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Solving partial differential equations (PDEs) and their inverse problems using Physics-informed neural networks
(PINNs) is a rapidly growing approach in the physics and machine learning community. Although several archi-
tectures exist for PINNs that work remarkably in practice, our theoretical understanding of their performances is
somewhat limited. In this work, we study the behavior of a Bayesian PINN estimator of the solution of a PDE
from 𝑛 independent noisy measurement of the solution. We focus on a class of equations that are linear in their
parameters (with unknown coefficients 𝜃★). We show that when the partial differential equation admits a classical
solution (say 𝑢★), differentiable to order 𝛽, the mean square error of the Bayesian posterior mean is at least of
order 𝑛−2𝛽/(2𝛽+𝑑) . Furthermore, we establish a convergence rate of the linear coefficients of 𝜃★ depending on
the order of the underlying differential operator. Last but not least, our theoretical results are validated through
extensive simulations.
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1. Introduction

We consider a class of inverse problems that consists in estimating the parameters of a partial differ-
ential equation from noisy measurements of the solution. Specifically, let Ω ⊂ R𝑚 be a bounded open
domain with a smooth boundary equipped with a probability measure 𝜈. For 𝑗 ≥ 1, let 𝐿2 (Ω,R 𝑗 , 𝜈)
denote the 𝐿2-space of R 𝑗 -valued functions on Ω, i.e.

𝐿2 (Ω,R 𝑗 , 𝜈) def
=

{
𝑓 : Ω ↦→ R 𝑗 :

∫
Ω

∥ 𝑓 (𝑥)∥2
2 𝜈(d𝑥) <∞

}
.

We consider a differential equation with parameter 𝜃 ∈ R𝑑 that aims to find a smooth function 𝑢 ∈
𝐿2 (Ω,R, 𝜈) satisfying

H0𝑢 + 𝜃TH1𝑢 = 𝑓 , with initial/boundary condition B𝑢 = 0, (1.1)

for some known function 𝑓 ∈ 𝐿2 (Ω,R, 𝜈), and a pair of differential operators H0 : 𝐿2 (Ω,R, 𝜈) →
𝐿2 (Ω,R, 𝜈) and H1 : 𝐿2 (Ω,R, 𝜈) → 𝐿2 (Ω,R𝑑 , 𝜈). The operator H0 is typically (although not nec-
essarily) the "time" partial derivative, and the operator B : 𝐿2 (Ω,R, 𝜈) → 𝐿2 (Ω,R𝑑1 , 𝜈) imposes the
boundary/initial conditions. A large class of differential equations (linear and nonlinear) that are linear
in their parameters can be written in this form. A classical example of such an inverse problem arises
from the heat equation as elaborated below:

Example (Heat equation). Given 𝐿 > 0,𝑇 > 0, and parameter 𝜃 ∈ R, consider the heat equation 𝑢𝑡 −
𝜃𝑢𝑥𝑥 = 0 on (0, 𝐿), with time domain (0,𝑇), initial condition 𝑢(0, ·) = 𝑔(·), and boundary condition
𝑢(·,0) = 𝑢(·, 𝐿) = 0. Here 𝑢𝑡 (resp. 𝑢𝑥𝑥) denotes the partial derivative of 𝑢 with respect to 𝑡 (resp. the
second order partial derivative of 𝑢 with respect to 𝑥). With Ω = (0,𝑇) × (0, 𝐿), this equation can be
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written as H0𝑢 − 𝜃H1𝑢 = 𝑓 , where H0𝑢 = 𝑢𝑡 , H1𝑢 = 𝑢𝑥𝑥 , and 𝑓 = 0. The boundary/initial condition
operator is given by

B𝑢 = ©«
𝑢{𝑡=0} − 𝑔
𝑢{𝑥=0}
𝑢{𝑥=𝐿}

ª®¬ .
where 𝑢{𝑡=0} is the map 𝑢{𝑡=0} (𝑥) = 𝑢(0, 𝑥), with similar definition for 𝑢{𝑥=0} and 𝑢{𝑥=𝐿} . Here 𝑑 = 1,
𝑑1 = 3.

Let (𝜃★, 𝑢★) be a tuple that satisfies the PDE (1.1). We assume to observe some noisy measurements
of 𝑢★ as noted below:

H1. We have 𝑛 i.i.d. random locations and observations (s𝑖 ,𝑌𝑖) ∈ Ω ×R, where

𝑌𝑖 | s𝑖
𝑖𝑛𝑑.∼ N

(
𝑢★(s𝑖), 𝜎2

)
,

where 𝑢★ : Ω→ R is the unique solution of the pde (1.1) with 𝜃 = 𝜃★, for some unknown vector 𝜃★ ∈
R𝑑 . Here, N(𝑚, 𝑣2) denotes the univariate Gaussian distribution with mean 𝑚 and variance 𝑣2. The
variance parameter 𝜎2 is assumed to be known. Throughout we write P for the joint distribution of
(s1,𝑌1), . . . , (s𝑛,𝑌𝑛), and P𝑛 for their corresponding empirical measure.

Our goal is to estimate (𝜃★, 𝑢★) using the noisy measurements. Over the last few years, physics-
informed neural network (PINN) has taken the numerical pde literature by storm ((24, 30, 33, 40), and
(8) for an extensive review of the literature). In the setting of H1, the approach consists of estimating
𝑢★ by regression while explicitly using the information that the true function 𝑢★ is the solution of
a PDE. In this paper, as typically done in the PINN literature, we resort to a sieve-based approach
for estimating 𝑢★, i.e., we consider a sequence of increasingly complex parametric models. Hence let

F def
= {𝑢𝑊 , 𝑊 ∈ R𝑞} be a function class, where 𝑢𝑊 : Ω→ R is a function with parameter𝑊 ∈ R𝑞 . Due

to their superior empirical performances, 𝑢𝑊 is typically taken as a deep neural network, and we follow

that practice, although our results can be applied more broadly. Given the data D def
= {(s𝑖 ,𝑌𝑖), 1 ≤ 𝑖 ≤

𝑛}, PINN in its frequentist formulation estimates jointly 𝜃 and𝑊 by minimizing the loss function

1
2𝜎2

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑢𝑊 (s𝑖))2 + 𝜆
2

{
𝛼1 | 𝑓 −H0𝑢𝑊 − 𝜃TH1𝑢𝑊 |22 + 𝛼2 |B𝑢𝑊 |22

}
, (1.2)

for some regularization parameters 𝜆 ≥ 0, and 𝛼1, 𝛼2 ≥ 0, where | · |2 denotes the 𝐿2-norm on the
appropriate function space. In this work, we approach the problem from a Bayesian perspective. Hence,
starting from a standard Gaussian prior for 𝜃 ∈ R𝑑 , and a sparsity inducing prior density Π0 for𝑊 ∈ R𝑞
(see Section 1.5 below for our choice of Π0), we define the informative PINN prior distribution for
(𝜃,𝑊) as the probability measure on R𝑑 ×R𝑞 with density proportional to

(𝜃,𝑊) ↦→ Π0 (𝑊)exp

(
−𝜆

2

{
𝛼1 | 𝑓 −H0𝑢𝑊 − 𝜃TH1𝑢𝑊 |22 + 𝛼2 |B𝑢𝑊 |22

}
− 1

2
∥𝜃∥2

2

)
. (1.3)

For appropriately large choices of 𝜆, any realization (𝜃,𝑊) from the PINN prior distribution (1.3)
produces (𝜃, 𝑢𝑊 ) that is biased toward solving the pde (1.1). Rigorous general results (not specific
to PINN) of this flavor can be found, for instance, in (15). When 𝜃 is known, realizations from the
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conditional distribution of 𝑊 given 𝜃 in (1.3) produce 𝑢𝑊 that approximately solve the pde (1.1) for
the given 𝜃. This corresponds to the initial PINN methodology of (24).

For some convenience in the analysis, we will use the prior (1.3) with 𝛼1 = 1, and 𝛼2 = 0. Since the
parameter 𝜃 does not appear in the boundary condition, the case 𝛼2 > 0 (although useful in practice)
does not induce any fundamentally new behavior, and at the expense of more involved notations, our
analysis can be easily modified to handle 𝛼2 > 0. Given the observed data D, the data generating model
postulated in (H1), and the PINN prior distribution (1.3), we thus consider the posterior distribution

Π(d𝜃,d𝑊 |D) ∝

exp

(
− 1

2𝜎2

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑢𝑊 (s𝑖))2 − 𝜆
2
| 𝑓 −H0𝑢𝑊 − 𝜃TH1𝑢𝑊 |22 −

∥𝜃∥2
2

2

)
Π0 (d𝑊)d𝜃. (1.4)

1.1. Main contributions

We study the behavior of the posterior distribution (1.4) as 𝑛→∞ (and 𝑞→∞). We consider the case

where the operator H def
= (H0,H1) is a differential operator that involves derivatives up to order 𝜏,

for some 𝜏 > 0. Under some additional regularity conditions, we establish in Theorem 3.1 that when
the true pde solution 𝑢★ is a classical solution that possesses derivatives up to order 𝛽 ≥ 𝜏, the mean
square error of the posterior mean of 𝜃 under (1.4) satisfies (up to log terms that we ignore),

E

[∫
R𝑑
𝜗Π (𝜃 ) (d𝜗 |D) − 𝜃★

2

2

]
≲ 𝑛−2(𝛽−𝜏 )/(𝑚+2𝛽) , (1.5)

where Π (𝜃 ) is the 𝜃-marginal of (1.4). In fact we obtain this rate by showing that the 2-Wasserstein
distance between Π (𝜃 ) (the posterior distribution of 𝜃) and the Gaussian distribution N(𝜃★, 𝜆−1Σ★)
converges to zero at the rate given above (see Section 2 for the definition of Σ★). Our simulation results
suggest that, in general, this convergence does not hold in the total variation metric. We also show in
Theorem 2.2 that the pde solution 𝑢★ is estimated at a rate at least as fast as the nonparametric minimax
optimal rate:

E

[∫
R𝑞

|𝑢𝑊 − 𝑢★|22Π
(𝑊 ) (d𝑊 |D)

]
≲ 𝑛−2𝛽/(𝑚+2𝛽) ,

where Π (𝑊 ) denotes the 𝑊-marginal of (1.4). We conjecture that the PINN posterior distribution ac-
tually converges faster than the nonparametric minimax rate. Indeed, in a limiting case of an infinitely
strong PINN prior, we construct an estimator which, although computationally intractable in general,
achieves the parametric rate 𝑛−1/2 (Theorem 2.3).

1.2. Related work

Despite their popularity, the theoretical aspects of PINN-related methods remain under-studied. Most
of the existing theoretical literature on PINN deals with the forward problem of estimating 𝑢 for a
given 𝜃, when the 𝐿2-norm | · |2 is replaced by a Monte Carlo approximation ((17, 20, 29)). The
objective in this line of work is to derive the mean square error of the PINN solution as a function
of the Monte Carlo sample size. More related to our work, (19) considers a PINN inverse problem
where the parameter of interest appears in the boundary condition. They work mainly in a noiseless
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(or small-magnitude noise) data regime. Furthermore, they assume a continuous space observation
model, which is substantially different from the framework considered here.

Inverse problems as related to differential and partial differential equations have a long history that
predates the current PINN literature ((18, 25, 36)). In particular, we note the close similarity between
the PINN methodology and the approach by (36). The estimation rate in pde-driven inverse problems
has been extensively studied in statistics in recent years ((9, 13, 21, 22, 31)). However, none of these
results are directly applicable to our setting or PINN more generally, since in this literature, the forward
map is typically assumed known and is not parametrized as in PINN.

A Bayesian version of PINN was proposed and studied in ((37)) from an empirical viewpoint,
where the authors noted a certain robustness of Bayesian PINN to measurement noise. However, no
theoretical analysis is proposed.

A related version of the inverse problem considered in this work assumes that 𝜃 is high-dimensional
and sparse ((6, 7)). The goal is then to estimate 𝜃 under a sparsity assumption. These physics discovery
problems can be viewed as high-dimensional versions of the problem investigated here. Thus, our work
serves as a stepping-stone toward a theoretical understanding of high-dimensional physics discovery
inverse problems.

1.3. Outline of the paper

We close the introduction with a description of the function class F = {𝑢𝑊 , 𝑊 ∈ R𝑞}, the prior distri-
bution Π0 for 𝑊 , and a description of the main notations that we use throughout the paper. Section 2
deals with the estimation rate for 𝑢★. A Bernstein-von Mises theorem for the marginal distribution of
𝜃 is discussed in Section 3. Section 4 presents our numerical illustrations of the theoretical findings.

1.4. The function class F = {𝒖𝑾 }

Although our results apply widely, we follow the PINN literature and focus on the case where the
function class F is constructed using neural networks. Let 𝜉 > 0 be the depth of the network. Let
(𝑝 𝜉 , . . . , 𝑝0) be a sequence of integers representing the sizes of the layers of the network, with 𝑝0 =𝑚,
and 𝑝 𝜉 = 1. For 1 ≤ 𝑖 ≤ 𝜉, let A𝑖 : R𝑝𝑖 → R𝑝𝑖 be a component-wise application of a 1-Lipschitz
function a𝑖 : R→ R. For 𝐵 ∈ R𝑝𝑖×𝑝𝑖−1 , and 𝑏 ∈ R𝑝𝑖 , we set

Ψ
(𝑖)
𝐵,𝑏

(z) def
= A𝑖 (𝐵z + 𝑏), z ∈ R𝑝𝑖−1 . (1.6)

We consider functions 𝑢𝑊 of the form

𝑢𝑊 (x) = Ψ
( 𝜉 )
𝑊𝜉 ,𝑤𝜉

◦ · · · ◦Ψ(1)
𝑊1 ,𝑤1

(x), x ∈ R𝑚, (1.7)

with parameter 𝑊 = (𝑊𝜉 , 𝑤 𝜉 , . . . ,𝑊1, 𝑤1), where 𝑊𝑖 ∈ R𝑝𝑖×𝑝𝑖−1 , and 𝑤𝑖 ∈ R𝑝𝑖 , and where 𝑓 ◦ 𝑔 is
the composition of 𝑓 with 𝑔. For convenience, and by vectorization we view 𝑊 as an element of R𝑞 ,
where

𝑞
def
=

𝜉∑︁
𝑖=1

𝑝𝑖 (1 + 𝑝𝑖−1).

We assume that the activation functions aℓ are of class C∞, which implies that 𝑢𝑊 is of class C∞. The
activation function a𝜉 in the last layer is typically taken as the identity function.
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1.5. The prior distribution 𝚷0

We use sparsity to control the complexity of the function class {𝑢𝑊 , 𝑊 ∈ R𝑞}. We use a version of

the spike-and-slab prior distribution taken from (2). We set S def
= {0,1}𝑞 . To construct the prior Π0,

we first define a pair of random vectors (Λ,𝑊) ∈ S × R𝑞 as follows. Let Λ 𝑗
𝑖.𝑖.𝑑∼ Ber((1 + 𝑞u+1)−1),

1 ≤ 𝑗 ≤ 𝑞, for some sparsity parameter u ≥ 1, where Ber(𝛼) denotes the Bernoulli distribution with
parameter 𝛼 ∈ (0,1). Given Λ ∈ S, the components of 𝑊 are independent with joint density on R𝑞

given by

𝑊 ↦→
∏
𝑗: Λ 𝑗=1

√︂
1

2𝜋
𝑒
− 1

2𝑊
2
𝑗

∏
𝑗: Λ 𝑗=0

√︂
𝜌0

2𝜋
𝑒
− 𝜌0

2 𝑊
2
𝑗 ,

for some given parameter 𝜌0 > 1. We denote Π̄0 the joint distribution of (Λ,𝑊), and we let Π0 (our
prior on R𝑞) be the distribution of 𝑊 ⊙ Λ, where for 𝑎, 𝑏 ∈ R𝑞 , 𝑎 ⊙ 𝑏 denotes the component-wise
product of 𝑎 and 𝑏. By construction, for any measurable function 𝑓 : R𝑞 → R, we have

Π0 ( 𝑓 )
def
=

∫
R𝑞

𝑓 (𝑣)Π0 (d𝑣) =
∫
S×R𝑞

𝑓 (Λ ⊙𝑊)Π̄0 (dΛ,d𝑊).

1.6. Notation

For 𝛼 ≥ 1, ∥ · ∥𝛼 denotes the ℓ𝛼-norm on finite-dimensional Euclidean spaces (R𝑑 , R𝑛, R𝑑 , etc, –
which space should be clear from the context), and we use 𝑎T𝑏 to denote the inner product between

two finite dimensional vector 𝑎, 𝑏. As usual, we allow 𝛼 = +∞ (resp. 𝛼 = 0), by defining ∥𝑎∥∞
def
=

max1≤𝑖≤𝑑 |𝑎𝑖 | (resp. |𝑎 |0 is the number of non-zero components of 𝑎). Given a matrix 𝐴, 𝜆min (𝐴)
(resp. ∥𝐴∥op) denotes its smallest (resp. largest) singular value.

