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Summary. This paper investigates a change-point estimation problem in the con-

text of high-dimensional Markov random field models. Change-points represent a

key feature in many dynamically evolving network structures. The change-point esti-

mate is obtained by maximizing a profile penalized pseudo-likelihood function under

a sparsity assumption. We also derive a tight bound for the estimate, up to a loga-

rithmic factor, even in settings where the number of possible edges in the network far

exceeds the sample size. The performance of the proposed estimator is evaluated

on synthetic data sets and is also used to explore voting patterns in the US Senate

in the 1979-2012 period.
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1. Introduction

Networks are capable of capturing dependence relationships and have been exten-

sively employed in diverse scientific fields including biology, economics and the so-

cial sciences. A rich literature has been developed for static networks leveraging

advances in estimating sparse graphical models. However, increasing availability

of data sets that evolve over time has accentuated the need for developing models

for time varying networks. Examples of such data sets include time course gene

expression data, voting records of legislative bodies, etc.

In this work, we consider modeling the underlying network through a Markov

random field (MRF) that exhibits a change in its structure at some point in time.
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Specifically, suppose we have T observations
{
X(t), 1 ≤ t ≤ T

}
over p-variables with

X(t) =
(
X

(t)
1 , . . . , X

(t)
p

)
and X

(t)
j ∈ X, for some finite set X. Further, we assume

that there exists a time point τ? = dα?T e ∈ {1, . . . , T − 1}, with α? ∈ (0, 1),

such that
{
X(t), 1 ≤ t ≤ τ?

}
is an independent and identically distributed sequence

from a distribution gθ(1)? (·) parametrized by a real symmetric matrix θ
(1)
? , while

the remaining observations
{
X(t), τ? + 1 ≤ t ≤ T

}
forms also an independent and

identically distributed sequence from a distribution gθ(2)? (·) parametrized by another

real symmetric matrix θ
(2)
? . We assume that the two distributions gθ(1)? (·), gθ(2)? (·)

belong to a parametric family of Markov random field distributions given by

gθ(x) =
1

Z (θ)
exp

 p∑
j=1

θjjB0(xj) +
∑

1≤k<j≤p
θjkB(xj , xk)

 , x ∈ Xp, (1)

for a non-zero function B0 : X → R, and a non-zero symmetric function B :

X × X → R which encodes the interactions between the nodes. The term Z (θ)

is the corresponding normalizing constant. Thus, the observations over time come

from a MRF that exhibits a change in its structure at time τ? and the matrices

θ
(1)
? and θ

(2)
? encode the conditional independence structure between the p random

variables respectively before and after the change-point.

The objective is to estimate the change-point τ?, as well as the network structures

θ
(1)
? and θ

(2)
? . Although the problem of identifying a change point has a long history

in statistics (see Bai (2010), Carlstein (1988), Hinkley (1970), Loader (1996), Lan,

Banerjee and Michailidis (2009), Muller (1992), Raimondo (1998) and references

therein), its use in a high-dimensional network problem is novel and motivated by

the US Senate voting record application discussed in Section 6. Note that in a low-

dimensional setting, the results obtained for the change-point depend on the regime

considered; specifically, if there is a fixed shift then the asymptotic distribution

of the change-point is given by the minimizer of a compound Poisson process (see

Kosorok (2008)), while if the shift decreases to 0 as a function of the sample size,

the distribution corresponds to that of Brownian motion with triangular drift (see

Bhattacharya (1987), Muller (1992)).

Note that the methodology developed in this paper is useful in other areas,

where similar problems occur. Examples include biological settings, where a gene

regulatory network may exhibit a significant change at a particular dose of a drug

treatment, or in finance where major economic announcements may disrupt financial
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networks.

Estimation of time invariant networks from independent and identically dis-

tributed data based on the MRF model has been a very active research area (see

e.g. Banerjee et al. (2008); Höfling and Tibshirani (2009); Ravikumar et al. (2010);

Xue et al. (2012); Guo et al. (2010) and references therein). Sparsity (an often real-

istic assumption) plays an important role in this literature, and allows the recovery

of the underlying network with relatively few observations (Ravikumar et al. (2010);

Guo et al. (2010)).

On the other hand, there is significant less work on time varying networks (see

Zhou et al. (2010), Kolar et al. (2010), Kolar and Xing (2012) etc.). The closest

setting to the current paper is the work in Kolar and Xing (2012), which consid-

ers Gaussian graphical models where each node can exhibit multiple change points.

In contrast, this paper focuses on a single change-point impacting the global net-

work structure of the underlying Markov random field. In general, which setting

is more appropriate depends on the application. In biological applications where

the focus is on particular biomolecules (e.g. genes, proteins, metabolites), nodewise

change-point analysis would typically be preferred, whereas is many social network

applications (such as the political network example considered below), global struc-

tural changes in the network are of primary interest. Further, note that node-level

changes detected at multiple nodes can be inconsistent, noisy and difficult to rec-

oncile to extract global structural changes.

Another key difference between these two papers is the modeling framework em-

ployed. Specifically, in Kolar and Xing (2012) the number of nodes in the Gaussian

graphical model is fixed and smaller than the available sample size. The high-

dimensional challenge comes from the possible presence of multiple change-points

per node, which leads to a large number of parameters to be estimated. To overcome

this issue, a total variation penalty is introduced, a strategy that has worked well in

regression modeling where the number of parameters is the same as the number of

observations. On the other hand, this paper assumes a high-dimensional framework

where the number of nodes (and hence the number of parameters of interest, namely

the edges) grow with the number of time points and focuses on estimating a single

change-point in a general Markov random field model.

