = i, and i` = j). By introducing generic588

variables zik ∈ Bik , one can write f(zi`)− f(zi0) =
∑`

k=1 f(zik)− f(zik−1
). Using this and the589

Cauchy-Schwarz inequality, we have590
591

(5.10)

∫
Bi

∫
Bj

(f(y)− f(x))2 πi(dx)

πi(Bi)

πj(dy)

πj(Bj)
592

≤ |γij |
∑
e∈γij

∫
Be−

∫
Be+

(f(y)− f(x))2 πe−(dx)

πe−(Be−)

πe+(dy)

πe+(Be+)
,593

594
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where |γij | denotes the number of edges on the canonical path γij . By Lemma 5.1 and using595

also the assumption that πi(Bi) ≥ 1/2, the summation on the right-hand side of (5.10) is596

upper bounded by597

598

4

κ

∑
e∈γij

∫
Be−

∫
Be−

(f(y)− f(x))2 πe−(dx)πe−(dy)599

+
4

κ

∑
e∈γij

∫
Be+

∫
Be+

(f(y)− f(x))2 πe+(dx)πe+(dy)600

≤ 8

κ

∑
ι∈γij

∫
Bι

∫
Bι

(f(y)− f(x))2 πι(dx)πι(dy),601

602

where the summation e ∈ γij is taken over all edges along the path γij whereas the summation603

ι ∈ γij is taken over all nodes ι along the path γij including i and j. Hence604

605

(5.11)
∑

i 6=j, i,j∈I0

π(i)π(j)πi(Bi)πj(Bj)

∫
Bi

∫
Bj

(f(y)− f(x))2 πi(dx)

πi(Bi)

πj(dy)

πj(Bj)
606

≤ 8

κ

∑
ι∈I0

π(ι)

∫
Bι

∫
Bι

(f(y)− f(x))2 πι(dx)πι(dy)
∑

i,j∈I0: γij3ι
|γij |

π(i)π(j)

π(ι)
,607

608

which together with (5.9) yields609

610

(5.12) 2

(
Varπ(f)− ζ

2

)
≤

(
1 +

8m1

κ

)∑
i∈I0

π(i)

∫
Bi

∫
Bi

(f(y)− f(x))2 πi(dx)πi(dy).611

612

From the definition of SpecGapi(Ki), we have613

(5.13)

∫
Bi

∫
Bi

(f(y)− f(x))2 πi(dx)πi(dy) ≤ 2Ei(f, f)

SpecGapi(Ki)
,614

which we use in (5.12), to arrive at615

(5.14)

(
Varπ(f)− ζ

2

)
≤

(
1 + 8m1

κ

)
mini∈I0 SpecGapi(Ki)

∑
i∈I0

π(i)Ei(f, f).616

(5.14) and (5.7) together yield,617

E(f, f)(
Varπ(f)− ζ

2

) ≥ mini∈I0 SpecGapi(Ki)

1 + 8m1
κ

≥ κ

1 + 8m1
min
i∈I0

SpecGapi(Ki),618

which together with the definition (2.3) implies the stated bound.619 �620
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5.5. Proof of Theorem 4.2. We start with some basic calculations on the model.621

Lemma 5.2. For δ, ϑ ∈ ∆ such that ϑ ⊇ δ, setting τ
def
= 1

σ2

(
1
ρ1
− 1

ρ0

)
, we have622

623

(5.15)
Π(ϑ|z)
Π(δ|z)

=

(
1

pu

)‖ϑ‖0−‖δ‖0 e τ
2σ2 z

′L−1
δ X(ϑ−δ)

(
I‖ϑ−δ‖0+τX′

(ϑ−δ)L
−1
δ X(ϑ−δ)

)−1
X′

(ϑ−δ)L
−1
δ z√

det
(
I‖ϑ−δ‖0 + τX ′(ϑ−δ)L

−1
δ X(ϑ−δ)

) .624

625

Proof. We start with some basic calculations on the model. For any ϑ, δ ∈ ∆, we have626

Π(ϑ|z)
Π(δ|z)

=
ωϑ
ωδ

(
ρ1

ρ0

) ‖ϑ‖0−‖δ‖0
2

∫
Rp e

− 1
2σ2 ‖z−Xu‖22−

1
2
u′D−1

(ϑ)
u
du∫

Rp e
− 1

2σ2 ‖z−Xu‖22−
1
2
u′D−1

(δ)
u
du
.627

=
ωϑ
ωδ

(
ρ1

ρ0

) ‖ϑ‖0−‖δ‖0
2

√
det
(
σ2D−1

(δ) +X ′X
)