Let Ω ⊂ R𝑚 be as above with a probability measure 𝜈 (typically the uniform measure on Ω). Given
an integer 𝑗 ≥ 1, 𝐿2 (Ω,R 𝑗 , 𝜈) denotes the Hilbert 𝐿2-space of R 𝑗 -valued functions with inner product

⟨ 𝑓1, 𝑓2⟩
def
=

∫
Ω

𝑓1 (x)T 𝑓2 (x)𝜈(dx), and norm | 𝑓 |2
def
=

√︁
⟨ 𝑓 , 𝑓 ⟩.

For 𝑓 : Ω→ R 𝑗 , we set | 𝑓 |∞
def
= sup𝑥∈Ω ∥ 𝑓 (𝑥)∥∞.

We use multi-index derivatives: given k = (𝑘1, . . . , 𝑘𝑚), where 𝑘𝑖 ≥ 0 is an integer,

𝐷k𝑢(𝑥) def
=

𝜕 |k |𝑢(𝑥)
𝜕𝑥
𝑘1
1 . . . 𝜕𝑥

𝑘𝑚
𝑚

,

where |k| =∑
𝑖 𝑘𝑖 . Given 𝛽 > 1, we set

|𝑢 |C𝛽
def
=

∑︁
𝛼: |𝛼 | ≤ ⌊𝛽⌋

|𝐷𝛼𝑢 |∞ +
∑︁

𝛼: |𝛼 |=⌊𝛽⌋
sup
𝑥≠𝑦

|𝐷𝛼𝑢(𝑦) − 𝐷𝛼𝑢(𝑥) |
∥𝑦 − 𝑥∥𝛽−⌊𝛽⌋2

,

where ⌊𝛽⌋ is the largest integer strictly smaller than 𝛽. |𝑢 |C𝛽 is the Holder norm of 𝑢. We set C𝛽 (Ω)
(resp. C𝛽 (Ω, 𝑏)) as the set of all function 𝑢 : Ω→ R with finite Holder norm (resp. with Holder norm
bounded by 𝑏).

Throughout the paper, we use 𝐶0,𝐶1,𝐶2, etc. to denote absolute constants and 𝐶 to denote a generic
absolute constant that depends on 𝐶0,𝐶1, etc.. The actual value of 𝐶 may change from one appearance
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to the next. Similarly, 𝑐0, 𝑐1, etc. denote problem-dependent constants (that do not depend on the sam-
ple size 𝑛 or the model size 𝑞). Specifically, these constants typically depend on the noise parameter
𝜎2, the dimension 𝑑, and the true parameter 𝜃★. We will also use 𝑐 to denote a generic constant that de-
pends on 𝑐0, 𝑐1, etc., and that we do not track. The actual value of 𝑐 may change from one appearance
to the next.

2. Estimation rate of 𝒖★

We maintain throughout the basic assumption that the operator H = (H0,H1) is a differential operator
of order 𝜏 > 0, in the sense that for all 𝛽 > 𝜏, and for 𝑢, 𝑣 ∈ C𝛽 (Ω),

|H𝑢 −H𝑣 |2 ≤ 𝐶0 max
k: |k | ≤𝜏

��𝐷k𝑢 − 𝐷k𝑣
��
∞ , (2.1)

for some absolute constant 𝐶0.
Because the pde equation is linear in 𝜃, and the log-prior is quadratic in 𝜃, it is straightforward to

integrate out 𝜃 from the posterior distribution (1.4). We first introduce some appropriate notations to

do this. For 𝑊 ∈ R𝑞 , we define 𝑓𝑊
def
= 𝑓 − H0𝑢𝑊 . Let Φ𝑊 ∈ R𝑑 be the vector with 𝑗-th component

given by

(Φ𝑊 ) 𝑗
def
=

〈
𝑓𝑊 , (H1𝑢𝑊 ) 𝑗

〉
,

and where (H1𝑢𝑊 ) 𝑗 denotes the 𝑗-component of H1𝑢𝑊 . We define Φ★ ∈ R𝑑 similarly, replacing 𝑢𝑊
by 𝑢★. Let Σ𝑊 ∈ R𝑑×𝑑 given by

(Σ𝑊 ) 𝑗 ,𝑘
def
=

〈
(H1𝑢𝑊 ) 𝑗 , (H1𝑢𝑊 )𝑘

〉
+ 1
𝜆

1{ 𝑗=𝑘} , 1 ≤ 𝑗 , 𝑘 ≤ 𝑑.

We define Σ★ similarly by replacing 𝑢𝑊 by 𝑢★. Given 𝑢 ∈ 𝐿2 (Ω,R, 𝜈) we define

J (𝑢) def
= min
𝜃∈R𝑑

[
| 𝑓 −H0𝑢 − 𝜃TH1𝑢 |22 +

1
𝜆
∥𝜃∥2

2

]
. (2.2)

It is easy to check that J (𝑢𝑊 ) = | 𝑓𝑊 |22 −ΦT
𝑊
Σ−1
𝑊
Φ𝑊 , and we can integrate out 𝜃 from the posterior

distribution (1.4) to obtain the marginal distribution of𝑊 given by

Π(𝑊 |D) ∝ Π0 (𝑊)√︁
det(Σ𝑊 )

exp

(
− 1

2𝜎2

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑢𝑊 (s𝑖))2 − 𝜆
2
J (𝑢𝑊 )

)
. (2.3)

At times, when the distinction is needed we will write Π (𝑊 ) to denote (2.3). We make the following

basic assumption on the function class F def
= {𝑢𝑊 , 𝑊 ∈ R𝑞}.

H2. 1. For all 𝑊0 ∈ R𝑞 , and 𝑟 > 0, we can find 𝐿𝑊0 ,𝑟 ≥ 1 such that if 𝑊1,𝑊2 ∈ R𝑞 satisfy
max(∥𝑊1 −𝑊0∥2, ∥𝑊2 −𝑊0∥2) ≤ 𝑟, then it holds��𝑢𝑊1 − 𝑢𝑊2

��
∞ ≤ 𝐿𝑊0 ,𝑟 ∥𝑊1 −𝑊2∥2.
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2. For all 𝑊 ∈ R𝑞 , 𝑢𝑊 has derivatives to the order 𝜏, and there exists 𝜅 > 0 and a constant 𝑐1 such
that for all𝑊1,𝑊2 ∈ R𝑞 , such that |𝑢𝑊1 − 𝑢𝑊2 |∞ ≤ 𝜀, we have

max
k: |k | ≤𝜏

��𝐷k𝑢𝑊1 − 𝐷k𝑢𝑊2

��
∞ ≤ 𝑐1𝜀

𝜅 .

The local Lipschitz condition imposed in H2-(1) is known to hold for most deep neural net archi-
tectures with Lipschitz activation functions (see e.g. Proposition 6 of (34)). Specifically, if 𝑢𝑊 is a
deep neural network as constructed in Section 1.4 with 1-Lipschitz activation functions, then with
𝑊1,𝑊2 ∈ R𝑞 satisfying max(∥𝑊1 −𝑊0∥2, ∥𝑊2 −𝑊0∥2) ≤ 𝑟 , Proposition 6 of (34) and some easy
calculations yield

|𝑢𝑊1 − 𝑢𝑊2 |∞ ≤ 𝐿𝑊0 ,𝑟 ∥𝑊1 −𝑊2∥2,

with

𝐿𝑊0 ,𝑟 =

(
sup
x∈Ω

∥x∥2

) √︁
𝜉

(
1 + (∥𝑊0∥2 + 𝑟)2

𝜉

) 𝜉
, (2.4)

where 𝜉 is the depth of the DL function.
Since we aim to solve pdes, it is natural to require the function 𝑢𝑊 to be smooth. H2-(2) further

requires a Holder-type assumption on the differential operator 𝐷k over the function class F . This
assumption is less common in the literature, and we check its validity in Theorem 2.4.

Let 𝜖 : N→ R be a nonincreasing function such that for all 𝑠 ≥ 1

min {|𝑢𝑊 − 𝑢★|∞, 𝑊 ∈ R𝑞 : ∥𝑊 ∥0 ≤ 𝑠} ≤ 𝜖 (𝑠). (2.5)

𝜖 (𝑠) defines the approximation skills of the function class {𝑢𝑊 } at the sparsity level 𝑠, and is a nonin-
creasing function of 𝑠. Of importance are sparsity levels 𝑠 > 1 at which the approximation error 𝜖 (𝑠)
matches the statistical error:

𝜖 (𝑠) ≤ 𝜎
√︂

u𝑠 log(𝑞)
𝑛

. (2.6)

We make the following assumption.

H3. There exists 𝜖 : N→ R such that (2.5) holds. Given 𝑛 and 𝑞, let 𝑠0 ≥ 2 be the smallest integer

satisfying (2.6), and 𝜖0
def
= 𝜖 (𝑠0). We assume that there exists 𝑊0 ∈ R𝑞 , with ∥𝑊0∥0 ≤ 𝑠0 that satisfies

|𝑢𝑊0 − 𝑢★|∞ ≤ 𝜖0, and

min
(
𝜆min (Σ𝑊0 ), 𝜆min (Σ★)

)
≥ 𝐶2, (2.7)

for some absolute constant 𝐶2. Furthermore, we assume that lim𝑛→∞ 𝜖0 = 0, and

(∥𝑊0∥∞ + 1)2 + log
(
𝐿𝑠

1/2
0 /𝜖0

)
≤ 𝐶3u log(𝑞), (2.8)

for some absolute constant 𝐶3, where 𝐿 def
= 𝐿𝑊0 ,1 is as in H2.
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We recall that we aim to estimate 𝑢★ by the sieve method, i.e., we approximate 𝑢★ by a collection
of functions F ≡ F𝑛, where the size of the function class typically grows with the sample size 𝑛. The
assumption that 𝜖0 → 0 as 𝑛→∞ in H3 highlights the relationship between the sample size 𝑛 and the
model size: given 𝑛, we assume that the model F is chosen such that its approximation error at some
sparsity level 𝑠 can match (or be smaller than) the statistical error at sparsity level 𝑠.

There has been a flurry of research activities in recent years to derive precise estimates on 𝜖 (𝑠)
for various DL function classes, using various norms ((4, 16, 27, 38)). For example for piecewise
polynomial activation functions, and 𝑢𝑊 as defined in Section 1.4, it is known (see e.g. (16, 39))
that at the sparsity level 𝑠, and depth 𝜉 =𝑂 (log(𝑠)), F can approximate a function 𝑢★ ∈ C𝛽 (Ω) with
precision (1/𝑠)𝛽/𝑚. This yields

𝜖 (𝑠) ≲ (1/𝑠)𝛽/𝑚.

In that case, solving for 𝑠0 in (2.6) yields

𝑠0 ∼
(

𝑛

log(𝑞)

) 𝑚
𝑚+2𝛽

, and 𝜖0 ∼
(

log(𝑞)
𝑛

) 𝛽

𝑚+2𝛽
.

In the high-dimensional setting considered here where 𝑞 is typically much larger than 𝑛, (2.8) is
typically satisfied.

Ultimately, we need some assumptions on the stability of the pde operator H as presented below:

H4. With 𝜅 as in H2-(2), there exists an absolute constant 𝐶4 such that for all 𝜀 > 0, if |𝑢𝑊 −𝑢★|2 ≤ 𝜀,
then |H𝑢𝑊 −H𝑢★|2 ≤ 𝐶4𝜀

𝜅 .

H4 is similar to H2-(2) and both can be checked in a similar way if 𝑢★ is a classical solution.
Indeed, if the pde solution 𝑢★ is a classical solution, and 𝑢★ ∈ C𝛽 (Ω) for some 𝛽 > 𝜏, then by (2.1),
and Theorem 2.4 below, H4 holds with 𝜅 = 1 − 𝜏/𝛽.

Given 𝑠 ≥ 0, and constant 𝐶, we set 𝜏𝑠
def
=

√︁
(2 + u) (1 + 𝑠) log(𝑞), and

F𝑠 = F𝑠,𝐶
def
=

{
𝑢𝑊 ∈ F : ∥𝑊 ∥0 ≤ 𝑠, ∥𝑊 ∥∞ ≤ 𝜏𝑠 , J (𝑢𝑊 ) ≤

𝐶𝑛𝜖2
0

𝜆𝜎2

}
,

where J is as defined in (2.2). We show below that the PINN posterior distribution puts high proba-
bilities on the sets F𝑠 . Specifically, the following theorem is proved as Lemma A.3 in Section A.2.

Theorem 2.1. Assume H1-H4. Let Let 𝜖0, 𝑊0 be as in H3. We can find an absolute constant 𝐶 such
that with 𝑠 =𝐶∥𝑊0∥0, it holds,

E
[
Π

(
F𝑠,𝐶 |D

) ]
≥ 1 −𝐶0𝑒

−
𝑛𝜖 2

0
2𝜎2 ,

for some absolute constant 𝐶0.
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To highlight this point, we note that if a function 𝑢 ∈ 𝐿2 (Ω,R, 𝜈) solves the pde equation (1.1)
(without the initial/boundary condition) for some parameter 𝜃, say, then

J (𝑢) = 1
𝜆
𝜃T

(
1 − 1

𝜆
Σ−1
𝑢

)
𝜃 ≤

∥𝜃∥2
2

𝜆
.

Hence with the size of 𝜃 remaining bounded, and for 𝜆 large, functions that approximately solve the
pde equation (1.1) satisfies J (𝑢) ≲ 𝐶/𝜆 for some constant 𝐶. Theorem 2.1 thus implies that for 𝜆
large, the PINN posterior distribution inherits the inductive bias of the prior and restricts the search
of a solution for the nonparametric regression problem on approximate solutions of the pde (1.1). The
rate of convergence of PINN, therefore, depends mainly on the complexity of the function class F𝑠 , as
measured, for instance, by its covering number. The next assumption models the metric entropy of F𝑠 .

H5. Given 𝑠 ≥ 2, let 3 ≤ 𝑏 <∞ be such that

sup
𝑢∈F𝑠

|𝑢 − 𝑢★|∞ ≤ 𝑏. (2.9)

There exists 𝑉1 =𝑉1 (𝑠) and 𝑉2 =𝑉2 (𝑠) ≥ 6𝑏 such that for all 0 < 𝜀 ≤ 𝜏𝑠 ,

logN(𝜀,F𝑠 , ∥ · ∥∞) ≤ 𝑉1 log
(
𝑉2

𝜀

)
, (2.10)

where N(𝜀,F𝑠 , ∥ · ∥∞) denotes the 𝜀-covering number of F𝑠 in the 𝐿∞ norm.

The following result establishes the rate of convergence of the PINN posterior and is proved in
Section A. We assume that the prior parameter 𝜆 > 0 is taken such that

∥𝜃★∥2
2𝜆 ≤ 𝐶5𝑛𝜖

2(1−𝜅 )
0 (2.11)

for some absolute constant 𝐶5. We also impose the following mild technical condition: there exists an
absolute constant 𝐶6 such that

𝑑

(
log

(
𝑛∥Σ★∥op

)
+ ∥𝜃★∥2

∞

)
≤
𝐶6𝑛𝜖

2
0

2𝜎2 . (2.12)

Theorem 2.2. Assume H1-H5, (2.11), and (2.12). Then we can find absolute constants 𝐶 and 𝑀 ≥ 1
such that with

𝑠 =𝐶𝑠0, and r
def
= 2(𝑏 + 𝜎)

√︄
𝑉1 log(𝑉2

√
𝑛)

𝑛
, (2.13)

where 𝑉1 =𝑉1 (𝑠), 𝑉2 =𝑉2 (𝑠) are as defined in H5, it holds for all 𝑛 large enough,

E [Π ({𝑊 ∈ R𝑞 : |𝑢𝑊 − 𝑢★|2 > 𝑀r} | D)] ≤ 𝑐
(
𝑒−𝑛𝜖

2
0 /(2𝜎

2 ) + 𝑒−𝑉1 log(𝑉2
√
𝑛)/𝐶

)
,

where 𝑐 is a constant that depends only on 𝑐1, 𝑐2 and 𝜎2.
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2.1. Minimax nonparametric rate

Bounding the metric entropy of the function class F𝑠 in a way that leverages the pde information
J (𝑢𝑊 ) ≤ 𝐶𝑛𝜖2

0/(𝜆𝜎
2) has proved challenging. However, we note that F𝑠 ⊆ {𝑢𝑊 ∈ F : ∥𝑊 ∥0 ≤

𝑠, ∥𝑊 ∥∞ ≤ 𝜏𝑠}, and the metric entropy of this latter set is straightforward to bound using H2-
(1). See also ((16, 27)). Indeed, for all 𝑊,𝑊 ′ in the ball {𝑊 ∈ R𝑞 : ∥𝑊 ∥0 ≤ 𝑠, ∥𝑊 ∥∞ ≤ 𝜏𝑠},
max(∥𝑊 ∥2, ∥𝑊 ′∥2) ≤ 𝑠1/2𝜏𝑠 . Hence by H2-(1), |𝑢𝑊 −𝑢𝑊 ′ |∞ ≤ 𝐿𝑠1/2∥𝑊−𝑊 ′∥∞, where 𝐿 = 𝐿0,𝑠1/2𝜏𝑠

.
The size of all the (𝜀′ = 𝜀/𝐿𝑠1/2)-cover of all the 𝜏𝑠-balls of all the 𝑠-sparse subspaces of R𝑞 in the
infinity-norm is bounded from above by (

𝑞

𝑠

) (
1 + 2𝑟𝑠

𝜀′

)𝑠
.