To avoid the intractable normalizing constant issue in estimating the network

structures, we employ a pseudo-likelihood framework. As customary in the analysis
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of change-point problems (Bai (2010); Lan, Banerjee and Michailidis (2009)), we

employ a profile pseudo-likelihood function to obtain the estimate τ̂ of the true

change-point τ?. Under a sparsity assumption, and some regularity conditions that

allow the number of parameters p(p+ 1) to be much larger than the sample size T ,

we establish that with high probability, |(τ̂ /T )−α?| = O(log(pT )/T ), as p, T →∞.

Note that in classical change-point problems with a fixed-magnitude change, it is

well-known that the maximum likelihood estimator of the change-point satisfies

|(τ̂ /T )−α?| = Op(1/T ) (see e.g. Bhattacharya (1987), Bai (2010)). This suggests

that our result is rate-optimal, up to the logarithm factor log(T ). The derivation of

the result requires a careful handling of model misspecification in Markov random

fields as explained in Section 3, a novel aspect not present when estimating a single

Markov random field from independent and identically distributed observations.

See also Atchadé (2014) for another example of misspecification in Markov random

fields. Further, to speed up the computation of the change-point estimator τ̂ , we

discuss a sampling strategy of the available observations, coupled with a smoothing

procedure of the resulting likelihood function.

Last but not least, we employ the developed methodology to analyze the US

Senate voting record from 1979 to 2012. In this application, each Senate seat

represents a node of the network and the voting record of these 100 Senate seats

on a given bill is viewed as a realization of an underlying Markov random field that

captures dependencies between them. The analysis strongly points to the presence

of a change-point around January, 1995, the beginning of the tenure of the 104th

Congress. This change-point comes at the footsteps of the November 1994 election

that witnessed the Republican Party capturing the US House of Representatives for

the first time since 1956. Other analyses based on more ad hoc methods, also point

to a significant change occurring after the November 1994 election (e.g. Moody and

Mucha (2013)).

The remainder of the paper is organized as follows. Modeling assumptions and

the estimation framework are presented in Section 2, while Section 3 establishes

the key technical results. Section 4 discusses computational issues and Section 5

evaluates the performance of the estimation procedure using synthetic data. Section

6 illustrates the procedure on the US Senate voting record. Finally, proofs are

deferred to the Supplement.
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2. Methodology

Let {X(t), 1 ≤ t ≤ T} be a sequence of independent random vector, where X(t) =

(X
(t)
1 , . . . , X

(t)
p ) is a p-dimensional Markov random field whose j-th component X

(t)
j

takes values in a finite set X. We assume that there exists a time point (change

point) τ? ∈ {1, . . . , T − 1} and symmetric matrices θ
(1)
? , θ

(2)
? ∈ Rp×p, such that for

all x ∈ Xp,

P
(
X(t) = x

)
= gθ(1)? (x), for t = 1, . . . , τ?,

and

P
(
X(t) = x

)
= gθ(2)? (x), for t = τ? + 1, . . . , T,

where gθ is the Markov random field distribution given in (1). We assume without

any loss of generality that τ? = dα?T e, for some α? ∈ (0, 1), where dxe denotes the

smallest integer larger or equal to x. The likelihood function of the observations

{X(t), 1 ≤ t ≤ T} is then given by

LT

(
τ, θ(1), θ(2)|X(1:T )

)
=

τ∏
t=1

gθ(1)(X
(t))

T∏
t=τ+1

gθ(2)(X
(t)). (2)

We write E to denote the expectation operator with respect to P. For a sym-

metric matrix θ ∈ Rp×p, we write Pθ to denote the probability distribution on Xp

with probability mass function gθ and Eθ its expectation operator.

We are interested in estimating both the change point τ?, as well as the param-

eters θ
(1)
? , θ

(2)
? . LetMp be the space of all p× p real symmetric matrices. We equip

Mp with the Frobenius inner product 〈θ, ϑ〉F
def
=
∑

k≤j θjkϑjk, and the associated

norm ‖θ‖F
def
=
√
〈θ, θ〉. This is equivalent to identifying Mp with the Euclidean

space Rp(p+1)/2, and this identification prevails whenever we define gradients and

Hessians of functions f : Mp → R. For θ ∈ Mp we also define ‖θ‖1
def
=
∑

k≤j |θjk|,
and ‖θ‖∞

def
= supk≤j |θjk|. If u ∈ Rd, for some d ≥ 1, and A is an ordered subset of

{1, . . . , d}, we define uA
def
= (uj , j ∈ A), and u−j is a shortcut for u{1,...,d}\{j}.

To avoid some of the computational difficulties in dealing with the normal-

izing constant of gθ, we take a pseudo-likelihood approach. For θ ∈ Mp and

j ∈ {1, 2, . . . , p}, define f
(j)
θ (u|x)

def
= Pθ(Xj = u|X−j = x−j), for u ∈ X, and

x ∈ Xp. From the expression of the joint distribution gθ in (1), we have

f
(j)
θ (u|x) =

1

Z
(j)
θ (x)

exp

θjjB0(u) +
∑
k 6=j

θjkB(u, xk)

 , u ∈ X, x ∈ Xp, (3)
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where

Z
(j)
θ (x)

def
=

∫
X

exp

θjjB0(z) +
∑
k 6=j

θjkB(z, xk)

dz. (4)

The normalizing constant Z
(j)
θ (x) defined in (4) is actually a summation over X, but

for notational convenience we write it as an integral against the counting measure

on X. Next, we introduce

φ(θ, x)
def
= −

p∑
j=1

log f
(j)
θ (xj |x). (5)

The negative log-pseudo-likelihood of the model (divided by T ) is given by

`T (τ ; θ1, θ2)
def
=

1

T

τ∑
t=1

φ(θ1, X
(t)) +

1

T

T∑
t=(τ+1)

φ(θ2, X
(t)). (6)

For 1 ≤ τ < T , and λ > 0, we define the estimators

θ̂
(λ)
1,τ

def
= Argmin

θ∈Mp

1

T

τ∑
t=1

φ(θ,X(t)) + λ‖θ‖1,

and

θ̂
(λ)
2,τ

def
= Argmin

θ∈Mp

1

T

T∑
t=τ+1

φ(θ,X(t)) + λ‖θ‖1.

