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Abstract. This paper introduces semi-parametric Bayesian methods for high-

dimensional linear instrumental variables (IV) models. A selection method for

relevant regressors in presence of endogeneity is proposed and its validity estab-

lished within a quasi-Bayesian framework. We study the properties of the quasi-

posterior distribution as the number of regressors increases and provide a set of

assumptions under which this posterior distribution puts asymptotically most of

its probability mass around the true value of the parameter. An easy-to-implement

and efficient Markov Chain Monte Carlo algorithm is proposed to sample from the

quasi-posterior distribution. The finite sample performance of the proposed meth-

ods are investigated by Monte Carlo experiments. We also carry out an empirical

investigation that estimates the return on education using US census data.

1. Introduction

Endogeneity issues arise in a linear regression model when a subset of regressors

are correlated with the regression error. Endogenous variables are those influenced by

some of the same forces that influence the response variable. For example, economists

examining the effects of education on earnings have long been concerned about the

endogeneity of education (Angrist and Krueger, 1991). “Ability” is often cited as one

factor possibly correlated with earnings (those with higher ability earn more) and

education (those with higher ability obtain more education). Endogeneity also arises

when measurement errors are present in explanatory variables. It is well-known in
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regression analysis that endogeneity causes standard estimators such as the ordinary

least squares estimator to be inconsistent.

The most common cure to endogeneity issues consists in resorting to instrumental

variable (IV) inference (Stock and Trebbi, 2003; Imbens, 2014). Consistent estimation

is obtained by relying on the so-called valid instrumental variables; i.e. variables

uncorrelated with the regression error but correlated with the endogenous regressors.

The absence of correlation between error and IVs yields the IV model:

E[wik(yi − x′iθ)] = 0, k = 1, . . . , q, i = 1, . . . , n

where yi ∈ R is the response variable, xi ∈ Rp is the vector of explanatory variables,

wi ∈ Rq the vector of instruments, θ ∈ Rp the vector of parameters, and n is the

sample size.

High-dimensional regression models (Fan and Li (2001); Candes et al. (2007);

Bühlmann and van de Geer (2011); Hastie et al. (2015)) where p can be much larger

than the sample size n are not immune to the endogeneity problems outlined above.

In fact, as mentioned by Fan and Liao (2014), endogeneity can arise incidentally from

the pooling of a large number of regressors. Importantly, Fan and Liao (2014) show

that even if they are not ultimately relevant, the presence of endogenous variables

may cause penalized least square methods to be inconsistent, as in standard linear

regression models.

The objective of this paper is to perform variable selection and estimation of re-

gression parameters in high-dimensional linear regression models in presence of en-

dogenous variables. As a particular case of moment condition model, the IV model is

commonly estimated by the generalized method of moments (GMM) introduced by

Hansen (1982). However when q ≥ n, the GMM objective function is typically too

noisy to be directly useful. This has led Fan and Liao (2014) to propose the focused

GMM (FGMM) which is obtained by minimizing a GMM criterion that sets focus

solely on instruments associated to included regressors. Hence an important assump-

tion in FGMM is that the endogeneous variables, as well as the relevant instruments

to correct for them are known.

Other recent related work include Belloni et al. (2012); Gautier and Tsybakov

(2014); Belloni et al. (2017). Belloni et al. (2012) propose a two-step lasso/post-lasso

approach for instrument selection and inference in linear IV models where the number

of explanatory variables (p) is fixed but the number of instrumental variables (q) is

large. Gautier et al. (2011) consider p large and q possibly large and propose the so-

called self-tuning IV estimator and non-asymptotic confidence intervals based on the

Dantzig selection of Candes et al. (2007). Belloni et al. (2017) consider p and q large

and propose estimators and confidence regions that are honest and asymptotically
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correct by relying on a two-step procedure that builds suitably orthogonalized instru-

ments. Unlike FGMM, the methods by Gautier et al. (2011); Belloni et al. (2017)

include an automatic moments selection step, and can thus be applied more widely,

even when the endogenous variables are not known. However an important drawback

with these methods is a potential lack of interpretability of the selected instruments.

This objective of this paper is to develop a Bayesian instrumental variables model

using the framework of focused GMM. There are several advantages of taking a

Bayesian approach. Firstly, the Bayesian approach makes it straightforward to incor-

porate into the inference procedure any existing prior information on the relevance

of the regressors. This is currently an important issue in many applied research

(Greenfield et al., 2013; Studham et al., 2014; Peng et al., 2013). There is also a

computational advantage. Indeed, when dealing with discrete parameters or highly

multimodal objective functions, sampling actually tends to scale better than optimiza-

tion. (Chernozhukov and Hong, 2003) made a similar case. Some rigorous results on

this phenomenon can be found in (Ma et al., 2018).

By only restricting the moments of the data, IV models obviate the need to assume

an underlying data distribution (or complete specification of a likelihood function),

and allow inferences about the parameter of interest based only on the partial informa-

tion supplied by a set of moment conditions. We carry out the same semi-parametric

inference in the Bayesian framework, by employing a quasi-Bayesian approach (Cher-

nozhukov and Hong, 2003; Liao et al., 2011; Kato et al., 2013; Atchade, 2017).

The main contributions of this paper are threefold. First, using a working quasi-

likelihood combined with a spike-and-slab prior distribution (Mitchell and Beauchamp,

1988; George and McCulloch, 1997), we develop a Bayesian semi-parametric method

for variable selection in high-dimensional linear models with endogenous regressors.

Second, we study the statistical properties of the quasi-posterior distribution, Π (de-

fined below in (4)), as the dimension p increases. Under some minimal assump-

tions, we show that Π puts most of its probability mass around the true value of

the parameter as p → ∞ (see Theorem 3). Third, we develop an easy-to-implement

and efficient Markov Chain Monte Carlo algorithm to sample from Π. To the best

of our knowledge, ours is the first paper to present a Bayesian approach tackling

endogeneity issues in high-dimensional linear IV models. This work builds on the

general approach to high-dimensional Bayesian inference developed in (Atchade and

Bhattacharyya (2018)). However due to the specific form of the IV model, results

developed in Atchade and Bhattacharyya (2018)) cannot be directly applied. The

performance of the methods is highlighted by Monte Carlo simulations. The paper
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also includes an empirical application that assesses the return on education using US

data by revisiting the work of Angrist and Krueger (1991).

The rest of the paper is organized as follows. The model and the Bayesian method

proposed are presented in Section 2. This section also presents our main results

establishing the consistency of the selection method proposed. The MCMC sam-

pling algorithm is introduced in Section 3 which also contains our simulation results.

Section 4 contains the empirical application and concluding remarks are included in

Section 5.

1.1. Notation. For integer a > 0, we equip Ra, the space of a-dimensional vectors

with its usual Euclidean inner product 〈·, ·〉, associated norm ‖·‖2, and its Borel sigma-

algebra. Unless stated otherwise all vectors are column vectors. We will also use the

following norms on Ra: ‖θ‖1
def
=

a∑
j=1
|θj |, ‖θ‖0

def
=

a∑
j=1

1{|θj | > 0} and ‖θ‖∞
def
= max

1≤j≤a
|θj |.

We set ∆
def
= {0, 1}p. For δ ∈ ∆, we set δc

def
= 1− δ, that is δcj

def
= 1− δj , 1 ≤ j ≤ p.

For θ ∈ Rp, the sparsity structure (or support) of θ is the element δ ∈ ∆ defined as

δj = 1{|θj |>0}, 1 ≤ j ≤ p. Given θ ∈ Rp, and δ ∈ ∆, the notation θ · δ denotes their

component-wise product: (θ·δ)j = θjδj , 1 ≤ j ≤ p. We then set Rpδ
def
= {θ·δ : θ ∈ Rp}.

At times we will write θδ as a short for θ · δ. It may help to think of δ ∈ ∆ as a

selection of regressors, or as a model.

For a given matrix A, we will write Aj to denote its j-th column, and Aδ to denote

the sub-matrix of A obtained by selecting the columns j of A for which δj = 1.

Throughout the paper e denotes the Euler number and [p] represents the sequence

1, . . . , p.

2. Model and Main results

Suppose that we have n independent subjects, and observe on subject i the random

vector (yi, xi, wi) ∈ R×Rp×Rq. More precisely we make the following data-generating

assumption.