√
det
(
σ2D−1

(ϑ) +X ′X
) e

1
2σ2 z

′X
(
σ2D−1

(ϑ)
+X′X

)−1
X′z

e
1

2σ2 z
′X

(
σ2D−1

(δ)
+X′X

)−1
X′z

.628

By the determinant lemma (det(A+UV ′) = det(A) det(Im+V ′A−1U) valid for any invertible629

matrix A ∈ Rn×n, and U, V ∈ Rn×m) we have630

(
ρ1

ρ0

) ‖ϑ‖0−‖δ‖0
2

√
det
(
σ2D−1

(δ) +X ′X
)

√
det
(
σ2D−1

(ϑ) +X ′X
) =

√
det
(
In + 1

σ2XD(δ)X ′
)

det
(
In + 1

σ2XD(ϑ)X ′
) .631

By the Woodbury identity which states that for any set of matrices U, V,A,C with matching632

dimensions, (A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1, we have633

634

X
(
σ2D−1

(δ) +X ′X
)−1

X ′ =
1

σ2
XD(δ)X

′ − 1

σ4
XD(δ)X

′
(
In +

1

σ2
XD(δ)X

′
)−1

XD(δ)X
′

635

= In −
(
In +

1

σ2
XD(δ)X

′
)−1

.636
637

so that,638

e
1

2σ2 z
′X

(
σ2D−1

(ϑ)
+X′X

)−1
X′z

e
1

2σ2 z
′X

(
σ2D−1

(δ)
+X′X

)−1
X′z

=
e

1
2σ2 z

′
(
In+ 1

σ2XD(δ)X
′
)−1

z

e
1

2σ2 z
′
(
In+ 1

σ2XD(ϑ)X
′
)−1

z
.639

We combine these developments together to conclude that640

(5.16)
Π(ϑ|z)
Π(δ|z)

=
ωϑ
ωδ

√
det (Lδ)

det (Lϑ)

e
1

2σ2 z
′L−1
δ z

e
1

2σ2 z
′L−1
ϑ z

,641
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where, for δ ∈ ∆, we recall the definition Lδ
def
= In + 1

σ2XD(δ)X
′. If ϑ ⊇ δ, setting τ

def
=642

1
σ2

(
1
ρ1
− 1

ρ0

)
< 1/(σ2ρ1), it is easily seen that643

Lϑ = Lδ + τ
∑

j: δj=0,ϑj=1

XjX
′
j .644

The determinant lemma then gives645

det(Lϑ)

det(Lδ)
= det

(
I‖ϑ−δ‖0 + τX ′(ϑ−δ)L

−1
δ X(ϑ−δ)

)
.646

And the Woodbury identity gives647

L−1
ϑ = L−1

δ − τL
−1
δ X(ϑ−δ)

(
I‖ϑ−δ‖0 + τX ′(ϑ−δ)L

−1
δ X(ϑ−δ)

)−1
X ′(ϑ−δ)L

−1
δ .648

Combining the last two display in (5.16) yields the stated results.649

Lemma 5.3. Assume H2. Let % and θ? be as in Theorem 4.2. For z ∈ E0, we have650

651

(5.17) max
δ∈∆s

max
j: δ?j=0

|X ′jL−1
δ z| ≤

√
%n log(p),652

and max
δ∈∆s

max
j: δ?j=1

|X ′jL−1
δ z| ≤ ‖θ?‖∞n+

√
%n log(p).653

654

Furthermore, if n ≥ 4% log(p)/(θ2
?λ

2
1), then655

min
δ∈∆s

min
j: δ?j=1

|X ′jL−1
δ z| ≥ λ1

2
θ?n.656

Proof. Set V
def
= (z −Xθ?)/σ, so that657

z = σV +
∑

k: δ?k=1

θ?kXk,658

and659

X ′jL
−1
δ z = σX ′jL

−1
δ V +

∑
k: δ?k=1

θ?,kX
′
jL
−1
δ Xk.660

For z ∈ E0, |X ′jL
−1
δ V | ≤

√
c0n log(p). If δ?j = 0 and δ?k = 1, then |X ′jL

−1
δ Xk| ≤ C(s)

√
n log(p).661

Hence662

max
δ∈∆s

max
j: δ?j=0

|X ′jL−1
δ z| ≤

σ√c0 + C(s)
∑

k: δ?k=1

|θ?k|

√n log(p) ≤
√
%n log(p).663

If δ?j = 1, then664

X ′jL
−1
δ z = σX ′jL

−1
δ V + θ?,jX

′
jL
−1
δ Xj +

∑
k 6=j: δ?k=1

θ?,kX
′
jL
−1
δ Xk.665
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Since X ′jL
−1
δ Xj ≤ ‖Xj‖22 = n, this implies, as we have done above that |X ′jL

−1
δ z| ≤ ‖θ?‖∞n+666 √

%n log(p). Similarly, if δ?j = 1, then |X ′jL
−1
δ z| ≥ 1

2 |θ?,j |X
′
jL
−1
δ Xj , provided that we have667 √

%n log(p) ≤ 1
2 |θ?,j |X

′
jL
−1
δ Xj . Then using the definition of λ1, we get668

min
δ∈∆s

min
j: δ?j=1

|X ′jL−1
δ z| ≥ λ1

2
θ?n.