We propose to estimate the change point τ? using a profile pseudo-likelihood ap-

proach. More precisely our estimator τ̂ is defined as

τ̂ = Argmin
τ∈T

`T (τ ; θ̂1,τ , θ̂2,τ ), (7)

for a search domain T ⊂ {1, . . . , T} of the form {kl, kl + 1, . . . , T − ku}, where for

each τ ∈ T , θ̂1,τ = θ̂
(λ1,τ )
1,τ and θ̂2,τ = θ̂

(λ1,τ )
1,τ , for some positive penalty parameters

λ1,τ , λ2,τ . Since the network estimation errors at the boundaries of the time-line

{1, . . . , T} are typically large, a restriction on the search domain is needed to guar-

antee the consistency of the method. This motivates the introduction of T . We

give more details on T below. The penalty parameters λ1,τ and λ2,τ also play an

important role in the behavior of the estimators, and we provide some guidelines

below.
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3. Theoretical Results

The recovery of τ? rests upon the ability of the estimators θ̂j,τ to correctly esti-

mate θ
(j)
? , j ∈ {1, 2}. Estimators for the static version of the problem where one

has i.i.d. observations from a single Markov Random Field have been extensively

studied; see Guo et al. (2010), Höfling and Tibshirani (2009), Meinshausen and

Bühlmann (2006), Ravikumar et al. (2010) and references therein for computational

and theoretical details. However, in the present setting one of the estimators θ̂j,τ ,

j ∈ {1, 2} is derived from a misspecified model. Hence, to establish the error bound

for ‖θ̂j,τ − θ
(j)
? ‖2, we borrow from the approach in Atchadé (2014). For penalty

terms λj,τ as in (8) and under some regularity assumptions, we derive a bound on

the estimator errors ‖θ̂j,τ − θ(j)
? ‖2, for all τ ∈ T . We then use this result to show

that the profile pseudo-log-likelihood estimator τ̂ is an approximate minimizer of

τ 7→ `T (τ ; θ
(1)
? , θ

(2)
? ) and this allows us to establish a bound on the distance between

τ̂ and the true change point τ?.

We assume that the penalty parameters take the following specific form.

λ1,τ =
32c0

√
τ log (dT )

T
and λ2,τ =

32c0

√
(T − τ) log (dT )

T
, (8)

where d
def
= p(p+ 1)/2, and

c0 = sup
u,v∈X

|B0(u)−B0(v)| ∨ sup
x,u,v∈X

|B(x, u)−B(x, v)|, (9)

which serves as (an upper bound on the) standard deviation of the random vari-

ables B0(X), B(X,Y ). In practice, we use λ1,τ = a1T
−1c0

√
τ log(dT ), and λ2,τ =

a2T
−1c0

√
(T − τ) log(dT ), where a1, a2 are chosen from the data by an analogue of

the Bayesian Information Criterion (Schwarz (1978)).

For j = 1, 2, define Aj
def
=
{

1 ≤ k ≤ i ≤ p : θ
(j)
?ik 6= 0

}
, and define sj

def
= |Aj | the

cardinality (and hence the sparsity) of the true model parameters. We also define

Cj
def
=

θ ∈Mp :
∑

(k,i)∈Acj

|θ(j)
ik | ≤ 3

∑
(k,i)∈Aj

|θ(j)
ik |

 , j ∈ {1, 2}, (10)

used next in the definition of the restricted strong convexity assumption.

H1. [Restricted Strong Convexity] For j ∈ {1, 2}, and X ∼ gθ(j)? , there exists



8 Roy, Atchadé, Michailidis

ρj > 0 such that for all ∆ ∈ Cj,
p∑
i=1

Eθ(j)?

[
Varθ(j)?

(
p∑

k=1

∆ikBik(Xi, Xk)|X−i

)]
≥ 2ρj ‖∆‖22, (11)

where Bik(x, y) = B0(x) if i = k, and Bik(x, y) = B(x, y) if i 6= k.

Remark 1. Assumption H1 is a (averaged) restricted strong convexity (RSC)

assumption on the negative log-pseudo-likelihood function φ(θ, x). This can be seen

by noting that (11) can also be written as

∆′E
[
∇(2)φ(θ

(j)
? , X(j))

]
∆ ≥ 2ρj‖∆‖22, X(j) ∼ gθ(j)? , ∆ ∈ Cj , j ∈ {1, 2}.

These restricted strong convexity assumptions of objective functions are more perti-

nent in high-dimensional problems and appear in one form or another in the analysis

of high-dimensional statistical methods (see e.g. Neghaban et al. (2010) and refer-

ences therein). Note that the RSC assumption is expressed here in expectation,

unlike Neghaban et al. (2010) which uses an almost sure version. Imposing this

assumption in expectation (that is, at the population level) is more natural, and is

known to imply the almost sure version in many instances (see Rudelson and Zhou

(2013), and Lemma 4 in the Supplement).