It follows that

logN(𝜀,F𝑠 , ∥ · ∥∞) ≤ 𝑠 log(𝑞) + 𝑠 log
(
1 + 2𝑠1/2𝜏𝑠𝐿

𝜀

)
,

and H5 holds with

𝑉1 (𝑠) = 𝑠, and 𝑉2 (𝑠) = 𝑞𝑟𝑠
(
1 + 2𝑠1/2𝐿

)
≤ 𝑐

√︁
𝜉𝑞

(
1 + 𝑠2 log(𝑞)

) 𝜉+1/2
,

for some constant 𝑐 that depends only on u, and sup𝑥∈Ω ∥x∥2, where 𝜉 denotes the depth of the neural
network class. Hence, with 𝑠 =𝐶𝑠0,

𝑉1 (𝑠) = 𝑠 =𝐶𝑠0, and log(
√
𝑛𝑉2 (𝑠)) ≲ log(𝑛) + 𝜉 log(𝑞),

where 𝜉 is the depth of the neural network. Furthermore, we have seen in Remark 2 that if 𝑢★ is a
classical solution and 𝑢★ ∈ C𝛽 (Ω), then for piecewise polynomial activation at depth 𝜉 =𝑂 (log(𝑝)),
we have

𝑠0 ∼
(

𝑛

log(𝑞)

) 𝑚
𝑚+2𝛽

.

As a result, up to log terms that we ignore, we obtain the estimation rate

r ≲

√︂
𝑠0

𝑛
≲

(
1
𝑛

) 𝛽

𝑚+2𝛽
.

Hence, Bayesian PINN estimates 𝑢★ at least at the nonparametric minimax rate 𝑛−𝛽/(𝑚+2𝛽) , that is, at
the optimal rate achievable when 𝑢★ is known only to be 𝛽-smooth ((32)) without any PDE constraint.
We note that our metric entropy calculations of the function class F𝑠 are rather crude, as they ignore the
inductive bias induced by the PINN prior. Thus, the PINN posterior distributions likely enjoy a faster
convergence rate than the abovementioned nonparametric minimax rate. To understand this, consider
the limiting case when 𝜆 = +∞, i.e., the prior put all the mass on { 𝑓 ∈ 𝐿2 (Ω,R, 𝜈) : J (𝑢) = 0}, that
is, the set of functions that are solutions of the pde equation H0𝑢 + 𝜃TH1𝑢 = 𝑓 for some 𝜃 ∈ R𝑑 . In the
subsequent section, we show that estimating 𝑢★ at a parametric rate (up to a log factor) is possible in
this limiting case.
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2.2. Estimation at the parametric rate

We assume that 𝜃★ belongs to a compact set Θ ⊂ R𝑑 , and for each 𝜃 ∈ Θ the pde equation (1.1) (in-
cluding the initial/boundary condition) admits a unique solution 𝑢𝜃 ∈ C𝛽 (Ω) for some given and fixed
𝛽. Furthermore we assume that the map Γ : Θ→C𝛽 (Ω) that maps 𝜃→ 𝑢𝜃 is Lipschitz. Specifically,

H6. There exists a constant 𝐿 > 0 such that:

|Γ(𝜃1) − Γ(𝜃2) |∞ ≤ 𝐿∥𝜃1 − 𝜃2∥2 ∀ 𝜃1, 𝜃2 ∈ Θ .

Let Γ(Θ) def
= {Γ(𝜃), 𝜃 ∈ Θ}. Under the data generating process assumed in H1, we consider the

constrained empirical risk minimization estimator

�̂� = arg min𝑢∈Γ (Θ)
1
𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑢(s𝑖))2 . (2.14)

The following theorem is proved in Section A.7.

Theorem 2.3. Assume H1, and H6. Then any solution �̂� of (2.14) satisfies

|�̂� − 𝑢★|22 =𝑂 𝑝
(
𝑑

𝑛
log

( 𝑛
𝑑

))
.

It is immediate from the above theorem that |�̂� − 𝑢★|2 =𝑂 𝑝 (
√︃
𝑑
𝑛
) (up to a log factor) which is the

standard parametric rate for estimating a 𝑑 dimensional parameter. The estimator �̂� is typically not
computable since it requires solving the pde for each 𝜃 ∈ Θ. But the rate in Theorem 2.3, in light of
Theorem 2.1, suggests that the PINN posterior distribution may actually have a convergence rate faster
than the nonparametric minimax rate. More research is needed on this issue.

Regarding Assumption 6, one may replace the 𝐿2 norm in the assumption by any 𝐿𝑝 norm without
hurting the rate, but to translate the complexity of Θ to Γ(Θ), we believe that some sort of smoothness
assumption is necessary. Whether one can do entirely without Assumption 6 is an intriguing question
that we leave for future research.

2.3. Checking Assumption H2-(2)

We end this section with a result showing that sufficiently smooth functions typically satisfy H2-(2).
The proof is given in Section A.6. We recall that Ω is a bounded open subset of R𝑚, and we write

B(𝑥, 𝛼) to denote the Euclidean ball of R𝑚 centered at 𝑥 and with radius 𝛼. We define int𝛼 (Ω)
def
= {𝑥 ∈

Ω : B(𝑥, 𝛼) ⊂ Ω}. We recall also that C𝛽 (Ω, 𝑏) denotes the ball with radius 𝑏 in the Holder space
C𝛽 (Ω).

Theorem 2.4. Given 𝜀 > 0, 𝛽 > 1, integer 𝜏 ∈ [0, 𝛽), and 𝑀 > 0, define

�̄� =

(
𝜏𝜀⌊𝛽⌋!

2𝑀 (𝛽 − 𝜏)

)1/𝛽
.
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For all 𝑢, �̃� ∈ C𝛽 (Ω, 𝑀) such that sup𝑥∈Ω |𝑢(𝑥)− �̃�(𝑥) |∞ ≤ 𝜀, and for all multi-index k = (𝑘1, . . . , 𝑘𝑚),
with |k| ≤ 𝜏, we have

sup
𝑥∈ int�̄� (Ω)

��𝐷k𝑢(𝑥) − 𝐷k�̃�(𝑥)
��
∞ ≤ 𝐶𝑀

𝜏
𝛽 𝜀

𝛽−𝜏
𝛽 ,

for some constant 𝐶 that depends only on 𝜏 and 𝛽.

We note that �̄� ↓ 0 as 𝑀 ↑ ∞. Hence if 𝑢, �̃� ∈ C𝛽 (Ω̄, 𝑀0) for some well-chosen Ω̄ ⊃ Ω, and
sup𝑥∈Ω̄ |𝑢(𝑥) − �̃�(𝑥) |∞ ≤ 𝜀 then by taking 𝑀 ≥ 𝑀0 large enough such that Ω ⊂ int�̄� (Ω̄), we get

sup
𝑥∈Ω

��𝐷k𝑢(𝑥) − 𝐷k�̃�(𝑥)
��
∞ ≤ 𝐶𝑀

𝜏
𝛽 𝜀

𝛽−𝜏
𝛽 .

3. A Bernstein-von-Mises theorem for the 𝜽-marginal

Given 𝜇 ∈ R𝑑 , and Λ ∈ R𝑑×𝑑 symmetric and positive definite, we write N(𝜇,Λ) (·) as the probability
measure of the Gaussian distribution N(𝜇,Λ). Given𝑊 ∈ R𝑞 , let

𝜃𝑊
def
= Σ−1

𝑊 Φ𝑊 . (3.1)

It is then easy to see from (1.4) that the conditional distribution of 𝜃 given 𝑊 is N(𝜃𝑊 ,Σ−1
𝑊
/𝜆). For

clarity’s sake we will write Π (𝜃 ) (resp. Π (𝑊 ) ) to denote the marginal distribution of 𝜃 (resp.𝑊) under
(1.4). We have

Π (𝜃 ) (·|D) =
∫
R𝑞

[
N

(
𝜃𝑊 ,

1
𝜆
Σ−1
𝑊

)
(·)

]
Π (𝑊 ) (d𝑊 |D).

We set

Π
(𝜃 )
★ (·) def

= N
(
𝜃★,

1
𝜆
Σ−1
★

)
(·). (3.2)

We investigate the proximity between Π (𝜃 ) and Π
(𝜃 )
★ for 𝑛 large, using the 2-Wasserstein metric

that we denote W2. The following result is established in Section A.5.

Theorem 3.1. Assume H1-H5 and the notations of Theorem 2.2. Then, for all 𝑛 large enough, we have

E
[
W2

2 (Π
(𝜃 ) ,Π (𝜃 )

★ )
]
≤ 𝑐

(
r2𝜅 + 𝜆𝑒−𝑛𝜖 2

0 /(2𝜎
2 ) + 𝜆𝑒−𝑉1 log(𝑉2

√
𝑛)/𝐶

)
,

for some constant 𝑐. In particular,

E

[����∫
R𝑑
𝑢Π (𝜃 ) (d𝑢 |D) − 𝜃★

����2] ≤ 𝑐 (
r2𝜅 + 𝜆𝑒−𝑛𝜖 2

0 /(2𝜎
2 ) + 𝜆𝑒−𝑉1 log(𝑉2

√
𝑛)/𝐶

)
.

For DL functions with sufficiently smooth piecewise polynomial activation functions, and for
𝑢★ ∈ C𝛽 (Ω), we have seen above that r ≲ 𝑛−𝛽/(𝑚+2𝛽) , and by Theorem 2.4, 𝜅 = (𝛽 − 𝜏)/𝛽. With
these we conclude from Theorem 3.1 that the estimation rate of 𝜃★ afforded by B-PINN is at least
𝑛−2(𝛽−𝜏 )/(𝑚+2𝛽) . This estimation rate corresponds to the optimal plug-in rate. Recall that our pde
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equation is linear in 𝜃. Therefore, the bottleneck in estimating 𝜃 is the difficulty of estimating 𝑢 and its
derivatives up to order 𝜏. As shown above, for a function 𝑢 ∈ C𝛽 (Ω), PINN estimates these derivatives
at the nonparametric minimax rate 𝑛−2(𝛽−𝜏 )/(𝑚+2𝛽) . Hence, the obtained estimation rate for 𝜃★. As
conjectured above, PINN likely estimates 𝑢★ at a rate faster than the nonparametric minimax rate. If
true, this would translate to a faster estimation rate for 𝜃★. More research is needed on this point.

4. Numerical illustration

We illustrate the results above using the one-dimensional heat equation of Example 1. Extensive il-
lustrations of PINN and Bayesian PINN can be found in the literature ((8, 24, 37)). We focus here
on comparing PINN and an approach that does not directly exploit the PDE structure of the problem.
We consider the heat equation with 𝐿 = 𝜋, and 𝑇 = 1. Hence Ω = (0,1) × (0, 𝜋). We use the boundary
condition 𝑢(𝑡,0) = 𝑢(𝑡, 𝜋) = 0, and the initial condition 𝑢(0, 𝑥) = sin(𝑥). Given 𝜃 the heat equation
has a unique solution 𝑢𝜃 (𝑡, 𝑥) = sin(𝑥)exp(−𝜃𝑡). We set the true value of 𝜃 to 𝜃★ = 0.5. The observed
data D is generated as follows: 𝑛 sensor locations {s𝑖 = (𝑡𝑖 , 𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑛} are evenly distributed in Ω,
yielding measurements

𝑌𝑖 = 𝑢𝜃★ (s𝑖) + 𝜎𝜖𝑖 , where 𝜖𝑖 ∼ N(0,1),

for some noise parameter 𝜎 that we control. For the function class F = {𝑢𝑊 }, 𝑢𝑊 : R2 → R is taken
to be a fully connected neural network with depth 4, width 64, and tanh activation function. The
resulting posterior distribution is

Π(d𝜃,d𝑊 |D) ∝ exp

(
− 1

2𝜎2

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑢𝑊 (s𝑖))2 − 𝜆
2
ℓ0 (𝜃,𝑊) − 1

2
∥𝜃∥2

2

)
Π0 (d𝑊)d𝜃,

where

ℓ0 (𝜃,𝑊) = | (𝑢𝑊 )𝑡 − 𝜃 (𝑢𝑊 )𝑥𝑥 |22 + |𝑢𝑊 (·,0) |22 + |𝑢𝑊 (·, 𝜋) |22 + |𝑢𝑊 (0, ·) − sin(·) |22, (4.1)

where | · |2 denotes the function space 𝐿2-norm. Observe that 𝜆 = 0 in the above posterior corresponds
to the estimation of 𝑊 without the physics-informed prior (non-PINN estimation). Before presenting
the numerical results, we describe briefly our MCMC sampling method.

4.1. Approximation and MCMC sampling

In general, the 𝐿2-norm in the loss (4.1) is intractable and is typically replaced by a Monte Carlo or a
numerical quadrature approximation. Here we use Monte Carlo by drawing 𝑁 = 10,000 interior points
(s(𝑖)1 , . . . , s(𝑖)

𝑁
) uniformly in Ω to estimate the 𝐿2 norm on Ω. For the 𝐿2 norm along the boundaries

we draw two sets of 𝐵 = 128 points (s(𝑏𝑖 )1 , . . . , s(𝑏𝑖 )
𝐵

) for 𝑖 = 1,2 uniformly on the time and space
boundaries respectively. Hence, we consider the approximate posterior distribution

Π̂(𝜃,𝑊 |D) ∝ Π0 (𝑊)exp

(
− 1

2𝜎2

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑢𝑊 (s𝑖))2 − 𝜆
2
ℓ̂0 (𝜃,𝑊) − 𝜌

2
∥𝜃∥2

2

)
. (4.2)

where the loss (4.1) is replaced by
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ℓ̂0 (𝜃,𝑊) = 1
𝑁

𝑁∑︁
𝑘=1

(
(𝑢𝑊 )𝑡 (s(𝑖)𝑘 ) − 𝜃 × (𝑢𝑊 )𝑥𝑥 (s(𝑖)𝑘 )

)2

+ 1
𝐵

𝐵∑︁
𝑘=1

(
𝑢𝑊 (s(𝑏1 )

𝑘
,0)

)2
+ 1
𝐵

𝐵∑︁
𝑘=1

(
𝑢𝑊 (s(𝑏1 )

𝑘
, 𝜋)

)2
+ 1
𝐵

𝐵∑︁
𝑘=1

(
𝑢𝑊 (0, s(𝑏2 )

𝑘
) − sin(s(𝑏2 )

𝑘
)
)2
. (4.3)

Given𝑊 , and as seen in Section 3, the posterior conditional distribution of 𝜃 given𝑊 is

𝜃 |𝑊,D ∼ N
(
Σ−1
𝑊 Φ𝑊 ,

1
𝜆
Σ−1
𝑊

)
(4.4)

where in the particular case of this example

Σ𝑊 =
1
𝑁

𝑁∑︁
𝑘=1

(𝑢𝑊 )𝑥𝑥 (s(𝑖)𝑘 )2 + 𝜌
𝜆
, and Φ𝑊 =

1
𝑁

𝑁∑︁
𝑘=1

(𝑢𝑊 )𝑡 (s(𝑖)𝑘 ) × (𝑢𝑊 )𝑥𝑥 (s(𝑖)𝑘 )

We sample from (4.2) using the approximate asynchronous sampler of (3). The algorithm is a data-
augmentation Metropolis-with-Gibbs sampler where the update of the sparsity support Λ given 𝜃,𝑊
uses asynchronous sampling, and the update of 𝑊 given 𝜃,Λ is a sparse stochastic gradient Langevin
dynamics. Then 𝜃 given𝑊,Λ is sample from Gaussian N

(
Σ−1
𝑊Λ

Φ𝑊Λ
, 1
𝜆
Σ−1
𝑊Λ

)
using (4.4) where𝑊Λ is

the component-wise product of𝑊 and Λ (a sparse neural network weight). A Pytorch implementa-
tion is available from the GitHub page https://github.com/xliu-522/SA-cSGLD.