H1 H1. {(yi, xi, wi, εi), 1 ≤ i ≤ n} are n independent and identically distributed random

vectors, where (yi, xi, wi, εi) ∈ R× Rp × Rq × R with q ≥ p, and there exists θ? ∈ Rp

such that

yi = 〈xi, θ?〉+ εi, for all i = 1, . . . , n. (1) reg:mod

Furthermore we assume that ε
def
= (ε1, . . . , εn)′ is conditionally sub-Gaussian in the

sense that there exists σ0 > 0 such that for all u ∈ Rn,

E(ε|W ) = 0, and E
(
e〈u,ε〉|W

)
≤ e

σ2
0‖u‖

2
2

2 , (2) sub:gaussian:eq
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almost surely, where W ∈ Rn×q is the matrix with i-th rows given by w′i.

Throughout we set y
def
= (y1, . . . , yn)′ ∈ Rn, X ∈ Rn×p with i-th row x′i, and we set

z
def
= (y,X,W ) ∈ Rn × Rn×p × Rn×q.
We consider the situation where some of the components of the regressor xi are en-

dogenous, in the sense that there are correlated with the error εi, so that E(εixi) 6= 0.

As documented in the introduction, this issue is very common in applications, and

it is well-known that inferential procedures that ignore endogeneity are inconsistent

in general. A well-established approach to mitigate endogeneity is the use of instru-

mental variables. This is the approach taken here, and the set of instruments at our

disposal is wi ∈ Rq. Inference with instrumental variables is classically done via the

GMM estimator that is obtained by minimizing the GMM functional

θ 7→ (y −Xθ)′WDW ′ (y −Xθ) ,

or penalized versions thereof, where D ∈ Rq×q is a symmetric positive definite weight

matrix. However in a context where q is potentially larger than n, the GMM functional

is typically too noisy. To circumvent this problem we adopted the focused GMM

approach of Fan and Liao (2014) that incorporates a moment selection step: only

instruments associated to selected regression parameters are included in the model.

Note here that the idea of moment selection differs from previous works on moments

selection (as in for instance Caner et al. (2018)) which deal with the question of

how to retain only valid moment conditions. In our case, all the moments conditions

are assumed valid, but we face the challenge of having too many of them, given the

available sample size. The purpose of this work is to develop a Bayesian version of

focused GMM.

For broader applicability we extended the focused GMM framework of Fan and

Liao (2014), to allow for any set of instruments that satisfies H1. However as in Fan

and Liao (2014), we shall make the crucial assumption that each explanatory variable

Xj has a known small set of instruments. If Xj is exogenous, then it may be taken as

its own instrument, although other choices are allowed. More generally, given δ ∈ ∆,

we let T (δ) ∈ {0, 1}q be such that (T (δ))k = 1 if instrument k is needed for some

variable in Xδ, and (T (δ))k = 0 otherwise. We will assume that for a given model δ

there is always as many instruments as explanatory variable:

‖T (δ)‖0 ≥ ‖δ‖0, δ ∈ ∆. (3) cond:Td

Without further notice we will assume below that (3) holds. We stress again that the

mapping δ 7→ T (δ) is assumed known. Hence our set up applies mainly to problems

where there is a small number of known endogenous variables (among a large number
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p of variables), each of which with a known set of instruments. This assumption is

consistent with classical instrumental variable analysis which typically presupposes

that the data analyst has a good understanding of the data-generating process, and

has relevant instruments to deal with endogenous variables.

Since Tδ ∈ {0, 1}q, we write WT (δ) to denote the submatrix of W obtained by

keeping only the columns of W for which the corresponding components of Tδ are 1.

Let Z def
= Rn × Rn×p × Rn×q. For δ ∈ ∆, z = (y,X,W ) ∈ Z, and σ > 0, we consider

the following negative focused GMM functional

`(δ, θ; z)
def
= − 1

2nσ2
(y −X(θ · δ))′WT (δ)W

′
T (δ) (y −X(θ · δ)) ,

that we view as a working log-likelihood (a quasi-log-likelihood). To carry on our

Bayesian analysis we need a prior distribution on (δ, θ). Our prior information on the

problem is that θ? is sparse. We use this to formulate the following prior distribution.

H2 H2. We assume that the prior distribution for δ on ∆ is

π(δ) = α‖δ‖0(1− α)p−‖δ‖0 , δ ∈ ∆

where α ∈ (0, 1) is such that α/(1−α) = 1
pu+1 , for some constant u > 0. Furthermore,

given δ the components of θ are independent and

θj |δ ∼

{
N
(

0, 1
ρ

)
, if δj = 1

N (0, γ) , if δj = 0

for constants ρ > 0, γ > 0.

Remark 1. The prior distribution in H2 is fairly common in high-dimensional Bayesian

statistics (see for instance Castillo et al. (2015); Atchade and Bhattacharyya (2018)

and the references therein). It can be easily modified to account for prior informa-

tion on the importance of the regressors. This is done by turning ρ into a vector

(ρ1, . . . , ρp), and setting ρj appropriately to reflect the a prior information available

on the relevance of Xj . �

Let Cδ ∈ Rp×p be the diagonal matrix such that Cδ,jj = 1
ρ if δj = 1, and Cδ,jj = γ

if δjj = 0. Our proposed quasi-posterior distribution for inference on (δ, θ) is given

by

Π(δ, dθ|z) ∝ π(δ)e
− 1

2nσ2 (y−X(θ·δ))′WT (δ)W
′
T (δ)

(y−X(θ·δ)) e−
1
2
θ′C−1

δ θ√
det(2πCδ)

dθ, (4) post:dist

for hyper-parameters (u, σ2, ρ, γ), supplied by the user. We provide some guidelines

below on choosing these constants. Inference on the support of θ? is done from the

marginal posterior distribution Π(δ|z), and inference on the magnitude of θ?,j given
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that it is significant is carried from the conditional distribution of θj given z, and

δj = 1. We show below that when H1-H2 holds, this Bayesian approach to inferring

θ? can be consistent even when p, q are much large than the sample size n.

If A is a matrix, we write Σ̄(A) (resp. Σ(A)) to denote the largest (resp. smallest)

singular value of A. Given finite constants c0, κ̄, we introduce the event

E0 = E0(c0, κ̄)
def
=

{
(y,X,W ) ∈ Z : max

1≤k≤q
‖Wk‖2 ≤ c0

√
n, Σ̄

(
W ′T (δ?)Xδ?

)
≤ n
√
κ̄,

and max
1≤k≤q

|〈Wk, ε〉| ≤ 2c0σ0

√
n log(q),

}
, (5) def:e0

where σ0 is as in H1. We will see below in Section 2.1 that when the data z is generated

as described in H1, then with high probability z ∈ E0 for appropriate choice of c0 and

κ̄. The next result shows that in this case, the quasi-posterior distribution Π(·|z) puts

most of its probability mass on sparse elements of ∆.

lem:sparsity Proposition 2. Assume H1-H2, and let E0 be as defined in (5) for some constants

c0 and κ̄. Suppose that nκ̄ ≤ σ2ρp, and set

k̄
def
=

1

u

[
s? +m0 +

2c2
0

(
σ0
σ

)2 ‖T (δ?)‖0 log(q)

log(p)
+
ρ‖θ?‖22
2 log(p)

]
.

Then

1E0(z)Π
(
‖δ‖0 > s? + k̄|z

)
≤ 2

pm0
.

Proof. See Section 5.1. �

We set

s̄
def
= s? +

1

u

[
s? +m0 +

2c2
0

(
σ0
σ

)2 ‖T (δ?)‖0 log(q)

log(p)
+
ρ‖θ?‖22
2 log(p)

]
. (6) def:bars

Hence by Proposition 2, 1E0(z)Π (‖δ‖0 > s̄|z) ≤ 2
pm0 . Note that if the number of

instruments per variable is small, ‖θ?‖∞ = O(1) as p grows, and ρ is taken small,

then s̄ = O(s?) as p→∞.

We show next that Π(·|z) put most of its probability mass around (δ?, θ?), where

δ? denotes the sparsity structure (or support) of θ?, that is δ?j = 1(|θ?j | > 0). To

that end, we note that when z ∈ E0, the maximum number of instruments used in

any given model cannot exceed

t̄
def
= max

δ∈∆s̄

‖Tδ‖0. (7) def:bart
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Given finite constant κ > 0, we set

E = E(c0, κ̄, κ)
def
= E0∩

{
(y,X,W ) ∈ Z : max

δ2: ‖δ2‖0≤t̄
max

δ1: ‖δ1‖0≤s̄+s?
Σ̄
(
W ′δ2Xδ1

)
≤ n
√
κ̄,

and min
δ2: 0<‖δ2‖0≤t̄

min
δ1: 0<‖δ1‖0≤s̄+s?