669

Proof of Theorem 4.2. Fix ζ0 ∈ (0, 1). We will apply Lemma 2.1 with ‖ · ‖? = ‖ · ‖π,∞.670

Since Kf is bounded when f is bounded, the kernel K satisfies (2.2) with this choice of671

‖ · ‖?. We recall that the initial distribution is taken as ν0 = Π(·|δ(i), z), for some initial choice672

δ(i) ∈ ∆s. Let f0 be the density of ν0 with respect to Π(·|z). We Lemma 2.1 with ζ = 0 to673

conclude that674

(5.18) ‖ν0K
N −Π(·|z)‖2tv ≤ ζ2

0 , for N ≥ 1

SpecGap0(K)
log

(
Varπ(f0)

ζ2
0

)
.675

To bound the spectral gap we apply Theorem 3.1 with the choices ζ = 0, I = ∆, I0 = ∆s,676

and Bδ = Rp, and with a graph on ∆s constructed as follows: we put an edge between δ(1)677

and δ(2) if δ(1) ⊇ δ(2), or δ(2) ⊇ δ(1), and ‖δ(2)− δ(1)‖0 = 1 (in other words the models δ(1) and678

δ(2) differ only in one variable). Clearly (3.8) holds, since Π(∆s|z) = 1. We then conclude679

from Theorem 3.1 that680

(5.19) SpecGap0(K) ≥ κ

1 + 8m1
.681

To bound the constants κ and m1 we develop a similar argument as in [Yang et al.(2016)].682

Given δ ∈ ∆s, we call min(δ, δ?) the skeleton of δ, and we let S def
= {min(δ, δ?), δ ∈ ∆s} be the683

set of all possible skeletons. Basically S is the set of submodels of the true model δ?. Given684

δ ∈ ∆s, we build our canonical path from δ to δ? as follows. First we build a path from δ to685

its skeleton (that is min(δ, δ?)) by successively removing from the model δ the variables Xj for686

which δj = 1 and δ?j = 0, in reverse index ordering. Then we build a path from the skeleton687

to δ? by adding to the skeleton the variables Xj for which δj = 0 and δ?j = 1 in their index688

ordering. For example, if p = 6, δ? = (1, 1, 1, 0, 0) and δ = (0, 0, 1, 0, 1, 1), then our canonical689

path from δ to δ? is690

(0, 0, 1, 0, 1, 1)→ (0, 0, 1, 0, 1, 0)→ (0, 0, 1, 0, 0, 0)→ (1, 0, 1, 0, 0, 0)→ (1, 1, 1, 0, 0, 0).691

Given δ(1), δ(2) ∈ ∆s, let δ(1,2) be the node where the canonical path from δ(1) to δ? and the692

canonical path from δ(2) to δ? meet for the first time. Our canonical path γδ(1),δ(2) between δ(1)693

and δ(2) is then defined as follows. Follow the canonical path from δ(1) towards δ? until δ(1,2),694

then reverse direction and follow the path from δ(1,2) until δ(2). For instance if p = 6, δ? =695

(1, 1, 1, 0, 0, 0) and δ(1) = (0, 1, 0, 0, 1, 1), and δ(2) = (1, 1, 0, 1, 1, 0), then δ(1,2) = (1, 1, 0, 0, 0),696

and our chosen canonical path from δ(1) to δ(2) is697

(0, 1, 0, 0, 1, 1)→ (0, 1, 0, 0, 1, 0)→ (0, 1, 0, 0, 0, 0)→ (1, 1, 0, 0, 0, 0)→ (1, 1, 0, 1, 0, 0)→ (1, 1, 0, 1, 1, 0).698
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We claim that for the canonical paths constructed above we have699

(5.20) m1
def
= max

δ∈∆s

∑
δ(1),δ(2)∈∆s: γδ(1),δ(2)3δ

|γδ(1),δ(2) |
π(δ(1)|z)π(δ(2)|z)

π(δ|z)
≤ 8s,700

and701
702

(5.21) κ
def
= min

δ(1)∼δ(2)

∫
Rp

min
(

Π(θ|δ(1), z),Π(θ|δ(2), z)
)

dθ703

≥ 1

2
min

(
1,

√
σ2ρ0

2n

)
min

(
1, e

1
4σ2 (nλ1−8σ2ρ0)

