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Abstract. Graphical models with change-points are computationally challenging

to fit, particularly in cases where the number of observation points and the num-

ber of nodes in the graph are large. Focusing on Gaussian graphical models, we

introduce an approximate majorize-minimize (MM) algorithm that can be useful

for computing change-points in large graphical models. The proposed algorithm

is an order of magnitude faster than a brute force search. Under some regularity

conditions on the data generating process, we show that with high probability, the

algorithm converges to a value that is within statistical error of the true change-

point. A fast implementation of the algorithm using Markov Chain Monte Carlo

is also introduced. The performances of the proposed algorithms are evaluated on

synthetic data sets and the algorithm is also used to analyze structural changes in

the S&P 500 over the period 2000-2016.

1. Introduction

Networks are fundamental structures that are commonly used to describe interac-

tions between sets of actors or nodes. In many applications, the behaviors of the actors

are observed over time and one is interested in recovering the underlying network con-

necting these actors. High-dimensional versions of this problem where the number

of actors is large (compared to the number of time points) is of special interest. In

the statistics and machine learning literature, this problem is typically framed as fit-

ting large graphical models with sparse parameters, and significant progress has been

made recently, both in terms of the statistical theory (Meinshausen and Buhlmann

(2006); Yuan and Lin (2007); Banerjee et al. (2008); Ravikumar et al. (2011); Hastie
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et al. (2015)), and practical algorithms (Friedman et al. (2007); Höfling and Tibshirani

(2009); Atchade et al. (2017)).

In many problems arising in areas such as biology, finance, and political sciences,

it is well-accepted that the underlying networks of interest are not static, but can un-

dergo changes over time. Graphical models with change-points (or piecewise constant

graphical models) are simple, yet powerful models that are particularly well-suited

for such problems, and different versions have been explored in the literature. In this

work, similarly to Zhou et al. (2009); Kolar et al. (2010); Roy et al. (2017), we focus on

settings where the change occurring at a given change-point is global in the sense that

it affects the joint distribution of all nodes. This differs from the approach of Kolar

and Xing (2012) where at a given change-point only the conditional distribution of a

single node sees a change. Which framework is more appropriate depends in general

on the application. For instance in biological applications where interests are often

on single biomolecules, nodewise change-point analysis might be preferred, whereas

in many social science problems global structural changes in the network is often of

interest. We also mention the alternative approach of Liu et al. (2013) which has an

original parametrization that focuses directly on the occurring change. Although we

work within the joint-change framework, we stress that our proposed algorithms can

be easily adapted to work with other alternative models.

Despite their conceptual simplicity, graphical models with change-points are com-

putationally challenging to fit. For instance a full grid search approach to locate a

single change-point in a Gaussian graphical model with a lasso penalty (glasso) re-

quires solving O(T ) glasso sub-problems, where T is the number of time points. Most

algorithms for the glasso problem scale like O(p3) or worst1, where p is the number

of nodes. Hence when p and T are large, fitting a high-dimensional Gaussian graphi-

cal model with a single change-point has a taxing computational cost of O(Tp3) per

iteration.

The literature addressing the computational aspects of model-based change-point

models is rather sparse. A large portion of change-point detection procedures are

based on cumulative sums (CUSUM) or similar statistic-monitoring approaches (Lévy-

Leduc and Roueff (2009); Aue et al. (2009); Fryzlewicz (2014); Chen and Zhang

(2015); Cho and Fryzlewicz (2015) and the references therein). By and large, these

change-point detection procedures can be efficiently implemented, and the compu-

tational difficulty aforementioned can be avoided. However in problems where one

wishes to detect structural changes in large networks, a CUSUM-based or a statistic-

based approach can be difficult to employ, since it requires knowledge of the pertinent

1Furthermore the constant in the big-O is typically problem dependent and can be large
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statistics to monitor. Furthermore the estimation of the parameters in a model-based

change-point models can provide new insight in the underlying phenomenon driving

the changes. Hence CUSUM-based approaches may not be appropriate in applica-

tions where the main driving forces of the network changes are poorly understood,

and/or are of prime interest.

Specific works addressing computational issues in model-based change-point esti-

mation include Roy et al. (2017); Leonardi and Bühlmann (2016). In Roy et al. (2017)

the authors considered a discrete graphical model with change-point and proposed a

two-steps algorithm for computation. However the success of their algorithm depends

crucially on the choice of the coarse and refined grids, and there is limited insight on

how to choose these. A related work is Leonardi and Bühlmann (2016) where the au-

thors considered a high-dimensional linear regression model with change-points and

proposed a dynamic programming approach to compute the change points. In the

case of a single change-point their algorithm corresponds to the brute force (full-grid

search) approach mentioned above.

In this work we propose an approximate majorize-minimize (MM) algorithm for

fitting piecewise constant high-dimensional models. The algorithm can be applied

more broadly. However to focus the idea we limit our discuss to Gaussian graphical

models with an elastic net penalty. In this specific setting, the algorithm takes the

form of a block update algorithm that alternates between a proximal gradient update

of the graphical model parameters followed by a line search of the change-point. The

proposed algorithm only solves for a single change-point. We extend it to multiple

change-points by binary segmentation. We study the convergence of the algorithm

and show under some regularity conditions on the data generating mechanism that

the algorithm is stable, and produces values in the vicinity of the true change-point

(under the assumption that one such true change-point exists).

Each iteration of the proposed algorithm has a computational cost of O(Tp2 + p3).

Although this cost is one order of magnitude smaller than the O(Tp3) cost of the

brute force approach, it can still be large when p and T are both large. As a solution

we propose a stochastic version of the algorithm where the line search performed to

update the change-point is replaced by a Markov Chain Monte Carlo (MCMC)-based

simulated annealing. The simulated annealing update is cheap (its computational

cost per iteration is O(p2)) and is used as a stochastic approximation of the full line

search. We show by simulation that the stochastic algorithm behaves remarkably

well, and as expected outperforms the deterministic algorithm is terms of computing

time.
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The paper is organized as follows. Section 2 contains a presentation of the Gaussian

graphical model with change-points, followed by a detailed presentation of the pro-

posed algorithms. We performed extensive numerical experiments to investigate the

behavior of the proposed algorithms. We also use the algorithm to analyze structural

changes in the Standard & Poors (S&P) 500 over the period 2000-2016. The results

are reported in Section 3. We gather some of the technical proofs in Section 4.

We end this introduction with some notation that we shall use throughout the

paper. We denote Mp the set of all symmetric elements of Rp×p equipped with its

Frobenius norm ‖·‖F and associated inner product

〈A,B〉F
def
=

∑
1≤i≤j≤p

AijBij .

We denoteM+
p the subset ofMp of positive definite elements. For 0 < a < A ≤ +∞,

let M+
p (a,A) denote the subset of M+

p of matrices θ such that λmin(θ) ≥ a, and

λmax(θ) ≤ A, where λmin(M) (resp. λmax(M)) denotes the smallest eigenvalue (resp.

the largest eigenvalue) of M .

If u ∈ Rp, and q ∈ [1,∞], we define ‖u‖q
def
= (

∑p
j=1 |uj |q)1/q (‖u‖∞

def
= max1≤j≤p |uj |).

For a matrix θ ∈ Rp×p and q ∈ [1,∞] \ {2}, we define ‖θ‖q similarly by viewing θ as

a Rp2
vector. For q = 2, ‖θ‖2 denotes the spectral norm (operator norm) of θ.

2. Fitting Gaussian Graphical models with a single change-point

Let {X(t), 1 ≤ t ≤ T} be a sequence of p-dimensional random vectors. The grid

over which the change-points are searched is denoted T def
= {n0, . . . , T −n0}, for some

integer 1 ≤ n0 < T . We define

S1(τ)
def
=

1

τ

τ∑
t=1

X(t)X(t)′ , S2(τ)
def
=

1

T − τ

T∑
t=τ+1

X(t)X(t)′ , τ ∈ T .

We define the regularization function as

℘(θ)
def
= α‖θ‖1 +

1− α
2
‖θ‖2F , θ ∈Mp, (1)

where α ∈ [0, 1) is a given constant, and ‖θ‖1
def
=
∑p

i≤j |θij |. Then we define

g1,τ (θ) =

{
1
2
τ
T [− log det(θ) + Tr(θS1(τ))] if θ ∈M+

p ,

+∞ otherwise,
, τ ∈ T ,

where Tr(A) (resp. det(A)) denotes the trace (resp. the determinant) of A, and

g2,τ (θ) =

{
1
2

(
1− τ

T

)
[− log det(θ) + Tr(θS2(τ))] if θ ∈M+

p ,

+∞ otherwise,
, τ ∈ T .
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For j ∈ {1, 2}, we set

θ̂j,τ
def
= Argmin ϑ∈M+

p
[gj,τ (ϑ) + λj,τ℘(ϑ)] , (2)

for regularization parameters λ1,τ > 0, λ2,τ > 0, that we assume fixed throughout.

Note that due to the quadratic term in the elastic-net regularization (1), each of these

minimization problems (2) is strongly convex. Hence for each τ ∈ T , and j ∈ {1, 2},
θ̂j,τ is well-defined. We consider the problem of computing the change point estimate

τ̂ defined as

τ̂ = Argmin τ∈T

[
g1,τ (θ̂1,τ ) + λ1,τ℘(θ̂1,τ ) + g2,τ (θ̂2,τ ) + λ2,τ℘(θ̂2,τ )

]
. (3)

If the minimization problem in (3) has more than one solution, then τ̂ denotes any

one of these solutions. The quantity τ̂ is the maximum likelihood estimate of a

change point τ in the model which assumes that X(1), . . . , X(τ) are independent with

common distribution N(0, θ−1
1 ), and X(τ+1), . . . , X(T ) are independent with common

distribution N(0, θ−1
2 ), for an unknown change-point τ , and unknown precision ma-

trices θ1 6= θ2.

The problem of computing the graphical lasso (glasso) estimators θ̂j,τ in (2) has

received a lot of attention in the literature, and several efficient algorithms have been

developed for this purpose (see for instance Atchadé et al. (2015) and the references

therein). Hence in principle, using any of these available glasso algorithms, the change-

point problem in (3) can be solved by solving T−2n0 +1 = O(T ) glasso sub-problems.

A similar algorithm is advocated in Leonardi and Bühlmann (2016) for fitting a

high-dimensional linear regression model with change-points. However this brute

force approach can be very time-consuming in cases where p and T are large. For

instance, one of the most cost-efficient algorithm for solving the glasso problem in high-

dimensional cases is the standard proximal gradient algorithm (Rolfs et al. (2012);

Atchadé et al. (2015)), which has a computational cost of O(p3cond(θ̂)2 log(1/δ))

to deliver a δ-accurate solution (that is ‖θ − θ̂‖F ≤ δ), where cond(A) denotes the

condition number of A, that is the ratio of the largest eigenvalue over the smallest

eigenvalue of A. Hence when p and T are large the computational cost of the brute

force approach for computing (3) is of order O
(
Tp3cond(θ̂j,τ )2 log(1/δ)

)
, which can

become prohibitively large.