Σ
(
W ′δ2Xδ1

)
≥ n√κ

}
. (8) def:e

thm:1 Theorem 3. Assume H1-H2, , and let E be as defined in (8) for some constants

c0, κ̄, and κ. Choose ρ > 0 such that nκ̄ ≤ σ2ρp, and

ρ‖θ?‖2 ≤
c0

16

(σ0

σ2

)√
κ̄t̄n log(q). (9) cond:rho

Set

r
def
=

8c0σ0κ̄
1/2

κ

√
t̄ log(q)

n
, (10) def:eps

and for absolute constants m > 1, M > 2, set

B
def
=

⋃
δ∈∆s̄

{δ} × {θ ∈ Rp : ‖(θ · δ)− θ?‖2 ≤M r, ‖θ − (θ · δ)‖2 ≤ m
√
γp} .

If c2
0M

2 min(1, (σ0/σ)2) ≥ 4(2 + u), then

E [1E(z) (1−Π(B|z))] ≤ 2

pm0
+

8

qt̄
+ 2e−

(m−1)2p
2 . (11) cv:rate

Proof. See Section 5.2.1. �

Theorem 3 shows that when ρ is well chosen and z ∈ E , if (δ, θ) ∈ Π(· | z) then the

sparse vector (θ · δ) satisfies ‖(θ · δ)− θ?‖ ≤M r, and ‖θ− (θ · δ)‖2 ≤ m
√
γp with high

probability. The contraction rate is

r =
8c0Mσ0κ̄

1/2

κ

√
t̄ log(q)

n
.

Hence for n ≥ C0t̄ log(q) (for some constant C0), valid inference on θ? is possible using

Π(·|z), provided that
√
κ̄/κ is well-behaved. The parameter κ measures the finite

sample strength (or relevance) of the instruments. That is, how much correlation there

is between the instruments and the explanatory variables. In general κ depends on

the dimension p and the sample size n. We will show in Section 2.1 that for modestly

large sample size, the finite sample relevance of the instruments is driven mainly by

the population relevance of the instruments. This result implies that, provided that

the sample size is modestly large, the quasi-posterior distribution delivers the best

possible inference, given the available instruments.

The two constraints on ρ in Theorem 3 (namely nκ̄ ≤ σ2ρp, and (9)) suggests

choosing ρ such that
n

p
. ρ .

√
t̄n log(p),
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which implies that our results applies particularly in the context where p is larger

than n. Importantly (9) suggests that the prior variance (that is 1/ρ) should not be

taken too small. In the applications we recommend the choice

ρ =
C0 log(pq)√

n
,

for some tuning constant C0. In all the computation we set C0 = 1. Theorem 3

imposes very little constraint on γ and we recommend choosing γ as

γ =
γ0

n
,

for some tuning parameter γ0 ∈ (0.1, 1]. We noted in practice that choosing γ0 overly

small negatively affects the mixing of the Markov Chain Monte Carlo algorithm.

Theorem 3 suggests choosing σ = σ0. Indeed, if σ is taken smaller than σ0, we loose

in terms of model sparsity: as apparent from (6), choosing σ < σ0 makes s̄ larger,

which in turn makes t̄ and κ larger, and a slow convergence rate r ensues. On the

other hand, having σ > σ0 implies that we need a bigger constant M to satisfy the

condition c2
0M

2 min(1, (σ0/σ)2) ≥ 4(2+u), and a slower convergence also follows. We

note however that in most cases it is better to over estimate σ0 than to underestimate.

This was also observed in our numerical experiments (not reported here).

The parameter u determines the sparsity of the prior. The quasi-posterior Π is

fairly robust to the choice of u in the range [1, 2]. In all the numerical experiments

below we set u = 1.
sec:event:e

2.1. On the parameter κ and the event E. The population relevance of the

instruments is measured by the matrix

C def
= E(w′1x1) ∈ Rq×p.

Given a matrix A, we write [A]δ,δ′ to denote the submatrix of A corresponding to

the rows of A for which δi = 1, and columns of A for which δ′j = 1. We make the

following assumption on C.

H12 H3. There exist 0 < λ ≤ λ̄, and an integer s1, s2 ≥ 1 such that for all δ(1) ∈ {0, 1}q,
δ(2) ∈ {0, 1}p with ‖δ(1)‖0 ≤ s1, ‖δ(2)‖0 ≤ s2, all the singular values of the submatrix

[C]δ(1),δ(2) lie between λ and λ̄.

Suppose that H3 holds with s1 = t̄ and s2 = s̄+s?. Then the parameter λ measures

the population relevance of the instruments for the considered model. We show in

the next result if the sample size n satisfies n ≥ t̄(s̄+s?)(t̄ log(q)+(s̄+s?) log(p))/λ2,

then with high probability we can take κ̄ = (9/4)λ̄2, and κ = λ2/4 in the definition of

E . That is the finite sample relevance of the instruments is similar to the population

relevance.
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lem:e21 Lemma 4. Assume H3, and suppose that ‖w1‖∞‖x1‖∞ ≤ K almost surely for some

constant K. If the sample size n satisfies

√
n ≥ 6

λ

√
s1s2 (s1 log(q) + s2 log(p)), (12) ss:1

then with probability at least 1− 2(s1 + s2)/[qs1ps2 ] the following holds: for all δ(1) ∈
{0, 1}q, δ(2) ∈ {0, 1}p with ‖δ(1)‖0 ≤ s1, ‖δ(2)‖0 ≤ s2, all the singular values of the

submatrix (Wδ(1))′Xδ(2) lie between nλ/2 and 3nλ̄/2.

Proof. See Section 5.3. �

If H3 and (12) hold with s1 = t̄ and s2 = s̄+ s?, then taking c0 = K, κ̄ = (9/4)λ̄2,

and κ = λ2/4, by Lemma 4 we have

P(z /∈ E) ≤ 2(s̄+ t̄)

qt̄ps̄
+ P

(
max

1≤k≤q
|〈Wk, ε〉| > 2c0σ0

√
n log(q)

)
.

By the sub-Gaussian assumption in H1, it holds

P
(

max
1≤k≤q

| 〈Wk, ε〉 | > t|W
)
≤ 2qe

− t2

2σ2
0 max1≤k≤q ‖Wk‖2 ≤ 2qe

− t2

2c20σ
2
0n .

At a result, taking t = 2c0σ0

√
n log(q), it follows that

P(z /∈ E) ≤ 2(s̄+ t̄)

qt̄ps̄
+

2

q
.

This shows that with high probability we have z ∈ E . However the assumption

that the variables x and w have uniformly bounded components is restrictive. That

assumption is not needed to obtain that max1≤k≤q ‖Wj‖2 ≤ c0
√
n. For instance, if

the random variables Wij are mean-zero independent and identically distributed, and

W1j/
√

Var(W1j) is sub-Gaussian with sub-Gaussian parameter τ0 say, then it follows

from Lemma 1 of Ravikumar et al. (2011) that

max
1≤k≤q

‖Wj‖2 ≤
√

3(1 + 4τ2
0 ) max

1≤j≤q

√
Var(W1j)

√
n,

with probability at least 1 − 4e−n/16, provided that n ≥ 16 log(p). However the

boundedness assumption is needed to apply the matrix Bernstein inequality (Tropp

(2015)) used to control the singular values of W ′T (δ)Xδ. We show in the next result

that a similar behavior of the singular values of W ′T (δ)Xδ continue to hold even without

the boundedness assumption, albeit in a slightly weaker form.

lem:e22 Lemma 5. Assume H3, and suppose that for some constants α > 0 and m > 0,

max
1≤j≤p,1≤k≤q

E

eα
∣∣∣∣ 1√

n

n∑
i=1

(xijwik−E(xijwik)

∣∣∣∣
 ≤ m <∞,
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and

max
1≤j≤p,1≤k≤q

E[(x1jw1k)
4] ≤ m <∞.

Let `n =
(

5
α

log(pq)√
n

)1/2
. If log(pq) ≥ max

(
α2m

2 , αm1/4
)

and `n ≤ nλ/(2
√
s1s2),

then, with probability at least 1 − `n, the following holds: for all δ(1) ∈ {0, 1}q,
δ(2) ∈ {0, 1}p with ‖δ(1)‖0 ≤ s1, ‖δ(2)‖0 ≤ s2, all the singular values of all the subma-

trix (Wδ(1))′Xδ(2) lie between nλ/2 and 3nλ̄/2.

Proof. See Section 5.4. �

3. Markov Chain Monte Carlo computation and numerical experiments
sec:num

In this section we develop a practical Markov Chain Monte Carlo algorithm to

sample from the posterior distribution Π, and explore the behavior of Π on two

simulated data examples. We refer the reader to Tierney (1994); Robert and Casella

(2004) for introduction to basic MCMC algorithms.