We impose the following condition on the change point and the sample size.

H2. [Sample size requirement] We assume that there exists α? ∈ (0, 1) such that

τ? = dα?T e ∈ {1, . . . , T − 1}, and the sample size T satisfies

min

(
T

211 log(pT )
,

T

482 × 322 log (dT )

)
≥ c2

0 max

(
s2

1

α?ρ2
1

,
s2

2

(1− α?) ρ2
2

)
,

where ρ1, and ρ2 are as in H1.

Remark 2. Note that the constants 211 and 482 × 322 required in H2 will typi-

cally yield a very conservative bound on the sample size T . We believe these large

constants are mostly artifacts of our techniques, and can be improved. The key point

of H2 is the fact that we require the sample T to be such that T/ log(T ) is a linear

function of max(s2
1, s

2
2) log(p). Up to the log(T ) term, this condition is in agreement

with recent results on high-dimensional sparse graphical model recovery.

The ability to detect the change-point requires that the change from θ
(1)
? to θ

(2)
?

be identifiable.
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H3. [Identifiability Condition] Assume that θ
(1)
? 6= θ

(2)
? , and

κ
def
= min

(
Eθ(2)?

[
φ(θ

(1)
? , X)− φ(θ

(2)
? , X)

]
,Eθ(1)?

[
φ(θ

(2)
? , X)− φ(θ

(1)
? , X)

])
> 0.

(12)

Remark 3. Assumption H3 is needed for the identifiability of the change-point

τ?. Since the distributions gθ are discrete data analogs of Gaussian graphical distri-

butions, it is informative to look at H3 for Gaussian graphical distributions. Indeed,

if gθ is the density of the p-dimensional normal distribution N(0, θ−1) with precision

matrix θ, and if we take φ(θ, x) = − log gθ(x), then it can be easily shown that

κ ≥ 1

4L2
‖θ(2)
? − θ

(1)
? ‖22,

where L is an upper bound on the largest eigenvalue of θ
(1)
? and θ

(2)
? . Hence in this

case H3 holds. Such a general result is more difficult to establish for discrete Markov

random fields. However, it can be easily shown that H3 holds if(
θ

(1)
? − θ

(2)
?

)′
Eθ(2)?

[
∇(2)φ(θ

(2)
? , X)

] (
θ

(1)
? − θ

(2)
?

)′
> 0,

and
(
θ

(2)
? − θ

(1)
?

)′
Eθ(1)?

[
∇(2)φ(θ

(1)
? , X)

] (
θ

(2)
? − θ

(1)
?

)′
> 0. (13)

And in the particular setting where θ
(1)
? and θ

(2)
? have similar sparsity patterns (in

the sense that θ
(2)
? − θ

(1)
? ∈ C1 ∩C2), then (13) follows from H1, and the discussion

in Remark 1.

Finally, we define the search domain as the set

T = T+ ∪ T−, (14)

where T+ is defined as the set of all time-points τ ∈ {τ? + 1, . . . , T} such that

c0b(τ − τ?) ≤ 2
√
τ log(dT ), and 64c3

0bs1(τ − τ?) ≤ ρ1τ, (15)

and T− is defined as the set of all time-point τ ∈ {1, . . . , τ?} such that

c0b(τ? − τ) ≤ 2
√

(T − τ) log(dT ), and 64c3
0bs2(τ? − τ) ≤ ρ2(T − τ), (16)

where

b
def
= sup

1≤j≤p

p∑
k=1

∣∣θ(2)
?jk − θ

(1)
?jk

∣∣. (17)
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Furthermore, for all τ ∈ T ,

τ ≥ max
(
211, (48× 32)2

)
c2

0

(
s1

ρ1

)2

log(dT ),

and T − τ ≥ max
(
211, (48× 32)2

)
c2

0

(
s2

ρ2

)2

log(dT ). (18)

Remark 4. Notice that T is of the form {kl, kl + 1, . . . , τ?, τ? + 1, . . . , T − ku},
since for τ close to τ? both (15), (16), and (18) hold provided that T is large enough.

We can then establish the key result of this paper. Set

M =

[
s1

ρ1

(
1 + c0

s1

ρ1

)
+
s2

ρ2

(
1 + c0

s2

ρ2

)]
.

Theorem 1. Consider the model posited in (2), and assume H1-H3. Let τ̂ be

the estimator defined in (7), with λ1,τ , λ2,τ as in (8), and with a search domain

T that satisfies (15), (16), and (18). Then there exists a universal finite constant

a > 0, such that with δ = aMc2
0 log(dT ), we have

P
(∣∣∣∣ τ̂T − α?

∣∣∣∣ > 4δ

κT

)
≤ 16

d
+

4 exp

(
− δ

32c20s

(
κ

‖θ(2)? −θ(1)? ‖22

)2
)

1− exp
(
− κ2

27c20s‖θ
(2)
? −θ(1)? ‖22

) , (19)

where s is the number of non-zero components of θ
(2)
? − θ

(1)
? .

Theorem 1 gives a theoretical guarantee that for large p and for large enough sam-

ple size T such that (T/ log(T )) = O(max(s2
1, s

2
2) log(p)), |τ̂ /T−α?| = O(log(pT )/T )

with high-probability. For fixed-parameter change-point problems, the maximum

likelihood estimator of the change-point is known to satisfy |τ̂ /T − α?| = OP (1/T )

(see e. g. Bai (2010)). This shows that our result is rate-optimal, up to the log-

arithm factor log(T ). Whether one can improve the bound and remove the log(T )

term hinges on the existence of an exponential bound for the maximum of weighted

partial sums of sub-Gaussian random variables, as we explain in Remark 1 of the

Supplement. Whether such bound holds is currently an open problem, to the best

of our knowledge. However, note that the log(p) term that appears in the theorem

cannot be improve in general in the large p regime.