Throughout the experiment, we use 𝜃∗ = 0.5, 𝜆 = 𝑛 and 𝜌 = 1. For each instance of the posterior
distribution (4.2) under consideration, we run the aforementioned MCMC sampler until convergence
and keep running another 200,000 iterations. We then record every 20th sample, resulting in a total
of 𝐾 = 10,000 samples, denoted by {𝜃 (𝑘 ) }𝐾

𝑘=1 . The mean and standard deviations of the marginal
posterior distribution of 𝜃 are then approximated respectively by

𝜇𝜃
def
=

1
𝐾

𝐾∑︁
𝑘=1

𝜃 (𝑘 ) , and 𝜎𝜃
def
=

√√√
1
𝐾

𝐾∑︁
𝑘=1

(
𝜃 (𝑘 ) − 𝜇𝜃

)2
.

In this section, assuming that the MCMC sampler has converged, we take the distribution of the

samples {𝜃 (𝑘 ) }𝐾
𝑘=1 to be Π (𝜃 ) and we denote its normal approximation by Π̃ (𝜃 ) def

= N(𝜇𝜃 , 𝜎2
𝜃
). Since

the exact solution 𝑢★(𝑡, 𝑥) = sin(𝑥)exp(−0.5𝑡) is known, we can compute the variance of the limiting
Gaussian distribution in Bernstein-von Mises theorem (Theorem 3.1)

Σ∗ =

∫ 1

0

∫ 𝜋

0
((𝑢★)𝑥𝑥 (𝑡, 𝑥))2 𝑑𝑥𝑑𝑡 + 1

𝑛
=
𝜋(1 − 1

𝑒
)

2
+ 1
𝑛
≈ 0.993 + 1

𝑛

Hence the limiting distribution in Theorem 3.1 denoted Π
(𝜃 )
★ is

Π
(𝜃 )
★

def
= N(𝜃★,

1
𝑛
Σ−1
★ ). (4.5)

4.2. PINN versus non-PINN comparison

In this section, we compare PINN to a two-step approach (denoted by non-PINN) that does not directly
use the PDE structure of 𝑢. Specifically, in the non-PINN approach, we fit the same DL model for
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estimating 𝑢 but without the PINN prior. The resulting posterior is given by

Π̂(𝑊 |D) ∝ Π0 (𝑊)exp

(
− 1

2𝜎2

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑢𝑊 (s𝑖))2

)
.

We sample from this posterior distribution using the same MCMC algorithm described above. For
each MCMC draw 𝑊 , we then subsequently solve for 𝜃 by sampling from the Gaussian distribution
N

(
Σ−1
𝑊
Φ𝑊 ,

1
𝑛
Σ−1
𝑊

)
from (4.4). Hence, in the two-step approach, the PDE information is not used in

the first step for estimating 𝑢, but is used in the second step to recover 𝜃 by the linear regression
model derived from (1.1). By contrast, PINN uses the PDE information and estimates (𝑢, 𝜃) jointly.
We compare the two approaches under varying sample sizes and noise levels, as it allows us to observe
the contribution of the PINN prior ℓ0 (𝜃,𝑊).

Figure 1 provides a comparative analysis of the posterior distribution of 𝜃 in the two approaches
(PINN and non-PINN) at a noise level of 10% (𝜎 ≈ 0.025), across different sample sizes. Both meth-
ods exhibit improved parameter estimates as the sample size 𝑛 increases, as indicated by the decreasing
bias and interquartile range (IQR). However, training with the PDE term generally yields more concen-
trated distributions of 𝜃 with narrower IQRs, indicating greater stability and reliability in parameter
estimation. This demonstrates that incorporating the PDE term results in more accurate and robust
parameter estimates.

To further investigate the role of the PDE term in the recovery of 𝜃, the root mean square er-
ror(rMSE) and the Wasserstein-2 distance (𝑊2) are computed and summarized in Table 1 and Fig-

ure 2. The rMSE is defined as
√︃

1
𝐾

∑𝐾
𝑘=1 (𝜃 (𝑘 ) − 𝜃∗)2, whereas the 𝑊2 metric is computed using the

ot.emd2_1d function from the POT library by (11) with the parameter 𝑝 = 2. These metrics provide
a comprehensive comparison of the accuracy (rMSE) and distribution similarity (𝑊2) between sample
𝜃 and the true value 𝜃∗.

Table 1. Comparison of PDE and No-PDE under different noise levels

rMSE 𝑊2 (Π (𝜃 ) ,Π (𝜃 )
∗ )

Noise Level n PDE No-PDE PDE No-PDE

1% 50 0.287 0.352 0.0379 0.0699
1% 500 0.083 0.088 0.0018 0.0024
1% 1000 0.058 0.060 0.0008 0.0010
1% 5000 0.027 0.028 0.0002 0.0003
10% 500 0.103 0.140 0.0052 0.0131
10% 1000 0.080 0.116 0.0036 0.0078
10% 5000 0.031 0.040 0.0004 0.0008
10% 10000 0.023 0.031 0.0002 0.0007
25% 1000 0.094 0.377 0.0055 0.1387
25% 5000 0.042 0.104 0.0011 0.0090
50% 5000 0.129 0.474 0.0147 0.2246

Figure 2 and Table 1 illustrate the performance comparison of models trained with and without PDE
constraints across various noise levels and sample sizes. As the number of samples (𝑛) increases or the



16

PDE noPDE
0.0

0.2

0.4

0.6

0.8

1.0
Va

lu
es

n = 500

PDE noPDE
0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

es

n = 1000

PDE noPDE
0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

es

n = 5000

PDE noPDE
0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

es

n = 10000

Figure 1. Comparison between boxplots of sampled 𝜃 from training with/without pde with different sample sizes
n at noise level = 10%. True 𝜃∗ = 0.5 in the dotted line.

noise level decreases, the values of rMSE and 𝑊2 distance decrease for both training methods, with
and without the PDE constraint. However, the PDE-constrained models perform better, demonstrating
lower rMSE and𝑊2 distances than corresponding models without PDE constraints. The difference in
performance becomes more noticeable at low sample sizes or high noise levels. This suggests that the
PDE constraint can help the model learn more effectively when there is insufficient information from
the data alone.

4.3. Posterior contraction Behavior

From the previous section and Table 1, we observed that the𝑊2 distance between Π (𝜃 ) and the limiting
distribution Π

(𝜃 )
★ given in (4.5) decays significantly as the sample size 𝑛 increases, which is consistent

with the conclusion of Theorem 3.1. To further study this contraction behavior, we plot the histogram
of Π (𝜃 ) (using samples from the MCMC sampler), its Gaussian approximation Π̃ (𝜃 ) = N(𝜇𝜃 , 𝜎2

𝜃
)

where 𝜇𝜃 and 𝜎𝜃 are computed from the MCMC samples, and the limiting distribution Π
(𝜃 )
★ , for var-

ious sample sizes (𝑛 = 500, 1000, 5000, 10000) at a noise level of 10% (𝜎 ≈ 0.025). The perfect match
between Π (𝜃 ) and Π̃ (𝜃 ) in Figure 3 suggests that the posterior distribution of 𝜃 is approximately Gaus-
sian. However the persistent discrepancy between Π (𝜃 ) and Π

(𝜃 )
★ suggests that the 𝑊2 convergence



Estimation rate of Bayesian PINN 17

1 10 25 50
Noise Level %

50
00

10
00

50
0

50
Sa

m
pl

e 
Si

ze
 (n

)

0.027 0.031 0.041 0.129

0.058 0.080 0.094

0.083 0.103

0.287

PDE

1 10 25 50
Noise Level %

Sa
m

pl
e 

Si
ze

 (n
)

0.028 0.040 0.104 0.474

0.060 0.116 0.377

0.088 0.140

0.352

No PDE

10 3

10 2

10 1

W
2 D

ist
an

ce

Figure 2. Comparison between training with/without pde term. The number in each grid is the rMSE between
sampled 𝜃 and 𝜃∗. The color represents𝑊2 distance𝑊2 (Π (𝜃 ) ,Π (𝜃 )

∗ )

to zero between Π (𝜃 ) and Π
(𝜃 )
★ (as established in Theorem 3.1 and illustrated above), likely do not

hold in total variation. For two probability measures 𝑃,𝑄 with densities 𝑝, 𝑞 respectively, their total

variation distance is TVD(𝑃,𝑄) def
= 1

2

∫
|𝑝(𝑥) − 𝑞(𝑥) | 𝑑𝑥. To further illustrate this point we compute in

Table 2 a lower and an upper on the total variation distance between Π̃ (𝜃 ) and Π
(𝜃 )
★ . We compute these

bounds by noting (see (10)) that for any two probability measures 𝑃,𝑄 with densities 𝑝, 𝑞 respectively
we have

𝐻2 (𝑃,𝑄) ≤ TVD(𝑃,𝑄) ≤ min
(
1,

√︁
𝐾𝐿 (𝑃∥𝑄)/2,

√︁
𝐾𝐿 (𝑄∥𝑃)/2

)
, (4.6)

where in the univariate Gaussian case where 𝑃 ∼ N(𝜇1, 𝜎
2
1 ) with density 𝑝(𝑥) and 𝑄 ∼ N(𝜇2, 𝜎

2
2 )

with density 𝑞(𝑥), the Hellinger distance 𝐻 (𝑃,𝑄) is (see e.g. (23))

𝐻2 (𝑃,𝑄) def
=

1
2

∫ (√︁
𝑝(𝑥) −

√︁
𝑞(𝑥)

)2
𝑑𝑥 = 1 −

√︄
2𝜎1𝜎2

𝜎2
1 + 𝜎2

2

exp

(
− (𝜇1 − 𝜇2)2

4(𝜎2
1 + 𝜎2

2 )

)
,

and the 𝐾𝐿-divergence is (see e.g. (26))

𝐷𝐾𝐿 (𝑃∥𝑄)
def
=

∫
𝑝(𝑥) log

𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥 = log

(
𝜎2

𝜎1

)
+
𝜎2

1 + (𝜇1 − 𝜇2)2

2𝜎2
2

− 1
2
.

Using these formulas, the third and fourth column of Table 2 shows the left-hand side and right-
hand side of (4.6) respectively. From this table, we see, for instance, that at 10% noise level, the 𝑊2
distance decreases with the sample size, whereas the TVD lower and upper bounds do not. This lack of
TV convergence is because the posterior mean does not converge to 𝜃★ fast enough. Indeed, given two
univariate normal distributions N(𝜇1,𝑛,

1
𝑛
) and N(𝜇2,𝑛,

1
𝑛
), as 𝑛→∞, their 𝑊2 distance converges to
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0 as soon as |𝜇1,𝑛 − 𝜇2,𝑛 | → 0, whereas their Hellinger distance (using the formula above) converges
to zero if and only if |𝜇1,𝑛 − 𝜇2,𝑛 | converges to zero faster than 1/

√
𝑛.

0.2 0.3 0.4 0.5 0.6 0.7
n: 500

0

10

20

30

40

De
ns

ity

( )
( )

( )
*

0.2 0.3 0.4 0.5 0.6 0.7
n: 1000

0

10

20

30

40

De
ns

ity

( )
( )

( )
*

0.2 0.3 0.4 0.5 0.6 0.7
n: 5000

0

10

20

30

40

De
ns

ity

( )
( )

( )
*

0.2 0.3 0.4 0.5 0.6 0.7
n: 10000

0

10

20

30

40
De

ns
ity
( )
( )

( )
*

Figure 3. Histograms of sampled 𝜃, denoted Π (𝜃 ) , in blue with its normal approximation Π̃ (𝜃 ) in red line and
target Gaussian distribution Π

(𝜃 )
∗ in orange with increasing sample size n at noise level 10%

Table 2. 𝑊2 and upper and lower bound of TVD under different sample sizes and noise levels

Noise Level n 𝑊2 TVD Lower TVD Upper

1% 50 0.0377 0.149 0.482
1% 500 0.0018 0.090 0.372
1% 1000 0.0008 0.084 0.360
1% 5000 0.0002 0.099 0.387
10% 500 0.0051 0.176 0.515
10% 1000 0.0037 0.228 0.594
10% 5000 0.0004 0.156 0.485
10% 10000 0.0002 0.173 0.512
25% 1000 0.0054 0.270 0.637
25% 5000 0.0011 0.287 0.665
50% 5000 0.0148 0.616 1.000
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Appendix A: Proof of Theorem 2.2

We define

Δ𝑊 (𝑦, s) def
= (𝑦 − 𝑢𝑊 (s))2 , Δ★(𝑦, s)

def
= (𝑦 − 𝑢★(s))2 , (𝑦, s) ∈ R ×Ω.

We recall that P𝑛 ( 𝑓 ) = 𝑛−1 ∑𝑛
𝑖=1 𝑓 (𝑌𝑖 , s𝑖). It follows from (2.3) that for any set 𝐶 ⊆ R𝑞 , we have

Π(𝐶 |D) =

∫
𝐶

exp
(
− 𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★) + R𝑊
)
Π0 (d𝑊)∫

R𝑞
exp

(
− 𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★) + R𝑊
)
Π0 (d𝑊)

, (A.1)

where

R𝑊
def
= R (1)

𝑊
+ R (2)

𝑊
, with R (1)

𝑊

def
= −1

2
(log det(Σ𝑊 ) − log det(Σ★)) ,

and R (2)
𝑊

def
= −𝜆

2
J (𝑢𝑊 ).

We break the proof into three parts. First, in Section A.1, we give a lower bound on the normalizing
constant of the posterior distribution as given in (A.1). Then we show in Section A.2 that the prior
distribution Π0 has a good inductive bias, as it puts a high probability on 𝑊 that is sparse. The third
part of the proof in Section A.3 establishes some deviation bounds for the empirical process of the
log-likelihood ratio. Then, we put all the pieces together in Section A.4.

A.1. Lower bound on the normalizing constant

Lemma A.1. Assume H1-H4. Let 𝜖0, 𝑠0,𝑊0 be as in H3. Then for all 𝑛 large enough, with probability
at least 1 − 2𝑒−𝑛𝜖

2
0 /(2𝜎

2 ) , we have∫
R𝑞

exp

(
− 𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★) + R𝑊
)
Π0 (d𝑊) ≥ 𝐶 × exp

(
−
𝐶𝑛𝜖2

0

𝜎2

)
,

for some absolute constant 𝐶.

Proof. By definition of𝑊0, |𝑢𝑊0 −𝑢★|∞ ≤ 𝜖0. Let 𝐿 def
= 𝐿𝑊0 ,1 ≥ 1 be as in H2. Let Λ0 ∈ {0,1}𝑞 denote

the sparsity support of𝑊0, and let

𝜂
def
=

𝜖0

𝐿𝑠
1/2
0

, and V def
= {𝑊 ∈ R𝑞 : supp(𝑊) = Λ0, ∥𝑊 −𝑊0∥∞ ≤ 𝜂}. (A.2)

Since 𝜂𝑠1/2
0 ≤ 1, for all𝑊 ∈ V, we have

∥𝑊 −𝑊0∥2 ≤ 𝑠1/2
0 ∥𝑊 −𝑊0∥∞ ≤ 𝑠1/2

0 𝜂 ≤ 1. (A.3)

Using (A.3), and the Lipschitz assumption imposed in H2, we deduce that for all𝑊 ∈ V,

|𝑢𝑊 − 𝑢𝑊0 |∞ ≤ 𝐿∥𝑊 −𝑊0∥2 ≤ 𝐿𝑠1/2
0 𝜂 ≤ 𝜖0. (A.4)
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From the above display, and appealing to (2.1) and H2-(3) we further deduce that for all𝑊 ∈ V,

|H𝑢𝑊 −H𝑢𝑊0 |2 ≤ 𝐶0 max
k: |k | ≤𝜏

��𝐷k𝑢𝑊 − 𝐷k𝑢𝑊0

��
∞ ≤ 𝐶0𝑐1𝜖

𝜅
0 . (A.5)

In view of H4, we also deduce that for all𝑊 ∈ V,

|𝑢𝑊 − 𝑢★|∞ ≤ 2𝜖0, and |H𝑢𝑊 −H𝑢★|2 ≤ 2𝜅𝐶4𝜖
𝜅
0 . (A.6)

A.1.0.1. Step 1. First we show that with probability at least 1 − 2𝑒−𝑛𝜖
2
0 /(2𝜎

2 ) , it holds∫
R𝑞

exp

(
− 𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★) + R𝑊
)
Π0 (d𝑊) ≥ 1

2
𝑒−4𝑛𝜖 2

0 /𝜎
2
∫
V
𝑒R𝑊Π0 (d𝑊). (A.7)

To establish this, we recall that with 𝜉𝑖 = (𝑌𝑖 − 𝑢★(s𝑖))/𝜎, we have

− 𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★) = − 1
2𝜎2

𝑛∑︁
𝑖=1

(𝑢𝑊 (s𝑖) − 𝑢★(s𝑖))2 + 1
𝜎

𝑛∑︁
𝑖=1

𝜉𝑖 (𝑢𝑊 (s𝑖) − 𝑢★(s𝑖)).