3.1. A MCMC sampler for Π . We begin with a description of the MCMC sampler.mcmc˙sampler

We sample from Π using a Metropolized-Gibbs sampler which iteratively alternates

between an update of θ given δ, and an update of δ given θ. Given δ, we partition θ

into θ = ([θ]δ, [θ]δc), where [θ]δ groups the components of θ for which δj = 1, and [θ]δc

groups the remaining components. These two groups are conditionally independent

given δ. Furthermore, given δ, the components of [θ]δc are independent and identically

distributed with distribution N(0, γ). And given δ, [θ]δ ∼ N(mδ, Vδ), where

Vδ =

(
1

nσ2
X ′δWT (δ)W

′
T (δ)Xδ + ρI‖δ‖0

)−1

, and mδ =
1

nσ2
VδX

′
δWT (δ)W

′
T (δ)y. (13) mV

It should be noted that the matrix to be inverted above is of dimension ‖δ‖0. Hence

if δ is sparse, the update of θ can be done very efficiently.

To update δ, we update each component at the time using an Independent Metropolis-

Hastings algorithm where the proposal is a Bernoulli distribution with probability 1/2.

To develop the details, note that,

Π(δ|θ, z) ∝ π(δ)
e−

1
2
θ′C−1

δ θ√
det(2πCδ)

e
− 1

2nσ2

∑
`: (T (δ))`=1

〈y−Xθδ,W`〉2

. (14)

Given an index j ∈ [p], we form the new state δ(j) by drawing (δ(j))j ∼ Ber(0.5), and

(δ(j))k = δk for all k 6= j. The Metropolis-Hastings acceptance probability is given by

min

{
1,

Π(δ(j)|θ, z)

Π(δ|θ, z)

}
,
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where

Π(δ(j)|θ, z)

Π(δ|θ, z)
=

(
α

1− α
f1(θj)

f0(θj)

)(δ(j))j−δj
exp

− 1

2nσ2

∑
`: (T (δ(j)))`=1

〈
y −X(θ · δ(j)),W`

〉2

+
1

2nσ2

∑
`: (T (δ))`=1

〈y −X(θ · δ),W`〉2
 , (15) eq:Aj

where f0 (resp. f1) is the density of N(0, γ) (resp. N(0, ρ−1)). We note that the

computations in (15) can be done efficiently by pre-computing the matrix W ′X, and

W ′y. We summarize the algorithm as follows.

algo:basic Algorithm 1. Draw (δ(0), θ(0)) ∈ ∆ × Rp from some initial distribution. For k =

0, . . . , repeat the following. Given (δ(k), θ(k)) = (δ, θ) ∈ ∆× Rp:
(STEP 1): For all j such that δj = 0, draw θ

(k+1)
j ∼ N(0, γ). And if ‖δ‖0 > 0,

draw [θ(k+1)]δ ∼ N(mδ, Vδ), with mδ, Vδ as in (13).

(STEP 2): Given θ(k+1) = θ, for each j ∈ [p], update δ
(k+1)
j using the Indepen-

dent Metropolis algorithm with proposal Ber(0.5) and acceptance probability

given by (15). �

3.2. Numerical Experiments. In this section we investigate the performance of

our proposed approach via numerical simulations, using the same set up as in Fan

and Liao (2014); Belloni et al. (2017). We simulate from a linear model

Y = XT θ0 + ε

For each component of X, we write Xj = Xe
j if Xj is endogeneous, and Xj = Xx

j

if Xj is exogeneous. Xe
j , Xx

j and ε are generated according to two different setups

which we outline below.

Setup 1:

Xe
j = (Fj +Hj + 1)(3ε+ 1), Xx

j = Fj +Hj + uj

where {ε, u1, . . . , up} are independent N(0, 1). Here F = (F1, . . . , Fp)
T and H =

(H1, . . . ,Hp)
T are the transformations of a three-dimensional instrumental variable

V = (V1, V2, V3)T ∼ N(0, I3) and W = (F,H). There are m endogeneous variables

(X1, X2, X3, X6, . . . , X2+m)T with m = {10, 50}.
The Fourier basis are applied as the working instruments,

F =
√

2{sin(jπV1) + sin(jπV2) + sin(jπV3) : j ≤ p}

H =
√

2{cos(jπV1) + cos(jπV2) + cos(jπV3) : j ≤ p}
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Setup 2:

Xe
j = X̃j +

L∑
t=1

ZL(j−1)+t, ε = ζ + X̃
′
γ0

where γ0 = (.1, .2, .3, . . . , 1, 0, . . .)
′ ∈ Rp, Z ∈ Rn×(Lp) with i.i.d. N(0, 1) entries,

and the rows of X̃ are i.i.d. draws from the p-dimensional N(0,Σ), where Σij =

0.3|i−j|, and ζ ∼ N(0, 1/42). In this set up, each variable Xj has L instruments

ZL(j−1)+1, . . . , ZL(j−1)+L. The first 10 variables are endogenous. Setup 2 is more

challenging than Setup 1, because of the correlation between the variables X̃j and the

small components of γ0 which creates weaker instruments.

The two setups are taken from Fan and Liao (2014) and Belloni et al. (2017)

respectively. For both setups, we choose the true parameter vector θ0 ∈ Rp with

number of non-zero components, s? = 5, that takes the value

θ? = SNR× (5,−4, 7,−2, 1.5, 0, . . . , 0)′

where SNR > 0 is a signal-to-noise parameter. Varying the SNR parameter allows

us to explore the performance of our approach for varying levels of signal strength.

We performed simulations for SNR = {0.25, 1}, sample size n = 100, and number

of covariates p ∈ {100, 200}. SNR = 1 corresponds to high SNR (hSNR) while

SNR = 0.25 corresponds to weak SNR (wSNR).

In our experiments, we used 100 replications to aggregate the results. Four perfor-

mance measures are used to compare the methods. The first measure is the number of

true positive (TP), that is the number of correctly identified nonzero coefficients. The

second measure is the number of incorrectly identified coefficients, the false positive

(FP).

TP =
∑
δ

 ∑
i: δ?,i=1

δi

Π(δ|z), and FP =
∑
δ

 ∑
i: δ?,i=0

δi

Π(δ|z).

The last two measures are mean squared errors, MSES and MSEN , defined as

MSES =

∫
1

s?

∑
i: δ?,i=1

(θi−θ?,i)2 Π(dθ|z), and MSEN =

∫
1

p− s?

∑
i: δ?,i=0

θ2
i Π(dθ|z).

The expectations in these definitions are approximated by averaging over the MCMC

run. Standard errors on these measures are obtained from the 100 MCMC replica-

tions. In each run of the MCMC sampler, θ is initialized using the lasso solution and

δ is initialized as the support of the lasso solution. Our proposed method has four
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tuning parameters. In all our empirical work, we set

u = 1, ρ =
log (p ∗ q)√

n
, γ =

1

n
, σ2 = 1.

FGMM results are obtained using the code on the authors’ website by setting the

FGMM parameter λfgmm = 0.3. The summary of our results is presented in Tables

1 - 2 which compare our method, quasi-Bayesian moment restrictions model (BMRM),

with FGMM and penalized least squares (PLS).

In the high signal-to-noise regime (SNR = 1), PLS performs well in selecting the

true coefficients but, at the same time, includes a significantly large number of false

positives. FGMM reduces the number of unimportant coefficients while keeping the

important coefficients in the model. In contrast, BMRM not only selects all the im-

portant coefficients but also succeeds in weeding out all the unimportant coefficients.

Our proposed method stands out in this regard. Comparisons along the mean square

errors is not as clear cut, which is expected since posterior means tends to be high un-

certainly due to the use of a prior distribution. The lower panels of the tables display

results for the weak signal-to-noise regime (SNR = 0.25) case. Again, BMRM out-

performs FGMM in selecting the important regressors and removing the unimportant

regressors.

Table 1. Setup 1: Endogeneity in both important and unimportant

regressors, n = 100, m = 10, s0 = 5. Top and bottom panels corre-

spond to hSNR and wSNR regimes respectively.