)
p−

2ρ0
n

%

λ2 .704

705

where the minimum is taken over all connected pairs of nodes δ(1), δ(2). Furthermore, we claim706

that we can bound the variance of the initial density and get707

(5.22) log

(
Varπ(f0)

ζ2
0

)
≤ A

(
log

(
1

ζ0

)
+
su(1 + ‖θ?‖2∞)n

σ2λ

)
,708

for some absolute constant A. (5.20) and (5.21) shows that709

(5.23) SpecGap0(K) ≥ A

s
min

(
1,

√
σ2ρ0

2n

)
min

(
1, e

1
4σ2 (nλ1−8σ2ρ0)

)
p−

2ρ0
n

%

λ2710

for some absolute constant A. We put (5.23) together with (5.22) and (5.18) to reach the711

stated conclusion. The remaining of the proof consists in establishing the claims (5.20), (5.21)712

and (5.22).713

Proof of Equation (5.20). For δ(1), δ(2) ∈ ∆s, we will use the obvious bound714

|γδ(1),δ(2) | ≤ 2s.715

Given δ ∈ ∆s, we denote Λ(δ) the set of all δ(1) ∈ ∆s such that the canonical path from δ(1)716

to δ? goes through δ. Using this we can bound m1 as717

718

(5.24) m1 ≤ 2s max
δ∈∆s

∑
δ(1)∈Λ(δ)

∑
δ(2)∈∆s

π(δ(1)|z)π(δ(2)|z)
π(δ|z)

≤ 2smax
δ∈∆s

∑
δ(1)∈Λ(δ)

π(δ(1)|z)
π(δ|z)

.719

720

Let S def
= {min(δ, δ?), δ ∈ ∆s} be the set of all possible skeletons. Take δ(1) ∈ Λ(δ). We721

will distinguish whether δ ∈ S or not. Suppose δ /∈ S. Therefore, traveling the canonical722

path from δ(1) toward δ? we arrive at δ by removing only non-significant variables. Therefore,723

assuming that ‖δ(1)‖0 = ‖δ‖0 + `, and using (5.15), and H2, we have724

(5.25)
π(δ(1)|z)
π(δ|z)

≤ 1

pu`
exp

 τ

2σ2(1 + nτλ)

∑
j: δ

(1)
j =1,δj=0

(X ′jL
−1
δ z)2

 ≤ e
`Q̄0
nλ

pu`
,725
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where Q̄0 = max
j: δ

(1)
j =1,δj=0

(X ′jL
−1
δ z)2. From Lemma 5.3, we get Q̄0 ≤ %n log(p). Using this726

and the trivial inequality
(
p
`

)
≤ p`, it follows that727

728 ∑
δ(1)∈Λ(δ)

π(δ(1)|z)
π(δ|z)

≤
s−‖δ‖0∑
`=0

∑
δ(1)∈Λ(δ): ‖δ(1)‖0=‖δ‖0+`

π(δ(1)|z)
π(δ|z)

≤
s∑

`=0

(
p

%

2σ2λ

pu−1

)`
≤ 2,729

730

under the assumption that σ2uλ ≥ %, and u > 4. Suppose now that δ ∈ S. Then Λ(δ) is731

comprised of the elements of ∆s whose skeletons are subsets of δ. Hence732 ∑
δ(1)∈Λ(δ)

π(δ(1)|z)
π(δ|z)

=
∑

δ0∈S:δ⊇δ0

π(δ0|z)
π(δ|z)

∑
δ(1)∈Λ(δ): min(δ(1),δ?)=δ0

π(δ(1)|z)
π(δ0|z)

.733

The inner summation can be upper bounded by 2 as above. If δ ⊇ δ0 and ‖δ‖0 = ‖δ0‖0 + r,734

we apply (5.15) again and get,735

π(δ0|z)
π(δ|z)

≤
(
pu
√

1 +
ns?
σ2ρ1

e
− τQ̄3

2σ2(1+τs?n)

)r
≤
(
pu+ae

− Q̄3
4σ2s?n

)r
,736

where we use H3-(3) to obtain τ/(1 + τs?n) ≥ 1/(2s?n), and
√

1 + ns?
σ2ρ1

≤ pa, and where737

Q̄3
def
= minj: δ0j=0,δ?j=1

(
X ′jL

−1
δ0
z
)2

. From Lemma 5.3 we get Q̄3 ≥ θ2
?
4 λ

2
1n

2, under the sample738

condition n ≥ 4% log(p)/(θ2
?λ

2
1) which is implied by (4.10). We conclude that739

max
δ∈S

∑
δ(1)∈Λ(δ)

π(δ(1)|z)
π(δ|z)

≤ 2
∑

δ0∈S:δ⊇δ0

π(δ0|z)
π(δ|z)

≤ 2

s?∑
r=0

sr?