We propose an algorithm that we show has a better computational complexity. To

motivate the algorithm we first introduce a majorize-minimize (MM) algorithm for

solving (3). We refer the reader to Wu and Lange (2010) for a general introduction

to MM algorithms. Let

G(t)
def
= g1,t(θ̂1,t) + λ1,t℘(θ̂1,t) + g2,t(θ̂2,t) + λ2,τ℘(θ̂2,t), t ∈ T
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denote the objective function of the minimization problem in (3). For θ1, θ2 ∈ Mp,

we also define

H(τ |θ1, θ2)
def
= g1,τ (θ1) + λ1,τ℘(θ1) + g2,τ (θ2) + λ2,τ℘(θ2), τ ∈ T . (4)

Instead of the brute force approach that requires solving (2) for each value τ ∈ T ,

consider the following algorithm.

Algorithm 1 (MM algorithm). Pick τ (0) ∈ T , and for k = 1, . . . ,K, repeat the

following steps.

(1) Given τ (k−1) ∈ T , compute θ̂1,τ (k−1) and θ̂2,τ (k−1) , and minimize the function

H(t|θ̂1,τ (k−1) , θ̂2,τ (k−1)) to get τ (k):

τ (k) = Argmint∈T H(t|θ̂1,τ (k−1) , θ̂2,τ (k−1)).

�

By definition of θ̂j,τ in (2), we have G(t) ≤ H(t|θ̂1,τ (k−1) , θ̂2,τ (k−1)) for all t ∈ T .

Furthermore G(τ (k−1)) = H(τ (k−1)|θ̂1,τ (k−1) , θ̂2,τ (k−1)). Therefore, for all k ≥ 1,

G(τ (k)) ≤ H(τ (k)|θ̂1,τ (k−1) , θ̂2,τ (k−1)) ≤ H(τ (k−1)|θ̂1,τ (k−1) , θ̂2,τ (k−1)) = G(τ (k−1)).

Hence the objective function G is non-increasing along the iterates of Algorithm 1.

Note that this algorithm is already potentially faster than the brute force approach,

particular when T is large, since we compute the graphical-lasso solutions θ̂j,τ (k) only

for time points visited along the iterations. We propose to further reduce the compu-

tational cost by computing the solutions θ̂j,τ (k) only approximately, by simple gradient

updates.

Given γ > 0, and a matrix θ ∈ Rp×p, define Proxγ(θ) (the proximal map with

respect to the penalty function ℘(θ) = α‖θ‖1 + (1 − α) ‖θ‖2F /2) as the symmetric

Rp×p matrix such that for 1 ≤ i, j ≤ p,

(Proxγ(θ))ij =


0 if |θij | < αγ
θij−αγ

1+(1−α)γ if θij ≥ αγ
θij+αγ

1+(1−α)γ if θij ≤ −αγ .

We consider the following algorithm.

Algorithm 2. [Approximate MM algorithm] Fix a step-size γ > 0. Pick some initial

value τ (0) ∈ T , θ
(0)
1 , θ

(0)
2 ∈ M+

p . Repeat for k = 1, . . . ,K. Given (τ (k−1), θ
(k−1)
1 ,

θ
(k−1)
2 ), do the following:
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(1) Compute

θ
(k)
1 = Proxγλ

1,τ(k−1)

(
θ

(k−1)
1 − γ

(
S1(τ (k−1))− (θ

(k−1)
1 )−1

))
,

(2) compute

θ
(k)
2 = Proxγλ

2,τ(k−1)

(
θ

(k−1)
2 − γ

(
S2(τ (k−1))− (θ

(k−1)
2 )−1

))
,

(3) compute

τ (k) def
= Argmint∈T H

(
t|θ(k)

1 , θ
(k)
2

)
.

�

Note that, if instead of a single proximal gradient update in Step (1)-(2), we do

a large number proximal gradient updates (an infinite number for the sake of the

argument), we recover exactly Algorithm 1. Hence Algorithm 2 is an approximate

version of Algorithm 1.

Remark 1. (1) Notice that one can easily computeH(τ+1|θ1, θ2) fromH(τ |θ1, θ2)

by a rank-one update in O(p2) number of operations. Hence the computa-

tional cost of Step (3) is O(Tp2). And the total computational cost of one

iteration of Algorithm 2 is O(p3 + Tp2).

(2) In practice, and as with any gradient descent algorithm, one needs to exercise

some care in choosing the step-size γ. Clearly, too small values of γ lead to

slow convergence. However, choosing γ too large might cause the algorithm to

diverge. Another (related) issue is how to guarantee that the matrices θ
(k)
1 and

θ
(k)
2 maintain positive definiteness throughout the iterations. What we show

below is that positive definiteness is automatically guaranteed if the step-size

γ is taken small enough. A nice trade-off that works well from the software

engineering viewpoint is to start with a large value of γ and to re-initialize

the algorithm with a smaller γ if at some point positive definiteness is lost.

This issue is discussed more extensively in Atchadé et al. (2015).

As suggested in the remark above, Algorithm 2 raises two basic questions. The first

question is whether the algorithm is stable, where here by stability we mean whether

the algorithm runs without θ
(k−1)
1 or θ

(k−1)
2 losing positive definiteness. Indeed we

notice that Steps (1 and 2) involve taking the inverse of the matrices θ
(k−1)
1 , and θ

(k−1)
2 ,

but there is no guarantee a priori that these matrices are non-singular. Using results

established in Atchadé et al. (2015), we answer this question by showing below that

if the step-size γ is small enough then the algorithm is actually stable. The second

basic question is whether the algorithm converges to the optimal value. We address

this question below.
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For j ∈ {1, 2}, we set

λj
def
= min

τ∈T
λj,τ , λ̄j

def
= max

τ∈T
λj,τ , µj

def
= max

τ∈T

[
1

2
‖Sj(τ)‖2 + αpλj,τ

]
,

bj
def
=
−µj +

√
µ2
j + 2λ̄j(1− α)n0

T

2(1− α)λ̄j
, Bj

def
=

µj +
√
µ2
j + 2λj(1− α)

2(1− α)λj
.

Lemma 2. Fix j ∈ {1, 2}. For all τ ∈ T , θ̂j,τ ∈ M+
p (bj ,+∞). Let {(θ(k)

1 , θ
(k)
2 ), k ≥

0} be the output of Algorithm 2. If the step-size γ satisfies γ ∈ (0, b2
j ], and θ

(0)
j ∈

M+
p (bj ,Bj), then θ

(k)
j ∈M+

p (bj ,Bj), for all k ≥ 0.

Proof. We present the proof for j = 1, the case j = 2 being similar. Note that θ̂1,τ

is the graphical elastic-net estimate based on data X(1), . . . , X(τ). The fact that θ̂1,τ

exists (and is unique) and satisfies the spectral bound λmin(θ̂1,τ ) ≥ b1 then follows

from known results on the graphical elastic-net (see for instance Lemma 1 of Atchadé

et al. (2015)).

The second part of the lemma is similar to Lemma 2 of Atchadé et al. (2015). The

idea is to show that if θ
(k)
1 ∈M+

p (b1,B1) then θ
(k+1)
1 ∈M+

p (b1,B1). This is proved as

follows. Suppose that θ
(k)
1 ∈M+

p (b1,B1). Hence θ
(k)
1 is non-singular. It is well-known

(see for instance Parikh and Boyd (2013) Section 4.2) that we can write θ
(k+1)
1 as

θ
(k+1)
1 = Argminu∈Mp

[〈
∇g1,τ (k)(θ

(k)
1 ), u− θ(k)

1

〉
+

1

2γ

∥∥∥u− θ(k)
1

∥∥∥2

F
+ λ1,τ (k)℘(u)

]
.

The optimality conditions of this problem implies that there exists Z ∈ Rp×p, where

Zij ∈ [−1, 1] for all i, j such that

∇g1,τ (k)(θ
(k)
1 ) +

1

γ

(
θ

(k+1)
1 − θ(k)

1

)
+ λ1,τ (k)

(
αZ + (1− α)θ

(k+1)
1

)
= 0.

Since ∇g1,τ (θ) = τ
2T (S1(τ)− θ−1), we re-arrange this optimality condition into:

(
1 + (1− α)λ1,τ (k)γ

)
θ

(k+1)
1 = θ

(k)
1 +

γτ (k)

2T

(
θ

(k)
1

)−1
−γ

(
τ (k)

2T
S1(τ (k)) + αλ1,τ (k)Z

)
.

Hence, if λmin(θ
(k)
1 ) ≥ b1, and b2

1 ≥ γτ/(2T ) (which holds true if γ ≤ 2b2
1), and using

the fact that λmin(A+B) ≥ λmin(A) + λmin(B), we get

λmin(θ
(k+1)
1 ) ≥ 1

1 + (1− α)λ̄1γ

(
b1 +

γn0

2T

1

b1
− γµ1

)
, (5)

where µ1 = maxτ∈T
[

1
2‖S1(τ)‖2 + αpλ1,τ

]
, using the fact that ‖Z‖2 ≤ p. We note

that as chosen, b1 satisfies

(1− α)λ̄1b
2
1 + µ1b1 −

n0

2T
= 0,
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and this (with some easy algebra) implies that the right hand side of (5) is equal to

b1. Hence λmin(θ
(k+1)
1 ) ≥ b1. Similarly, if λmax(θ

(k)
1 ) ≤ B1, then

λmax(θ
(k+1)
1 ) ≤ 1

1 + (1− α)λ1γ

(
B1 +

γ

2

1

B1
+ γµ1

)
= B1,

where the last equality follows from the fact that we have chosen B1 such that

(1− α)λ1B
2
1 − µ1B1 −

1

2
= 0.

This completes the proof. �

Remark 3. The first statement of Lemma 2 implies that the change-point problem

(3) has at least one solution. The second part shows that when the step-size γ is

small enough, all the iterates of the algorithm remains positive definite. We note that

the fact that α < 1 is crucial in the arguments. The result remains true where α = 1,

however the arguments is slightly more involved (see Atchadé et al. (2015) Lemma

2). For simplicity we focus in this paper on the case α ∈ [0, 1).

We now address the issue of convergence. Clearly the function t 7→ H(t|θ1, θ2) is not

smooth, nor convex. This implies that Algorithm 2 cannot be analyzed using standard

optimization tools. And indeed, we will not be able to establish that the output of

Algorithm 2 converges to the minimizer τ̂ . Rather, we introduce a containment

assumption (Assumption H1) and we show that when it holds, then the output of

Algorithm 2 converges to some neighborhood of the true change-point (the existence

of this true change-point is part of the assumption).

H1. There exist ε > 0, c ≥ 0, κ ∈ [0, 1), and τ? ∈ T such that the following holds.