BMRM FGMM PLS

p TP FP MSES MSEN TP FP MSES MSEN TP FP MSES MSEN

100 5 · 0
(0·0)

0 · 0
(0·0)

0 · 10
(0·001)

0 · 0002
(0·0001)

5 · 00
(0·0)

3 · 14
(1·14)

0 · 002
(0·002)

0 · 0
(0·0)

5 · 0
(0·0)

59 · 08
(14·98)

0 · 02
(0·03)

0 · 003
(0·004)

200 5 · 0
(0·0)

0
(0)

0 · 097
(0·0005)

0 · 0001
(0·0000)

4 · 99
(0·10)

3 · 29
(1·42)

0 · 007
(0·05)

0
(0)

5
(0)

98 · 48
(28·62)

0 · 15
(0·22)

0 · 01
(0·02)

100 4 · 24
(0·548)

0 · 01
(0·03)

0 · 095
(0·001)

0 · 001
(0·001)

4 · 36
(0·67)

3 · 18
(1·20)

0 · 03
(0·04)

0 · 000
(0·000)

4 · 99
(0·1)

21 · 41
(10·77)

0 · 01
(0·001)

0 · 000
(0·000)

200 4 · 40
(0·56)

0 · 05
(0·17)

0 · 020
(0·001)

0 · 0005
(0·0005)

4 · 36
(0·66)

3 · 29
(1·13)

0 · 03
(0·04)

0
(0)

4 · 96
(0·20)

30 · 02
(16·91)

0 · 01
(0·01)

0 · 000
(0·000)table:setup1

4. Application to Angrist & Krueger’s (1991) model ??? Endogeneity

in Angrist & Krueger Data

Angrist and Krueger (1991) use the large samples available in the 1980 U.S. Census

to estimate return to schooling. The endogeneity of level of education in the wage



LINEAR REGRESSION MODELS WITH INSTRUMENTAL VARIABLES 15

Table 2. Setup 2: Endogeneity in all regressors, n = 100, L = 2, s0 =

5. Top and bottom panels correspond to hSNR and wSNR regimes

respectively.

BMRM FGMM PLS

p TP FP MSES MSEN TP FP MSES MSEN TP FP MSES MSEN

100 5 · 0
(0·0)

0 · 2
(0·4)

0 · 03
(0·10)

0 · 002
(0·001)

4 · 79
(0·50)

2 · 93
(1·98)

0 · 34
(0·45)

0 · 002
(0·005)

5
(0)

8 · 28
(3·58)

0 · 07
(0·05)

0 · 008
(0·002)

200 5 · 0
(0·0)

0 · 5
(0·68)

0 · 22
(0·05)

0 · 001
(0·001)

4 · 69
(0·58)

3 · 06
(2·14)

0 · 39
(0·45)

0 · 001
(0·003)

5
(0)

10 · 70
(5·68)

0 · 10
(0·08)

0 · 005
(0·002)

100 3 · 25
(0·6)

0 · 20
(0·40)

0 · 11
(0·03)

0 · 006
(0·002)

2 · 98
(1·09)

2 · 54
(1·91)

0 · 54
(0·88)

0 · 004
(0·008)

4 · 35
(0·48)

4 · 73
(1·31)

0 · 08
(0·03)

0 · 007
(0·002)

200 3 · 23
(0·64)

0 · 42
(0·81)

0 · 22
(0·06)

0 · 003
(0·002)

3 · 05
(1·02)

2 · 78
(2·13)

0 · 42
(0·45)

0 · 002
(0·004)

4 · 25
(0·52)

5 · 61
(2·37)

0 · 09
(0·04)

0 · 004
(0·001)

table:setup2

equation has led them to consider in their seminal work quarter of birth as instrumen-

tal variable for level of education. They argue that individuals born in early quarters

are more likely to drop out of school earlier than those born in late quarters and they

back up this correlation with data. It also makes sense that, controlling for schooling,

quarter of birth is independent of wage, hence this instrument is exogenous. Using

standard IV methods, they estimate return to schooling to be 0.0928 for a sample of

329,509 males born in 1930-1939 using the 1980 U.S. Census.

The use of Quarter of birth as IV has been criticised by Bound et al. (1995) who

mention that the correlation between level of education and quarter of birth is ac-

tually weak and as a result, the IV estimator is likely inconsistent and IV inference

misleading. Subsequently, Cruz and Moreira (2005) find that the instrument is infor-

mative enough to allow for meaningful inference and Hoogerheide and van Dijk (2006)

carried out a Bayesian inference on Angrist and Krueger’s (1991) model and data.

They obtain a median of posterior distribution of return-to-schooling of 0.106 with

[0.083; 0.129] as 95% credible interval; results close to those of Angrist and Krueger

(1991).

The linear IV model of Angrist and Krueger (1991), formally introduced below,

controls for a large number of covariates including a total of 501 explanatory variables

and this qualifies as a large model (even though the number of observations exceeds

the number of explanatory variables and instruments). Our goal in this section is to

carry out inference on this model using the high-dimensional Bayesian model selection

method developed in this paper which we consider to be more reliable in this context.

The linear IV model of Angrist and Krueger (1991) is given by:

yi = 〈xi, θ〉+ εi, E(εi|wi) = 0



16 GAUTAM SABNIS, YVES ATCHADÉ, AND PROSPER DOVONON

where yi is the log(wage) of individual i and xi denotes a set of 510 variables: edu-

cation, 9 year-of-birth (YOB) dummies, 50 state-of-birth (SOB) dummies, and 450

state-of-birth × year-of-birth (YOB×SOB) interactions. For individual i, we write

xi = [Educationi,YOBi,SOBi, (YOB× SOB)i] ∈ R510×1

As instruments, wi, we use 3 quarter-of-birth dummies (QOB) for the endoge-

neous variable education, and allow the exogeneous variables to be instruments for

themselves. For individual i, we write

wi = [QOBi,YOBi,SOBi, (YOB× SOB)i] ∈ R512×1

Note that there is an irregular dependence between the variables xi and their cor-

responding instruments wi. For example, if the endogenous variable level of education

is active, then all 3 instruments, corresponding to QOB, are included in the model.

We apply our inference method following the steps in Algorithm 1 to jointly se-

lect the most relevant variables/instruments out the 510/512 considered and obtain

an estimate of the posterior distribution of the parameter of interest: the return-

to-schooling (θ1). In our implementation, we set the tuning parameters ... to...

values???.

The posterior distribution of θ1 is plotted in Figure 1. The estimated mean of this

distribution is 0.1096 with a 95% credible interval for θ1 given by [0.096, 0.129]. A

total of 9 covariates are selected, namely: selected are Add the list of selected

variables... along with the set of instruments given by Add the list of related

instruments.....

This result means that, everything being equal, an extra year of education increases

expected wage by about 0.1096%. This value is close to the posterior median reported

by Hoogerheide and van Dijk (2006). Our 95%-credible interval has the save upper

bound as theirs but interestingly is narrower. This advantage highlights the efficiency

gain expected from model selection that is built in our procedure.
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Figure 1. Posterior distribution of θ1 which summarizes the causal

impact of education on earning. The posterior mean is .1096.
theta˙post

5. Proofs
sec:proofs

Our methods of proof follows closely Atchade and Bhattacharyya (2018). For

δ ∈ ∆
def
= {0, 1}p, we will write µδ(dθ) to denote the product measure on Rp given by

µδ(dθ)
def
=

p∏
j=1

µδj (dθj),

where µ0(dx) is the Dirac mass at 0, and µ1(dx) is the Lebesgue measure on R. Given

(δ, θ) ∈ ∆× Rp, we set

qδ,θ(z)
def
= exp

[
− 1

2nσ2
(y −Xθ)′WT (δ)W

′
T (δ) (y −Xθ)

]
. (16) def:q

First we derive a lower bound on the normalizing constant. Although the quasi-

likelihood function used here is slightly more general than in (Atchade and Bhat-

tacharyya (2018)), the proof of the lower-bound proceeds similarly.

lem:control:nc Lemma 6. Assume H1-H2. Let C(z) denote the normalizing constant of Π(·|z). For

z ∈ E0,

C(z) ≥ π(δ?)qδ?,θ?(z)e−
ρ
2
‖θ?‖22

(
ρ

nκ̄
σ2 + ρ

) s?
2

. (17) eq:control:nc:check:G
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Proof. By definition we have

C(z) =
∑
δ∈∆

π(δ)

∫
Rp
qδ,θ(z)

e−
1
2
θ′B−1

δ θ√
det(2πBδ)

dθ

≥ π(δ?)qδ?,θ?(z)
( ρ

2π

) s?
2

∫
Rp

qδ?,θ(z)

qδ?,θ?(z)
e−

ρ
2
‖θ‖22µδ?(θ).

With G(z) = ∇ log qδ?,θ?(z), we have

log qδ?,θ(z)− log qδ?,θ?(z) = 〈G(z), θ − θ?〉 −
1

2nσ2
(θ − θ?)′X ′WT (δ?)W

′
T (δ?)X(θ − θ?).