(
pu+ae

− θ
2
?λ

2
1n

4σ2s?

)r
≤ 4,740

using the sample size condition in (4.10). This proves the claim (5.20).741

Proof of Equation (5.21). Fix δ(1), δ(2) ∈ ∆s, such that δ(1) ⊇ δ(2), or δ(2) ⊆ δ(1), and742

‖δ(2)−δ(1)‖0 = 1. Without any loss of generality, suppose that δ(2) ⊇ δ(1), and their difference743

occurs on component j: δ
(2)
j = 1, while δ

(1)
j = 0. Then for all θ ∈ Rp, we have744

Π(θ|δ(1), z)

Π(θ|δ(2), z)
=

∫Rp e− 1
2σ2 ‖z−Xθ‖22−

1
2
θ′D−1

(δ(2))
θ
dθ∫

Rp e
− 1

2σ2 ‖z−Xθ‖22−
1
2
θ′D−1

(δ(1))
θ
dθ

 e−(ρ0−ρ1)
θ2j
2 .745

Let A denote the ratio of integrals in the last display. We can then write746 ∫
Rp

min
(

Π(θ|δ(1), z),Π(θ|δ(2), z)
)

dθ =

∫
R

min

(
1, Ae−(ρ0−ρ1)

θ2j
2

)
Π(θj |δ(2), z)dθj .747

Recall from (4.3) that the j marginal under Π(θj |δ(2), z) is the Gaussian distribution N(µj , σ
2
j ),748

where749

σj = σ
√
e′jΣδ(2)ej , and µj = e′jΣδ(2)X ′z, 1 ≤ j ≤ p,750
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and where ej denotes the j-th unit vector. Hence, for Z ∼ N(0, 1),751

752

(5.26)

∫
Rp

min
(

Π(θ|δ(1), z),Π(θ|δ(2), z)
)

dθ = E
[
min

(
1, Ae−

(ρ0−ρ1)
2

(µj+σjZ)2
)]

753

≥ 1

2
min

(
1, Ae−

(ρ0−ρ1)
2

(|µj |+σj)2
)
≥ 1

2
min

(
1, Ae−ρ0(µ2

j+σ
2
j )
)
,754

755

using the fact that for any nonnegative function f , E(f(Z)) ≥ P(|Z| ≤ 1) minz:|z|≤1 f(z). By756

matrix block inversion, we work out σ2
j to757

(5.27) σ2
j =

σ2

σ2ρ1 +X ′j

(
In + 1

σ2X−jD(δ(2),j)X
′
−j

)−1
Xj

=
σ2

σ2ρ1 +X ′jL
−1

δ
(1)
−j
Xj

≤ σ2

λ1n
,758

where D(δ(2),j) = D(δ(1),j) is the (p−1)-dimensional matrix obtained by removing the j-th row759

and the j-th column of D(δ(2)), and L
δ
(1)
−j

= In + 1
σ2X−jD(δ(1),j)X

′
−j . By block inversion the760

mean µj can be written as761

762

(5.28)

µj = e1

(
X ′jXj + σ2ρ1 X ′jX−j

X ′−jXj X ′−jX−j + σ2D−1
(δ(2),j)

)−1(
X ′jz

X ′−jz

)
=

X ′jL
−1

δ
(1)
−j
z

σ2ρ1 +X ′jL
−1

δ
(1)
−j
Xj

.763

764

Consider first the case where j is such that δ?,j = 0. Note that X ′jL
−1

δ
(1)
−j
Xj ≥ X ′jL

−1
δ(1)Xj ≥765

nλ1. Therefore, and using Lemma 5.3, and z ∈ E0, we obtain766

|µj | ≤
1

nλ1

√
%n log(p) =

1

λ1

√
% log(p)

n
.767

Consider now the case where δ?,j = 1. Then we have768

µ2
j ≤

1

(X ′jL
−1

δ
(1)
−j
Xj)2

θ?jX ′jL−1

δ
(1)
−j
Xj + σ

√
c0n log(p) +

∑
k: δ?k=1

θ?kX
′
jL
−1

δ
(1)
−j
Xk

2

769

≤ 2

(X ′jL
−1

δ
(1)
−j
Xj)2

(
θ2
?j(X

′
jL
−1

δ
(1)
−j
Xj)

2 + %n log(p)

)
770

≤ 2θ2
?j +

% log(p)

λ2
1n

.771

On the other hand, using (5.15), the ratio of integrals A gives772

A =

√
ρ0

ρ1

1√
1 + τX ′jL

−1
δ(1)Xj

exp

(
1

2σ2

τ(X ′jL
−1
δ(1)z)

2

1 + τX ′jL
−1
δ(1)Xj

)
,773
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where we recall that τ = (ρ−1
1 −ρ