Using (A.6), we note that for𝑊 ∈ V,

1
𝜎2

𝑛∑︁
𝑖=1

(𝑢𝑊 (s𝑖) − 𝑢★(s𝑖))2 ≤ 𝐴,

where

𝐴
def
=

4𝑛𝜖2
0

𝜎2 .

By Gaussian tail bounds, for all𝑊 ∈ V,

P

(
1
𝜎

𝑛∑︁
𝑖=1

𝜉𝑖 (𝑢𝑊 (s𝑖) − 𝑢★(s𝑖)) >
𝐴

2
|s1:𝑛

)
≤ exp

(
− 𝐴

2

8𝐴

)
≤ 𝑒−𝐴/8.

Therefore, with E𝑊
def
= {D : 1

𝜎

∑𝑛
𝑖=1 𝜉𝑖 (𝑢𝑊 (s𝑖) − 𝑢★(s𝑖)) ≤ 𝐴/2},

∫
R𝑞

exp

(
− 𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★) + R𝑊
)
Π0 (d𝑊) ≥ 𝑒−𝐴

∫
V

1E𝑊
(D)𝑒R𝑊Π0 (d𝑊),

and with E𝑐
𝑊

denoting the complement of E𝑊 , we obtain

P

[∫
R𝑞

exp

(
− 𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★) + R𝑊
)
Π0 (d𝑊) < 𝑒−𝐴

2

∫
V
𝑒R𝑊Π0 (d𝑊) |s1:𝑛

]
≤ P

[∫
V

1E𝑊
(D)𝑒R𝑊Π0 (d𝑊) < 1

2

∫
V
𝑒R𝑊Π0 (d𝑊) |x1:𝑛

]
= P

[∫
V

1E𝑐
𝑊
(D)𝑒R𝑊Π0 (d𝑊) > 1

2

∫
V
𝑒R𝑊Π0 (d𝑊) | x1:𝑛

]
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≤ 2∫
V 𝑒R𝑊Π0 (d𝑊)

∫
V
P

(
1
𝜎

𝑛∑︁
𝑖=1

𝜉𝑖 (𝑢𝑊 (s𝑖) − 𝑢★(s𝑖)) >
𝐴

2
| s1:𝑛

)
𝑒R𝑊Π0 (d𝑊)

≤ 2𝑒−𝐴/8,

which is (A.7).

A.1.0.2. Step 2. We now show that∫
V
𝑒R𝑊Π0 (d𝑊) ≥ 𝑐 × exp

(
−𝐶

𝑛𝜖2
0

𝜎2

)
. (A.8)

Using the definition of Σ𝑊 , we first note that for all𝑊1,𝑊2

∥Σ𝑊1 − Σ𝑊2 ∥op ≤
√

2
(
|H𝑢𝑊1 |2 + |H𝑢𝑊2 |2

)
|H𝑢𝑊1 −H𝑢𝑊2 |2

≤
√

2
(
2|H𝑢𝑊1 |2 + |H𝑢𝑊2 −H𝑢𝑊1 |2

)
|H𝑢𝑊1 −H𝑢𝑊2 |2. (A.9)

We combine this with (A.5) to obtain that for all𝑊 ∈ V,

∥Σ𝑊 − Σ𝑊0 ∥op ≤ 2𝐶0𝑐1
(
2|H𝑢𝑊0 |2 +𝐶0𝑐1𝜖

𝜅
0
)
𝜖 𝜅0 ≤ 𝐶2

2
,

for all 𝑛 large enough, since 𝜖0 → 0, as 𝑛→ ∞. Therefore, Weyl’s inequality, and 𝜆min (Σ𝑊0 ) ≥ 𝐶2
imply that for all𝑊 ∈ V, and 𝑛 large enough

𝜆min (Σ𝑊 ) ≥ 𝐶2

2
.

As a result of the last display, we can use a first order Taylor expansion of the log det to conclude that
for all𝑊 ∈ V,

|R (1)
𝑊

| =
����12 (log det(Σ𝑊 ) − log det(Σ★))

���� ≤ 2𝑑1/2

𝐶2
∥Σ𝑊 − Σ★∥F ≤ 2𝑑

𝐶2
∥Σ𝑊 − Σ★∥op

≤ 4𝑑
𝐶2

(2|H𝑢★|2 + |H𝑢𝑊 −H𝑢★|2) |H𝑢𝑊 −H𝑢★|2

≤ 4
2𝜅𝐶4𝑑

𝐶2

(
2|H𝑢★|2 + 2𝜅𝐶4𝜖

𝜅
0
)
𝜖 𝜅0 ≤ 1,

again, for all 𝑛 large enough. For 𝑊 ∈ V, let 𝐽𝑊 be the 𝐿2 projector on the linear space spanned by
the function {(H𝑢𝑊 )𝑖 , 1 ≤ 𝑖 ≤ 𝑑} in 𝐿2 (Ω,R, 𝜈). Note that, since 𝜆min (Σ𝑊 ) ≥ 𝐶2/2, that sub-space
is isomorphic to R𝑑 , and by expressing the calculation in R𝑑 , it easily follows that���ΦT

𝑊Σ−1
𝑊 Φ𝑊 − |𝐽𝑊 𝑓𝑊 |22

��� ≤ 2
𝜆𝐶2

,

where we recall that 𝑓𝑊 = 𝑓 −H0𝑢𝑊 . As a result, for𝑊 ∈ V,���ΦT
𝑊Σ−1

𝑊 Φ𝑊 − | 𝑓𝑊 |22
��� ≤ 2

𝜆𝐶2
+
���|𝐽𝑊 𝑓𝑊 |22 − | 𝑓𝑊 |22

��� = 2
𝜆𝐶2

+
��𝐽𝑊 𝑓𝑊 − 𝑓𝑊

��2
2 ,



22

where the equality uses the fact that for all 𝑢 ∈ 𝐿2 (Ω,R, 𝜈), |𝑢 |22 = |𝐽𝑊𝑢 |22 + |(𝐽𝑊 − 1)𝑢 |22. By the
definition of the projector as closest element, and since 𝑓𝑊 = 𝑓 −H0𝑢𝑊 = (H0𝑢★−H0𝑢𝑊 ) + 𝜃T

★H𝑢★,

��𝐽𝑊 𝑓𝑊 − 𝑓𝑊
��2
2 ≤

��𝜃T
★(H𝑢𝑊 ) − 𝑓𝑊

��2
2 ≤ 2 |H0𝑢★ −H0𝑢𝑊 |22 + 2

��𝜃T
★(H𝑢𝑊 ) − 𝜃T

★(H𝑢★)
��2
2

≤ 𝐶
(
1 + ∥𝜃★∥2

2

)
𝜖2𝜅

0 ,

for some absolute constant 𝐶 that depends only on 𝜅 and 𝐶4. We conclude that for𝑊 ∈ V,

|R (2)
𝑊

| = 𝜆
2

(
| 𝑓 |22 −ΦT

𝑊Σ−1
𝑊 Φ𝑊

)
≤ 2
𝐶2

+𝐶 (1 + ∥𝜃★∥2
2)𝜆𝜖

2𝜅
0 ≤ 1

𝐶2
+
𝐶𝑛𝜖2

0

2𝜎2 ,

where in the ast inequality we have used (2.11). Hence, there exists an absolute constant 𝐶, such that
for all 𝑛 large enough, ∫

V
𝑒R𝑊Π0 (d𝑊) ≥ 𝐶𝑒−

𝐶𝑛𝜖 2
0

2𝜎2 Π0 (V). (A.10)

Lemma A.2 below gives the lower bound

Π0 (V) ≥ 1
2

exp

(
−𝑠0 (u + 2) log(𝑞) − 𝑠0

2
(∥𝑊0∥∞ + 1)2 − 𝑠0 log

(
𝐿𝑠

1/2
0

𝜖0

))
,

which together with assumption (2.8) and the inequality in (A.10) yields∫
V
𝑒R𝑊Π0 (d𝑊) ≥ 𝑐 × exp

(
−𝐶

[
𝑛𝜖2

0

𝜎2 + 𝑠0 (u + 2) log(𝑞)
])
.

From the definition of 𝑠0 in (2.6), we have

𝑠0 (u + 2) log(𝑞) ≤ 6u(𝑠0 − 1) log(𝑞) ≤ 6
𝑛𝜖2

0

𝜎2 ,

which then yields (A.8). The lemma follows from (A.7) and (A.8).

We show here that the prior Π0 has good contraction properties.

Lemma A.2. 1. Given 𝑠, 𝑟 ≥ 0, define

W(𝑠, 𝑟) def
= {𝑊 ∈ R𝑞 : ∥𝑊 ∥0 ≤ 𝑠, and ∥𝑊 ∥∞ ≤ 𝑟} .

If 𝑟 ≥
√︁
(1 + 𝑠) (2 + u) log(𝑞), we have

Π0 (W(𝑠, 𝑟)) ≥ 1 − 4
𝑞u(1+𝑠) .

2. Assume 𝑞 ≥
√

2𝜋. Fix𝑊0 ∈ R𝑞 with sparsity support Λ0. Given 𝑟 > 0, let

V(𝑊0, 𝑟)
def
= {𝑊 ∈ R𝑞 : supp(𝑊) = Λ0, ∥𝑊 −𝑊0∥∞ ≤ 𝑟} .
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Π0 (V(𝑊0, 𝑟)) ≥
1
2

exp
(
−𝑠0 (u + 2) log(𝑞) − 𝑠0

2
(∥𝑊0∥∞ + 𝑟)2 + 𝑠0 log(𝑟))

)
,

where 𝑠0 = ∥𝑊0∥0.

Proof. 1. Let W𝑐 be a short for R𝑞 \𝑊 (𝑠, 𝑟). Let Π̄0 denote the joint of (Λ,𝑊) in the definition of
Π0 (see Section 1.5). Then

Π0 (W𝑐) = Π0 (∥Λ∥0 > 𝑠) +
∑︁

Λ: ∥Λ∥0≤𝑠
Π̄0 (Λ) × Π̄0 (∥Λ ⊙𝑊 ∥∞ > 𝑟 |Λ).

If (Λ,𝑊) ∼ Π̄0, then Λ is an ensemble of iid random variables drawn from the Bernoulli distri-
bution with success probability (1 + 𝑞u+1)−1. Hence

Π0 (∥Λ∥0 > 𝑠) ≤
∑︁
𝑗>𝑠

(
𝑞

𝑗

) (
1

1 + 𝑞u+1

) 𝑗 (
𝑞u+1

1 + 𝑞u+1

)𝑞− 𝑗
≤

∑︁
𝑗>𝑠

(
𝑞

𝑗

) (
1
𝑞u+1

) 𝑗
≤ 2

(
1
𝑞u

)𝑠+1

,

where we use
(𝑞
𝑗

)
≤ 𝑞 𝑗 , and 𝑞u ≥ 2. Given Λ𝑑 = 1, 𝑊𝑑 ∼ N(0,1). Therefore, P( |𝑊𝑑 | > 𝑡) ≤

2𝑒−𝑡
2/2 for all 𝑡 ≥ 0. Hence by union bound, for ∥Λ∥0 ≤ 𝑠, and since 𝑟 ≥

√︁
(1 + 𝑠) (2 + u) log(𝑞),

we obtain

Π0 (∥Λ ⊙𝑊 ∥∞ > 𝑟 | Λ) ≤ 2𝑒−𝑟
2/2+log(𝑠) ≤ 2

𝑞u(1+𝑠) .

We conclude that

Π0 (W𝑐) ≤ 4
𝑞u(1+𝑠) . (A.11)

2. We write V as a short for V(𝑊0, 𝑟). We have

Π0 (V) = Π̄0 (Λ0)Π̄0 (∥Λ ⊙𝑊 −𝑊0∥∞ ≤ 𝑟 |Λ = Λ0).

Since log(1 − 𝑥) ≥ −2𝑥 for all 0 ≤ 𝑥 ≤ 1/2, for 𝑞u ≥ 2/log(2), we have

Π̄0 (Λ0) =
(

1
1 + 𝑞u+1

) ∥Λ0 ∥0
(
1 − 1

1 + 𝑞u+1

)𝑞−∥Λ0 ∥0

=

(
1
𝑞u+1

) ∥Λ0 ∥0

exp

(
𝑞 log

(
1 − 1

1 + 𝑞u+1

))
≥

(
1
𝑞u+1

) ∥Λ0 ∥0

exp

(
− 2𝑞

1 + 𝑞u+1

)
≥ 1

2

(
1
𝑞u+1

) ∥Λ0 ∥0

=
1
2

(
1
𝑞u+1

)𝑠0
.

If𝑈 ∼ N(0,1), and 𝑡 ≥ 0, then for all 𝑎, and 𝑐 ≥ |𝑎 |,

𝑃( |𝑈 − 𝑎 | ≤ 𝑡) ≥ 𝑃(𝑐 ≤𝑈 ≤ 𝑐 + 𝑡) = Φ(𝑐 + 𝑡) −Φ(𝑐) ≥ 𝑒−(𝑐+𝑡 )2/2 𝑡
√

2𝜋
,
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where Φ is the cdf of the standard normal distribution. We use this inequality with 𝑐 = ∥𝑊0∥∞,
and we the assumption 𝑞 ≥

√
2𝜋, we deduce that

Π̄0 (∥Λ ⊙𝑊 −𝑊0∥∞ ≤ 𝑟 |Λ = Λ0) ≥ 1
𝑞𝑠0

exp
(
− 𝑠0

2
(∥𝑊0∥∞ + 𝑟)2 + 𝑠0 log(𝑟)

)
.

Hence

Π̄0 (Λ0) ≥
1
2

(
1
𝑞u+2

)𝑠0
exp

(
− 𝑠0

2
(∥𝑊0∥∞ + 𝑟)2 + 𝑠0 log(𝑟)

)
,

as claimed.

A.2. Ignorability of unsuitable weights

Given integer 𝑠 ≥ 0, 𝜏𝑠
def
=

√︁
(2 + u) (1 + 𝑠) log(𝑞), and a constant 𝐶, we define that

W0 (𝑠,𝐶)
def
=

{
𝑊 ∈ R𝑞 : ∥𝑊 ∥0 ≤ 𝑠, and ∥𝑊 ∥∞ ≤ 𝜏𝑠 , and J (𝑢𝑊 ) ≤

𝐶𝑛𝜖2
0

𝜆𝜎2

}
.

Our next result shows that the prior Π0 puts most of its probability mass on W0 (𝑠,𝐶).

Lemma A.3. Assume H1-H4. Let 𝑠0, 𝜖0,𝑊0 be as in H3. We can find an absolute constant 𝐶 such that
with

𝑠 =𝐶𝑠0, (A.12)

it holds,

E [Π (W0 (𝑠,𝐶) |D)] ≥ 1 −𝐶0𝑒
−

𝑛𝜖 2
0

2𝜎2 ,

for some absolute constant 𝐶0.

Proof. For any measurable set 𝐴 ⊆ R𝑞 , we have

Π(𝐴|D) =

∫
𝐴

exp
(
− 𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★) + R𝑊
)
Π0 (d𝑊)∫

R𝑞
exp

(
− 𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★) + R𝑊
)
Π0 (d𝑊)

.

By Lemma A.1, we can find an absolute constant 𝐶0, such that for all 𝑛 large enough, and with

𝛽
def
=
𝑛𝜖2

0

2𝜎2 ,

E [Π (𝐴|D)] ≤ 2𝑒−𝑛𝜖
2
0 /(2𝜎

2 ) + 𝑒𝐶0𝛽

𝐶0
E

[∫
𝐴

exp

(
− 𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★) + R𝑊
)
Π0 (d𝑊)

]
.
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By Fubini’s theorem, the expectation on the right hand side of the last display is∫
𝐴

𝑒R𝑊E

[
exp

(
− 𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★)
)]

Π0 (d𝑊).