We recall that Mδ = W ′T (δ)Xδ, so that for z ∈ E0,

log qδ?,θ(z)− log qδ?,θ?(z) ≥ 〈G(z), θ − θ?〉 −
nκ̄

2σ2
‖θ − θ?‖22.

Hence,

C(z) ≥ π(δ?)qδ?,θ?(z)
( ρ

2π

) s?
2
e−

ρ
2
‖θ?‖22∫
Rp
e〈G(z),θ−θ?〉− ρ2 (‖θ‖22−‖θ?‖22)−

nκ̄
2σ2 ‖θ−θ?‖22µδ?(dθ).

We have −ρ
2

(
‖θ‖22 − ‖θ?‖22

)
= −ρ

2‖θ − θ?‖
2
2 − ρ 〈θ?, θ − θ?〉. Therefore,∫

Rp
e〈G(z),θ−θ?〉− ρ2 (‖θ‖22−‖θ?‖22)−

nκ̄
2σ2 ‖θ−θ?‖22µδ?(dθ)

=

∫
Rp
e〈G(z)−ρθ?,u−θ?〉−

nκ̄
σ2 +ρ

2
‖u−θ?‖22µδ?(du) ≥

(
2π

nκ̄
σ2 + ρ

) s?
2

,

and (17) follows easily. �
sec:proof:lem:sparsity

5.1. Proof of Proposition 2. By the control on the normalizing constant provided

by Lemma 6, for any k ≥ 0, we have

1E0(z)Π (‖δ‖0 > k|z) ≤
(

1 +
nκ̄

σ2ρ

) s?
2

∑
δ∈∆: ‖δ‖0>k

π(δ)

π(δ?)

( ρ
2π

) ‖δ‖0
2

1E0(z)

∫
Rp

e`(δ,u;z)− ρ
2
‖u‖22

e`(δ?,θ?;z)− ρ
2
‖θ?‖22

µδ(du).

We note that 1 + nκ̄/(σ2ρ) ≤ 2p ≤ p2 by assumption. And for z ∈ E0,

e`(δ,θ?;z)

e`(δ?,θ?;z)
≤ e−`(δ?,θ?;z) = exp

(
1

2nσ2
ε′
[
WT (δ?)W

′
T (δ?)

]
ε

)
≤ e2c20(

σ0
σ )

2‖T (δ?)‖0 log(q).
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Hence

1E0(Z)Π (‖δ‖0 > k|Z) ≤ ps?e2c20(
σ0
σ )

2‖T (δ?)‖0 log(q)e
ρ
2
‖θ?‖22

∑
δ∈∆: ‖δ‖0>k

π(δ)

π(δ?)

( ρ
2π

) ‖δ‖0
2

×
∫
Rp
e−

ρ
2
‖u‖22µδ(du)

= ps?e2c20(
σ0
σ )

2‖T (δ?)‖0 log(q)e
ρ
2
‖θ?‖22

∑
δ∈∆: ‖δ‖0>k

π(δ)

π(δ?)
. (18) control:prob:3

By H2, we have

∑
δ: ‖δ‖0≥s?+k

π(δ)

π(δ?)
=

p∑
j=s?+k

(
p

j

)(
α

1− α

)j−s?
≤

(
p

s?

) p∑
j=s?+k

(
1

pu

)j−s?
,

using the fact that q
1−q = 1

pu+1 , and
(
p
j

)
≤ pj−s?

(
p
s?

)
. Hence for pu ≥ 2,

∑
δ: ‖δ‖0≥s?+k

π(δ)

π(δ?)
≤

2
(
p
s?

)
pku

≤ 2

pku−s?
.

We conclude that

1E0(Z)Π (‖δ‖0 > s? + k|Z) ≤ e2c20(
σ0
σ )

2‖T (δ?)‖0 log(q)e
ρ
2
‖θ?‖22 2

pku−s?
≤ 2

pm0
,

by choosing k as in the statement of the theorem. This completes the proof.
�

5.2. Proof of Theorem 3. Our proofs rely on the existence of some testing proce-

dures that we derive following the same arguments as in Atchade and Bhattacharyya

(2018). Let Z = Rn × Rn×p × Rn×q equipped with its Lebesgue measure. Let f? be

a density on Z.

test Lemma 7. Assume H1, and let f? denote the distribution of z = (y,X,W ). For

any constant M > 2 such that M2c2
0 ≥ 2(σ/σ0)2, there exists a measurable function

φ : Z → [0, 1] such that ∫
Z
φ(z)f?(z)dz ≤ 4

qt̄
.

Furthermore, for all δ ∈ ∆s̄ and all θ ∈ Rpδ such that ‖θ−θ?‖2 > jM r for some j ≥ 1,

we have ∫
E1

(1− φ(z))
qδ,θ(z)

qδ,θ?(z)
f?(z)dz ≤ e−

nκ

32σ2 (jMr)2

.
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Proof. Fix M > 2. Fix δ ∈ ∆s̄, and with qδ,θ as in (16), we define

q̄δ,u(z)
def
=

qδ,u(z)

qδ,θ?(z)
f?(z)1E(z), u ∈ Rpδ , z ∈ Z,

and

L(δ, u; z)
def
= log qδ,u(z)− log qδ,θ?(z)− 〈∇ log qδ,θ?(z), u− θ?〉 ,

= − 1

2nσ2
(u− θ?)′X ′WT (δ)W

′
T (δ)X(u− θ?).

Hence

q̄δ,u(z) = e〈∇ log qδ,θ? (z),u−θ?〉+L(δ,u;z)f?(z)1E(z).

For z ∈ E ,

|〈∇ log qδ,θ?(z), u− θ?〉| =
1

nσ2

∣∣∣〈X ′WT (δ)W
′
T (δ)ε, u− θ?

〉∣∣∣
≤ 1

nσ2
‖W ′T (δ)X(u− θ?)‖1 max

1≤j≤q
‖W ′jε‖2

≤ 2c0

(σ0

σ

)√‖T (δ)‖0κ̄n log(q)

σ2
‖u− θ?‖2.

Then, using the properties of the set E , we conclude that for all δ ∈ ∆s̄, u ∈ Rpδ , and

z ∈ E ,

q̄δ,u(z) ≤ e2c0(σ0
σ )
√
‖T (δ)‖0κ̄n log(q)

σ2 ‖u−θ?‖2− nκ

2σ2 ‖u−θ?‖22f?(z)1E1(z)

≤ e
nκ

4σ2 ‖u−θ?‖22f?(z)1E1(z), (19) bound:ratio:test

whenever ‖u− θ?‖2 > r, where r is as defined in (10). Therefore
∫
E q̄δ,u(z)dz <∞, for

all δ ∈ ∆s̄, and u ∈ Rpδ . Now, fix η ≥ 2r, δ ∈ ∆s̄, and θ ∈ Rpδ , such that ‖θ− θ?‖2 > η.

Let

Pδ,θ
def
=
{
q̄δ,u : u ∈ Rpδ , ‖u− θ‖2 ≤

η

2

}
.

According to Lemma 13 of Atchade and Bhattacharyya (2018), applied with p = f?,

and Q = Pδ,θ, there exists a test function φδ,θ such that

sup
q∈Pδ,θ

[∫
φδ,θf? +

∫
(1− φδ,θ)q

]
≤ sup

q∈conv(Pδ,θ)

∫
Z

√
f?q. (20) lem:test:eq1

Any element q ∈ conv(Pδ,θ) can be written as q =
∑

j αj q̄δ,uj (z), where αj ≥ 0,∑
j αj = 1, and ‖uj − θ‖2 ≤ η/2 (hence ‖uj − θ?‖2 > η/2). It then follows from (19)

that ∫
Z

√
f?q ≤ e

nκη2

32σ2 .
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Hence (20) becomes

sup
q∈Pδ,θ

[∫
φδ,θf? +

∫
(1− φδ,θ)q

]
≤ e

nκη2

32σ2 . (21) lem:test:eq2

Now write ∪δ{θ ∈ Rpδ : ‖θ − θ?‖2 > M r} as ∪δ ∪j≥1 Aε(δ, j), where the unions in

δ are taken over all δ such that ‖δ‖0 ≤ s̄, and

Aε(δ, j)
def
=
{
θ ∈ Rpδ : jM r < ‖θ − θ?‖2 ≤ (j + 1)M r

}
.

For Aε(δ, j) 6= ∅, let S(δ, j) be a maximally (jM r/2)-separated points in Aε(δ, j). It

is easily checked that the cardinality of S(δ, j) is upper bounded by 9‖δ‖0 ≤ 9s̄. For

θδ,jk ∈ S(δ, j), let φδ,θδ,jk denote the test function obtained above with θ = θδ,jk and

η = jM r. From (21) φδ,θδ,jk satisfies

max
u∈Rpδ , ‖u−θδ,jk‖2≤

jMr
2

[
E?(φδ,θδ,jk(Z)) +

∫
E1

(1− φδ,θδ,jk(z))q̄δ,u(z)dz

]
≤ e−

nκ

32σ2 (jMr)2

.