−1
0 )/σ2. Note that if δ?j = 0, the term inside the exponential774

in this last expression of A grows like % log(p)/λ1 which is not fast enough to face off with the775

term −ρ0(µ2
j + σ2

j ). Hence we use instead the trivial lower bound A ≥ 1 together with the776

upper bounds on µj and σ2
j obtained above and (5.26) to conclude that777

(5.29)

∫
Rp

min
(

Π(θ|δ(1), z),Π(θ|δ(2), z)
)

dθ ≥ 1

2
e−ρ0(µ2

j+σ
2
j ) ≥ 1

2
exp

(
−2ρ0

n

% log(p)

λ2
1

)
.778

However if δ?j = 1, By Lemma 5.3, and under the sample size condition (4.10) we have779

(X ′jL
−1
δ(1)z)

2 ≥
θ2
?j

2
(X ′jL

−1
δ(1)Xj)

2.780

Noting that 1 ≤ τX ′jL
−1
δ(1)Xj , we deduce that781

A ≥
√
ρ0

ρ1

1√
1 + n

σ2ρ1

e
θ2?jX

′
jL
−1

δ(1)
Xj

4σ2 .782

It follows in this case that783
784

(5.30)

∫
Rp

min
(

Π(θ|δ(1), z),Π(θ|δ(2), z)
)

dθ ≥ 1

2
min

(
1, Ae

−ρ0

(
2θ2
?j+

% log(p)

λ2n
+ σ2

λn

))
785

≥ 1

2
min

(
1,

√
σ2ρ0

σ2ρ1 + n

)
min

1, e
θ2?j

(
X′jL

−1

δ(1)
Xj−8σ2ρ0

)
4σ2 e−2ρ0

% log(p)

λ2n

786

≥ 1

2
min

(
1,

√
σ2ρ0

2n

)
min

(
1, e

1
4σ2 (nλ1−8σ2ρ0)

)
p−

2ρ0
n

%

λ2 ,787

788

where we have used the fact that min(1, ab) ≥ min(1, a) min(1, b) valid for all nonnegative789

numbers a, b, c. We combine (5.29) and (5.30) to obtain (5.21).790

Proof of Equation (5.22). Since Π(θ|z) =
∑

ϑ Π(ϑ|z)Π(θ|ϑ, z) ≥ Π(δ(i)|z)Π(θ|δ(i), z),791

we have792

f0(θ) =
Π(θ|δ(i), z)

Π(θ|z)
≤ 1

Π(δ(i)|z)
=

1

Π(δ?|z)
Π(δ?|z)
Π(δ

(i)
? |z)

Π(δ
(i)
? |z)

Π(δ(i)|z)
,793

where δ
(i)
?

def
= min(δ(i), δ?). We apply (5.15) twice (to each ratio), and use H2, to get794

795

Π(δ?|z)
Π(δ

(i)
? |z)

Π(δ
(i)
? |z)

Π(δ|z)
≤ pu(‖δ‖0−‖δ?‖0)

√
det

(
I‖δ‖0−‖δ(i)

? ‖0
+ τX ′

(δ−δ(i)
? )
L−1

δ
(i)
?

X
(δ−δ(i)

? )

)
796

× e
τ

2σ2 z
′L−1

δ
(i)
?

X
(δ?−δ

(i)
? )

(
I
‖δ?−δ

(i)
? ‖0

+τX′
(δ?−δ

(i)
? )

L−1

δ
(i)
?

X
(δ?−δ

(i)
? )

)−1

X′
(δ?−δ

(i)
? )

L−1

δ
(i)
?

z
797

≤ pu(‖δ‖0−s?)

(
1 +

n‖δ‖0
σ2ρ1

) ‖δ‖0
2

e
1

2σ2nλ
‖X′

(δ?−δ
(i)
? )

L−1

δ
(i)
?

z‖22
.798

799
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Under the assumption pus?Π(δ?|z) ≥ 1 (H3-(1)), and since ‖δ‖0 ≤ s, we conclude that800

(5.31) ‖f0‖π,∞ ≤ pus
(

1 +
ns

σ2ρ1

) s
2

e
s?Q̄1
2σ2nλ ≤ p(u+a)se

s?Q̄1
2σ2nλ ,801

where the second inequality uses (4.8), and where Q̄1 = maxj:δ?,j=1(X ′jL
−1

δ
(i)
?

z)2. From Lemma802

5.3, we get Q̄1 ≤ 4n2‖θ?‖2∞, using the sample size condition (4.10). (5.31) then becomes803