For any τ ∈ T , and for any θ1, θ2 ∈ M+
p such that

∥∥∥θ1 − θ̂1,τ

∥∥∥
F

+
∥∥∥θ2 − θ̂2,τ

∥∥∥
F
≤ ε

we have

|Argmin t∈TH(t|θ1, θ2)− τ?| ≤ κ|τ − τ?|+ c. (6)

Remark 4. Plainly, what is imposed in H1 is the existence of a time point τ? ∈ T
(that we can view as the true change-point), such that anytime we take τ ∈ T that

is far from τ? in the sense that |τ − τ?| > c/(1 − κ), if θ1, θ2 are sufficiently close to

the solutions θ̂1,τ and θ̂2,τ respectively, then computing Argmin t∈TH(t|θ1, θ2) brings

us closer to τ?:

|Argmin t∈TH(t|θ1, θ2)− τ?| ≤ κ|τ − τ?|+ c < |τ − τ?|.

This containment assumption is akin to a curvature assumption on the function

t 7→ H(t|θ1, θ2) when θ1 and θ2 are reasonably close to θ̂1,τ , θ̂2,τ , respectively. The

assumption seems realistic in settings where the data X(1:T ) is indeed drawn from a
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Gaussian graphical model with true change-point τ?, and parameters θ?,1, θ?,2. Indeed

in this case, and if T is large enough, for any τ that is not too close to the boundaries,

one expects θ̂1,τ and θ̂2,τ to be good estimates of θ?,1 and θ?,2, respectively. Therefore

if
∥∥∥θ1 − θ̂1,τ

∥∥∥
F

+
∥∥∥θ2 − θ̂2,τ

∥∥∥
F
≤ ε for ε small enough, one expect as well θ1 and θ2 to

be close to θ?,1 and θ?,2 respectively. Hence Argmin t∈TH(t|θ1, θ2) should be close to

Argmin t∈TH(t|θ?,1, θ?,2), which in turn should be close to τ?. Theorem 9 below will

make this intuition precise.

�

In the next result we will see that in fact the iterates θ
(k)
1 and θ

(k)
2 closely track

θ1,τ (k) and θ2,τ (k) respectively. Hence, when H1 holds Equation (6) guarantees that

the sequence τ (k) remains close to τ?.

Theorem 5. Suppose that γ ∈ (0, b2
1∧b2

2], and θ
(0)
j ∈M+

p (bj ,Bj), for j = 1, 2. Then

lim
k

∥∥∥θ(k)
1 − θ̂1,τ (k)

∥∥∥
F

= 0, lim
k

∥∥∥θ(k)
2 − θ̂2,τ (k)

∥∥∥
F

= 0.

Furthermore, if H1 holds then

lim sup
k→∞

∣∣∣τ (k) − τ?
∣∣∣ ≤ c

1− κ
.

Proof. See Section 4.1 �

Remark 6. Note that the theorem does not guarantee that τ (k) converges to τ?, but

rather its conclusion is that for k large τ (k) stays within c/(1− κ) of τ?.

We now address the question whether H1 is a realistic assumption. More precisely

we will show that the argument highlighted in Remark 4 holds true under some

regularity conditions. Suppose that X(1:T ) def
= (X(1), . . . , X(T )) are p-dimensional

independent random variables such that

X(1), . . . , X(τ?) i.i.d.∼ N(0, θ−1
?,1), and X(τ?+1), . . . , X(T ) i.i.d.∼ N(0, θ−1

?,2), (7)

for some unknown change-point τ?, and unknown symmetric positive definite precision

matrices θ?,1 6= θ?,2. We set Σ?,j
def
= θ−1

?,j , and we let sj denote the number of non-zero

entries of θ?,j , j = 1, 2. For an integer ι ∈ {1, . . . , p}, we define the ι-th restricted

eigenvalues of Σ?,j as

κj(ι)
def
= inf

{
u′(Σ?,j)u, ‖u‖2 = 1, ‖u‖0 ≤ ι

}
,

κ̄j(ι)
def
= sup

{
u′(Σ?,j)u, ‖u‖2 = 1, ‖u‖0 ≤ ι

}
.
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We set s
def
= max(s1, s2), κ̄

def
= max (κ̄1(2), κ̄2(2)), κ

def
= min (κ1(2), κ2(2)), and we

set the regularization parameter λj,τ as

λ1,τ
def
=

κ̄

αT

√
48τ log(pT ), λ2,τ

def
=

κ̄

αT

√
48(T − τ) log(pT ), τ ∈ T . (8)

We need to assume that the parameter α ∈ [0, 1) in the regularization term is large

enough to produce approximately sparse solutions in (2). To that end, we assume

that
α

1− α
≥ max (‖θ?,1‖∞, ‖θ?,2‖∞) . (9)

Finally, we assume that the search domain T is such that for all τ ∈ T ,

min (τ, T − τ) ≥ A2
1 log(pT ), (10)

where

A1
def
= max

(
2

(
κ̄

κ

)2

, (1280)s1/2κ̄(‖θ?,1‖2 ∨ ‖θ?,2‖2)

)
,

and

κ̄
√
τ log(pT ) ≥ 1

2
√

3
(τ − τ?)+‖θ−1

?,2 − θ
−1
?,1‖∞,

and κ̄
√

(T − τ) log(pT ) ≥ 1

2
√

3
(τ? − τ)+‖θ−1

?,2 − θ
−1
?,1‖∞, (11)

where x+
def
= max(x, 0).

Remark 7. Assumption (10) is a minimum sample size requirement. See for instance

Ravikumar et al. (2011) Theorem 1, and 2 for similar conditions in standard Gaussian

graphical model estimation. Here we require to have T such that min(τ, T − τ) =

O(s log(pT )) for all τ ∈ T . This obviously implies that we need T to be at least

O(s log(p)). It is unclear whether the large constant 1280 in (10) is tight or simply

an artifact of our proof techniques.

To understand Assumption (11), note that for τ > τ?, the estimator θ̂1,τ in (2)

is based on misspecified data X(τ?+1), . . . , X(τ). Hence if τ > τ? is too far away

from τ?, the estimators θ̂1,τ may behave poorly, particularly if θ?,1 are θ?,2 are very

different. Assumption (11) rules out such settings, by requiring the search domains

T to be roughly a
√
T neighborhood of τ?. Indeed, suppose that τ? = ρ?T , for

some ρ? ∈ (0, 1). Then it can be easily checked that any search domain of the form

(τ? − r1T
1/2, τ? + r2T

1/2), satisfies (10) and (11) for T large enough, provided that

0 < r1 ≤
2
√

3κ̄
√
ρ? log(pT )

‖θ−1
?,2 − θ

−1
?,1‖∞

, and 0 < r2 ≤
2
√

3κ̄
√

(1− ρ?) log(pT )

‖θ−1
?,2 − θ

−1
?,1‖∞

.
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Of course, this search domain is difficult to use in practice since it depends on τ?. In

practice, we have found that taking T of the form (rT, (1 − r)T ) for r ≤ 0.1 works

well, even though it is much wider than what is prescribed by our theory.

�

For τ ∈ T , let

r1,τ
def
= A2κ̄‖θ?,1‖22

√
s1 log(pT )

τ
, r2,τ

def
= A2κ̄‖θ?,2‖22

√
s2 log(pT )

T − τ
,

where A2 is an absolute constant that can be taken as 16 × 20 ×
√

48. We set

b
def
= min(λmin(θ?,1), λmin(θ?,2)), and B

def
= max(λmax(θ?,1), λmax(θ?,2)). We assume

that for j = 1, 2, and for τ ∈ T ,

rj,τ ≤ min

(
λmin(θ?,j)

4
,
‖θ?,j‖∞

2
,
‖θ?,j‖1

1 + 8s
1/2
j

)
, rj,τ ≤

‖θ?,2 − θ?,1‖F
2(1 + 8s1/2)

and rj,τ ≤ A2

(
b

B

)4 ‖θ?,j‖1
s

1/2
j

. (12)

Remark 8. Condition (12) is mostly technical. As we will see below in Lemma 16,

the term rj,τ is the convergence rate toward θ?,j of the estimator θ̂j,τ , and is expected

to converge to 0 with p, T (which implies that the sample size T cannot be too small

compared to ‖θ?,j‖42sj log(pT )). Hence according to (12) the matrices θ?,1 and θ?,2

need to be such that the terms on the right-hand sides do no vanish faster than the

rate rj,τ . In particular θ?,1 and θ?,2 should be well-conditioned so that λmin(θ?,j) and

the ratio b/B do not decay too fast.

Theorem 9. Consider the output {(θ(k)
1 , θ

(k)
2 ), k ≥ 0} of Algorithm 2. Suppose that

γ ∈ (0, b2
1∧b2

2], and θ
(0)
j ∈M+

p (bj ,Bj), for j = 1, 2. Suppose that the statistical model

underlying the data X(1:T ) is as in (7), and that (8)-(12) hold. Suppose also that

‖θ?,2 − θ?,1‖F ≥ 8A2 max

[(
λmin(θ?,1)

λmax(θ?,1)

)2 ‖θ?,1‖1
s

1/2
1

,

(
λmin(θ?,2)

λmax(θ?,2)

)2 ‖θ?,2‖1
s

1/2
2

]
. (13)

Then with probability at least 1− 8
pT−

4
p2(1−e−C0)

, H1 holds with ε = (1/
√
p) minτ∈T (r1,τ∧

r2,τ ), κ = 0, and c = 4 log(p)/C0, where

C0
def
= min

[
‖θ?,2 − θ?,1‖4F

128B4‖θ?,2 − θ?,1‖21
,
(κ
κ̄

)4
]
.

In particular, we have

lim sup
k→∞

∣∣∣τ (k) − τ?
∣∣∣ ≤ 4

C0
log(p), (14)
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Proof. See Section 4.2. �

Remark 10. The main point of the theorem is that under the assumptions and data

generation mechanism described above, the containment assumption H1 holds with

probability as least 1− 8
pT −

4
p2(1−e−C0)

, and where ε can be taken as minτ r1,τ∧r2,τ/
√
p,

κ = 0, and c = 4 log(p)/C0. Conclusion (14) is then simply a consequence of Theorem

5.

Remark 11. We note that the estimation bound in (14) grows with p. In classical

change-point problems where p is fixed, and T → ∞, it is known (see e.g. Bai

(1997)) that with a fixed-magnitude change, the best one can achieve in estimating τ

is O(1). The rate in Theorem 9 suggests that in the high-dimensional setting where

p grows the estimation rate for τ if of order O(log(p)) (see also Roy et al. (2017)).

We believe that it is not possible to remove the additional log(p) factor, although to

the best of our knowledge this question is still open. Note that it is customary in the

change-point literature to take a re-scaled viewpoint and to define the change point

as a? ∈ (0, 1) such that τ? = a?T . In that setting the estimation rate for a? is O(1/T )

in the classical fixed-dimensional fixed-magnitude change setting, and O(log(p)/T ) in

our setting.