By conditioning on s1:𝑛 we see that the expectation inside the last integral is equal to 1 for all 𝑊 .
Hence,

E [Π (𝐴|D)] ≤ 2𝑒−𝑛𝜖
2
0 /(2𝜎

2 ) + 𝑒
𝐶0𝛽

𝐶0

∫
𝐴

𝑒R𝑊Π0 (d𝑊). (A.13)

By definition, we have R𝑊 = − 1
2 (log det(Σ𝑊 ) − log det(Σ★)) − 𝜆J (𝑢𝑊 )/2. For all𝑊 ∈ R𝑞 , we have

−1
2
(log det(Σ𝑊 ) − log det(Σ★)) ≤

𝑑

2
log

(
𝑛∥Σ★∥op

)
≤ 𝐶1𝛽, (A.14)

where the second inequality uses (2.12). We note also that J (𝑢𝑊 ) ≥ 0. As a result (A.13) becomes

E [Π (𝐴|D)] ≤ 2𝑒−𝑛𝜖
2
0 /(2𝜎

2 ) + 𝑒
𝐶0𝛽

𝐶0

∫
𝐴

𝑒−
𝜆
2 J(𝑢𝑊 )Π0 (d𝑊), (A.15)

for some possibly different absolute constant 𝐶0. We apply this with 𝐴 =W0 (𝐶𝑠0,𝐶)𝑐 = {𝑊 ∈ R𝑞 :
J (𝑢𝑊 ) > 2𝐶𝛽/𝜆} ∪ [W0 (𝑠)𝑐 ∩ {𝑊 ∈ R𝑞 : J (𝑢𝑊 ) ≤ 2𝐶𝛽/𝜆}]. For 𝐶 ≥ 1 +𝐶0,

E [Π (W(𝑠)𝑐 |D)] ≤ 2𝑒−𝑛𝜖
2
0 /(2𝜎

2 ) + 1
𝐶0
𝑒−𝑛𝜖

2
0 /(2𝜎

2 ) + 𝑒
𝐶0𝛽

𝐶0

∫
W(𝑠)𝑐

Π0 (d𝑊),

where W(𝑠) = {𝑊 ∈ R𝑞 : ∥𝑊 ∥0 ≤ 𝑠, and ∥𝑊 ∥∞ ≤ 𝜏𝑠}. Lemma A.2-(1) shows that Π0 (W(𝑠)𝑐) ≤
4exp(−u𝑠 log(𝑞)). As a result, by taking 𝑠 =𝐶𝑠0 with 𝐶 ≥ 𝐶0 + 1, we have

u𝑠 log(𝑞) =𝐶u𝑠0 log(𝑞) ≥
𝐶𝑛𝜖2

0

2𝜎2 ≥
(𝐶0 + 1)𝑛𝜖2

0

2𝜎2 ,

and we conclude that

E [Π (W0 (𝑠)𝑐 |D)] ≤ 2𝑒−𝑛𝜖
2
0 /(2𝜎

2 ) + 1
𝐶0
𝑒−𝑛𝜖

2
0 /(2𝜎

2 ) ≤ 𝐶 × 𝑒−𝑛𝜖 2
0 /(2𝜎

2 ) ,

for some absolute constant 𝐶.

A.3. Deviation bounds

The last ingredient of the proof is a concentration inequality for the empirical process of the log-
likelihood ratio that we derive next. The proof is based on Theorem 5.11 of (12) that we first present.
For any random variable 𝑋 , its 𝜅-Bernstein norm 𝜌𝜅 is defined as:

𝜌𝜅 (𝑋)
def
=

√︄
2𝜅2E

[
𝑒

|𝑋|
𝜅 − 1 − |𝑋 |

𝜅

]
. (A.16)
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We recall that we say a random variable satisfies Bernstein condition with parameter (𝐾, 𝑅) if:

E[|𝑋 |𝑚] ≤ 1
2
𝑚!𝐾𝑚−2𝑅2 ∀ 𝑚 = 2,3, . . .

It is immediate that if a random variable 𝑋 satisfies Bernstein condition with parameters (𝐾, 𝑅) then
𝜌2𝐾 (𝑋) ≤

√
2𝑅. Let 𝑋, 𝑋1:𝑛

𝑖.𝑖.𝑑.∼ 𝑃, P𝑛 their empirical measure. Let G be a collection of real-valued
functions, where 𝑔(𝑋) satisfies the Bernstein condition with parameters (𝐾, 𝑅) for all 𝑔 ∈ G. Let
𝐻𝐵,2𝐾 (𝑢,G, 𝑃) denote the bracketing entropy of G with respect to the pseudo-metric 𝜌2𝐾 .

Theorem A.4 (Theorem 5.11 of (12)). Suppose that 𝑔(𝑋) satisfies the Bernstein condition with pa-
rameters (𝐾, 𝑅) for all 𝑔 ∈ G. Then there exists a universal constant 𝐶 such that for any 𝑎,𝐶0,𝐶1
satisfying:

𝐶0

(
max

{∫ 𝑅

0

√︁
𝐻𝐵,2𝐾 (𝑢,G, 𝑃) 𝑑𝑢, 𝑅

})
≤ 𝑎 ≤ min

{
𝐶1

√
𝑛𝑅2

2𝐾
,8
√
𝑛𝑅

}
(A.17)

and 𝐶2 ≤ 𝐶2
0/(𝐶1 + 1):

P

(
sup
𝑔∈G

��√𝑛(P𝑛 − 𝑃)𝑔�� ≥ 𝑎) ≤ 𝐶𝑒− 𝑎2

𝐶2 (𝐶1+1)𝑅2
.

Given 𝑠 ≥ 0, we recall the definition

W(𝑠) = {𝑊 ∈W : ∥𝑊 ∥0 ≤ 𝑠, ∥𝑊 ∥∞ ≤ 𝜏𝑠} , where 𝜏𝑠 =
√︁
(2 + u) (1 + 𝑠) log(𝑞).

We also recall that

Δ𝑊 (𝑦, s) def
= (𝑦 − 𝑢𝑊 (s))2 , Δ★(𝑦, s)

def
= (𝑦 − 𝑢★(s))2 , (𝑦, s) ∈ R ×Ω.

We use Theorem A.4 to obtain the following.

Lemma A.5. Assume H1-H2. Fix 𝑠 ≥ 1, and let F𝑠 , 𝑉1 = 𝑉1 (𝑠) and 𝑉2 = 𝑉2 (𝑠) ≥ 6𝑏 be as in H2.

There exists an absolute constant 𝑀0 ≥ 1 such that the following holds. For all 𝑀 ≥ 𝑀0, 𝐴𝑀
def
=

𝑀𝑏
√︁
𝑉1 log(𝑉2

√
𝑛), and 𝛿 > 0 such that

2
√

2
√
𝑛

≤ 𝐴𝑀√
𝑛

≤ 𝛿 ≤ 2𝑏,

we have

P

[
sup

𝑊∈W(𝑠): |𝑢𝑊−𝑢★ |2≤ 𝛿

��√𝑛(P𝑛 − P) (Δ𝑊 − Δ★)
�� > 𝐴𝑀𝛿

2

(
1 + 𝜎

𝑏

)]
≤ 𝐶𝑒−

𝐴2
𝑀

𝐶𝑏2 ,

for some absolute constant 𝐶.

Proof. We set

𝑍𝑛 (𝛿)
def
= sup
𝑊∈W(𝑠): |𝑢𝑊−𝑢★ |2≤ 𝛿

��√𝑛(P𝑛 − P) (Δ𝑊 − Δ★)
�� .
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Recall that, by definition of 𝑌 , we have 𝑌𝑖 = 𝑢★(s𝑖) + 𝜎𝜉𝑖 where 𝜉𝑖 ∼N(0,1), (𝜉𝑖 , s𝑖) are independent,
and (𝜉𝑖 , s𝑖) ∼ P. Therefore, we can simplify the difference (Δ𝑊 − Δ★) (𝜉, s) as:

(Δ𝑊 − Δ★) (𝜉, s) = (𝑢★(s) − 𝑢𝑊 (s))2 + 2𝜎𝜉 (𝑢★(s) − 𝑢𝑊 (s)) ,

and consequently, we can write:

𝑍𝑛 (𝛿) ≤ sup
𝑊∈W(𝑠): |𝑢𝑊−𝑢★ |2≤ 𝛿

���√𝑛(P𝑛 − P) (𝑢★(s) − 𝑢𝑊 (s))2
���

+ 2𝜎 sup
𝑊∈W(𝑠): |𝑢𝑊−𝑢★ |2≤ 𝛿

��√𝑛(P𝑛 − P) (𝜉𝑢★(s) − 𝜉𝑢𝑊 (s))
��

= 𝑍𝑛,1 (𝛿) + 2𝜎𝑍𝑛,2 (𝛿) ,

where 𝑍𝑛,1 (𝛿) and 𝑍𝑛,2 (𝛿) can also be written as

𝑍𝑛,1 (𝛿)
def
= sup
ℎ∈H𝛿

����� 1
√
𝑛

𝑛∑︁
𝑖=1

(ℎ(s𝑖) − P(ℎ))
����� , and 𝑍𝑛,2 (𝛿)

def
= sup
𝑓 ∈ F̄𝛿

����� 1
√
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝜉𝑖 , 𝑋𝑖)
����� ,

where H𝛿
def
= { 𝑓 2, 𝑓 ∈ F𝛿}, and where F𝛿 = {𝑢𝑊 − 𝑢★ : 𝑊 ∈ W(𝑠), |𝑢𝑊 − 𝑢★|2 ≤ 𝛿}, and F̄𝛿 =

{(𝜉, 𝑥) ↦→ 𝜉 𝑓 (𝑥), 𝑓 ∈ F𝛿}.

A.3.0.1. (A) Deviation bound for 𝑍𝑛,1 (𝛿). By H2-(1), |ℎ|∞ ≤ 𝑏2 for all ℎ ∈ H𝛿 . There-
fore for 𝑓 ∈ F𝛿 , and 𝑚 ≥ 2, we have:

E[| 𝑓 2 (𝑋) |𝑚] ≤ (𝑏2)𝑚−2E[| 𝑓 2 (𝑋) |2] ≤ (𝑏2)𝑚−2 (𝑏𝛿)2 ≤ 1
2
𝑚!(𝑏2)𝑚−2 (𝑏𝛿)2 .

Therefore the function class H𝛿 satisfies the Bernstein condition with parameter (𝑏2, 𝑏𝛿). The brack-
eting number of H𝛿 satisfies

H𝐵,2𝑏2 (𝑢
√

2,H𝛿 ,P) ≤ logN(𝑢/2𝑏,F𝛿 , 𝐿∞) , (A.18)

for all 0 < 𝑢 < 𝑏2. To see this fix some 𝑢 > 0 and let { 𝑓 𝑗 }1≤ 𝑗≤𝑁 be (𝑢/2𝑏)-cover of F𝛿 with re-
spect to 𝐿∞ norm. Therefore, for any 𝑓 ∈ F𝛿 there exists 1 ≤ 𝑗 ≤ 𝑁 such that ∥ 𝑓 − 𝑓 𝑗 ∥∞ ≤ 𝑢/2𝑏.
Consequently, we have ∥ 𝑓 2 − 𝑓 2

𝑗
∥∞ ≤ 2𝑏(𝑢/2𝑏) = 𝑢. Now consider the collection of brackets {( 𝑓 2

𝑗
−

𝑢/2, 𝑓 2
𝑗
+ 𝑢/2)}1≤ 𝑗≤𝑁 . For this collection we have, 𝜌2

2𝑏2

(
𝑓 2
𝑗
+ 𝑢

2 − 𝑓 2
𝑗
+ 𝑢

2

)
= 𝜌2

2𝑏2 (𝑢) ≤ (
√

2𝑢)2, for

𝑢 ≤ 𝑏2. Hence we have established (A.18).
We can then apply Theorem A.4 with 𝑎 = 𝐴𝑀𝛿/2, 𝑅 = 𝑏𝛿, 𝐾 = 𝑏2, 𝐶1 = 1, 𝐶2

0 = 2𝐶, where 𝐶 is
the absolute constant in Theorem A.4. The condition 𝑎 ≥ 𝐶0𝑅 is satisfied with 𝑀 ≥ 𝑀0 ≥ 2𝐶0. For
𝛿 ≤ 2𝑏, using H2-(4),∫ 𝑏𝛿

0

√︃
H𝐵,2𝑏2 (𝑢,H𝛿 ,P)d𝑢 =

√
2
∫ 𝑏𝛿/

√
2

0

√︃
H𝐵,2𝑏2 (𝑢

√
2,H𝛿 ,P) 𝑑𝑢

≤
√

2
∫ 𝑏𝛿/

√
2

0

√︁
logN(𝑢/2𝑏,F𝛿 , 𝐿∞) 𝑑𝑢
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≤ 2𝑏
√︁

2𝑉1

∫ 𝛿/2
√

2

0

√︄
log

(
𝑉2

𝑢

)
𝑑𝑢

≤ 2𝑏𝛿
√︁
𝑉1

√√√
log

(
2
√

2𝑉2

𝛿

)
≤ 2𝑏𝛿

√︃
𝑉1 log

(
𝑉2

√
𝑛
)
,

where the inequality before last follows from the following fact:∫ 𝑐

0

√︄
log

(
𝐶

𝑢

)
𝑑𝑢 ≤ 2𝑐

√︄
log

(
𝐶

𝑐

)
as soon as log (𝐶/𝑐) ≥ 2 ,

which in our case is implied by 𝑉2 ≥ 6𝑏. The last inequality uses 𝛿 ≥ 2
√

2/
√
𝑛.

Therefore the condition 𝑎 ≥ 𝐶0
∫ 𝑏𝛿

0

√︃
H𝐵,2𝑏2 (𝑢,H𝛿 ,P)d𝑢 is satisfied with 𝑀 ≥ 𝑀0 ≥ 4𝐶0. The

condition 𝑎 ≤ 𝐶1
√
𝑛𝑅2/(2𝐾) boils down to 𝐴𝑀/

√
𝑛 ≤ 𝛿, whereas the condition 𝑎 ≤ 8𝑅

√
𝑛 boils down

to 𝐴𝑀/
√
𝑛 ≤ 16𝑏 which holds by assumption. Hence by Theorem A.4,

P

(
𝑍𝑛,1 (𝛿) >

𝐴𝑀𝛿

2

)
≤ 𝐶𝑒−

𝐴2
𝑀

𝐶𝑏2 ,

for some absolute constant 𝐶.

A.3.0.2. (B) Deviation bound for 𝑍𝑛,2 (𝛿). The argument is similar. Note that, for any
𝑢𝑊 − 𝑢★ ∈ F𝛿 , |𝑢𝑊 − 𝑢★|2 ≤ 𝛿, and since the function 𝑢𝑊 − 𝑢★ are bounded by 𝑏 as assumed in H2,
we have:

E[|𝜉 𝑓 (𝑋) |𝑚] = E[|𝜉 |𝑚]E[|𝑢𝑊 (𝑋) − 𝑢★(𝑋) |𝑚]

≤ E[|𝜉 |𝑚]𝑏𝑚−2𝛿2

≤ 1
2
𝑚!𝑏𝑚−2𝛿2 ,

where the last inequality follows from the centered absolute moment of Gaussian random variables.
Therefore, all 𝑓 ∈ F̄𝛿 satisfies the Bernstein condition with parameters (𝑏, 𝛿).

The bracketing entropy satisfies,

H𝐵,2𝑏 (𝑢
√

2, F̄𝛿 ,P) ≤ logN(𝑢/2,F𝛿 , 𝐿∞) 0 < 𝑢 ≤ 𝛿 . (A.19)

To establish (A.19), fix 𝑢 ∈ (0, 𝑏], and let { 𝑓1, . . . , 𝑓𝑁 } be a 𝑢/2 cover of F𝛿 with respect to 𝐿∞ norm,
i.e.

sup
𝑓 ∈F𝛿

min
1≤ 𝑗≤𝑁

∥ 𝑓 − 𝑓 𝑗 ∥∞ ≤ 𝑢

2
.