(22) lem:test:eq3

Then we set

φ = max
δ: ‖δ‖0≤s̄

sup
j≥1

max
θδ,jk∈S(δ,j)

φδ,θδ,jk .

It then follows that

E (φ(Z)) ≤
s̄∑

k=0

∑
δ: ‖δ‖0=k

∑
j≥1

∑
θδ,jk∈S(δ,j)

E?
(
φδ,θδ,jk(Z)

)
≤

s̄∑
k=0

(
p

k

)
9k
∑
j≥1

e−
nκ

32σ2 (jMr)2

≤ 2(9p)s̄e−
nκ

32σ2 (Mr)2

1− e−
nκ

32σ2 (Mr)2
≤ 4e−

nκ

32σ2 (Mr)2

≤ 4

qt̄
,

for all p ≥ 9 if M > 2 is taken such that M2c2
0 ≥ 2(σ/σ0)2.

If for some δ, such that ‖δ‖0 ≤ s̄ and some θ ∈ Rpδ we have ‖θ − θ?‖2 > jM r̄, then

θ resides within (iM r̄)/2 of some point θδ,ik ∈ S(δ, i) for some i ≥ j. Hence, by (22),∫
E
(1− φ(z))q̄δ,θ(z)dz ≤

∫
E
(1− φδ,θδ,jk(z))q̄δ,θ(z)dz ≤ e−

nκ

32σ2 (jMr)2

.

This ends the proof. �
sec:proof:thm:1

5.2.1. Proof of Theorem 3. We have ∆×Rp = ((∆ \∆s̄)×Rp) ∪ F̄1 ∪ F̄2 ∪ B, where

F̄1
def
=

⋃
δ∈∆s̄

{δ} × F (δ)
1 , F̄2

def
=

⋃
δ∈∆s̄

{δ} × F (δ)
2 ,

where F (δ)
1

def
= {θ ∈ Rp : ‖θ · δ − θ?‖2 > Mε}, and

F (δ)
2

def
=
{
θ ∈ Rp : ‖θ · δ − θ?‖2 ≤Mε, and ‖θ − θ · δ‖2 > m

√
γp
}

. Therefore we have

1−Π(B̄|z) = Π(‖δ‖0 > s̄|z) + Π(F̄1|z) + Π(F̄2|z).
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We know from Lemma 2 that

1E(z)Π(‖δ‖0 > s̄|z) ≤ 2

pm0
.

Setting F (δ)
22 = {θ ∈ Rp : ‖θ − θδ‖2 > m

√
γp}, it is straightforward to see that

Π(F̄2|z) ≤ max
δ∈∆s̄

P
(
V ∈ F (δ)

22

)
,

where V ∼ Np(0, γIp). By standard Guassian deviation bound, P(V ∈ F (δ)
22 ) ≤

2e−
(m−1)2p

2 for all δ ∈ ∆s̄. It follows that for all z ∈ Z, Π(F̄2|z) ≤ 2e−
(m−1)2p

2 .

Let φ denote the test function asserted by Lemma 7. We can then write

E
[
1E(z)Π(F̄1|z)

]
≤ E [φ(z)] + E

[
1E(z) (1− φ(z)) Π(F̄1|z)

]
.

Lemma 7 gives

E [φ(z)] ≤ 4

qt̄
.

By Lemma 6, we have

Π(F̄1|z)1E(Z) ≤
(

1 +
nκ̄

σ2ρ

) s?
2

× 1E(z)
∑
δ∈∆s̄

π(δ)

π(δ?)

( ρ
2π

) ‖δ‖0
2

∫
F1

qδ,θ(z)

qδ?,θ?(z)
e−

ρ
2 (‖θ‖22−‖θ?‖22)µδ(dθ),

where F1
def
= {θ ∈ Rp : ‖θ − θ?‖2 ≤Mε}. We have

qδ,θ?(z)

qδ?,θ?(z)
= exp

(
1

2nσ2
ε
[
WT (δ?)W

′
T (δ?) −WT (δ)W

′
T (δ)

]
ε

)
≤ exp

(
1

2nσ2
ε
[
WT (δ?)W

′
T (δ?)

]
ε

)
,

and for z ∈ E , ε
[
WT (δ?)W

′
T (δ?)

]
ε ≤ 4c2

0σ
2
0 t̄n log(q). It follows from the above and

Fubini’s theorem that

E?
[
1E(z)(1− φ(z))Π(F̄1|z)

]
≤ e2c20 t̄(

σ0
σ )

2
log(q)ps?

×
∑
δ∈∆s̄

ωδ
ωδ?

( ρ
2π

) ‖δ‖0
2

∫
F1

E?
[
1E(z) (1− φ(z))

qδ,θ(z)

qδ,θ?(z)

]
e−

ρ
2 (‖θ‖22−‖θ?‖22)µδ(dθ), (23) eq:proof:thm:contrac:eq1
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We write F1 = ∪j≥1F1,j , where F1,j
def
= {θ ∈ Rp : jMε < ‖θ − θ?‖2 ≤ (j + 1)Mε}.

Using this and Lemma 7, we have∫
F1,j

E?
[
1E(z) (1− φ(z))

qδ,θ(z)

qδ,θ?(z)

]
e−

ρ
2 (‖θ‖22−‖θ?‖22)µδ(dθ)

≤ e−
nκ

32σ2 (jMr)2
∫
F1,j

e−
ρ
2 (‖θ‖22−‖θ?‖22)µδ(dθ),

and∫
F1,j

e−
ρ
2

(‖θ‖22−‖θ?‖22)µδ(dθ) =

∫
F1,j

e−
ρ
2 (‖θ−θ?‖22+2〈θ?,θ−θ?〉)µδ(dθ)

≤ e2ρ‖θ?‖2(jMr)

∫
Rp
e−

ρ
2
‖θ−θ?‖22µδ(dθ) ≤ e2ρ‖θ?‖2(jMr)

(
2π

ρ

) ‖δ‖2
2

.

Therefore (23) becomes

E
[
1E(z)(1− φ(z))Π(F̄1|z)

]
≤ ps?e2c20 t̄(

σ0
σ )

2
log(q)

∑
δ∈∆s̄

π(δ)

π(δ?)

∑
j≥1

e−
nκ

32σ2 (jMr)2+2ρ‖θ?‖2(jMr)

≤ ps?e2t̄(σ0
σ )

2
log(q)

∑
δ∈∆s̄

π(δ)

π(δ?)

e−
nκ

64σ2 (Mr)2

1− e−
nκ

64σ2 (Mr)2

≤ 2ps?e2t̄(σ0
σ )

2
log(q)e−

nκ

64σ2 (Mr)2 ∑
δ∈∆s̄

π(δ)

π(δ?)
, (24) eq:proof:thm:contrac:eq2

where we use (9) to conclude that for all j ≥ 1,

−nκ
64

(jM r)2 + 2ρ‖θ?‖2(jM r) ≤ 0.

We note that for α ≤ 1/2, and since
(
p
s

)
≤ ps,

∑
δ∈∆s̄

π(δ)

π(δ?)
=

(
1− α
α

)s? ∑
δ∈∆s̄

(
α

1− α

)‖δ‖0
≤
(

1− α
α

)s? s̄∑
s=0

(
p

s

)
(2α)s

≤ ps?(1+u)
s̄∑
s=0

(2pα)s ≤ 2ps?(1+u),

provided that pu ≥ 4. It follows readily from (24) that

E
[
1E(z)(1− φ(z))Π(F̄1|z)

]
≤ 4

qt̄
. (25) eq:proof:thm:contrac:eq42

The result follows by putting the pieces together.
�
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sec:proof:lem:e21

5.3. Proof of Lemma 4. Let Cn
def
= W ′X which can also be written as Cn =∑n

i=1wix
′
i = nC +

∑n
i=1(wix

′
i − C). Likewise, given δ(1), δ(2), with ‖δ(1)‖0 ≤ s1,

‖δ(2)‖0 ≤ s2, the submatrix (Wδ(1))′Xδ(2) = [Cn]δ(1),δ(2) can be written as

(Wδ(1))′Xδ(2) = [nC]δ(1),δ(2) +
n∑
i=1

([wix
′
i]δ(1),δ(2) − [C]δ(1),δ(2)).