2.1. A stochastic version. When T is much larger than p, Step 3 of Algorithm 2

becomes costly. In such cases, one can gain in efficiency by replacing Step 3 by a Monte

Carlo approximation. We explore the use of simulated annealing to approximately

solve Step 3 of Algorithm 2. Given θ1, θ2 ∈ Mp, and β > 0, let πβ,θ1,θ2 denote the

probability distribution on T defined as

πβ,θ1,θ2(τ) =
1

Zβ,θ1,θ2
exp

(
−H(τ |θ1, θ2)

β

)
, τ ∈ T .

Here, Zβ,θ1,θ2 is the normalizing constant, and β > 0 is the cooling parameter, that we

shall drive down to zero with the iteration to increase the accuracy of the Monte Carlo

approximation. Direct sampling from πβ,θ1,θ2 is typically possible, but this has the

same computational cost as Step 3 of Algorithm 2. We will use a Markov Chain Monte

Carlo approach which will allow us to make only a small number of calls of the function

H, per iteration. Let Kβ,θ1,θ2 denote a Markov kernel on T with invariant distribution

πβ,θ1,θ2 . Typically we will choose Kβ,θ1,θ2 as a Metropolis-Hastings Markov kernel (we

give examples below).

We consider the following algorithm. As in Algorithm 2, γ is a given step-size. We

choose a decrease sequence of temperature β(k) that we use along the iterations.



14 LELAND BYBEE AND YVES ATCHADÉ

Algorithm 3. Fix a step-size γ > 0, and a cooling sequence {β(k)}. Pick some initial

value τ (0) ∈ T , θ
(0)
1 , θ

(0)
2 ∈ M+

p . Repeat for k = 1, . . . ,K. Given (τ (k−1), θ
(k−1)
1 ,

θ
(k−1)
2 ), do the following:

(1) Compute

θ
(k)
1 = Proxγλ

1,τ(k−1)

(
θ

(k−1)
1 − γ

(
S1(τ (k−1))− (θ

(k−1)
1 )−1

))
,

(2) compute

θ
(k)
2 = Proxγλ

2,τ(k−1)

(
θ

(k−1)
2 − γ

(
S2(τ (k−1))− (θ

(k−1)
2 )−1

))
,

(3) draw

τ (k) ∼ K
β(k),θ

(k)
1 ,θ

(k)
2

(τ (k−1), ·).

�

For most commonly used MCMC kernels, each iteration of Algorithm 3 has a

computational cost of O(p3), which is better than O(p3 + Tp2) needed by Algorithm

2, when T ≥ p. However Algorithm 3 travels along the change-point space T more

slowly. Hence overall, a larger number of iterations would typically be needed for

Algorithm 3 to converge. Even after accounting for this slow convergence, Algorithm

3 is still substantially faster than Algorithm 2, as shown in Table 1 and 2. A rigorous

analysis of the convergence of Algorithm 3 is beyond the scope of this work, and it

left as a possible future research.

2.2. Extension to multiple change-points. We extend the method to multiple

change-points by binary segmentation. Binary segmentation is a standard method

for detecting multiple change-points. The method proceeds by first searching for a

single change-point. When a change-point is found the data is split into the two parts

defined by the detected change-point. A similar search is then performed on each

segment which can result in further splits. This recursive procedure continues until a

certain stopping criterion is satisfied. Here we stop the recursion if

`τ + Cp ≥ `F ,

where `τ is the penalized negative log-likelihood obtained with the additional

change-point τ , and `F is the penalized negative log-likelihood without the change-

point. The term Cp is a penalty term for model complexity, where C is a user-defined

regularization parameter that controls the sparsity of the change-point model (the

number of change-points). To the best of our knowledge there is no easy and prin-

cipled approach for choosing C. We identify this as an important issue where more

research is needed. Since C controls the number of change-points, in practice one
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ad-hoc approach is to set C such that the number of detected change-points is rea-

sonable. This is the approach that we use in the real data analysis. Here we rely on

simulation. We explore various scenarios by simulation and found that values of C

between (0, 4) produce the best results in our setting.

The binary segmentation algorithm can be defined more precisely as follows. Let us

call J (X, t0, t1) the (single) change-point output either by Algorithm 3 or Algorithm

4 when applied to dataset X using sample Xt0 , . . . , Xt1 , for some t0, t1 ∈ T , t0 < t1.

Let L(X, t0, t1) denote the (penalized) minimum negative log-likelihood achieved on

data Xt0 , . . . , Xt1 . That is,

L(X, t0, t1) = min
θ�0

[
− log det(θ) + Tr

(
θ

(
1

t1 − t0 + 1

t1∑
t=t0

X(t)X(t)′

))
+ λ℘(θ)

]
.

Then the binary-segmentation algorithm B(X, t0, t1) can be written recursively as

follows:

Algorithm 4. Binary Segmentation

1: function B(X, t0, t1)

2: τ = J (X, t0, t1) (apply either algorithm 3 or 4 to data Xt0 , . . . , Xt1)

3: `τ = L(X, t0, τ) + L(X, τ + 1, t1)

4: `F = L(X, t0, t1)

5: if `τ + Cp ≥ `F then

6: return Null

7: else

8: return {τ,B(X, t0, τ),B(X, τ + 1, t1)}
9: end if

10: end function

We end this section with some words of caution. Binary segmentation is well-

known to be a sub-optimal procedure and can perform poorly in some settings (see

for instance Fryzlewicz (2014)). The issue is that at each step, binary segmentation

is actually fitting a possibly misspecified model – one with a single change-point – to

data with possibly multiple change-points. One approach is overcoming this limitation

is to extend our proposed algorithms so as to handle directly multiple change-points.

We leave this as an important future work.
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3. Numerical experiments

We investigate the different algorithms presented here in a variety of settings. For

all the algorithms investigated the choice of the step-size γ and the regularizing pa-

rameter λ are important. For all experiments, and as suggested by (8), we found that

setting λ1,τ = λ

√
log{p}
τ and λ2,τ = λ

√
log{p}
T−τ worked well. For the time-comparison

in Section 3.1 we used λ = 0.1 and γ = 3.5 when T = 1000, and we used λ = 0.01 and

γ = 3.5 when T = 500. For the remainder of the experiments we set λ = 0.13 and

γ = 0.25. For all the experiments the search domain T is taken as {n0, . . . , T − n0},
for a minimum sample size n0 from {0.01T, 0.05T, 0.1T}.

We initialize τ (0) to a randomly selected value in T . The initial value θ
(0)
1 and θ

(0)
2

are taken as θ
(0)
j = (Sj(τ

(0))+ εI)−1 where ε is a constant chosen to maintain positive

definiteness. For cases where p < τ and p < T − τ we used ε = 0, while for larger

values of p we set ε = 0.2.

For the data generation in the simulations, we typically choose τ? = T/2 unless

otherwise specified, and unless otherwise specified, we generate independently the

matrices θ?,1 and θ?,2 as follows. First we generate a random symmetric sparse matrix

M such that the proportion of non-zero entries is 0.25. We add 4 to all positive

entries and subtract 4 from all negative entries. Then we set the actual precision

matrix as θ?,j = M+(1−λmin(M))Ip where λmin(M) is the smallest eigenvalue of M .

The resulting precision matrices contain roughly 25% non-zero off-diagonal elements.

For each simulation a new pair of precision matrices was generated as well as the

corresponding data set.

For Algorithm 3 we also experimented with a number of MCMC kernel Kβ,θ1,θ2 .

We experiment with the independence Metropolis sampler with proposal U(n0, T −
n0). We also tried a Random Walk Metropolis with a truncated Gaussian proposal

N(τ (k−1), σ2), for some scale parameter σ > 0. Finally, we also experimented with a

mixture of these two Metropolis-Hastings kernels. We found that for our simulations

the Independent Metropolis kernel works best, although the mixture kernel also per-

formed well. For the cooling schedule of simulated annealing we use β(0) = 1, and a

geometric decay β(n) = αβ(n−1) with α =
(
β(M)

β(0)

)1/M
where β(M) = 0.001, and M is

the maximum number of iterations.

An implementation of the algorithms presented here for the Gaussian graphical

model context is available in the changepointsHD package, Bybee (2017), available

on the Comprehensive R Archive Network (CRAN).

3.1. Time comparison. First we compare the running times of the proposed algo-

rithms and the brute force approach. We consider two settings: (p = 100, T = 1000)
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Variant Approx. MM Simulated Annealing

(V1) Time (Seconds) 195.95 (48.94) 3.03 (0.40)

Iterations 658.68 (82.93) 662.62 (88.51)

(V2) Time (Seconds) 0.39 (0.10) 0.48 (0.46)

Iterations 1.03 (0.17) 101.96 (100.29)

Table 1. Run-times of Algorithm 2 and 3 for (p = 100, T = 1000).

For comparison the run-time of the brute force algorithm for this prob-

lem is 2374.82.

and (p = 500, T = 500). In the setting (p = 100, T = 1000), 100 independent runs of

Algorithms 2 and 3 are performed and the average run-times are reported in Table

1. In the setting (p = 500, T = 500) 10 independent runs of Algorithms 2 and 3 are

used, and the results are presented in Table 2. We compare these times to results

from one simulation run of the brute-force approach, the results of which are given in

the description (caption) of Tables 1 and 2.

We consider two stopping criteria for Algorithm 2 or 3. The first criterion stops

the iterations if

1

T
|τ (k) − τ?| < 0.005 and

‖θ(k)
1 − θ̂1‖F
‖θ̂1‖F

+
‖θ(k)

2 − θ̂2‖F
‖θ̂2‖F

< 0.05, (V1)

where θ̂1 and θ̂2 are obtained by performing 1000 proximal-gradient steps at the true

τ value. An interesting feature of the proposed approximate MM algorithms is that

the change-point sequence τ (k) can converge well before θ
(k)
1 and θ

(k)
2 . To illustrate

this, we also explore the alternative approach of stopping the iterations only based

on τ (k), namely when
1

T
|τ (k) − τ?| < 0.005. (V2)

Finally, we note that we implement the brute force approach by running 500 proximal-

gradient steps for each possible value of τ . Note that 500 iterations is typically smaller

than the number of iterations needed to satisfy (V1).

Tables 1 and 2 highlight the benefits of Algorithm 2 and Algorithm 3 as the run-

time is several orders of magnitude lower than the brute force approach. Additionally,

while Algorithm 3 requires more iterations than Algorithm 2 its run-time is typically

smaller. The benefits of Algorithm 3 are particularly clear for large values of p and T

(under stopping criterion (V1)). The stopping criteria (V2) highlights the fact that

the τ (k) sequence in the proposed algorithms can converge well before the θ-sequences.