If the signal κ introduced in H3 satisfies

κ ≥ κ0‖θ(2)
? − θ

(1)
? ‖22, (20)
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then the second term on right-hand side of (19) is upper bounded by(
1

dT

) aMκ0
32s 1

1− exp
(
− κ2

0

27c20s
‖θ(2)
? − θ

(1)
? ‖22

) . (21)

This shows that Theorem 1 can also be used to analyze cases where ‖θ(2)
? −θ

(1)
? ‖22 ↓ 0,

as p→∞. In such cases, consistency is guaranteed provided that the term in (21)

converges to zero. From the right-hand side of (20), we then see that the convergence

rate of the estimator in such cases is changed to

c2
0

‖θ(2)
? − θ

(1)
? ‖22

log(dT )

T
.

Another nice feature of Theorem 1 is the fact that the constant M describes the

behavior of the change-point estimator as a function of the key parameters of the

problem. In particular, the bound in (19) shows that the change-point estimator

improves as s1, s2 (the number of non-zero entries of the matrices θ
(1)
? , θ

(2)
? resp.),

or the noise term c0 (the maximum fluctuation of B0 and B) decrease.

4. Algorithm and Implementation Issues

Given a sequence of observed p-dimensional vectors {x(t), 1 ≤ t ≤ T}, we propose

the following algorithm to compute the change point τ̂ , as well as the estimate the

estimates
(
θ̂1,τ̂ , θ̂2,τ̂

)
.

Algorithm 1 (Basic Algorithm). Input: a sequence of observed p-dimensional

vectors {x(t), 1 ≤ t ≤ T}, and T ⊆ {1, . . . , T} the search domain.

(a) For each τ ∈ T , estimate θ̂1,τ , θ̂2,τ using for instance the algorithm in Höfling

and Tibshirani (2009).

(b) For each τ ∈ T , plug-in the estimates θ̂1,τ , θ̂2,τ in (6) and obtain the profile

(negative) pseudo-log-likelihood function P`(τ)
def
= `T (τ ; θ̂1,τ , θ̂2,τ ).

(c) Identify τ̂ that achieves the minimum of P`(τ) over the grid T , and use

θ̂1,τ̂ , θ̂2,τ̂ as the estimates of θ
(1)
? and θ

(2)
? , respectively.

In our implementation of the Basic Algorithm, we choose a search domain T of

the form T = {kl, kl + 1, . . . , T − kl}, with kl sufficiently large to ensure reasonably
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good estimation errors at the boundaries. Existing results (Ravikumar et al. (2010);

Guo et al. (2010)) suggest that a sample size of order O(s2 log(d)) is needed, where

s is the number of edges, for a good recovery of Markov random fields.

Note that to identify the change-point τ̂ the algorithm requires a full scan of all

the time points in the set T , which can be expensive when T is large. As a re-

sult, we propose a fast implementation that operates in two stages. In the first

stage, a coarser grid T1 ⊂ T of time points is used and steps (a) and (b) of the

Basic Algorithm are used to obtain `T (τ ; θ̂1,τ , θ̂2,τ ), τ ∈ T1. Subsequently, the pro-

file likelihood function `T is smoothed using a Nadaraya-Watson kernel (Nadaraya

(1965)). Based on this smoothed version of the profile likelihood, an initial estimate

of the change-point is obtained. In the second stage, a new fine-resolution grid T2

is formed around the first stage estimate of τ̂ . Then, the Basic Algorithm is used

for the grid points in T2 to obtain the final estimate. This leads to a more practical

algorithm summarized next.

Algorithm 2 (Fast Implementation Algorithm). Input: a sequence of ob-

served p-dimensional vectors {x(t), 1 ≤ t ≤ T}, and T ⊆ {1, . . . , T} the search

domain.

(a) Find a coarser grid T1 of time points.

(b) For each τ ∈ T1, use steps (a) and (b) of the Basic Algorithm to obtain

P`T (τ), τ ∈ T1.

(c) Compute the profile negative pseudo-log-likelihood over the interval [1, T ] by

Nadaraya-Watson kernel smoothing:

P̃`1s(τ)
def
=

∑
τi∈T1 Khν (τ, τi) `(τi; θ̂1,τi , θ̂2,τi)∑

τi∈T1 `
(
τi; θ̂1,τi , θ̂2,τi

) , 1 ≤ τ ≤ T.

The first stage change-point estimate is then obtained as

τ̂ = Argmin
1<τ<T

P̃`1s(τ).

(d) Form a second stage grid T2 around the first stage estimate τ̂ and for each

τ ∈ T2, estimate
̂̂
θ1,τ and

̂̂
θ2,τ using steps (a) and (b) of the Basic Algorithm.
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(e) Construct the second stage smoothed profile pseudo-likelihood

P̃`2s(τ)
def
=

∑
τi∈T2 Khν (τ, τi) `

(
τi;
̂̂
θ1,τi ,

̂̂
θ2,τi

)
∑

τi∈T2 `

(
τi;
̂̂
θ1,τi ,

̂̂
θ2,τi

) , min(T2) ≤ τ ≤ max(T2).