Note that for all δ(1), δ(2), with ‖δ(1)‖0 ≤ s1, ‖δ(2)‖0 ≤ s2∥∥∥[wix
′
i]δ(1),δ(2)

∥∥∥
2
≤
√
s1s2‖x1‖∞‖w1‖∞ ≤ K

√
s1s2. (26) spec:norm

Standard results on perturbation of singular values (see e.g. Golub and Van Loan

(2013) Corollary 2.4.4), together with H3 imply that if Σδ(1),δ(2) denotes a singular

value of (Wδ(1))′Xδ(2) , we have

nλ−

∥∥∥∥∥
n∑
i=1

([wix
′
i]δ(1),δ(2) − [C]δ(1),δ(2))

∥∥∥∥∥
2

≤ Σδ(1),δ(2)

≤ nλ̄+

∥∥∥∥∥
n∑
i=1

([wix
′
i]δ(1),δ(2) − [C]δ(1),δ(2))

∥∥∥∥∥
2

. (27) eq:res:iso

Using (26), the matrix Bernstein inequality (see e.g. Theorem 6.1.1 of Tropp (2015)),

and union bound, for any a > 0, we have

P

[
max
δ(1),δ(2)

∥∥∥∥∥
n∑
i=1

([wix
′
i]δ(1),δ(2) − [C]δ(1),δ(2))

∥∥∥∥∥
2

> a

]

≤ 2

(
q

s1

)(
p

s2

)
(s1 + s2)e

− a2

2ns1s2K
2+ 2

3
√
s1s2Ka .

Taking a2 = 8s1s2(s1 log(q) + s2 log(p))K2n, we work out that the right hand side

of the last display is upper bounded by 2(s1 + s2)/[qs1ps2 ], provided that
√
n ≥√

s1 log(q) + s2 log(p). Hence (27) reads: with probability at least 2(s1 + s2)/[qs1ps2 ]

it holds: for all δ(1), δ(2), with ‖δ(1)‖0 ≤ s1, ‖δ(2)‖0 ≤ s2

nλ−K
√

8s1s2(s1 log(q) + s2 log(p))n ≤ Σδ(1),δ(2) ≤ nλ̄+K
√

8s1s2(s1 log(q) + s2 log(p))n,

which easily imply the stated result.
�
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sec:proof:lem:e22

5.4. Proof of Lemma 5. The proof is similar to the proof of Lemma 4, but we

control the random variable

max
δ(1): ‖δ(1)‖0≤s1

max
δ(2): ‖δ(2)‖0≤s2

∥∥∥∥∥
n∑
i=1

([wix
′
i]δ(1),δ(2) − [C]δ(1),δ(2))

∥∥∥∥∥
2

,

differently. Note that

max
δ(1): ‖δ(1)‖0≤s1

max
δ(2): ‖δ(2)‖0≤s2

1

n

∥∥∥∥∥
n∑
i=1

([wix
′
i]δ(1),δ(2) − [C]δ(1),δ(2))

∥∥∥∥∥
2

≤
√
s1s2

∥∥∥∥∥ 1

n

n∑
i=1

(wix
′
i − C)

∥∥∥∥∥
∞

. (28) 1

Applying Lemma 8, we have:

E

(∥∥∥∥∥ 1

n

n∑
i=1

(wix
′
i − C)

∥∥∥∥∥
∞

)
≤ `2n.

As a result,

P

(
√
s1s2

∥∥∥∥∥ 1

n

n∑
i=1

(wix
′
i − C)

∥∥∥∥∥
∞

≥
√
s1s2`n

)
≤ `n.

Using (28), we can claim that, with probability at least as large as 1− `n,

sup
δ(1),δ(2):‖δ(j)‖0≤sj

∥∥∥∥∥
n∑
i=1

([wix
′
i]δ(1),δ(2) − [C]δ(1),δ(2))

∥∥∥∥∥
2

≤ n
√
s1s2`n.

The result follows thanks to (27) and the fact that
√
s1s2`n ≤ nλ

2 .

lemma˙1 Lemma 8. Let {xi : i = 1, . . .} be a sequence of independent Rq-valued random

vectors such that E(xi) = 0 and, there exists α > 0 such that

max
1≤j≤q

E

eα
∣∣∣∣ 1√

n

n∑
i=1

xij

∣∣∣∣
 ≤M <∞ and max

1≤i≤n,1≤j≤q
E(x4

ij) ≤M <∞,

for some constant M > 0, where xij is the jth component of xi.

Then, if log q ≥ α2M/2 ∨ αM1/4,

E

(∥∥∥∥∥ 1

n

n∑
i=1

xi

∥∥∥∥∥
∞

)
≤ c1

log q√
n
,

with c1 = 5/α.
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Proof. Let Yn =
∥∥ 1
n

∑n
i=1 xi

∥∥
∞ and 0 ≤ t ≤ α/2. By the Jensen’s inequality, we have

etE(Yn) ≤ EetYn = Ee
t max

1≤j≤q
| 1n
∑n
i=1 xij|

= E
(

max
1≤j≤q

et|
1
n

∑n
i=1 xij|

)

≤
∑q

j=1 Ee
t| 1n

∑n
i=1 xij| ≤ q max

1≤j≤q
Eet|

1
n

∑n
i=1 xij|.

(29) eq˙bound1

By a second-order Taylor expansion around 0, we have

e
t
n |
∑n
i=1 xij| = 1 +

∣∣∣∣∣
n∑
i=1

xij

∣∣∣∣∣ tn +
1

2

∣∣∣∣∣
n∑
i=1

xij

∣∣∣∣∣
2

eṫ|
1
n

∑n
i=1 xij| · t

2

n2
,

with ṫ ∈ (0, t). Thus,

Ee
t
n |
∑n
i=1 xij| = 1 + E

∣∣∣ 1√
n

∑n
i=1 xij

∣∣∣ t√
n

+ 1
2E
(∣∣∣ 1√

n

∑n
i=1 xij

∣∣∣2 eṫ| 1n∑n
i=1 xij|

)
· t2n

≡ 1 +A t√
n

+ 1
2B

t2

n .

We now proceed to bound A and B. Note that:

A ≤

(
1

n
E

(
n∑
i=1

x2
ij

))1/2

≤

(
1

n

n∑
i=1

E(x2
ij)

)1/2

≤
(

max
i,j

E(xij)
2

)1/2

≤M1/4.

B ≤ E

∣∣∣∣ 1√
n

n∑
i=1

xij

∣∣∣∣2 et
∣∣∣∣ 1
n

n∑
i=1

xij

∣∣∣∣
 ≤

E
(

1√
n

n∑
i=1

xij

)4

Ee
2 t√

n

∣∣∣∣ 1√
n

n∑
i=1

xij

∣∣∣∣
1/2

≤
√
M

(
E
(

1√
n

n∑
i=1

xij

)4
)1/2

≡
√
MC1/2,

where the second inequality follows from the Cauchy-Schwarz inequality and the third

one holds by assumption so long as 2t/
√
n ≤ α. It is not hard to see that

C = 1
n2E

(
n∑
i=1

xij

)4

= 1
n2

[
n∑
i=1

E(x4
ij) + 6

(∑
i 6=i′ E(x2

ij)E(x2
i′j)
)]

= 1
n2

(
n∑
i=1

E(x4
ij) + 6

(
n∑
i=1

E(x2
ij)

)2

− 6
n∑
i=1

[E(x2
ij)]

2

)

≤ (6 + 7/n) 1
n

n∑
i=1

E(x4
ij) ≤ 13M.

(The second to last inequality is obtain by a repeated application of the Jensen’s

inequality.)



LINEAR REGRESSION MODELS WITH INSTRUMENTAL VARIABLES 27

As a result, B ≤
√

13M
√
M ≤ 4M . Thus we can claim that, for all j,

Ee
t

∣∣∣∣ 1
n

n∑
i=1

xij

∣∣∣∣ ≤ 1 +M1/4 t√
n

+ 2M
t2

n
.

Then, from (29), we have

tE(Yn) ≤ log q + log

(
1 +

M1/4

√
n
t+ 2M

t2

n

)
≤ log q +

M1/4

√
n
t+ 2M

t2

n
.

Hence,

E(Yn) ≤ log q

t
+
M1/4

√
n

+
2M

n
t.

Using the lower bound on log q, we have

E(Yn) ≤ log q

(
1

t
+

4

nα2
t

)
+

log q

α
√
n
.

The right-hand-side of this inequality is minimized at t∗ = α
√
n/2 and we have

EYn ≤
4 log q

α
√
n

+
log q

α
√
n

=
5 log q

α
√
n
.

Which completes the proof.

�
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