3.2. Behavior of the algorithm when the change-point is at the edge. We

investigate how the brute force algorithm, Algorithm 2, and Algorithm 3 perform
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Variant Approx. MM Simulated Annealing

(V1) Time (Seconds) 3554.30 (404.24) 94.64 (5.50)

Iterations 939.70 (11.03) 941.70 (16.23)

(V2) Time (Seconds) 4.27 (1.10) 10.96 (8.26)

Iterations 1.10 (0.32) 111.20 (90.71)

Table 2. Run-times of Algorithm 2 and 3 for (p = 500, T = 500). For

comparison the run-time of the brute force algorithm for this problem

is 10854.44.

when change-points are non-existent or close to the edges. The results for the brute

force algorithm are presented in Figure 1, the results for Algorithm 2 are presented

on Figure 2 and the results for Algorithm 3 are presented on Figure 3. For Algorithm

2 and Algorithm 3 the figure contains two subfigures, the first showing the sequences

{τ (k)} of solutions produced by the algorithm (trace plots) for all 200 replications,

and the second showing a histogram of the final change-point estimate, based on 200

replications. Additionally, a line is included to show the location of the true τ . The

trace plots show how quickly each algorithm converges under the various settings. For

the brute force algorithm the trace plot is not relevant since the brute force algorithm

is not an iterative algorithm. The results suggest that Algorithm 2 and Algorithm 3

have more trouble when the true τ is close to the edge of the sample. For τ = 0.1T ,

Algorithm 3 performed slightly better, with 136 simulations ending within 5 units of

the true τ compared to 90 for Algorithm 2.
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(a) No change-point (b) Change-point at τ = 0.1T

(c) Change-point at τ = 0.25T (d) Change-point at τ = 0.5T

Figure 1. Behavior of the brute force approach as the location of the

true change-point is varied. Each plot is a histogram of the change-

point estimates based on 200 replications.
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(a) No change-point (b) Change-point at τ = 0.1T

(c) Change-point at τ = 0.25T (d) Change-point at τ = 0.5T

Figure 2. Behavior of Algorithm 2 as the location of the true change-

point is varied. Each plot gives a trace plot of produced estimates, and

a histogram of the final change-point estimate. Based on 200 replica-

tions.
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(a) No change-point (b) Change-point at τ = 0.1T

(c) Change-point at τ = 0.25T (d) Change-point at τ = 0.5T

Figure 3. Behavior of Algorithm 3 as the location of the true change-

point is varied. Each plot gives a trace plot of produced estimates, and

a histogram of the final change-point estimate. Based on 200 replica-

tions.
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3.3. Behavior of the algorithms when θ1 and θ2 are similar. As θ1 and θ2

get increasingly similar, the location of the change-point becomes increasingly more

difficult to find. We investigate the behavior of the proposed algorithms in such

settings. We generate the true precision matrices θ1 and θ2 as follows. We draw a

random precision matrix θ with q% non-zero off-diagonal elements, and C1 and C2

two random precision matrix with p% non-zero off-diagonal elements. We choose

C1 and C2 to have the same diagonal elements. Then we set θ1 = θ + C1 and

θ2 = θ + C2, which are then used to generate the dataset for the experiment. The

ratio p/q is a rough indication of the signal. Figure 4-6 show the behavior of the

three algorithms for different values of q and p. For Algorithms 2 and 3 we found

that similar precision matrices sometimes leads the algorithm to converge to the edge

of the search domain. This makes sense, since a strong similarity between the two

precision matrices implies a weak signal-to-noise ratio, which makes the model with

no change-point more attractive. Putting the estimated change-point at the boundary

of the search domain is roughly equivalent to fitting a model with no change-point.

3.4. Sensitivity to the stopping Criteria in binary segmentation. This section

considers the stopping condition for the binary segmentation algorithm (see Section

2.2) and how it performs with different configurations. A condition is required for

determining when the binary segmentation splitting should reject a change-point and

stop running. The stopping condition that we use is the following, stop if

`τ + Cp ≥ `F ,

where `τ is the penalized negative log-likelihood obtained with the additional

change-point τ , and `F is the penalized negative log-likelihood without the change-

point. The term C is a user-defined parameter.

As mentioned above, the proposed algorithms can diverge when the step-size γ

is not appropriately selected. In particular the appropriate value of γ is highly de-

pendent on the length of the dataset, and the binary segmentation splittings of the

data can result in data segments with very different lengths. We use this feature to

our advantage. We have chosen not to tune γ to the data segment, and to stop the

binary segmentation splitting if the sequence θ̂
(k)
1 or θ̂

(k)
2 appear to diverge. This has

the effect of constraining the lengths of the change-point segments from being too

small. We achieve this result without directly setting a minimum length constraint

– which be hard to do in practice. We found that stopping the algorithm when

||θ̂(k)
i ||22 > 2× 103 was sufficient for our data.

In the binary segmentation, since the estimates of θ1 and θ2 may not have converged

by the end of the search for τ it may be worth continuing the estimation procedure
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(a) q = 25, p = 0 (b) q = 17.5, p = 7.5

(c) q = 10, p = 15 (d) q = 0, p = 25

Figure 4. Behavior of the brute force approach for varying signals.

Each plot is a histogram of the final change-point estimate. Based on

200 replications.

for θ1 and θ2 so that the resulting penalized log-likelihoods are comparable. Hence

after each split from the binary segmentation search, we perform an additional 500

iterations to estimate θ1 and θ2 at the resulting τ .

See Figure 7 for a series of heatmaps showing how often the binary segmentation

method finds a given number of change-points for different values of C. These results

suggest that the choice of C in the interval (0, 4) is reasonable. These results are

produced using Algorithm 3 for speed, however, the results are identical for the other

two algorithms considered. Note that since an additional change-point should always

improve the log-likelihood, when C ≤ 0 we only stop on the secondary stopping

condition that ||θ̂(k)
i ||22 > 2× 103.
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(a) q = 25, p = 0 (b) q = 17.5, p = 7.5

(c) q = 10, p = 15 (d) q = 0, p = 25

Figure 5. Behavior of Algorithm 2 for varying signals. Each plot

gives a trace plot of produced estimates, and a histogram of the final

change-point estimate. Based on 200 replications.

3.5. High dimensional experiments. We also investigate the behavior of the pro-

posed algorithms for larger values of p. We performed several (100) runs of Algorithm

3 for T = 1000, and p ∈ {100, 500, 750, 1000}. From these 100 runs we estimate the

distributions of the iterates (by boxplots) after 10, 100, 200, . . . , 1000 iterations. The

results are presented in figure 8. The results show again a very quick convergence

toward τ? and this convergence persists even as p gets large.

3.6. A real data analysis. In finance and econometrics there is considerable interest

in regime-switching models in the context of volatility, particularly because these

switches may correspond to real events in the economy (Banerjee and Urga (2005);

Beltratti and Morana (2006); Günay (2014); Choi et al. (2010)). However, much of

the literature is limited to the low dimensional case, due to the difficulty involved in
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(a) q = 25, p = 0 (b) q = 17.5, p = 7.5

(c) q = 10, p = 15 (d) q = 0, p = 25

Figure 6. Behavior of Algorithm 3 for varying signals. Each plot

gives a trace plot of produced estimates, and a histogram of the final

change-point estimate. Based on 200 replications.

estimating change-points for higher dimensions. We are able to use our method to

estimate change-points in the covariance structure of the Standard & Poor’s (S&P)

500 – an American stock market index.

Data from the S&P 500 was collected for the period from 2000-01-01 to 2016-03-

03. From this initial sample a subset of stocks (or tickers) was selected for which at

least 3000 corresponding observations exist. This produced a sample extending from

2004-02-06 to 2016-03-03, consisting of 3039 observations and 436 stocks. We follow a

similar data cleaning procedure to Lafferty et al. (2012), who investigate a comparable

problem without change-points. For each stock we generate the log returns, log Xt
Xt−1

,

and standarize the resulting returns. Following Lafferty et al. (2012), we then truncate

(or clip) all observations beyond three standard deviations of the same mean, thereby
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Figure 7. Number of change-points detected by binary segmentation

as function of the cost multiplier C. The set of true change-points is

indicated on top of the plots.

limiting unwanted outliers in our sample. The reason for this cleaning procedure is

that these outliers often correspond to stock splits instead of meaningful price changes.

For our setting λ = 0.002 and γ = 0.5. We initialize θ̂(0) = (S(τ (0)) + Iε)−1

where ε = 10−4 and τ (0) is selected randomly. After the simulated annealing run the

proximal gradient algorithm was run an additional 2000 steps, to produces estimates of

θ1 and θ2. Here we increase the step-size to γ = 350 to accelerate the convergence. For

the binary segmentation we found that selecting the threshold constant, C = 0.005,

found a reasonable set of change-points. We found the choice of parameters important

in this application, in particular, variation from the values used here can lead the

algorithm to diverge. We use the same stopping criterion as with the prior binary-

segmentation simulations. That is, a) stop when `τ + Cp ≥ `F or b) stop when

||θ̂(k)
i ||22 > 2× 103.

Figure 9 presents the results of the change-point analysis using binary segmentation

with Algorithm 4. As a reference we also present the results obtained using binary
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Figure 8. Boxplots of the iterates produced by Algorithm 4. Based

on 100 replications.

segmentation together with the brute force approach. For the brute force approach,

we set γ = 35 and ran 10 iterations for each possible change-point, before running

2000 steps at γ = 350 to get the estimates for θ1 and θ2. The brute force approach

took approximately an hour to run one layer of the search, while simulated annealing

took approximately 15 minutes. Figure 9-(a) shows the trace plots from simulated

annealing based on 100 replications. The red lines mark the detected time segments.

Figure 9-(b) shows the resulting segmentation of the data. We note that simulated

annealing and brute force produce slightly different sets of change-points. This brings

up an important point: the resulting solution is a local optima. Binary segmentation

does introduce an element of path dependency to the results so there may be more

than one viable set of change-points – in this particular case, the brute force approach
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starts with the first change-point on August 19th 2011 while simulated annealing

starts with January 11th 2008.

We next look at how well the estimated change-points correspond to real world

events. Our change-point set seems to do a good job of capturing both the Great

Recession and a fall in stock prices during August of 2011 related to the European

debt crisis and the downgrading of United State’s credit-rating. The first change-

point in our set is January 11th 2008. The National Bureau of Economic Research

(NBER) identifies December of 2007 as the beginning of the Great Recession, which

this change-point seems to capture. Additionally, 10 days after the change-point,

the Financial Times Stock Exchange (FTSE) would experience its biggest fall since

September 11th 2001. The brute force approach places this first change-point earlier

in the series on July 23rd 2007, possibly capturing a relatively positive time in the

economy before the downturn. The Second change-point occurred on September 15th

2008, the day on which Lehman Brothers filed for bankruptcy protection, one of the

key events of the Great Recession (both methods agree on this change-point). The

third change-point takes place on March 16th 2009, corresponding to the end of the

bear market in the United States. For bthe brute force approach, this change-point is

June 2nd 2009 – June of 2009 was when the NBER officially declared the end of the

recession. The fourth change-point, on June 1st 2011, and the fifth change-point, on

December 21st 2011, likely capture a period of heightened concerns over the possible

spread of the European debt crisis to Spain and Italy, during August of 2011. This

period also saw the downgrading of the S&P’s credit rating of the United States

from AAA to AA+. The August 19th 2011 brute force change-point more precisely

identifies this August downturn.