The final change-point estimate is then given by

̂̂τ = Argmin
min(T2)≤τ≤max(T2)

P̃`2s(τ).

5. Performance Assessment

5.1. Comparing Algorithm 1 and Algorithm 2

We start by examining the relative performance of both the Basic (Algorithm 1)

and the Fast Implementation Algorithms (Algorithm 2). We use the so called Ising

model; i.e. when (1) has B0 (xj) = xj , B (xj , xk) = xjxk and X ≡ {0, 1}. In all

simulation setting the sample size is set to T = 700, and the true change-point is

at τ? = 350, while the network size p varies from 40-100. All the simulation results

reported below are based on 30 replications of Algorithm 1 and Algorithm 2.

The data are generated as follows. We first generate two p× p symmetric adja-

cency matrices each having density 10%; i.e. only ∼10% of the entries are different

than zero. Each off-diagonal element of θ
(i)
?jk, (i = 1, 2) is drawn uniformly from

[−1,−0.5] ∪ [0.5, 1] if there is an edge between nodes j and k, otherwise θ
(i)
?jk = 0.

All the diagonal entries are set to zero. Given the two matrices θ
(1)
? and θ

(2)
? , we

generate the data
{
X(t)

}τ?
t=1

iid∼ gθ(1)∗
and

{
X(t)

}T
t=τ?+1

iid∼ gθ(2)∗
by Gibbs sampling.

Different “signal strenghts” are considered, by setting the degree of similarity

between θ
(1)
? and θ

(2)
? to 0%, 20% and 40%. The degree of similarity is the proportion

of equal off-diagonal elements between θ
(1)
? and θ

(2)
? . Thus, the difference ‖θ(2)

? −
θ

(1)
? ‖1 becomes smaller for higher degree of similarity and as can be seen from

Assumption H3, the estimation problem becomes harder in such cases.

The choice of the tuning parameters λ1,τ and λ2,τ were made based on Bayesian

Information Criterion (BIC) where we search λ1,τ and λ2,τ over a grid Λ and for

each penalty parameter the λ value that minimizes the BIC score (defined below)

over Λ is selected. If we define λBIC1 and λBIC2 as the selected λ values for λ1 and
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λ2 by BIC we have

λBIC1 = Argmin
λ∈Λ

− 2

T

τ∑
t=1

φ
(
θ̂

(λ)
1,τ , X

(t)
)

+ log(τ)‖θ̂(λ)
1,τ ‖0 and

λBIC2 = Argmin
λ∈Λ

− 2

T

T∑
t=τ+1

φ
(
θ̂

(λ)
2,τ , X

(t)
)

+ log(T − τ)‖θ̂(λ)
2,τ ‖0

where ‖θ‖0
def
=
∑

k≤j 1{|θjk|>0}.

For the fast algorithm (Algorithm 2), the first stage grid employed had a step

size of 10 and ranged from 60 to 640, while the second stage grid was chosen in the

interval [τ̂ − 30, τ̂ + 30] with a step-size of 3.

We present the results for Algorithm 1 in Table 1 for the case p = 40. It can

be seen that Algorithm 1 performs very well for stronger signals (0% and 20%

similarity), while there is a small degradation for the 40% similarity setting. The

results on the specificity, sensitivity and the relative error of the estimated network

structures are given in Table 2. Specificity is defined as the proportion of true

negatives and can also be interpretated as (1-Type 1 error). On the other hand

sensitivity is the proportion of true positives and can be interpreted as the power of

the method. The results for Algorithm 2 for p = 40, 60 and p = 100, for the change-

point estimates are given in Table 4, while the specificity, sensitivity and relative

error of the estimated network structures are given in Table 5. These results show

that Algorithm 2 has about 20% higher mean-squared error (MSE) compared to

Algorithm 1. However as pointed out in Section 4, Algorithm 2 is significantly

faster. In fact in this particular simulation setting, Algorithm 2 is almost 5 times

faster in a standard computing environment with 4 CPU cores. See also the results

in Table 3 which reports the ratio of the run-time of a single iteration of Algorithm

1 and Algorithm 2.

Further, selected plots of the profile smoothed pseudo-log-likelihood functions

P̃`1s(τ) and P̃`2s(τ) from the first and second stage of Algorithm 2 are given in

Figure 1.

Table 1: Change-point estimation results using the Basic Algorithm, for different

percentages of similarity.
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p % of Similarity τ̂ RMSE CV

40

0 355 14.77 0.03

20 362 24.65 0.06

40 375 38.49 0.08

Table 2: Specificity, sensitivity and relative error in estimating θ
(1)
? and θ

(2)
? from

the Basic Algorithm, with different percentages of similarity.

p % of Similarity Specificity Sensitivity Relative error

θ
(1)
∗ θ

(2)
∗ θ

(1)
∗ θ

(2)
∗ θ

(1)
∗ θ

(2)
∗

40

0 0.78 0.87 0.79 0.89 0.70 0.63

20 0.74 0.88 0.80 0.88 0.72 0.67

40 0.71 0.80 0.77 0.81 0.75 0.72

Table 3: Ratio of the computing time of one iteration of Algorithm 1 and Algorithm

2.

p Ratio of computing times

40 4.93

60 4.82

100 4.81

Table 4: Change-point Estimation Results for different values of p and different

percentages of similarity for the Fast Implementation Algorithm.(T = 700, s1 =

s2 = 10p(p+1)
2 %, τ∗ = 354)
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p % of Similarity τ̂ ̂̂τ RMSE CV