Now consider the brackets {(𝜉, 𝑥) ↦→ (𝜉 𝑓 𝑗 (𝑥) − 𝑢 |𝜉 |/2, 𝜉 𝑓 𝑗 (𝑥) + 𝑢 |𝜉 |/2), 1 ≤ 𝑗 ≤ 𝑁}. For any 𝑓 , there
exists 𝑓 𝑗 such that ∥ 𝑓 − 𝑓 𝑗 ∥∞ ≤ 𝑢/2 due to the property of the covering set, and it follows that

𝜉 𝑓 𝑗 (𝑥) −
𝑢 |𝜉 |

2
≤ 𝜉 𝑓 (𝑥) ≤ 𝜉 𝑓 𝑗 (𝑥) +

𝑢 |𝜉 |
2

∀ 𝑥 .
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Furthermore, for any 1 ≤ 𝑗 ≤ 𝑁 , since E( |𝑢𝜉 |𝑚) ≤ 𝑢𝑚𝑚!/2 ≤ 𝑏𝑚−2𝑢2𝑚!/2,

𝜌2
2𝑏

(
𝜉 𝑓 𝑗 (𝑥) + 𝑢 |𝜉 |/2 − 𝜉 𝑓 𝑗 (𝑥) + 𝑢 |𝜉 |/2

)
= 𝜌2

2𝑏 (𝑢 |𝜉 |) ≤ (
√

2𝑢)2,

which implies (A.19).
Hence we can apply Theorem A.4 with 𝑎 = 𝐴𝑀𝛿/2𝑏, 𝑅 = 𝛿, 𝐾 = 𝑏, 𝐶1 = 1, 𝐶2

0 = 2𝐶, where 𝐶 is
the absolute constant in Theorem A.4. All the conditions of Theorem A.4 can be checked as we did in
bounding 𝑍𝑛,1 (𝛿). We conclude that

P

(
𝑍𝑛,2 (𝛿) >

𝐴𝑀𝛿

2𝑏

)
≤ 𝐶𝑒−

𝐴2
𝑀

𝐶𝑏2 ,

for some absolute constant 𝐶. Combining the two bounds, we get

P

(
𝑍𝑛 (𝛿) >

𝐴𝑀𝛿

2

(
1 + 𝜎

𝑏

))
≤ 𝐶𝑒−

𝐴2
𝑀

𝐶𝑏2 ,

for some absolute constant 𝐶, which implies the stated result.

A.4. Finishing the proof

Proof. Let 𝑠0, 𝜖0, and𝑊0 be as in H3. Let 𝑠 =𝐶𝑠0 as in (A.12). We set 𝜏𝑠 =
√︁
(2 + u) (1 + 𝑠) log(𝑞),

W0 (𝑠)
def
=

{
𝑊 ∈ R𝑞 : ∥𝑊 ∥0 ≤ 𝑠, ∥𝑊 ∥∞ ≤ 𝜏𝑠 , J (𝑢𝑊 ) ≤

𝐶𝑛𝜖2
0

𝜆𝜎2

}
.

We set r
def
= 2𝑀0 (𝑏 + 𝜎)

√︁
𝑉1 log(𝑉2

√
𝑛)/𝑛, where 𝑀0 is as in Lemma A.5. For 𝑗 ≥ 1, we set 𝐴 𝑗

def
=

𝑏𝑀0 𝑗
√︁
𝑉1 log(𝑉2

√
𝑛), r 𝑗

def
= 𝑗 r. With 𝐶 as in Lemma A.1, we set

𝛽
def
=
𝐶

𝜎2 𝑛𝜖
2
0 ,

and define

E def
=

{
D :

∫
R𝑞

exp

(
− 𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★) + R𝑊
)
Π0 (d𝑊) ≤ 𝐶𝑒−𝛽 , or

sup
𝑊∈W(𝑠): r 𝑗< |𝑢𝑊−𝑢★ |2≤r 𝑗+1

��√𝑛(P𝑛 − P) (Δ𝑊 − Δ★)
�� > 𝐴 𝑗+1r 𝑗+1

2

(
1 + 𝜎

𝑏

)
for some 𝑗 ≥ 1

}
.

By Lemma A.1 and Lemma A.5, and for all 𝑛 large enough

P(D ∈ E) ≤ 2𝑒−𝑛𝜖
2
0 /(2𝜎

2 ) +𝐶
∑︁
𝑗≥1

𝑒
−𝐴2

𝑗
/(𝐶𝑏2 ) ≤ 2𝑒−𝑛𝜖

2
0 /(2𝜎

2 ) +𝐶𝑒−𝑉1 log(𝑉2
√
𝑛)/𝐶 , (A.20)

for some absolute constant 𝐶.
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We set 𝐵 def
= {𝑊 ∈ R𝑞 : |𝑢𝑊 − 𝑢★|2 > r}. We can write 𝐵 ∩W(𝑠) as ∪ 𝑗≥1𝐵 𝑗 , where

𝐵 𝑗
def
= {𝑊 ∈W(𝑠) : 𝑀 𝑗 r < |𝑢𝑊 − 𝑢★|2 ≤ 𝑀 ( 𝑗 + 1)r} .

We should point out that the union ∪ 𝑗≥1𝐵 𝑗 is over a finite number of terms since 𝐵 𝑗 = ∅ for 𝑀 𝑗 r ≥ 𝑏.
Since Π(𝐵|D) ≤ Π(W0 (𝑠)𝑐 |D) + 1E (D) + 1E𝑐 (D)Π(𝐵 ∩W0 (𝑠) |D), taking expectation on both
sides, and using Lemma A.3, the definition of E and (A.20), yields for all 𝑛 large enough,

E [Π(𝐵|D)] ≤ 𝐶𝑒−𝑛𝜖 2
0 /(2𝜎

2 ) +𝐶𝑒−𝑉1 log(𝑉2
√
𝑛)/𝐶

+ 𝑒
𝛽

𝐶

∑︁
𝑗≥1

E

[
1E𝑐 (D)

∫
𝐵 𝑗

exp

(
− 𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★) + R𝑊
)
Π0 (d𝑊)

]
,

for some absolute constant 𝐶. We have

𝑛

2𝜎2 P𝑛 (Δ𝑊 − Δ★) + R𝑊 = − 𝑛

2𝜎2 𝜚(𝑢𝑊 , 𝑢★) − 𝑛

2𝜎2 (P𝑛 − P) (Δ𝑊 − Δ★) + R′
𝑊 ,

where

R′
𝑊 = −1

2
(log detΣ★ − log detΣ𝑊 ) ,

and satisfies, as we show in the proof of Lemma A.3��R′
𝑊

�� ≤ 𝑑

2
log

(
𝑛∥Σ★∥op

𝜎2

)
≤ 𝐶0 log(𝑞),

where the second inequality is our assumption (2.12). Hence, we can find an absolute constant 𝐶 such
that for all 𝑛 large enough

E [Π(𝐵 |D)] ≤ 𝐶𝑒−𝑛𝜖 2
0 /(2𝜎

2 ) +𝐶𝑒−𝑉1 log(𝑉2
√
𝑛)/𝐶

+ 𝑒
𝛽

𝐶

∑︁
𝑗≥1

E

[
1E𝑐 (D)

∫
𝐵 𝑗

exp

(
− 𝑛

2𝜎2 𝜚(𝑢𝑊 , 𝑢★) −
𝑛

2𝜎2 (P𝑛 − P) (Δ𝑊 − Δ★)
)
Π0 (d𝑊)

]
. (A.21)

For 𝑊 ∈ 𝐵 𝑗 , and D ∉ E, the expression inside the exponential in the last display is bounded from
above by

−
𝑛r2
𝑗

2𝜎2 +
√
𝑛𝐴 𝑗+1r 𝑗+1

2𝜎2

(
1 + 𝜎

𝑏

)
≤ −

𝑛r2
𝑗

4𝜎2 ,

with the choice of r. Since ∑︁
𝑗≥1

𝑒
−

𝑛r2
𝑗

4𝜎2 ≤ 𝐶𝑒−
𝑛r2

4𝜎2 ,

for some absolute constant 𝐶, we conclude that for all 𝑛 large enough,

E [Π(𝐵 |D)] ≤ 𝐶
(
𝑒−𝑛𝜖

2
0 /(2𝜎

2 ) + 𝑒−𝑉1 log(𝑉2
√
𝑛)/𝐶 + 𝑒−𝑛r2/(4𝜎2 )

)
.

Hence the theorem.
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A.5. Proof of Theorem 3.1

Proof. First, a simple coupling argument shows that

W2
2 (Π

(𝜃 ) ,Π (𝜃 )
★ ) ≤

∫
R𝑞

W2
2

(
N(𝜃𝑊 ,

1
𝜆
Σ−1
𝑊 ), N(𝜃★,

1
𝜆
Σ−1
★ )

)
Π (𝑊 ) (d𝑊 |D). (A.22)

We recall (see e.g. (5)) that for symmetric and positive definite matrices Λ1,Λ2,

W2
2 (N(𝜇1,Λ1),N(𝜇2,Λ2)) = ∥𝜇2 − 𝜇1∥2

2 + Tr

(
Λ1 +Λ2 − 2

(
Λ

1/2
1 Λ2Λ

1/2
1

)1/2
)

≤ ∥𝜇2 − 𝜇1∥2
2 + ∥Λ1/2

1 −Λ
1/2
2 ∥2

F,

where the inequality follows from Theorem 1 of ((5)). By the Hemmen-Ando inequality ((1) Proposi-
tion 2.1),

∥Λ1/2
1 −Λ

1/2
2 ∥F ≤ ∥Λ1 −Λ2∥F√︁

𝜆min (Λ1) +
√︁
𝜆min (Λ2)

.

Hence

W2
2 (N(𝜇1,Λ1),N(𝜇2,Λ2)) ≤ ∥𝜇2 − 𝜇1∥2

2 +
∥Λ1 −Λ2∥2

F(√︁
𝜆min (Λ1) +

√︁
𝜆min (Λ2)

)2 . (A.23)

We apply this bound, to conclude that there exists a constant 𝑐 (that we can take as 𝑑/𝜆max (Σ★) such
that for all𝑊 ∈ R𝑞 ,

W2
2

(
N(𝜃𝑊 ,

1
𝜆
Σ−1
𝑊 ), N(𝜃★,

1
𝜆
Σ−1
★ )

)
≤ ∥𝜃𝑊 − 𝜃★∥2

2 +
𝑐

𝜆
∥Σ−1
𝑊 − Σ−1

★ ∥2
op.

We consider the integrand of (A.22) under two scenarios.

A.5.0.1. Case 1: 𝑊 is such that |𝑢𝑊 − 𝑢★|2 ≤ 𝑀r. By (A.9), and for 𝑊 such that |𝑢𝑊 −
𝑢★|2 ≤ 𝑀r, for some absolute onstant 𝐶 we have

∥Σ𝑊 − Σ★∥op ≤ 𝐶 (|H𝑢★|2 + (𝑀r)𝜅 ) (𝑀r)𝜅 ,

for all 𝑛 large enough. So, since 𝜆min (Σ★) > 𝐶2, we conclude that for all such 𝑊 under consideration,
and for all 𝑛 large enough, 𝜆min (Σ𝑊 ) > 𝐶2/2.

For all𝑊 ,

(𝜃𝑊 − 𝜃★)TH1𝑢𝑊 = 𝜃T
𝑊H1𝑢𝑊 − 𝜃T

★H1𝑢★ − 𝜃T
★(H1𝑢𝑊 −H1𝑢★)

= 𝜃T
𝑊H1𝑢𝑊 −H0𝑢𝑊 − 𝑓 + (H0𝑢𝑊 −H0𝑢★) − 𝜃T

★(H1𝑢𝑊 −H1𝑢★).

Therefore

| (𝜃𝑊 − 𝜃★)TH1𝑢𝑊 |22 ≤ 2| 𝑓 −H0𝑢𝑊 − 𝜃T
𝑊H1𝑢𝑊 |22 + 𝑐 × |H𝑢𝑊 −H𝑢★|22.
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Since 𝜃𝑊 minimizes 𝜃 ↦→ | 𝑓 −H0𝑢𝑊 − 𝜃TH1𝑢𝑊 |2 + ∥𝜃∥2
2/𝜆, we have

| 𝑓 −H0𝑢𝑊 − 𝜃T
𝑊H1𝑢𝑊 |22 ≤ | 𝑓 −H0𝑢𝑊 − 𝜃T

★H1𝑢𝑊 |22 +
∥𝜃★∥2

2
𝜆

≤ 𝑐 × |H𝑢𝑊 −H𝑢★|22 +
∥𝜃★∥2

2
𝜆

.

Using the above, and H4, we conclude that we can find a constant 𝑐 such that for 𝑊 such that |𝑢𝑊 −
𝑢★|2 ≤ 𝑀r, it holds

| (𝜃𝑊 − 𝜃★)TH1𝑢𝑊 |22 ≤ 𝑐r
2𝜅 .

However, | (𝜃𝑊 − 𝜃★)TH1𝑢𝑊 |22 = (𝜃𝑊 − 𝜃★)T (Σ𝑊 − (1/𝜆)1𝑑) (𝜃𝑊 − 𝜃★). And since 𝜆min (Σ𝑊 ) > 𝐶/2
as seen above, and since 𝜆→∞, as 𝑛→∞, for all 𝑛 large enough we have

| (𝜃𝑊 − 𝜃★)TH1𝑢𝑊 |22 ≥ 𝐶∥𝜃𝑊 − 𝜃★∥2
2,

for some absolute constant 𝐶. In conclusion, for 𝑊 such that |𝑢𝑊 − 𝑢★|2 ≤ 𝑀r, and for all 𝑛 large
enough,

∥𝜃𝑊 − 𝜃★∥2
2 ≤ 𝑐r

2𝜅 ,

and

W2
2

(
N(𝜃𝑊 ,

1
𝜆
Σ−1
𝑊 ), N(𝜃★,

1
𝜆
Σ−1
★ )

)
≤ 𝑐r2𝜅 .

A.5.0.2. Case 2: 𝑊 is such that |𝑢𝑊 − 𝑢★|2 > 𝑀r𝑛. Since the smallest eigenvalue of Σ𝑊
is at least 1/𝜆, there exists a constant 𝑐 such that for all𝑊 ∈ R𝑞 , we have

∥Σ−1
𝑊 − Σ−1

★ ∥op ≤ 𝑐𝜆.

Similarly,

∥𝜃𝑊 − 𝜃★∥2 ≤ ∥𝜃𝑊 ∥2 + ∥𝜃★∥2,

and

∥𝜃𝑊 ∥2
2 = 𝜃

T
𝑊Σ

1/2
𝑊

Σ−1
𝑊 Σ

1/2
𝑊
𝜃𝑊 ≤ 𝜆𝜃T

𝑊Σ𝑊𝜃𝑊 = 𝜆ΦT
𝑊Σ−1

𝑊 Φ𝑊 ≤ 𝜆 | 𝑓𝑊 |22 ≤ 2𝜆( | 𝑓 |22 + |H0𝑢𝑊 |22).

We deduce that for all𝑊 such that |𝑢𝑊 − 𝑢★|2 > 𝑀r, we have

W2
2

(
N(𝜃𝑊 ,

𝜎2

𝜆
Σ−1
𝑊 ), N(𝜃★,

𝜎2

𝜆
Σ−1
★ )

)
≤ 𝑐𝜆

(
1 + |H0𝑢𝑊 |22

)
,

for some constant 𝑐. Given the behaviors of the W2 distance between N(𝜃𝑊 , 1𝜆Σ
−1
𝑊
) and N(𝜃★, 1

𝜆
Σ−1
★ )

obtained in the cases above, we return to (A.22) to write

W2
2 (Π

(𝜃 ) ,Π (𝜃 )
★ ) ≤ 𝑐r2𝜅 + 𝑐𝜆

∫
R𝑞

(
1 + |H0𝑢𝑊 |22

)
1{ |𝑢𝑊−𝑢★ |2>𝑀r𝑛 }Π

(𝑊 ) (d𝑊 |D).

Taking the expectation on both sides and with a similar argument as in the proof of Theorem 2.2 yields

E
[
W2

2 (Π
(𝜃 ) ,Π (𝜃 )

★ )
]
≤ 𝑐

(
r2𝜅 + 𝜆𝑒−𝑛𝜖 2

0 /(2𝜎
2 ) + 𝜆𝑒−𝑉1 log(𝑉2

√
𝑛)/𝐶

)
,
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which is the stated bound.

A.6. Proof of Theorem 2.4

Proof. The result is based on a generalization of Markov’s polynomial inequality due to (14) Theorem
1. The result shows that differential operators are bounded operators when restricted to polynomials,
and an upper on their norms is given.

Let 𝑋,𝑌 be a real Banach space with norms ∥ · ∥𝑋, and ∥ · ∥𝑌 respectively. A function 𝑃 : 𝑋 → 𝑌

is a homogeneous polynomial of degree 𝑑 ≥ 0 if 𝑃(𝑥) = 𝐿 (𝑥, · · · , 𝑥), where 𝐿 is a linear symmetric
map from 𝑋 × · · · × 𝑋︸        ︷︷        ︸

𝑑 times

to 𝑌 (for 𝑑 = 0, these are constant functions on 𝑋). A function 𝑃 : 𝑋 → 𝑌 is

a polynomial of degree 𝑑 is 𝑃 =
∑𝑑
𝑗=0 𝑃 𝑗 , where 𝑃 𝑗 is a homogeneous polynomial of degree 𝑗 . We

let ℘𝑑 (𝑋,𝑌 ) be the set of all polynomials 𝑃 : 𝑋 → 𝑌 with degree at most 𝑑. When 𝑌 = R, we write
℘𝑑 (𝑋). If 𝑓 : 𝑋 → 𝑌 has Frechet derivatives to order 𝑘 we write ∇(𝑘 ) 𝑓 (𝑥) to denote its 𝑘-th order

Frechet derivative, and for 𝑧 ∈ 𝑋 , ∇(𝑘 ) 𝑓 (𝑥) · 𝑧𝑘 def
= ∇(𝑘 ) 𝑓 (𝑥) (𝑧, . . . , 𝑧). Furthermore, we set

∥∇(𝑘 ) 𝑓 (𝑥)∥ def
= sup
𝑧∈𝑋: ∥𝑧 ∥𝑋≤1

∥∇(𝑘 ) 𝑓 (𝑥) (𝑧, . . . , 𝑧)∥𝑌 .