Given that the change-point set identified seems sensible, we then investigate what

the corresponding θ̂ estimates look like, and whether any interesting conclusions can

be drawn from our estimates. Here we focus only on the simulated annealing change-

point set. See Figure 10 for a plot of the adjacency matrix for each θ̂ estimate. The

black squares correspond to non-zero edges and he yellow boxes correspond to Global

Industry Classification Standard (GICS) sectors. These results tell an intuitive story

about how the economy behaves during financial crises. Following both the collapse

of Lehamn Brother’s and the events of August 2011, we see a dramatic increase in

connectivity between returns even outside of GICS sectors. To get a better sense

of this see Figure 11 for a similar series of plots where edges are summed over each

sector. Figure 12 gives an expanded version of the summed edge plot for the first

θ̂ estimate, as well as the corresponding sector labels for reference. Again, we can

see that during periods of crisis, the off diagonal elements –corresponding to edges
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(a) Simulated Annealing trace plots from 100 replications. The red lines represent the prior set of

relevant change-points.

(b) Simulated annealing (top) and brute force segmentations of the data.

Figure 9. Change-points analysis of the S&P 500 dataset over the

period 2004-02-06 to 2016-03-03.
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between different sectors – become more significant than during periods of general

stability.

Figure 10. Adjacency matrices between stocks based on estimated

precision matrices θ̂ for each time segment. A black dot represents an

edge between two stocks.

From these figures we can get a sense of which sectors are most affected during times

of crisis. To expand upon this some, see Figure 12 for the edge count between each

sector and the Financial sector for each θ̂ estimate. We can see that during times of

crisis, there is considerable connection between Industrials, Information Technology,

Consumer Discretionary, and to a lesser extend Healthcare, and the Financial sector.

Consumer Staples, Utilities, and Materials appear to be more stable during these

periods and do not experience as much correlation with Financials. This might suggest

that our method could be used as a tool to identify investment strategies that are

likely to be resilient to periods of crisis in the market.
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Figure 11. Adjacency matrices between sectors for each time seg-

ment. Based on the number of edges going from stocks of one sector

to another as given by the estimated precision matrices θ̂.

Figure 12. Number of edges between the financial sector and the

remaining sectors, for each time segment. Based on the estimated

precision matrices θ̂.
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4. proofs

4.1. Proof of Theorem 5. We will need the following lemma.

Lemma 12. Set

g(θ)
def
= − log det(θ) + Tr(θS),

and φ(θ)
def
= g(θ) + λ

[
α‖θ‖1 +

1− α
2
‖θ‖2F

]
, θ ∈M+

p ,

for some symmetric matrix S, α ∈ (0, 1), and λ > 0. Fix 0 < b < B ≤ ∞.

(1) For θ, ϑ ∈M+
p (b, B), we have

g(θ) + 〈∇g(θ), ϑ− θ〉+
1

2B2
‖ϑ− θ‖2F ≤ g(ϑ)

≤ g(θ) + 〈∇g(θ), ϑ− θ〉+
1

2b2
‖ϑ− θ‖2F .

More generally, If θ, ϑ ∈M+
p , then

g(ϑ)− g(θ)− 〈∇g(θ), ϑ− θ〉 ≥
‖ϑ− θ‖2F

4‖θ‖2
(
‖θ‖2 + 1

2‖ϑ− θ‖F
) .

(2) Let γ ∈ (0, b2], and θ, θ̄, θ0 ∈M+
p (b, B). Suppose that

θ̄ = Proxγλ
(
θ − γ(S − θ−1)

)
,

then

2γ
(
φ(θ̄)− φ(θ0)

)
+
∥∥θ̄ − θ0

∥∥2

F
≤
(

1− γ

B2

)
‖θ − θ0‖2F .

Proof. The first part of (1) is Lemma 12 of Atchadé et al. (2015), and Part (2) is

Lemma 14 of Atchadé et al. (2015). The second part of (1) can be proved along

similar lines. For completeness we give the details below.

Take θ0, θ1 ∈M+
p . By Taylor expansion we have

g(θ1)− g(θ0)− 〈∇g(θ0), θ1 − θ0〉 = −
∫ 1

0

〈
(θ0 + tH)−1 − θ−1

0 , H
〉

dt,

where H
def
= θ1 − θ0. We have (θ0 + tH)−1 − θ−1

0 = −tθ−1
0 H(θ0 + tH)−1, which leads

to

g(θ1)− g(θ0)− 〈∇g(θ0), θ1 − θ0〉 =

∫ 1

0
Tr
(
θ−1

0 H(θ0 + tH)−1H
)
tdt.
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If θ0 =
∑p

i=1 ρjuju
′
j is the eigendecomposition of θ0, we see that Tr

(
θ−1

0 H(θ0 + tH)−1H
)

=∑p
j=1

1
ρj
u′jH(θ0 + tH)−1Huj . Hence

g(θ1)− g(θ0)− 〈∇g(θ0), θ1 − θ0〉 ≥
p∑
j=1

‖Huj‖22
∫ 1

0

tdt

‖θ0‖2 (‖θ0‖2 + t‖H‖F)

≥
∑p

j=1 ‖Huj‖22
4‖θ0‖2

(
‖θ0‖2 + 1

2‖H‖F
) ,

and the result follows by noting that
∑p

j=1 ‖Huj‖22 = ‖H‖2F.

�

Set

F(τ, θ1, θ2) = g1,τ (θ1) + λ1,τp(θ) + g2,τ (θ2) + λ2,τp(θ2),

F = F(τ̂, θ̂1,τ̂ , θ̂1,τ̂ ) the value of Problem (3), and Fk = F(τ (k), θ
(k)
1 , θ

(k)
2 )−F .

Lemma 13. Suppose that γ ∈ (0, b2
1 ∧ b2

2], and for j = 1, 2, θ
(0)
j ∈M+

p (bj ,Bj). Then

limk

∥∥∥θ(k)
1 − θ̂1,τ (k)

∥∥∥
F

= 0, limk

∥∥∥θ(k)
2 − θ̂2,τ (k)

∥∥∥
F

= 0. Furthermore the sequence {Fk}
is non-increasing, and limk Fk exists.

Proof. We know from Lemma 2 that for γ ∈ (0, b2
1 ∧ b2

2], and θ
(0)
j ∈ M+

p (bj ,Bj), we

have θ
(k)
j ∈M+

p (bj ,Bj) for all k ≥ 0, for j = 1, 2. We have,

Fk+1 −Fk = F(τ (k+1), θ
(k+1)
1 , θ

(k+1)
2 )−F(τ (k), θ

(k+1)
1 , θ

(k+1)
2 )

+ F(τ (k), θ
(k+1)
1 , θ

(k+1)
2 )−F(τ (k), θ

(k)
1 , θ

(k)
2 ).

By definition, F(τ (k+1), θ
(k+1)
1 , θ

(k+1)
2 ) − F(τ (k), θ

(k+1)
1 , θ

(k+1)
2 ) ≤ 0, and by Lemma

12-Part(2),

F(τ (k), θ
(k+1)
1 , θ

(k+1)
2 )−F(τ (k), θ

(k)
1 , θ

(k)
2 )

≤ − 1

2γ

∥∥∥θ(k+1)
1 − θ(k)

1

∥∥∥2

F
− 1

2γ

∥∥∥θ(k+1)
2 − θ(k)

2

∥∥∥2

F

It follows that

Fk+1 ≤ Fk −
1

2γ

∥∥∥θ(k+1)
1 − θ(k)

1

∥∥∥2

F
− 1

2γ

∥∥∥θ(k+1)
2 − θ(k)

2

∥∥∥2

F
,

which implies that

lim
k

∥∥∥θ(k+1)
1 − θ(k)

1

∥∥∥
F

= 0, and lim
k

∥∥∥θ(k+1)
2 − θ(k)

2

∥∥∥
F

= 0. (15)
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It also implies that the sequence {Fk} is non-increasing and bounded from below by

0. Hence converges. Another application of Lemma 12 gives

2γ
(
F(τ (k), θ

(k+1)
1 , θ

(k+1)
2 )−F(τ (k), θ̂1,τ (k) , θ̂2,τ (k))

)
+
∥∥∥θ(k+1)

1 − θ̂1,τ (k)

∥∥∥2

F
+
∥∥∥θ(k+1)

2 − θ̂2,τ (k)

∥∥∥2

F

≤
(

1− γ

B2
1

)∥∥∥θ(k)
1 − θ̂1,τ (k)

∥∥∥2

F
+

(
1− γ

B2
2

)∥∥∥θ(k)
2 − θ̂2,τ (k)

∥∥∥2

F
.

And notice that F(τ (k), θ
(k+1)
1 , θ

(k+1)
2 )−F(τ (k), θ̂1,τ (k) , θ̂2,τ (k)) ≥ 0. Hence

∥∥∥θ(k+1)
1 − θ̂1,τ (k)

∥∥∥2

F
+
∥∥∥θ(k+1)

2 − θ̂2,τ (k)

∥∥∥2

F

≤
(

1− γ

B2
1

)∥∥∥θ(k)
1 − θ̂1,τ (k)

∥∥∥2

F
+

(
1− γ

B2
2

)∥∥∥θ(k)
2 − θ̂2,τ (k)

∥∥∥2

F
,

which can be written as

γ

B2
1

∥∥∥θ(k)
1 − θ̂1,τ (k)

∥∥∥2

F
+

γ

B2
2

∥∥∥θ(k)
2 − θ̂2,τ (k)

∥∥∥2

F
≤
∥∥∥θ(k+1)

1 − θ(k)
1

∥∥∥2

F
+
∥∥∥θ(k+1)

2 − θ(k)
2

∥∥∥2

F

− 2
〈
θ

(k+1)
1 − θ(k)

1 , θ
(k+1)
1 − θ̂1,τ (k)

〉
− 2

〈
θ

(k+1)
2 − θ(k)

2 , θ
(k+1)
2 − θ̂2,τ (k)

〉
.

Since {θ(k)
1 }, {θ

(k)
2 } {θ̂1,τ (k)}, and {θ̂2,τ (k)} are bounded sequence, and given (15),

letting k →∞, we conclude that

lim
k

∥∥∥θ(k)
1 − θ̂1,τ (k)

∥∥∥
F

= 0, and lim
k

∥∥∥θ(k)
2 − θ̂2,τ (k)

∥∥∥
F

= 0.

�

Proof of Theorem 5. Let ε > 0 as in H1. By Lemma 13, there exist k0 ≥ 1 such that

for all k ≥ k0,
∥∥∥θ(k+1)

1 − θ̂1,τ (k)

∥∥∥
F
≤ ε, and

∥∥∥θ(k+1)
2 − θ̂2,τ (k)

∥∥∥
F
≤ ε. Since

τ (k+1) = Argmint∈T H
(
t|θ(k+1)

1 , θ
(k+1)
2

)
,

using H1 we conclude that for all k ≥ k0,∣∣∣τ (k+1) − τ?
∣∣∣ ≤ κ ∣∣∣τ (k) − τ?