40

0 360 360 17.89 0.04

20 363 361 30.07 0.08

40 375 373 47.97 0.10

60

0 357 356 23.05 0.06

20 388 386 43.20 0.08

40 410 408 61.45 0.09

100

0 356 355 35.93 0.10

20 408 401 62.89 0.10

40 424 421 85.04 0.12

Table 5: Specificity, sensitivity and relative error of the two parameters for differ-

ent values of p and different percentages of similarity for the Fast Implementation

Algorithm.

p % of Similarity Specificity Sensitivity Relative error

θ
(1)
∗ θ

(2)
∗ θ

(1)
∗ θ

(2)
∗ θ

(1)
∗ θ

(2)
∗

40

0 0.74 0.86 0.78 0.86 0.74 0.67

20 0.74 0.81 0.76 0.82 0.73 0.71

40 0.72 0.78 0.78 0.82 0.74 0.70

60

0 0.81 0.83 0.77 0.82 0.75 0.66

20 0.82 0.87 0.70 0.72 0.79 0.73

40 0.80 0.86 0.65 0.68 0.81 0.78

100

0 0.82 0.88 0.75 0.84 0.78 0.66

20 0.81 0.87 0.66 0.70 0.81 0.78

40 0.85 0.87 0.63 0.68 0.83 0.81

5.2. A community based network structure

Next, we examine a setting similar to the one that emerges from the US Senate

analysis presented in the next Section. Specifically, there are two highly “connected”

communities of size p = 50 that are more sparsely connected before the change-

point, but exhibit fairly strong negative association between their members after

the change-point. Further, the within community connections are increased for
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Fig. 1: Smoothed profile pseudo-log-likelihood functions from one run of Algorithm

2. Different values of similarity (0%, 20% and 40%) in rows. Different values of p

(p = 40, 60 & 100) in column. The green curve is the non-smoothed profile pseudo-

log-likelihood from Stage 1 of Algorithm 2, and the black curve is its smoothed

version. The orange and the blue curve are respectively the non-smoothed and the

smoothed profile pseudo-log-likelihood functions from Stage 2 of Algorithm 2.

one of them and decreased for the other after the occurrence of the change-point.

We keep the density of the two matrices encoding the network structure before

and after the true change-point at 10%. In the pre change-point regime, 40% of

the non-zero entries are attributed to within group connections in community 1

(see Table 6), and 50% to community 2 (see Table 6), while the remaining 10%

non-zeros represent between group connections and are negative. Note that the

within group connections are all positive. In the post change-point regime, the

community 1 within group connections slightly increase to 42% of the non-zero

entries, whereas those of community 2 decrease to 17% of the non-zero entries.

The between group connections increase to 41% of the non-zero entries in the post

change-point regime. As before, each off-diagonal element θ
(i)
jk , i = 1, 2 is drawn

uniformly from [−1,−0.5]∪ [0.5, 1] if nodes j and k are linked by an edge, otherwise

θ
(i)
∗,jk = 0, i = 1, 2 and the diagonals for both the matrices are assigned as zeros.

Given the two matrices θ
(1)
∗ and θ

(2)
∗ , we generate data using the “BMN” package

(Hoefling (2010)) as described earlier. The total sample size employed is T = 1500
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and the true change-point is at τ∗ = 750. We choose the first stage grid comprising of

50 points with a step size of 27 and the second stage grid is chosen in a neighborhood

of the first stage estimate with a step size of 3 with 20 points. We replicate the study

5 times and find that the estimated change-point averaged over the 5 replications as

τ̂ = 768. The relevant figure (see Figure 2) for this two community model is given

below. The analysis indicates that our proposed methodology is able to estimate the

true change-point sufficiently well in the presence of varying degrees of connections

between two communities over two different time periods, a reassuring feature for

the US Senate application presented next.

Table 6: Positive and negative edges before and after the true change-point for two

community model

Edges Before After

comm 1 comm 2 between comm 1 comm 2 between

positive 50 63 0 52 21 0

negative 0 0 10 0 0 50

Total 50 63 10 52 21 50
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Fig. 2: Change-point estimate for the two community model with p = 50, T = 1500

and τ∗=754

6. Application to Roll Call Data of the US Senate

The data examined correspond to voting records of the US Senate covering the

period 1979 (96th Congress) to 2012 (112th Congress) and were obtained from the
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website www.voteview.com. Specifically, for each of the 12129 votes cast during this

period, the following information is recorded: the date that the vote occurred and

the response to the bill/resolution under consideration -yes/no, or abstain- of the 100

Senate members. Due to the length of the time period under consideration, there

was significant turnover of Senate members due to retirements, loss of re-election

bids, appointments to cabinet or other administrative positions, or physical demise.

In order to hold the number of nodes fixed to 100 (the membership size of the

US Senate at any point in time), we considered Senate seats (e.g. Michigan 1 and

Michigan 2) and carefully mapped the senators to their corresponding seats, thus

creating a continuous record of the voting pattern of each Senate seat.

Note that a significant number of the 12129 votes deal with fairly mundane

procedural matters, thus resulting in nearly unanimous outcomes. Hence, only votes

exhibiting conformity less than 75% (yes/no) in either direction were retained, thus

resulting in an effective sample size of T = 7949 votes. Further, missing values

due to abstentions were imputed by the value (yes/no) of that member’s party

majority position on that particular vote. Note that other imputation methods of

missing values were employed: (i) replacing all missing values by the value (yes/no)

representing the winning majority on that bill and (ii) replacing the missing value

of a Senator by the value that the majority of the opposite party voted on that

particular bill. The results based on these two alternative imputation methods are

given in the Supplement.