√
Varπ(f0) ≤ ‖f0‖π,∞ ≤ p(u+a)se

2s?‖θ?‖2∞n
σ2λ ≤ e

As(1+‖θ?‖2∞)n

σ2λ ,804

for some absolute constant A. The claim follows by taking the log.805

5.6. Proof of Theorem 4.3. The proof is very similar to the proof of Theorem 4.2.806

Fix ζ0 ∈ (0, 1), and z ∈ E . First we bound the uniform norm of the density of the initial807

distribution ν0 as in (5.31). Noting here that the skeleton of δ(i) is δ?, we get the simpler808

bound809

‖f0‖π,∞ ≤ 2

(
pu

√
1 +

nFP

σ2ρ1

)FP

≤ 2p(u+a)FP.810

In view of this bound, we set811

(5.32) ζ =
ζ2

0

8
p−2(u+a)FP,812

which gives ζ‖f0‖2π,∞ ≤ ζ2
0/2. Therefore, we can readily apply Lemma 2.1 with this particular813

value of ζ to get814

(5.33) ‖ν0K
N −Π(·|z)‖2tv ≤ ζ2

0 , for N ≥ 1

SpecGapζ(K)
log

(
1

ζ

)
.815

We lower bound the approximate spectral gap via Theorem 3.1, and using the same approach816

as in Theorem 4.2. We apply Theorem 3.1 with the choices I = ∆, I0 = Dk endowed with the817

same graph as in proof of Theorem 4.2, and Bδ = Rp. First we need to check (3.8). For z ∈ E ,818

ζ as in (5.32), we have819

10

ζ
(1−Π(Dk|z)) ≤

80

ζ2
0

p2(u+a)FP 1

p
u(k+1)

2

≤ 1,820

where the last inequality follows from condition (4.12). In other words we have Π(Dk|z) ≥821

1− (ζ/10), which by Remark 3.2 implies (3.8). We then conclude from Theorem 3.1 that822

(5.34) SpecGapζ(K) ≥ κ

1 + 8m1
,823

where κ and m1 are defined using Dk. We bound these terms as in Theorem 4.2 with some824

important simplifications due the facts that all models here belong to Dk. In particular, since825

Dk ⊆ ∆s, we readily have826

(5.35) m1 ≤ 8k.827
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Similarly, the lower bound on κ also simplifies. Because δ(1) and δ(2) can differ only at a828

component j such that δ?j = 0 (a non-important variable), we see that only the lower bound829

(5.29) applies. Hence κ can be taken as830

(5.36) κ =
1

2
p
− 2ρ0

n
%

λ2
1 .831

The theorem follows from the same calculations as in the proof of Theorem 4.2.832 �833

Appendix A. Some technical results. We make use of the following standard Gaussian834

deviation bound.835

Lemma A.1. Let Z ∼ N(0, Im), and u1, . . . , uN be vectors of Rm. Then for all x ≥ 0,836

P
[

max
1≤j≤N

|〈uj , Z〉| > max
1≤j≤N

‖uj‖2
√

2(x+ log(N))

]
≤ 2

ex
.837

Lemma A.2. Suppose that X ∈ Rn×p is a random matrix with i.i.d. standard Normal838

entries. Given an integer s, and positive constants σ, γ and ρ, set839

C0
def
= max

δ∈∆: ‖δ‖0≤s
max

i 6=j, δj=0

∣∣∣∣X ′j (In +
1

σ2ρ1
XδX

′
δ +

1

σ2ρ0
XδcX

′
δc

)
Xi

∣∣∣∣ .840

Then there exist some universal finite constants c0, a, A such that for n ≥ As2 log(p), the841

following two statements hold with probability at least 1− a
p : for ρ−1

0 > 0 taken small enough842

and843

(A.1) σ2sρ1 ≤ c0

√
n log(p),844

it holds that845
846

(A.2) C0 ≤ 2c0

√
n log(p), and847

min
δ: ‖δ‖0≤s

inf

{
u′(X ′δcL

−1
δ Xδc)u

n‖u‖22
, u ∈ Rp−s, 0 < ‖supp(u)‖0 ≤ s

}
≥ 1

32
.848

849

Proof. For a matrix M ∈ Rn×p we set850

v(M, s)
def
= inf

{
u′(M ′M)u

n‖u‖22
u 6= 0, ‖u‖0 ≤ s

}
,851

and for κ0 = 1/64 and c0 = 8, we define852

853

E def
=

{
M ∈ Rn×p : v(M, s) ≥ κ0, max

1≤j≤p
‖Mj‖2 ≤ 2

√
n,854

min
1≤j≤p

‖Mj‖2 ≥
√
n

2
, and max

j 6=k
| 〈Mj ,Mk〉 | ≤ c0

√
n log(p)

}
.855

856
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By Theorem 1 of [Raskutti et al.(2010)], Lemma 1-(4.2) of [Laurent and Massart(2000)], and857

standard Gaussian deviation bounds, we can find universal constants a,A, such that for n ≥858