∣∣∣+ c ≤ κk−k0+1
∣∣∣τ (k0) − τ?

∣∣∣+
c

1− κ
,

which implies the stated result. �
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4.2. Proof of Theorem 9. We introduce some more notation. Given M ∈ Rp×p

the sparsity structure of M is the matrix δ ∈ {0, 1}p×p such that δjk = 1{|Mjk|>0}. In

particular we will write δ?,j (j = 1, 2) to denote the sparsity structure of θ?,j . Given

matrices A ∈ Rp×p, and δ ∈ {0, 1}p×p, we will use the notation Aδ (resp. Aδc) to

denote the component-wise product of A and δ (resp A and 1− δ). Given j ∈ {1, 2},
we define

Cj
def
=
{
M ∈Mp : ‖Mδc?,j

‖1 ≤ 7‖Mδ?,j‖1.
}
. (16)

We will need the following deviation bound.

Lemma 14. Suppose that Xi
ind∼ N(0, θ−1

i ), i = 1, . . . , N , where θi ∈ M+
p . We set

Σi
def
= θ−1

i , and define

κi(2)
def
= inf

{
u′Σiu, ‖u‖2 = 1, ‖u‖0 ≤ 2

}
, κ̄i(2)

def
= sup

{
u′Σiu, ‖u‖2 = 1, ‖u‖0 ≤ 2

}
,

and suppose that κi(2) > 0 for i = 1, . . . , N . Set GN
def
= N−1

∑N
i=1(XiX

′
i − θ

−1
i ).

Then for 0 < δ ≤ 2
(

mink κk(2)
maxk κ̄k(2)

)2
, we have

P
(
‖GN‖∞ >

(
max
k

κ̄k(2)

)
δ

)
≤ 4p2e−

Nδ2

4 .

Proof. The proof is similar to the proof of Lemma 1 of Ravikumar et al. (2010),

which itself builds on Bickel and Levina (2008). For 1 ≤ i, j ≤ p, arbitrary, set Z
(k)
ij =

Xk,iXk,j , and σ
(k)
ij = Σk,ij , so that the (i, j)-th component of GN is N−1

∑N
k=1(Z

(k)
ij −

σ
(k)
ij ). Suppose that i 6= j. The case i = j is simpler. It is easy to check that

N∑
k=1

[
Z

(k)
ij − σ

(k)
ij

]
=

1

4

N∑
k=1

[
(Xk,i +Xk,j)

2 − σ(k)
ii − σ

(k)
jj − 2σ

(k)
ij

]

− 1

4

N∑
k=1

[
(Xk,i −Xk,j)

2 − σ(k)
ii − σ

(k)
jj + 2σ

(k)
ij

]
.

Notice that Xk,i + Xk,j ∼ N(0, σ
(k)
ii + σ

(k)
jj + 2σ

(k)
ij ), and Xk,i − Xk,j ∼ N(0, σ

(k)
ii +

σ
(k)
jj − 2σ

(k)
ij ). It follows that for all x ≥ 0,

P

[∣∣∣∣∣
N∑
k=1

[
Z

(k)
ij − σ

(k)
ij

]∣∣∣∣∣ > x

]
≤ P

[∣∣∣∣∣
N∑
k=1

a
(k)
ij (Wk − 1)

∣∣∣∣∣ > 2x

]

+ P

[∣∣∣∣∣
N∑
k=1

b
(k)
ij (Wk − 1)

∣∣∣∣∣ > 2x

]
,
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where W1:N
i.i.d.∼ χ2

1, a
(k)
ij = σ

(k)
ii + σ

(k)
jj + 2σ

(k)
ij , and b

(k)
ij = σ

(k)
ii + σ

(k)
jj − 2σ

(k)
ij . For any

x ≥ 0 and a sequence a = (a1, . . . , aN ) of positive numbers, with |a|∞ = maxi |ai|,
|a|2 =

√∑
i a

2
i , we write

2x = 2|a|2
(

x

2|a|2

)
+ 2|a|∞

(
4|a|22

2x|a|∞

)(
x

2|a|2

)2

.

Therefore if 2x|a|∞ ≤ 4|a|22, we can apply Lemma 1 of Laurent and Massart (2000)

to conclude that

P

(∣∣∣∣∣
N∑
k=1

ak(Wk − 1)

∣∣∣∣∣ ≥ 2x

)
≤ 2e

− x2

4|a|22 .

In particular, we can apply the above bound with x = |a|∞Nδ for δ ∈ (0,
2 minj a

2
i

maxi a2
i

] to

get that

P

(∣∣∣∣∣
N∑
k=1

ak(Wk − 1)

∣∣∣∣∣ ≥ 2|a|∞Nδ

)
≤ 2e−

Nδ2

4 .

In the particular case above, a
(k)
ij = σ

(k)
ii +σ

(k)
jj +2σ

(k)
ij = u′Σ(k)u, where ui = uj = 1,

and ur = 0 for r /∈ {i, j}. And

mink u
′Σ(k)u

maxk u′Σ(k)u
≥ mink κk(2)

maxk κ̄(2)
.

A similar bound holds for b
(k)
ij . The lemma follows from a standard union-sum argu-

ment.

�

The following event plays an important role in the analysis.

En
def
=
⋂
τ∈T

{
1

λ1,τ
‖∇g1,τ (θ?,1)‖∞ ≤

α

2
, and

1

λ2,τ
‖∇g2,τ (θ?,2)‖∞ ≤

α

2

}
, (17)

Lemma 15. Under the assumptions of the theorem

P(En) ≥ 1− 8

pT
.

Proof. We have

P(Ecn) ≤ P
(

max
τ∈T

1

λ1,τ
‖∇g1,τ (θ?,1)‖∞ >

α

2

)
+ P

(
max
τ∈T

1

λ2,τ
‖∇g2,τ (θ?,2)‖∞ >

α

2

)
.

We show how to bound the first term. A similar bound follows for g2,τ by working on

the reversed sequence X(T ), . . . , X(1). We have ∇g1,τ (θ) = τ
2T (S1(τ)− θ−1). Setting

U (t) def
= X(t)(X(t))′ − E

(
X(t)(X(t))′

)
, we can write

∇g1,τ (θ?,1) =
1

2T

τ∑
t=1

U (t) +
(τ − τ?)+

2T
(θ−1
?,2 − θ

−1
?,1),
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where a+
def
= max(a, 0). Hence by a standard union-bound argument,

P
(

max
τ∈T

1

λ1,τ
‖∇g1,τ (θ?,1)‖∞ >

α

2

)
≤
∑
τ∈T

P

(∥∥∥∥∥
τ∑
t=1

U (t)

∥∥∥∥∥
∞

> αλ1,τT − (τ − τ?)+‖θ−1
?,2 − θ

−1
?,1‖∞

)
.

Given the choice of λ1,τ in (8), αλ1,τT/2 = 2
√

3κ̄
√
τ log(pT ) ≥ (τ−τ?)+‖θ−1

?,2−θ
−1
?,1‖∞,

by assumption (11). In view of (10) we can apply Lemma 14 to deduce that

P
(

max
τ∈T

1

λ1,τ
‖∇g1,τ (θ?,1)‖∞ >

α

2

)
≤

∑
τ∈T

P

(∥∥∥∥∥1

τ

τ∑
t=1

U (t)

∥∥∥∥∥
∞

>
αλ1,τT

2τ

)

≤ 4Tp2e
− τ

4

(
αλ1,τ T

2τκ̄

)2

≤ 4 exp (2 log(pT )− 3 log(pT )) ≤ 4

pT
.

�

Lemma 16. Under the assumptions of the theorem, and on the event En, we have∥∥∥θ̂1,τ − θ?,1
∥∥∥
F
≤ Aκ̄‖θ?,1‖22

√
s1 log(pT )

τ
,

and ∥∥∥θ̂2,τ − θ?,2
∥∥∥
F
≤ Aκ̄‖θ?,2‖22

√
s2 log(pT )

T − τ
,

for all τ ∈ T , where A is an absolute constant that can be taken as A = 16×20×
√

48.

Proof. Fix j ∈ {1, 2}, and τ ∈ T . Set ḡj,τ (θ)
def
= gj,τ (θ) + (1 − α)λj,τ ‖θ‖F /2, and

recall that φj,τ (θ)
def
= gj,τ (θ) + λj,τ℘(θ). Hence φj,τ (θ) = ḡj,τ (θ) + αλj,τ‖θ‖1. By a

very standard argument that can be found for instance in Negahban et al. (2012), it

is known that on the event En, and if α satisfies (9) then we have θ̂j,τ − θ?,j ∈ Cj ,
where the cones Cj are as defined in (16). We write

φj,τ (θ̂j,τ )− φj,τ (θ?,j) =
〈
∇gj,τ (θ?,j) + (1− α)λj,τθ?,j , θ̂j,τ − θ?,j

〉
+ḡj,τ (θ̂j,τ )− ḡj,τ (θ?,j)−

〈
∇ḡj,τ (θ?,j), θ̂j,τ − θ?,j

〉
+αλj,τ

(
‖θ̂j,τ‖1 − ‖θ?,j‖1

)
.

On En, θ̂j,τ − θ?,j ∈ Cj . Therefore

αλj,τ

∣∣∣‖θ̂j,τ‖1 − ‖θ?,j‖1∣∣∣ ≤ αλj,τ ∥∥∥θ̂j,τ − θ?,j∥∥∥
1
≤ 8αλj,τ

√
sj

∥∥∥θ̂j,τ − θ?,j∥∥∥
F
,
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and∣∣∣〈∇gj,τ (θ?,j) + (1− α)λj,τθ?,j , θ̂j,τ − θ?,j
〉∣∣∣

≤ λj,τ
2

(α+ 2(1− α)‖θ?,j‖∞)
∥∥∥θ̂j,τ − θ?,j∥∥∥

1

≤ 4λj,τ (α+ 2(1− α)‖θ?,j‖∞)
√
sj

∥∥∥θ̂j,τ − θ?,j∥∥∥
F
.

Suppose j = 1. The case j = 2 is similar. We then set ∆1,τ
def
= θ̂1,τ − θ?,1, and use

the second part of Lemma 12 (1) to deduce that

ḡ1,τ (θ̂1,τ )− ḡ1,τ (θ?,1)−
〈
∇ḡ1,τ (θ?,1), θ̂1,τ − θ?,1

〉
≥ g1,τ (θ̂1,τ )− g1,τ (θ?,1)−

〈
∇g1,τ (θ?,1), θ̂1,τ − θ?,1

〉
≥ τ

2T

‖∆1,τ‖2F
2‖θ?,1‖2 (2‖θ?,1‖2 + ‖∆1,τ‖F)

.