Finally, the yes/no votes were encoded as 1/0, respectively. Under the posited

model, votes are considered as i.i.d. from the same underlying distribution pre

and post any change-point. In reality, voting patterns are more complex and in all

likelihood exhibit temporal dependence within the two year period that a Congress

serves and probably even beyond that due to the slow turnover of Senate members.

Nevertheless, the proposed model serves as a working model that captures essential

features of the evolving voting dependency structure between Senate seats over time.

The likelihood function together with an estimate of a change-point are depicted

in Figure 5 based on the Fast Implementation Algorithm presented in Section 4. We

choose our first stage grid with a step-size of 50 that yields 157 points excluding time

points close to both boundaries. In the second stage, we choose a finer-resolution

grid with a step size of 20 in a neighborhood of the first stage change-point esti-

mate. The vote corresponding to the change point occurred on January 17, 1995
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at the beginning of the tenure of the 104th Congress. This change-point comes at

the footsteps of the November 1994 election that witnessed the Republican Party

capturing the US House of Representatives for the first time after 1956. As dis-

cussed in the political science literature, the 1994 election marked the end of the

“Conservative Coalition”, a bipartisan coalition of conservative oriented Republi-

cans and Democrats on President Roosevelt’s “New Deal” policies, which had often

managed to control Congressional outcomes since the “New Deal” era. Note that

other analyses based on fairly ad hoc methods (e.g. Moody and Mucha (2013))

also point to a significant change occurring after the November 1994 election.

Next, we examine more closely the pre and post change-point network structures,

shown in the form of heatmaps of the adjacency matrices in Figure 6. To obtain sta-

ble estimates of the respective network structures, stability selection (Meinshausen

and Bühlmann (2010)) was employed with edges retained if they were present

in more than 90% of the 50 networks estimated from bootstrapped data. To aid

interpretation, the 100 Senate seats were assigned to three categories: Democrat

(blue), mixed (yellow) and Republican (red). Specifically, a seat was assigned to the

Democrat or Republican categories if it were held for more than 70% of the time

by the corresponding party within the pre or post change-point periods; otherwise,

it was assigned to the mixed one. This means that if a seat was held for more than

5 out of the 8 Congresses in the pre change-point period and similarly 6 out of 9

Congresses in the post period by the Democrats, then it is assigned to that category

and similarly for Republican assignments; otherwise, it is categorized as mixed.

In the depicted heatmaps, the ordering of the Senate seats in the pre and post

change-point regimes are kept as similar as possible, since some of the seats changed

their category membership completely across periods. Further, the green dots rep-

resent positive edge weights, mostly corresponding to within categories interactions,

while black dots represent negative edge weights, mostly between category interac-

tions. It can be clearly seen an emergence of a significant number of black dots in

the post change-point regimes, indicative of sharper disagreements between politi-

cal parties and thus increased polarization. Further, it can be seen that in the post

change-point regime the mixed group becomes more prominent, indicating that it

contributes to the emergence of a change-point.

To further explore the reasons behind the presence of a change-point, we pro-

vide some network statistics in Figure 3 and Figure 4. Specifically, the two figures
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present the proportion of positive and negative edges, before and after the esti-

mated change-point using two different methods for selecting the penalty tuning

parameters; an analogue of the Bayesian Information Criterion and threshold 0.8

for the stability selection method respectively. The patterns shown across the fig-

ures for the two different methods are very similar- high proportion of positive edges

within groups and very low or almost negligible proportion of negative edges within

the “republican” or “democrat” groups in both pre and post-change-point periods.

Further, a large proportion of negative edges can be accounted for “republican”

and “democrat” group interactions, which tend to increase in the post regime. One

noticeable fact is that the proportion of positive edges within the “republican” and

“democrat” groups remain almost same from pre to post change-point regime under

BIC and stability selection both whereas the proportion of positive edges between

the two groups decrease and the proportion of negative edges between them tend to

increase from pre to post change-point regime for both the methods. It can also be

observed that the “mixed” and the “democrat” groups exhibit a large proportion

of positive edges between them in the pre regime, as gleaned from their overlap in

the corresponding heatmap.

We also present some other network statistics, such as average degree, centrality

scores and average clustering coefficients for the three groups “republican”, “demo-

crat” and “mixed” in Table 7. We observe that in terms of centrality scores the

“democrat” group is more influential than the “republican” one, in both the pre

and post change-point network structures, whereas in terms of clustering coefficient

values the “republican” group is ahead of the “democrat” one and the gap increases

from pre to post change-point regime, also reflected in the finding that the number

of edges within the “republican” group mostly remains the same from pre to post

regimes, whereas for the democrats it decreases. These results suggest that the

Republicans form a tight cluster, whereas the Democrats not to the same extent.

Table 7: Different network statistic values for stability selection with threshold=0.9

and 0.8 respectively
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Fig. 3: Proportion of negative edges for network structures before (left figure) and

after (right figure) the estimated change-point for BIC and stability selection with

threshold=0.8

Methods Network Statistic Before After

Rep Dem Mixed Rep Dem Mixed

Stable (0.9) Centrality Score 0.004 0.368 0.054 0.001 0.483 0.034

Clustering Coefficient 0.346 0.311 0.339 0.334 0.251 0.391

Stable (0.8) Centrality Score 0.004 0.378 0.055 0.001 0.481 0.078

Clustering Coefficient 0.366 0.371 0.360 0.378 0.307 0.364

References
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Fig. 5: Estimate of the change-point for the combined US senate data from 1979-

2012
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Fig. 6: Heatmap of the stable network structures before and after the estimated

change-point
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