As log(p), we have P(X /∈ E) ≤ a
p . So to obtained the statement of the lemma, it suffices to859

consider some arbitrary element X ∈ E and show that (A.2) holds.860

Fix δ ∈ ∆ such that ‖δ‖0 ≤ s. We setMδ
def
= In+ 1

σ2ρ1
XδX

′
δ, so that Lδ = Mδ+

1
σ2ρ0

XδcX
′
δc .861

The Woodbury identity gives862

(A.3)

X ′jL
−1
δ Xk = X ′jM

−1
δ Xk −

1

σ2ρ0
X ′jM

−1
δ Xδc

(
I‖δc‖0 +

1

σ2ρ0
X ′δcM

−1
δ Xδc

)−1

X ′δcM
−1
δ Xk.863

If C1 = max`X
′
`M
−1
δ X`, and C0 = max` 6=j, δj=0 |X ′jM

−1
δ X`|, then we deduce easily from (A.3)864

that for all j 6= k such that δj = 0,865

(A.4) |X ′jL−1
δ Xk| ≤ C0 +

1

σ2ρ0

(
C2

1 + pC2
0

)
.866

In order to proceed, we need to bound the term XjM
−1
δ Xk. Easily, for X ∈ E , we have867

X ′jM
−1
δ Xj ≤ ‖Xj‖22 ≤ 4n.868

Another application of the Woodbury identity gives869

(A.5) M−1
δ = In −

1

σ2ρ1
Xδ

(
I‖δ‖0 +

1

σ2ρ
X ′δXδ

)−1

X ′δ.870

Therefore, for k 6= j871

X ′jM
−1
δ Xk = X ′jXk −

1

σ2ρ1
X ′jXδ

(
I‖δ‖0 +

1

σ2ρ
X ′δXδ

)−1

X ′δXk.872

Using X ∈ E , we educe for j 6= k, and δj = 0,873

874

1

σ2ρ1

∣∣∣∣∣X ′jXδ

(
I‖δ‖0 +

1

σ2ρ
X ′δXδ

)−1

X ′δXk

∣∣∣∣∣ ≤ 1

κ0n
‖X ′δXk‖2‖X ′δXj‖2875

≤
c2

0s log(p) + c0

√
s log(p)

κ0
≤ c0

√
n log(p),876

877

for n ≥ As2 log(p), for some constant A. It follows that878

|X ′jM−1
δ Xk| ≤ 2c0

√
n log(p).879

We combine this with (A.4) to obtain that for j 6= k such that δj = 0,880

881

(A.6) |X ′jL−1
δ Xk| ≤ 3c0

√
n log(p)

(
1 +

1

σ2ρ0
pc0

√
n log(p)

)
+ 16

1

σ2ρ0
n2 ≤ 8c0

√
n log(p),882

883
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for ρ0 large enough. (A.6) says that C0 ≤ 8c0

√
n log(p), for X ∈ E , as claimed.884

For j such that δj = 0, (A.5) gives885

X ′jM
−1
δ Xj = ‖Xj‖22 −

1

σ2ρ1
X ′jXδ

(
I‖δ‖0 +

1

σ2ρ1
X ′δXδ

)−1

X ′δXj886

≥ ‖Xj‖22 −
‖X ′δXj‖22
nκ0

887

≥ n

4
,(A.7)888

since n ≥ As log(p), and by taking A large enough (A ≥ 4c2
0/κ0). Equation (??) then yields889

890

X ′jL
−1
δ Xj ≥ X ′jM−1

δ Xj −
1

σ2ρ0
‖X ′δcM−1

δ Xj‖22891

= X ′jM
−1
δ Xj −

1

σ2ρ0

(X ′jM
−1
δ Xj)

2 +
∑

k: δk=0,k 6=j
(X ′jM

−1
δ Xk)

2

 .892

893

For 2ρ−1
0 ≤ σ2, it follows that894

X ′jL
−1
δ Xj ≥

n

8
− 1

σ2ρ0
(p− ‖δ‖0)

(
4c2

0n log(p)
)
,895

which together with (A.6) and (A.1) implies that for any u ∈ Rp such that δc ⊇ supp(u), and896

‖supp(u)‖0 ≤ s, we have897

u′X ′δcL
−1
δ Xδcu ≥

n

32
‖u‖22,898

as claimed.899
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distance. Ann. Inst. H. Poincaré Probab. Statist. 45 117–145.913

[Diaconis and Stroock(1991)] Diaconis, P. and Stroock, D. (1991). Geometric bounds for eigenvalues of914
markov chains. The Annals of Applied Probability 1 36–61.915

This manuscript is for review purposes only.



32 Y. ATCHADÉ
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