Set c1 = τ
4T‖θ?,1‖22

, c2 = 4λ1,τ
√
s1 (3α+ 2(1− α)‖θ?,1‖∞). Since φ1,τ (θ̂1,τ )−φ1,τ (θ?,1) ≤

0, the above derivation shows that on the event En,

c1 ‖∆1,τ‖2F
2 + 1

‖θ?,1‖2 ‖∆1,τ‖F
− c2 ‖∆1,τ‖F ≤ 0,

Under the assumption that c1 ≥ 2c2/‖θ?,1‖2 (which we impose in (10)), this implies

that

‖∆1,τ‖F ≤
4c2

c1
≤ Aκ̄‖θ?,1‖22

√
s1 log(pT )

τ
,

where A = 16× 20×
√

48, as claimed. �

Proof of Theorem 9. For τ ∈ T , let

r1,τ
def
= Aκ̄‖θ?,1‖22

√
s1 log(pT )

τ
, r2,τ

def
= Aκ̄‖θ?,2‖22

√
s2 log(pT )

T − τ
,

be the convergence rates obtained in Lemma 16. Let ε > 0 be given by

ε
def
= min

τ∈T
(r1,τ ∧ r1,τ ).

For j = 1, 2, let θj ∈M+
p be such that ‖θj− θ̂τ,j‖1 ≤ ε. Set τ̌ = Argmint∈T H(t|θ1, θ2),

where H is as defined in (4). Set

C0 = min

[
‖θ?,2 − θ?,1‖4F

128B4‖θ?,2 − θ?,1‖21
,
(κ
κ̄

)4
]
.

We will show below that

P
(
|τ̌ − τ?| >

4 log(p)

C0

)
≤ 8

pT
+

4

p2 (1− e−C0)
. (18)
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This implies that with probability at least 1− 8
pT −

4
p2(1−e−C0)

, Assumption H1 holds

(with ε← ε/
√
p, κ = 0, and c = (4/C0) log(p)). The theorem then follows by applying

Theorem 5.

Given θj ∈ M+
p be such that ‖θj − θ̂τ,j‖1 ≤ ε, we will now show that (18) holds.

We shall bound P(τ̌ > τ? + δ), δ = (4/C0) log(p). The bound on P(τ̌ < τ?− δ) follows

similarly by working with the reversed sequence X(T ), . . . , X(1).

Note that θj can be written as

θj = (θj − θ̂τ,j) + (θ̂τ,j − θ?,j) + θ?,j . (19)

This implies that on En, for ε ≤ rj,τ , and rj,τ ≤ min

(
λmin(θ?,j)

4 ,
‖θ?,j‖∞

2 ,
‖θ?,j‖1
1+8s

1/2
j

)
, we

have

λmin(θj) ≥
1

2
λmin(θ?,j), λmax(θj) ≤ 2λmax(θ?,j),

‖θj‖∞ ≤ 2‖θ?,j‖∞, and ‖θj‖1 ≤ 2‖θ?,j‖1. (20)

Using the event En introduced in (17), we have

P (τ̌ > τ? + δ) ≤ P(Ecn) +
∑

j≥0: τ?+δ+j∈T
P (En, τ̌ = τ? + δ + j)

≤ P(Ecn)+
∑

j≥0: τ?+δ+j∈T
P (En, φ1,τ?+δ+j(θ1) + φ2,τ?+δ+j(θ2) ≤ φ1,τ?(θ1) + φ2,τ?(θ2)) ,

(21)

where φj,τ (θ)
def
= gj,τ (θ) + λj,τ℘(θ). First we are going to bound the probability

P (En, φ1,τ (θ1) + φ2,τ (θ2) ≤ φ1,τ?(θ1) + φ2,τ?(θ2)) ,

for some arbitrary τ ∈ T , τ > τ?. A simple calculation shows that

2T

τ − τ?
[φ1,τ (θ1) + φ2,,τ (θ2)− φ1,τ?(θ1)− φ2,τ?(θ2)] = − log det(θ1) + log det(θ2)

+
〈
θ1 − θ2, θ

−1
?,2

〉
+

〈
θ1 − θ2,

1

τ − τ?

τ∑
t=τ?+1

(
X(t)X(t)′ − θ−1

?,2

)〉

+ 2T

(
λ1,τ − λ1,τ?

τ − τ?

)(
1− α

2
‖θ1‖2F + α‖θ1‖1

)
+ 2T

(
λ2,τ − λ2,τ?

τ − τ?

)(
1− α

2
‖θ2‖2F + α‖θ2‖1

)
.
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We have 2T
(
λ1,τ−λ1,τ?
τ−τ?

) (
1−α

2 ‖θ1‖2F + α‖θ1‖1
)
≥ 0, and

2T

∣∣∣∣λ2,τ − λ2,τ?

τ − τ?

∣∣∣∣ ≤ κ̄

α

√
48 log(pT )

T − τ
=

c0r2,τ

αs
1/2
2 ‖θ?,2‖22

,

for some absolute constant c0. Using the infinity-norm and 1-norm bounds in (20)

together with (9), we have

1− α
2
‖θ2‖2F + α‖θ2‖1 = α

[
1− α

2α
‖θ2‖∞ + 1

]
‖θ2‖1 ≤ 4α‖θ?,2‖1,

and it follows that

2T

∣∣∣∣λ2,τ − λ2,τ?

τ − τ?

∣∣∣∣ (1− α
2
‖θ2‖2F + α‖θ2‖1

)
≤ Cτ

def
=

(
4c0‖θ?,2‖1
s

1/2
2 ‖θ?,2‖22

)
r2,τ .

Set

b
def
= min (λmin(θ?,1), λmin(θ?,2)) , B

def
= max (‖θ?,1‖2, ‖θ?,2‖2) .

By the strong convexity of log det (Lemma 12 Part(1)) we have:

− log det(θ1) + log det(θ2) +
〈
θ1 − θ2, θ

−1
?,2

〉
≥
〈
θ−1
?,2 − θ

−1
2 , θ1 − θ2

〉
+

1

2B2
‖θ1 − θ2‖2F.

Since θ−1
?,2 − θ

−1
2 = θ−1

?,2(θ2− θ?,2)θ−1
2 , and using the fact that ‖AB‖F ≤ ‖A‖2‖B‖F, we

have that on En,∣∣∣〈θ−1
?,2 − θ

−1
2 , θ1 − θ2

〉∣∣∣ ≤ 2r2,τ‖θ−1
?,2‖2‖θ

−1
2 ‖2‖θ2 − θ1‖F ≤ 4r2,τ‖θ−1

?,2‖
2
2‖θ2 − θ1‖F.

We conclude that on En,

2T

τ − τ?
[φ1,τ (θ1) + φ2,τ (θ2)− φ1,τ?(θ1)− φ2,τ?(θ2)] ≥〈

θ1 − θ2,
1

τ − τ?

τ∑
t=τ?+1

(
X(t)X(t)′ − θ−1

?,2

)〉

− Cτ − 4r2,τ‖θ−1
?,2‖

2
2‖θ2 − θ1‖F +

1

2B2
‖θ1 − θ2‖2F.

Under the assumption (12) imposed on rj,τ and for ε ≤ r1,τ ∧ r2,τ , it can be shown

that on En, and for ‖θ?,2 − θ?,1‖F ≥ 8c0‖θ?,2‖1
s
1/2
2 ‖θ?,2‖22‖θ

−1
?,2‖22

, we have

− Cτ − 2 (ε+ r2,τ ) ‖θ−1
?,2‖

2
2‖θ2 − θ1‖F +

1

4B2
‖θ1 − θ2‖2F ≥ 0. (22)
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To see this, note that (22) holds if ‖θ2−θ1‖F ≥ 8B2r2,τ‖θ−1
?,2‖22+2B

√
Cτ + 16B2‖θ−1

?,2‖42r2
2,τ .

Then it can be checked that if r2,τ ≤ c0‖θ?,2‖1
16B2s

1/2
2 ‖θ?,2‖22‖θ

−1
?,2‖42

, then

8B2‖θ−1
?,2‖

2
2r2,τ ≤

Cτ

2‖θ−1
?,2‖22r2,τ

, and 4B
√
Cτ ≤

Cτ

2‖θ−1
?,2‖22r2,τ

.

Therefore, (22) holds if

‖θ2 − θ1‖F ≥
Cτ

‖θ−1
?,2‖22r2,τ

=
4c0‖θ?,2‖1

s
1/2
2 ‖θ?,2‖22‖θ

−1
?,2‖22

.

Now we write

θ2 − θ1 = (θ2 − θ̂τ,2) + (θ̂τ,2 − θ?,2) + (θ?,2 − θ?,1) + (θ?,1 − θ̂τ,1) + (θ̂τ,1 − θ1),

and use the fact that ε ≤ r1,τ ∧ r2,τ , and rj,τ ≤ ‖θ?,2 − θ?,1‖F/8 to deduce that on En,

‖θ2 − θ1‖F ≥ ‖θ?,2 − θ?,1‖F/2, and this completes the proof of the claim.

It follows from the above that

P (En;φ1,τ (θ1) + φ2,τ (θ2)− φ1,τ?(θ1)− φ2,τ?(θ2) ≤ 0)

≤ P

∥∥∥∥∥ 1

τ − τ?

τ∑
t=τ?+1

(
X(t)X(t)′ − θ−1

?,2

)∥∥∥∥∥
∞

>
‖θ2 − θ1‖2F

4B2‖θ2 − θ1‖1

 . (23)

Proceeding as above, it is easy to see that if ε ≤ r1,τ ∧ r2,τ , and rj,τ ≤ ‖θ?,2−θ?,1‖F
2(1+8s1/2)

,

then

‖θ2 − θ1‖2F
4B2‖θ2 − θ1‖1

≥
‖θ?,2 − θ?,1‖2F

32B2‖θ?,2 − θ?,1‖1
.

Using this, and by Lemma 15, it follows that the probability on the right-hand side

of (23) is upper-bounded by

4p2 exp

(
−(τ − τ?) min

[
‖θ?,2 − θ?,1‖4F

128B4‖θ?,2 − θ?,1‖21
,
(κ
κ̄

)4
])

.

We apply this to (21) to get:

P(τ̌ > τ? + δ) ≤ P(Ecn) +
∑
j≥0

4p2e−C0(δ+j) ≤ 8

pT
+

4

p2(1− e−C0)
,

where C0 = min
[

‖θ?,2−θ?,1‖4F
128B4‖θ?,2−θ?,1‖21

,
(κ
κ̄

)4]
, and by taking δ = 4 log(p)/C0. This com-

pletes the proof.

�
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Höfling, H. and Tibshirani, R. (2009). Estimation of sparse binary pairwise

Markov networks using pseudo-likelihoods. J. Mach. Learn. Res. 10 883–906.

Kolar, M., Song, L., Ahmed, A. and Xing, E. (2010). Estimating time-varying

networks. Ann. Appl. Statist. 4 94–123.

Kolar, M. and Xing, E. P. (2012). Estimating networks with jumps. Electron. J.

Statist. 6 2069–2106.

Lafferty, J., Liu, H., Wasserman, L. et al. (2012). Sparse nonparametric

graphical models. Statistical Science 27 519–537.

Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional

by model selection. Ann. Statist. 28 1302–1338.
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