Let 𝑇𝑑 (𝑡) = cos(𝑑 arccos(𝑡)), 𝑡 ∈ [−1,1] denote the Chebyshev polynomial of degree 𝑑, and 𝑇 ( 𝑗 )
𝑑

(𝑡)
its 𝑗-th order derivative. The following lemma is due to (14) Theorem 1.

Lemma A.6. For 𝑃 ∈ ℘𝑑 (R𝑚), and 𝑘 ≥ 1, let 𝑃 (𝑘 ) denote the 𝑘-th order derivative of 𝑃. We have

sup
𝑥: ∥𝑥 ∥2≤1

∥𝑃 (𝑘 ) (𝑥)∥ ≤ 𝑇 (𝑘 )
𝑑

(1) × sup
𝑥: ∥𝑥 ∥2≤1

|𝑃(𝑥) |,

where ∥𝑃 (𝑘 ) (𝑥)∥ def
= sup𝑦:∥𝑦 ∥2≤1 |𝑃 (𝑘 ) (𝑥) (𝑦, . . . , 𝑦) |.

We turn to the proof of Theorem 2.4. Let 𝛼 = �̄� as defined in the statement of the theorem, and fix
𝑥0 ∈ int𝛼 (Ω). The function 𝑢 has derivatives to the order ⌊𝛽⌋ at 𝑥0. By Taylor approximation we have,

for all 𝑧 ∈ R𝑚, with ∥𝑧∥2 ≤ 1, setting 𝑟 def
= ⌊𝛽⌋ − 1,

𝑢(𝑥0 + 𝛼𝑧) =

𝑢(𝑥0) + 𝛼∇𝑢(𝑥0) · 𝑧 + · · · + 𝛼
𝑟

𝑟!
∇(𝑟 )𝑢(𝑥0) · 𝑧𝑟 +

𝛼⌊𝛽⌋

𝑟!

∫ 1

0
(1 − 𝑡)𝑟∇( ⌊𝛽⌋ )𝑢 (𝑥0 + 𝛼𝑡𝑧) · 𝑧⌊𝛽⌋d𝑡

= 𝑢(𝑥0) + 𝛼∇𝑢(𝑥0) · 𝑧 + · · · + 𝛼
⌊𝛽⌋

⌊𝛽⌋!∇
( ⌊𝛽⌋ )𝑢(𝑥0) · 𝑧⌊𝛽⌋ + 𝑅𝑢 (𝑧),

where, using the fact that 𝑢 ∈ C𝛽 (Ω, 𝑀), the remainder satisfies

|𝑅𝑢 (𝑧) | =
𝛼⌊𝛽⌋

𝑟!

����∫ 1

0
(1 − 𝑡)𝑟

(
∇( ⌊𝛽⌋ )𝑢 (𝑥0 + 𝛼𝑡𝑧) − ∇( ⌊𝛽⌋ )𝑢(𝑥0)

)
· 𝑧⌊𝛽⌋d𝑡

����
≤ 𝛼⌊𝛽⌋

𝑟!

∫ 1

0
(1 − 𝑡)𝑟𝑀 (𝛼𝑡)𝛽−⌊𝛽⌋ ∥𝑧∥𝛽−⌊𝛽⌋2 ∥𝑧∥ ⌊𝛽⌋∞ d𝑡 ≤ 𝑀𝛼𝛽

⌊𝛽⌋! .
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A similar expansion holds for �̃�. And since 𝑥0 + 𝛼𝑧 ∈ Ω, we have |𝑢(𝑥0 + 𝛼𝑧) − �̃�(𝑥0 + 𝛼𝑧) | ≤ 𝜀.
Therefore, setting

𝑃(𝑧) def
= 𝑢(𝑥0) − �̃�(𝑥0) + 𝛼(∇𝑢(𝑥0) − ∇�̃�(𝑥0)) · 𝑧

+ · · · + 𝛼
⌊𝛽⌋

⌊𝛽⌋!

(
∇( ⌊𝛽⌋ )𝑢(𝑥0) − ∇( ⌊𝛽⌋ ) �̃�(𝑥0)

)
· 𝑧⌊𝛽⌋ ,

we conclude that

sup
𝑧∈R𝑚: ∥𝑧 ∥2≤1

|𝑃(𝑧) | ≤ 𝜀 + 2𝑀𝛼𝛽

⌊𝛽⌋! (A.24)

We note that the function 𝑧 ↦→ 𝑃(𝑧) is infinitely differentiable polynomial of degree ⌊𝛽⌋ on R𝑚, and
for 0 ≤ 𝜏 ≤ ⌊𝛽⌋, and 𝑦 ∈ R𝑚,

∇(𝜏 )𝑃(𝑧) · 𝑦𝜏 =
⌊𝛽⌋∑︁
𝑗=𝜏

𝛼 𝑗

( 𝑗 − 𝜏)!

(
∇𝑢 ( 𝑗 ) (𝑥0) − ∇�̃� ( 𝑗 ) (𝑥0)

)
·
(
𝑧 𝑗−𝜏 , 𝑦𝜏

)
. (A.25)

On the other hand, the function 𝑥 ↦→ ∇(𝜏 )𝑢(𝑥) : Ω ↦→ L(R𝑚 × · · · ×R𝑚;R) has derivatives to order
⌊𝛽⌋ −𝜏 and (∇( 𝑗 )∇(𝜏 )𝑢(𝑥0) · 𝑦 𝑗 ) ·𝑥𝜏 = ∇(𝜏+ 𝑗 )𝑢(𝑥0) · (𝑦 𝑗 , 𝑥𝜏). Setting 𝑘 = ⌊𝛽⌋ −𝜏, its Taylor expansion
at 𝑥0 yields

∇(𝜏 )𝑢(𝑥0 + 𝛼𝑧) = ∇(𝜏 )𝑢(𝑥0) + 𝛼∇(𝜏+1)𝑢(𝑥0) · 𝑧 + · · · + 𝛼
𝑘

𝑘!
∇( ⌊𝛽⌋ )𝑢(𝑥0) · 𝑧𝑘︸                                                                      ︷︷                                                                      ︸

𝑄 (𝑧)

+𝑅′ (𝑧),

and

∇(𝜏 ) �̃�(𝑥0 + 𝛼𝑧) = ∇(𝜏 ) �̃�(𝑥0) + 𝛼∇(𝑠+1) �̃�(𝑥0) · 𝑧 + · · · + 𝛼
𝑘

𝑘!
∇( ⌊𝛽⌋ ) �̃�(𝑥0) · 𝑧𝑘︸                                                                      ︷︷                                                                      ︸

�̃� (𝑧)

+�̃�′ (𝑧).

Using the same calculations as above, we check that the remainders 𝑅′ and �̃�′ satisfy

sup
𝑧∈R𝑑 : ∥𝑧 ∥2≤1

∥𝑅′ (𝑧)∥ + ∥ �̃�′ (𝑧)∥ ≤ 2𝑀𝛼𝛽−𝜏

(⌊𝛽⌋ − 𝜏)! .

Using the last display, and noting that 𝛼𝜏 (𝑄(𝑧) − �̃�(𝑧)) = ∇(𝜏 )𝑃(𝑧) given in (A.25), it follows that for
all 𝑧 in the unit ball,

∥∇(𝜏 )𝑢(𝑥0 + 𝛼𝑧) − ∇(𝜏 ) �̃�(𝑥0 + 𝛼𝑧)∥ ≤
1
𝛼𝜏

∥∇(𝜏 )𝑃(𝑧)∥ + 2𝑀𝛼𝛽−𝜏

(⌊𝛽⌋ − 𝜏)! .

Therefore, by Markov’s polynomial inequality (Lemma A.6), for all 𝑧 in the unit ball
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∥∇(𝜏 )𝑢(𝑥0 + 𝛼𝑧) − ∇(𝜏 ) �̃�(𝑥0 + 𝛼𝑧)∥ ≤
𝑇
(𝜏 )
⌊𝛽⌋ (1)
𝛼𝜏

(
𝜀 + 2𝑀𝛼𝛽

⌊𝛽⌋!

)
+ 2𝑀𝛼𝛽−𝜏

(⌊𝛽⌋ − 𝜏)!

=
𝐴

𝛼𝜏
+ 𝐵𝛼𝛽−𝜏 ,

where

𝐴 = 𝜀𝑇
(𝜏 )
⌊𝛽⌋ (1), 𝐵 =

2𝑀 ×𝑇 (𝜏 )
⌊𝛽⌋ (1)

⌊𝛽⌋! + 2𝑀
(⌊𝛽⌋ − 𝜏)! .

With the choice

𝛼 =

(
𝜏𝐴

(𝛽 − 𝜏)𝐵

)1/𝛽
≤

(
𝜏𝜀⌊𝛽⌋!

2𝑀 (𝛽 − 𝜏)

)1/𝛽
,

we get

∥∇(𝜏 )𝑢(𝑥0) − ∇(𝜏 ) �̃�(𝑥0)∥ ≤ 𝐶𝑀
𝜏
𝛽 𝜀

𝛽−𝜏
𝛽 ,

for some constant 𝐶 that depends only on 𝜏 and 𝛽. In fact, 𝐶 can be taken as

𝐶 =
𝛽𝑇

(𝜏 )
⌊𝛽⌋ (1)
𝛽 − 𝜏

(
𝛽 − 𝜏
𝜏

) 𝜏/𝛽
≤ 𝛽

𝜏
𝑇
(𝜏 )
⌊𝛽⌋ (1).

A.7. Proof of Theorem 2.3

We start with a lemma that establishes that the covering number of Γ(Θ) grows polynomially near 0,
which consequently implies that Γ(Θ) has a finite VC dimension. This effectively proves that Γ(Θ) is
a finite-dimensional subset of C𝛽 (Ω), serving as a cornerstone of our main theorem.

Lemma A.7. Given any 𝜖 > 0, we have:

N (𝜖,Γ(Θ), 𝐿∞) ≤ 𝐶
( 𝑐
𝜖

)𝑑
,

for some constants 𝐶, 𝑐 > 0.

Proof. Recall that Θ is a compact subset of R𝑑 , which implies vol(Θ) <∞. Therefore, from the stan-
dard covering number calculation, we have:

N(𝜖,Θ, 𝐿2) ≤
vol(Θ)
vol(𝐵)

(
3
𝜖

)𝑑
≜𝐶

(
3
𝜖

)𝑑
,

where 𝐵 is the unit ball (centered at the origin) in R𝑑 (e.g., see Theorem 14.2 of Yihong Wu’s lecture
notes, ECE598, Spring 2016). We next claim that:

N (𝜖,Γ(Θ), 𝐿∞) ≤ N (𝜖/𝐿,Θ, 𝐿2) .
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which will complete the proof. To show this, suppose {𝜃1, . . . , 𝜃𝑛} are the center of (𝜖/𝐿)-covers of
Θ, i.e.

sup
𝜃∈Θ

min
1≤ 𝑗≤𝑛

∥𝜃 𝑗 − 𝜃∥2 ≤ 𝜖/𝐿 .

where 𝑛 =N(𝜖/𝐿,Θ, 𝐿2). Now consider the images corresponding to these 𝜃’s, meaning, {𝛾1, . . . , 𝛾𝑛}
where 𝛾𝑖 = Γ(𝜃𝑖). Then we have:

sup
𝜃∈Θ

min
1≤ 𝑗≤𝑛

∥Γ(𝜃 𝑗 ) − Γ(𝜃)∥∞ ≤ 𝐿 sup
𝜃∈Θ

min
1≤ 𝑗≤𝑛

∥𝜃 𝑗 − 𝜃∥2 ≤ 𝐿 (𝜖/𝐿) = 𝜖 .

Hence, the proof of the lemma is complete with 𝑐 = 3𝐿.

Proof of Theorem 2.3. We use the standard rate theorem (e.g., see 3.2.5 of (35)) to establish the con-
vergence rate of |�̂� − 𝑢★|22. Define, for simplicity, 𝑀 (𝑢) = E[(𝑌 − 𝑢(s))2] and 𝑀𝑛 (𝑢) = (1/𝑛)∑𝑖 (𝑌𝑖 −
𝑢(s𝑖))2. Therefore, from (2.14) we have �̂� is the minimizer of 𝑀𝑛 (𝑢) over Γ(Θ). Furthermore, we have:

𝑀 (𝑢) −𝑀 (𝑢★) = |𝑢 − 𝑢★|22 .

To establish the rate of convergence, we need to find the modulus of continuity function 𝜙𝑛 (𝛿) that
satisfies:

E

[
sup

|𝑢−𝑢★ |2≤ 𝛿
| (𝑀𝑛 (𝑢) −𝑀 (𝑢)) − (𝑀𝑛 (𝑢★) −𝑀 (𝑢★)) |

]
≤ 𝜙𝑛 (𝛿)√

𝑛
.

Let 𝜉𝑖
def
= (𝑌𝑖 − 𝑢★(s𝑖))/𝜎. Some simple algebra yields:

| (𝑀𝑛 (𝑢) −𝑀 (𝑢)) − (𝑀𝑛 (𝑢★) −𝑀 (𝑢★)) |

=

���(P𝑛 − P) (𝑢(s) − 𝑢★(s))2 + 𝜎(P𝑛 − P)𝜉 (𝑢(s) − 𝑢★(s))
���

≤
���(P𝑛 − P) (𝑢(s) − 𝑢★(s))2

��� + 𝜎 | (P𝑛 − P)𝜉 (𝑢(s) − 𝑢★(s)) |

Therefore, by symmetrization we have (using (𝜂1, . . . , 𝜂𝑛) i.i.d Rademacher random variables):

E

[
sup

|𝑢−𝑢★ |2≤ 𝛿
| (𝑀𝑛 (𝑢) −𝑀 (𝑢)) − (𝑀𝑛 (𝑢★) −𝑀 (𝑢★)) |

]
≤ E

[
sup

|𝑢−𝑢★ |2≤ 𝛿

���(P𝑛 − P) (𝑢(s) − 𝑢★(s))2
���] + 𝜎E [

sup
|𝑢−𝑢★ |2≤ 𝛿

| (P𝑛 − P)𝜉 (𝑢(s) − 𝑢★(s)) |
]

≤ 2E

[
sup

|𝑢−𝑢★ |2≤ 𝛿

�����1𝑛 ∑︁
𝑖

𝜂𝑖 (𝑢(s𝑖) − 𝑢★(s𝑖))2

�����
]
+ 𝜎E

[
sup

|𝑢−𝑢★ |2≤ 𝛿

�����1𝑛 ∑︁
𝑖

𝜉𝑖 (𝑢(s𝑖) − 𝑢★(s𝑖))
�����
]

≤ 2𝐵E

[
sup

|𝑢−𝑢★ |2≤ 𝛿

�����1𝑛 ∑︁
𝑖

𝜂𝑖 (𝑢(s𝑖) − 𝑢★(s𝑖))
�����
]
+ 𝜎E

[
sup

|𝑢−𝑢★ |2≤ 𝛿

�����1𝑛 ∑︁
𝑖

𝜉𝑖 (𝑢(s𝑖) − 𝑢★(s𝑖))
�����
]

≤ 𝐶1
©«𝛿

√︄
𝑑

𝑛
log

(
𝐶2

𝛿

)
+ 𝑑
𝑛

log
(
𝐶2

𝛿

)ª®¬
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Here, in the second last inequality, we use Leduox-Talagrand contraction inequality. The last line
follows Dudley’s chaining bound and some standard calculations (e.g., proof of Theorem 8.7 of (28)).
Therefore, a valid choice of 𝜙𝑛 (𝛿) is:

𝜙𝑛 (𝛿) =𝐶1
©«𝛿

√︄
𝑑 log

(
𝐶2

𝛿

)
+ 𝑑
√
𝑛

log
(
𝐶2

𝛿

)ª®¬ .
Therefore, we conclude that ∥�̂� − 𝑢★∥2 =𝑂 𝑝 (𝛿𝑛) where 𝛿𝑛 satisfies:

√
𝑛𝛿2
𝑛 ≥ 𝜙𝑛 (𝛿𝑛) .

Some simple algebra yields that a valid choice for 𝛿𝑛 is
√︁
(𝑑/𝑛) log (𝑛/𝑑), which completes the proof.
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